]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/project.rs
Merge from rustc
[rust.git] / compiler / rustc_trait_selection / src / traits / project.rs
1 //! Code for projecting associated types out of trait references.
2
3 use super::specialization_graph;
4 use super::translate_substs;
5 use super::util;
6 use super::MismatchedProjectionTypes;
7 use super::Obligation;
8 use super::ObligationCause;
9 use super::PredicateObligation;
10 use super::Selection;
11 use super::SelectionContext;
12 use super::SelectionError;
13 use super::{
14     ImplSourceClosureData, ImplSourceFnPointerData, ImplSourceFutureData, ImplSourceGeneratorData,
15     ImplSourceUserDefinedData,
16 };
17 use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
18
19 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
20 use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
21 use crate::traits::error_reporting::TypeErrCtxtExt as _;
22 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
23 use crate::traits::select::ProjectionMatchesProjection;
24 use rustc_data_structures::sso::SsoHashSet;
25 use rustc_data_structures::stack::ensure_sufficient_stack;
26 use rustc_errors::ErrorGuaranteed;
27 use rustc_hir::def::DefKind;
28 use rustc_hir::def_id::DefId;
29 use rustc_hir::lang_items::LangItem;
30 use rustc_infer::infer::resolve::OpportunisticRegionResolver;
31 use rustc_infer::traits::ImplSourceBuiltinData;
32 use rustc_middle::traits::select::OverflowError;
33 use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
34 use rustc_middle::ty::visit::{MaxUniverse, TypeVisitable};
35 use rustc_middle::ty::DefIdTree;
36 use rustc_middle::ty::{self, Term, ToPredicate, Ty, TyCtxt};
37 use rustc_span::symbol::sym;
38
39 use std::collections::BTreeMap;
40
41 pub use rustc_middle::traits::Reveal;
42
43 pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
44
45 pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
46
47 pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::ProjectionTy<'tcx>>;
48
49 pub(super) struct InProgress;
50
51 /// When attempting to resolve `<T as TraitRef>::Name` ...
52 #[derive(Debug)]
53 pub enum ProjectionError<'tcx> {
54     /// ...we found multiple sources of information and couldn't resolve the ambiguity.
55     TooManyCandidates,
56
57     /// ...an error occurred matching `T : TraitRef`
58     TraitSelectionError(SelectionError<'tcx>),
59 }
60
61 #[derive(PartialEq, Eq, Debug)]
62 enum ProjectionCandidate<'tcx> {
63     /// From a where-clause in the env or object type
64     ParamEnv(ty::PolyProjectionPredicate<'tcx>),
65
66     /// From the definition of `Trait` when you have something like
67     /// `<<A as Trait>::B as Trait2>::C`.
68     TraitDef(ty::PolyProjectionPredicate<'tcx>),
69
70     /// Bounds specified on an object type
71     Object(ty::PolyProjectionPredicate<'tcx>),
72
73     /// From an "impl" (or a "pseudo-impl" returned by select)
74     Select(Selection<'tcx>),
75
76     ImplTraitInTrait(ImplTraitInTraitCandidate<'tcx>),
77 }
78
79 #[derive(PartialEq, Eq, Debug)]
80 enum ImplTraitInTraitCandidate<'tcx> {
81     // The `impl Trait` from a trait function's default body
82     Trait,
83     // A concrete type provided from a trait's `impl Trait` from an impl
84     Impl(ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>),
85 }
86
87 enum ProjectionCandidateSet<'tcx> {
88     None,
89     Single(ProjectionCandidate<'tcx>),
90     Ambiguous,
91     Error(SelectionError<'tcx>),
92 }
93
94 impl<'tcx> ProjectionCandidateSet<'tcx> {
95     fn mark_ambiguous(&mut self) {
96         *self = ProjectionCandidateSet::Ambiguous;
97     }
98
99     fn mark_error(&mut self, err: SelectionError<'tcx>) {
100         *self = ProjectionCandidateSet::Error(err);
101     }
102
103     // Returns true if the push was successful, or false if the candidate
104     // was discarded -- this could be because of ambiguity, or because
105     // a higher-priority candidate is already there.
106     fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
107         use self::ProjectionCandidate::*;
108         use self::ProjectionCandidateSet::*;
109
110         // This wacky variable is just used to try and
111         // make code readable and avoid confusing paths.
112         // It is assigned a "value" of `()` only on those
113         // paths in which we wish to convert `*self` to
114         // ambiguous (and return false, because the candidate
115         // was not used). On other paths, it is not assigned,
116         // and hence if those paths *could* reach the code that
117         // comes after the match, this fn would not compile.
118         let convert_to_ambiguous;
119
120         match self {
121             None => {
122                 *self = Single(candidate);
123                 return true;
124             }
125
126             Single(current) => {
127                 // Duplicates can happen inside ParamEnv. In the case, we
128                 // perform a lazy deduplication.
129                 if current == &candidate {
130                     return false;
131                 }
132
133                 // Prefer where-clauses. As in select, if there are multiple
134                 // candidates, we prefer where-clause candidates over impls.  This
135                 // may seem a bit surprising, since impls are the source of
136                 // "truth" in some sense, but in fact some of the impls that SEEM
137                 // applicable are not, because of nested obligations. Where
138                 // clauses are the safer choice. See the comment on
139                 // `select::SelectionCandidate` and #21974 for more details.
140                 match (current, candidate) {
141                     (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
142                     (ParamEnv(..), _) => return false,
143                     (_, ParamEnv(..)) => unreachable!(),
144                     (_, _) => convert_to_ambiguous = (),
145                 }
146             }
147
148             Ambiguous | Error(..) => {
149                 return false;
150             }
151         }
152
153         // We only ever get here when we moved from a single candidate
154         // to ambiguous.
155         let () = convert_to_ambiguous;
156         *self = Ambiguous;
157         false
158     }
159 }
160
161 /// States returned from `poly_project_and_unify_type`. Takes the place
162 /// of the old return type, which was:
163 /// ```ignore (not-rust)
164 /// Result<
165 ///     Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
166 ///     MismatchedProjectionTypes<'tcx>,
167 /// >
168 /// ```
169 pub(super) enum ProjectAndUnifyResult<'tcx> {
170     /// The projection bound holds subject to the given obligations. If the
171     /// projection cannot be normalized because the required trait bound does
172     /// not hold, this is returned, with `obligations` being a predicate that
173     /// cannot be proven.
174     Holds(Vec<PredicateObligation<'tcx>>),
175     /// The projection cannot be normalized due to ambiguity. Resolving some
176     /// inference variables in the projection may fix this.
177     FailedNormalization,
178     /// The project cannot be normalized because `poly_project_and_unify_type`
179     /// is called recursively while normalizing the same projection.
180     Recursive,
181     // the projection can be normalized, but is not equal to the expected type.
182     // Returns the type error that arose from the mismatch.
183     MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
184 }
185
186 /// Evaluates constraints of the form:
187 /// ```ignore (not-rust)
188 /// for<...> <T as Trait>::U == V
189 /// ```
190 /// If successful, this may result in additional obligations. Also returns
191 /// the projection cache key used to track these additional obligations.
192 #[instrument(level = "debug", skip(selcx))]
193 pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
194     selcx: &mut SelectionContext<'cx, 'tcx>,
195     obligation: &PolyProjectionObligation<'tcx>,
196 ) -> ProjectAndUnifyResult<'tcx> {
197     let infcx = selcx.infcx();
198     let r = infcx.commit_if_ok(|_snapshot| {
199         let old_universe = infcx.universe();
200         let placeholder_predicate =
201             infcx.replace_bound_vars_with_placeholders(obligation.predicate);
202         let new_universe = infcx.universe();
203
204         let placeholder_obligation = obligation.with(infcx.tcx, placeholder_predicate);
205         match project_and_unify_type(selcx, &placeholder_obligation) {
206             ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
207             ProjectAndUnifyResult::Holds(obligations)
208                 if old_universe != new_universe
209                     && selcx.tcx().features().generic_associated_types_extended =>
210             {
211                 // If the `generic_associated_types_extended` feature is active, then we ignore any
212                 // obligations references lifetimes from any universe greater than or equal to the
213                 // universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
214                 // which isn't quite what we want. Ideally, we want either an implied
215                 // `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
216                 // substitute concrete regions. There is design work to be done here; until then,
217                 // however, this allows experimenting potential GAT features without running into
218                 // well-formedness issues.
219                 let new_obligations = obligations
220                     .into_iter()
221                     .filter(|obligation| {
222                         let mut visitor = MaxUniverse::new();
223                         obligation.predicate.visit_with(&mut visitor);
224                         visitor.max_universe() < new_universe
225                     })
226                     .collect();
227                 Ok(ProjectAndUnifyResult::Holds(new_obligations))
228             }
229             other => Ok(other),
230         }
231     });
232
233     match r {
234         Ok(inner) => inner,
235         Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
236     }
237 }
238
239 /// Evaluates constraints of the form:
240 /// ```ignore (not-rust)
241 /// <T as Trait>::U == V
242 /// ```
243 /// If successful, this may result in additional obligations.
244 ///
245 /// See [poly_project_and_unify_type] for an explanation of the return value.
246 #[instrument(level = "debug", skip(selcx))]
247 fn project_and_unify_type<'cx, 'tcx>(
248     selcx: &mut SelectionContext<'cx, 'tcx>,
249     obligation: &ProjectionObligation<'tcx>,
250 ) -> ProjectAndUnifyResult<'tcx> {
251     let mut obligations = vec![];
252
253     let infcx = selcx.infcx();
254     let normalized = match opt_normalize_projection_type(
255         selcx,
256         obligation.param_env,
257         obligation.predicate.projection_ty,
258         obligation.cause.clone(),
259         obligation.recursion_depth,
260         &mut obligations,
261     ) {
262         Ok(Some(n)) => n,
263         Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
264         Err(InProgress) => return ProjectAndUnifyResult::Recursive,
265     };
266     debug!(?normalized, ?obligations, "project_and_unify_type result");
267     let actual = obligation.predicate.term;
268     // For an example where this is necessary see src/test/ui/impl-trait/nested-return-type2.rs
269     // This allows users to omit re-mentioning all bounds on an associated type and just use an
270     // `impl Trait` for the assoc type to add more bounds.
271     let InferOk { value: actual, obligations: new } =
272         selcx.infcx().replace_opaque_types_with_inference_vars(
273             actual,
274             obligation.cause.body_id,
275             obligation.cause.span,
276             obligation.param_env,
277         );
278     obligations.extend(new);
279
280     match infcx.at(&obligation.cause, obligation.param_env).eq(normalized, actual) {
281         Ok(InferOk { obligations: inferred_obligations, value: () }) => {
282             obligations.extend(inferred_obligations);
283             ProjectAndUnifyResult::Holds(obligations)
284         }
285         Err(err) => {
286             debug!("equating types encountered error {:?}", err);
287             ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
288         }
289     }
290 }
291
292 /// Normalizes any associated type projections in `value`, replacing
293 /// them with a fully resolved type where possible. The return value
294 /// combines the normalized result and any additional obligations that
295 /// were incurred as result.
296 pub fn normalize<'a, 'b, 'tcx, T>(
297     selcx: &'a mut SelectionContext<'b, 'tcx>,
298     param_env: ty::ParamEnv<'tcx>,
299     cause: ObligationCause<'tcx>,
300     value: T,
301 ) -> Normalized<'tcx, T>
302 where
303     T: TypeFoldable<'tcx>,
304 {
305     let mut obligations = Vec::new();
306     let value = normalize_to(selcx, param_env, cause, value, &mut obligations);
307     Normalized { value, obligations }
308 }
309
310 pub fn normalize_to<'a, 'b, 'tcx, T>(
311     selcx: &'a mut SelectionContext<'b, 'tcx>,
312     param_env: ty::ParamEnv<'tcx>,
313     cause: ObligationCause<'tcx>,
314     value: T,
315     obligations: &mut Vec<PredicateObligation<'tcx>>,
316 ) -> T
317 where
318     T: TypeFoldable<'tcx>,
319 {
320     normalize_with_depth_to(selcx, param_env, cause, 0, value, obligations)
321 }
322
323 /// As `normalize`, but with a custom depth.
324 pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
325     selcx: &'a mut SelectionContext<'b, 'tcx>,
326     param_env: ty::ParamEnv<'tcx>,
327     cause: ObligationCause<'tcx>,
328     depth: usize,
329     value: T,
330 ) -> Normalized<'tcx, T>
331 where
332     T: TypeFoldable<'tcx>,
333 {
334     let mut obligations = Vec::new();
335     let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
336     Normalized { value, obligations }
337 }
338
339 #[instrument(level = "info", skip(selcx, param_env, cause, obligations))]
340 pub fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
341     selcx: &'a mut SelectionContext<'b, 'tcx>,
342     param_env: ty::ParamEnv<'tcx>,
343     cause: ObligationCause<'tcx>,
344     depth: usize,
345     value: T,
346     obligations: &mut Vec<PredicateObligation<'tcx>>,
347 ) -> T
348 where
349     T: TypeFoldable<'tcx>,
350 {
351     debug!(obligations.len = obligations.len());
352     let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
353     let result = ensure_sufficient_stack(|| normalizer.fold(value));
354     debug!(?result, obligations.len = normalizer.obligations.len());
355     debug!(?normalizer.obligations,);
356     result
357 }
358
359 #[instrument(level = "info", skip(selcx, param_env, cause, obligations))]
360 pub fn try_normalize_with_depth_to<'a, 'b, 'tcx, T>(
361     selcx: &'a mut SelectionContext<'b, 'tcx>,
362     param_env: ty::ParamEnv<'tcx>,
363     cause: ObligationCause<'tcx>,
364     depth: usize,
365     value: T,
366     obligations: &mut Vec<PredicateObligation<'tcx>>,
367 ) -> T
368 where
369     T: TypeFoldable<'tcx>,
370 {
371     debug!(obligations.len = obligations.len());
372     let mut normalizer = AssocTypeNormalizer::new_without_eager_inference_replacement(
373         selcx,
374         param_env,
375         cause,
376         depth,
377         obligations,
378     );
379     let result = ensure_sufficient_stack(|| normalizer.fold(value));
380     debug!(?result, obligations.len = normalizer.obligations.len());
381     debug!(?normalizer.obligations,);
382     result
383 }
384
385 pub(crate) fn needs_normalization<'tcx, T: TypeVisitable<'tcx>>(value: &T, reveal: Reveal) -> bool {
386     match reveal {
387         Reveal::UserFacing => value
388             .has_type_flags(ty::TypeFlags::HAS_TY_PROJECTION | ty::TypeFlags::HAS_CT_PROJECTION),
389         Reveal::All => value.has_type_flags(
390             ty::TypeFlags::HAS_TY_PROJECTION
391                 | ty::TypeFlags::HAS_TY_OPAQUE
392                 | ty::TypeFlags::HAS_CT_PROJECTION,
393         ),
394     }
395 }
396
397 struct AssocTypeNormalizer<'a, 'b, 'tcx> {
398     selcx: &'a mut SelectionContext<'b, 'tcx>,
399     param_env: ty::ParamEnv<'tcx>,
400     cause: ObligationCause<'tcx>,
401     obligations: &'a mut Vec<PredicateObligation<'tcx>>,
402     depth: usize,
403     universes: Vec<Option<ty::UniverseIndex>>,
404     /// If true, when a projection is unable to be completed, an inference
405     /// variable will be created and an obligation registered to project to that
406     /// inference variable. Also, constants will be eagerly evaluated.
407     eager_inference_replacement: bool,
408 }
409
410 impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
411     fn new(
412         selcx: &'a mut SelectionContext<'b, 'tcx>,
413         param_env: ty::ParamEnv<'tcx>,
414         cause: ObligationCause<'tcx>,
415         depth: usize,
416         obligations: &'a mut Vec<PredicateObligation<'tcx>>,
417     ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
418         AssocTypeNormalizer {
419             selcx,
420             param_env,
421             cause,
422             obligations,
423             depth,
424             universes: vec![],
425             eager_inference_replacement: true,
426         }
427     }
428
429     fn new_without_eager_inference_replacement(
430         selcx: &'a mut SelectionContext<'b, 'tcx>,
431         param_env: ty::ParamEnv<'tcx>,
432         cause: ObligationCause<'tcx>,
433         depth: usize,
434         obligations: &'a mut Vec<PredicateObligation<'tcx>>,
435     ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
436         AssocTypeNormalizer {
437             selcx,
438             param_env,
439             cause,
440             obligations,
441             depth,
442             universes: vec![],
443             eager_inference_replacement: false,
444         }
445     }
446
447     fn fold<T: TypeFoldable<'tcx>>(&mut self, value: T) -> T {
448         let value = self.selcx.infcx().resolve_vars_if_possible(value);
449         debug!(?value);
450
451         assert!(
452             !value.has_escaping_bound_vars(),
453             "Normalizing {:?} without wrapping in a `Binder`",
454             value
455         );
456
457         if !needs_normalization(&value, self.param_env.reveal()) {
458             value
459         } else {
460             value.fold_with(self)
461         }
462     }
463 }
464
465 impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
466     fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
467         self.selcx.tcx()
468     }
469
470     fn fold_binder<T: TypeFoldable<'tcx>>(
471         &mut self,
472         t: ty::Binder<'tcx, T>,
473     ) -> ty::Binder<'tcx, T> {
474         self.universes.push(None);
475         let t = t.super_fold_with(self);
476         self.universes.pop();
477         t
478     }
479
480     fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
481         if !needs_normalization(&ty, self.param_env.reveal()) {
482             return ty;
483         }
484
485         // We try to be a little clever here as a performance optimization in
486         // cases where there are nested projections under binders.
487         // For example:
488         // ```
489         // for<'a> fn(<T as Foo>::One<'a, Box<dyn Bar<'a, Item=<T as Foo>::Two<'a>>>>)
490         // ```
491         // We normalize the substs on the projection before the projecting, but
492         // if we're naive, we'll
493         //   replace bound vars on inner, project inner, replace placeholders on inner,
494         //   replace bound vars on outer, project outer, replace placeholders on outer
495         //
496         // However, if we're a bit more clever, we can replace the bound vars
497         // on the entire type before normalizing nested projections, meaning we
498         //   replace bound vars on outer, project inner,
499         //   project outer, replace placeholders on outer
500         //
501         // This is possible because the inner `'a` will already be a placeholder
502         // when we need to normalize the inner projection
503         //
504         // On the other hand, this does add a bit of complexity, since we only
505         // replace bound vars if the current type is a `Projection` and we need
506         // to make sure we don't forget to fold the substs regardless.
507
508         match *ty.kind() {
509             // This is really important. While we *can* handle this, this has
510             // severe performance implications for large opaque types with
511             // late-bound regions. See `issue-88862` benchmark.
512             ty::Opaque(def_id, substs) if !substs.has_escaping_bound_vars() => {
513                 // Only normalize `impl Trait` outside of type inference, usually in codegen.
514                 match self.param_env.reveal() {
515                     Reveal::UserFacing => ty.super_fold_with(self),
516
517                     Reveal::All => {
518                         let recursion_limit = self.tcx().recursion_limit();
519                         if !recursion_limit.value_within_limit(self.depth) {
520                             let obligation = Obligation::with_depth(
521                                 self.tcx(),
522                                 self.cause.clone(),
523                                 recursion_limit.0,
524                                 self.param_env,
525                                 ty,
526                             );
527                             self.selcx.infcx().err_ctxt().report_overflow_error(&obligation, true);
528                         }
529
530                         let substs = substs.fold_with(self);
531                         let generic_ty = self.tcx().bound_type_of(def_id);
532                         let concrete_ty = generic_ty.subst(self.tcx(), substs);
533                         self.depth += 1;
534                         let folded_ty = self.fold_ty(concrete_ty);
535                         self.depth -= 1;
536                         folded_ty
537                     }
538                 }
539             }
540
541             ty::Projection(data) if !data.has_escaping_bound_vars() => {
542                 // This branch is *mostly* just an optimization: when we don't
543                 // have escaping bound vars, we don't need to replace them with
544                 // placeholders (see branch below). *Also*, we know that we can
545                 // register an obligation to *later* project, since we know
546                 // there won't be bound vars there.
547                 let data = data.fold_with(self);
548                 let normalized_ty = if self.eager_inference_replacement {
549                     normalize_projection_type(
550                         self.selcx,
551                         self.param_env,
552                         data,
553                         self.cause.clone(),
554                         self.depth,
555                         &mut self.obligations,
556                     )
557                 } else {
558                     opt_normalize_projection_type(
559                         self.selcx,
560                         self.param_env,
561                         data,
562                         self.cause.clone(),
563                         self.depth,
564                         &mut self.obligations,
565                     )
566                     .ok()
567                     .flatten()
568                     .unwrap_or_else(|| ty.super_fold_with(self).into())
569                 };
570                 debug!(
571                     ?self.depth,
572                     ?ty,
573                     ?normalized_ty,
574                     obligations.len = ?self.obligations.len(),
575                     "AssocTypeNormalizer: normalized type"
576                 );
577                 normalized_ty.ty().unwrap()
578             }
579
580             ty::Projection(data) => {
581                 // If there are escaping bound vars, we temporarily replace the
582                 // bound vars with placeholders. Note though, that in the case
583                 // that we still can't project for whatever reason (e.g. self
584                 // type isn't known enough), we *can't* register an obligation
585                 // and return an inference variable (since then that obligation
586                 // would have bound vars and that's a can of worms). Instead,
587                 // we just give up and fall back to pretending like we never tried!
588                 //
589                 // Note: this isn't necessarily the final approach here; we may
590                 // want to figure out how to register obligations with escaping vars
591                 // or handle this some other way.
592
593                 let infcx = self.selcx.infcx();
594                 let (data, mapped_regions, mapped_types, mapped_consts) =
595                     BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, data);
596                 let data = data.fold_with(self);
597                 let normalized_ty = opt_normalize_projection_type(
598                     self.selcx,
599                     self.param_env,
600                     data,
601                     self.cause.clone(),
602                     self.depth,
603                     &mut self.obligations,
604                 )
605                 .ok()
606                 .flatten()
607                 .map(|term| term.ty().unwrap())
608                 .map(|normalized_ty| {
609                     PlaceholderReplacer::replace_placeholders(
610                         infcx,
611                         mapped_regions,
612                         mapped_types,
613                         mapped_consts,
614                         &self.universes,
615                         normalized_ty,
616                     )
617                 })
618                 .unwrap_or_else(|| ty.super_fold_with(self));
619
620                 debug!(
621                     ?self.depth,
622                     ?ty,
623                     ?normalized_ty,
624                     obligations.len = ?self.obligations.len(),
625                     "AssocTypeNormalizer: normalized type"
626                 );
627                 normalized_ty
628             }
629
630             _ => ty.super_fold_with(self),
631         }
632     }
633
634     #[instrument(skip(self), level = "debug")]
635     fn fold_const(&mut self, constant: ty::Const<'tcx>) -> ty::Const<'tcx> {
636         let tcx = self.selcx.tcx();
637         if tcx.lazy_normalization() || !needs_normalization(&constant, self.param_env.reveal()) {
638             constant
639         } else {
640             let constant = constant.super_fold_with(self);
641             debug!(?constant, ?self.param_env);
642             with_replaced_escaping_bound_vars(
643                 self.selcx.infcx(),
644                 &mut self.universes,
645                 constant,
646                 |constant| constant.eval(tcx, self.param_env),
647             )
648         }
649     }
650
651     #[inline]
652     fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
653         if p.allow_normalization() && needs_normalization(&p, self.param_env.reveal()) {
654             p.super_fold_with(self)
655         } else {
656             p
657         }
658     }
659 }
660
661 pub struct BoundVarReplacer<'me, 'tcx> {
662     infcx: &'me InferCtxt<'tcx>,
663     // These three maps track the bound variable that were replaced by placeholders. It might be
664     // nice to remove these since we already have the `kind` in the placeholder; we really just need
665     // the `var` (but we *could* bring that into scope if we were to track them as we pass them).
666     mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
667     mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
668     mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
669     // The current depth relative to *this* folding, *not* the entire normalization. In other words,
670     // the depth of binders we've passed here.
671     current_index: ty::DebruijnIndex,
672     // The `UniverseIndex` of the binding levels above us. These are optional, since we are lazy:
673     // we don't actually create a universe until we see a bound var we have to replace.
674     universe_indices: &'me mut Vec<Option<ty::UniverseIndex>>,
675 }
676
677 /// Executes `f` on `value` after replacing all escaping bound variables with placeholders
678 /// and then replaces these placeholders with the original bound variables in the result.
679 ///
680 /// In most places, bound variables should be replaced right when entering a binder, making
681 /// this function unnecessary. However, normalization currently does not do that, so we have
682 /// to do this lazily.
683 ///
684 /// You should not add any additional uses of this function, at least not without first
685 /// discussing it with t-types.
686 ///
687 /// FIXME(@lcnr): We may even consider experimenting with eagerly replacing bound vars during
688 /// normalization as well, at which point this function will be unnecessary and can be removed.
689 pub fn with_replaced_escaping_bound_vars<'a, 'tcx, T: TypeFoldable<'tcx>, R: TypeFoldable<'tcx>>(
690     infcx: &'a InferCtxt<'tcx>,
691     universe_indices: &'a mut Vec<Option<ty::UniverseIndex>>,
692     value: T,
693     f: impl FnOnce(T) -> R,
694 ) -> R {
695     if value.has_escaping_bound_vars() {
696         let (value, mapped_regions, mapped_types, mapped_consts) =
697             BoundVarReplacer::replace_bound_vars(infcx, universe_indices, value);
698         let result = f(value);
699         PlaceholderReplacer::replace_placeholders(
700             infcx,
701             mapped_regions,
702             mapped_types,
703             mapped_consts,
704             universe_indices,
705             result,
706         )
707     } else {
708         f(value)
709     }
710 }
711
712 impl<'me, 'tcx> BoundVarReplacer<'me, 'tcx> {
713     /// Returns `Some` if we *were* able to replace bound vars. If there are any bound vars that
714     /// use a binding level above `universe_indices.len()`, we fail.
715     pub fn replace_bound_vars<T: TypeFoldable<'tcx>>(
716         infcx: &'me InferCtxt<'tcx>,
717         universe_indices: &'me mut Vec<Option<ty::UniverseIndex>>,
718         value: T,
719     ) -> (
720         T,
721         BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
722         BTreeMap<ty::PlaceholderType, ty::BoundTy>,
723         BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
724     ) {
725         let mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion> = BTreeMap::new();
726         let mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy> = BTreeMap::new();
727         let mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar> = BTreeMap::new();
728
729         let mut replacer = BoundVarReplacer {
730             infcx,
731             mapped_regions,
732             mapped_types,
733             mapped_consts,
734             current_index: ty::INNERMOST,
735             universe_indices,
736         };
737
738         let value = value.fold_with(&mut replacer);
739
740         (value, replacer.mapped_regions, replacer.mapped_types, replacer.mapped_consts)
741     }
742
743     fn universe_for(&mut self, debruijn: ty::DebruijnIndex) -> ty::UniverseIndex {
744         let infcx = self.infcx;
745         let index =
746             self.universe_indices.len() + self.current_index.as_usize() - debruijn.as_usize() - 1;
747         let universe = self.universe_indices[index].unwrap_or_else(|| {
748             for i in self.universe_indices.iter_mut().take(index + 1) {
749                 *i = i.or_else(|| Some(infcx.create_next_universe()))
750             }
751             self.universe_indices[index].unwrap()
752         });
753         universe
754     }
755 }
756
757 impl<'tcx> TypeFolder<'tcx> for BoundVarReplacer<'_, 'tcx> {
758     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
759         self.infcx.tcx
760     }
761
762     fn fold_binder<T: TypeFoldable<'tcx>>(
763         &mut self,
764         t: ty::Binder<'tcx, T>,
765     ) -> ty::Binder<'tcx, T> {
766         self.current_index.shift_in(1);
767         let t = t.super_fold_with(self);
768         self.current_index.shift_out(1);
769         t
770     }
771
772     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
773         match *r {
774             ty::ReLateBound(debruijn, _)
775                 if debruijn.as_usize() + 1
776                     > self.current_index.as_usize() + self.universe_indices.len() =>
777             {
778                 bug!("Bound vars outside of `self.universe_indices`");
779             }
780             ty::ReLateBound(debruijn, br) if debruijn >= self.current_index => {
781                 let universe = self.universe_for(debruijn);
782                 let p = ty::PlaceholderRegion { universe, name: br.kind };
783                 self.mapped_regions.insert(p, br);
784                 self.infcx.tcx.mk_region(ty::RePlaceholder(p))
785             }
786             _ => r,
787         }
788     }
789
790     fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
791         match *t.kind() {
792             ty::Bound(debruijn, _)
793                 if debruijn.as_usize() + 1
794                     > self.current_index.as_usize() + self.universe_indices.len() =>
795             {
796                 bug!("Bound vars outside of `self.universe_indices`");
797             }
798             ty::Bound(debruijn, bound_ty) if debruijn >= self.current_index => {
799                 let universe = self.universe_for(debruijn);
800                 let p = ty::PlaceholderType { universe, name: bound_ty.var };
801                 self.mapped_types.insert(p, bound_ty);
802                 self.infcx.tcx.mk_ty(ty::Placeholder(p))
803             }
804             _ if t.has_vars_bound_at_or_above(self.current_index) => t.super_fold_with(self),
805             _ => t,
806         }
807     }
808
809     fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
810         match ct.kind() {
811             ty::ConstKind::Bound(debruijn, _)
812                 if debruijn.as_usize() + 1
813                     > self.current_index.as_usize() + self.universe_indices.len() =>
814             {
815                 bug!("Bound vars outside of `self.universe_indices`");
816             }
817             ty::ConstKind::Bound(debruijn, bound_const) if debruijn >= self.current_index => {
818                 let universe = self.universe_for(debruijn);
819                 let p = ty::PlaceholderConst { universe, name: bound_const };
820                 self.mapped_consts.insert(p, bound_const);
821                 self.infcx.tcx.mk_const(ty::ConstKind::Placeholder(p), ct.ty())
822             }
823             _ => ct.super_fold_with(self),
824         }
825     }
826
827     fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
828         if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p }
829     }
830 }
831
832 // The inverse of `BoundVarReplacer`: replaces placeholders with the bound vars from which they came.
833 pub struct PlaceholderReplacer<'me, 'tcx> {
834     infcx: &'me InferCtxt<'tcx>,
835     mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
836     mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
837     mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
838     universe_indices: &'me [Option<ty::UniverseIndex>],
839     current_index: ty::DebruijnIndex,
840 }
841
842 impl<'me, 'tcx> PlaceholderReplacer<'me, 'tcx> {
843     pub fn replace_placeholders<T: TypeFoldable<'tcx>>(
844         infcx: &'me InferCtxt<'tcx>,
845         mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
846         mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
847         mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
848         universe_indices: &'me [Option<ty::UniverseIndex>],
849         value: T,
850     ) -> T {
851         let mut replacer = PlaceholderReplacer {
852             infcx,
853             mapped_regions,
854             mapped_types,
855             mapped_consts,
856             universe_indices,
857             current_index: ty::INNERMOST,
858         };
859         value.fold_with(&mut replacer)
860     }
861 }
862
863 impl<'tcx> TypeFolder<'tcx> for PlaceholderReplacer<'_, 'tcx> {
864     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
865         self.infcx.tcx
866     }
867
868     fn fold_binder<T: TypeFoldable<'tcx>>(
869         &mut self,
870         t: ty::Binder<'tcx, T>,
871     ) -> ty::Binder<'tcx, T> {
872         if !t.has_placeholders() && !t.has_infer_regions() {
873             return t;
874         }
875         self.current_index.shift_in(1);
876         let t = t.super_fold_with(self);
877         self.current_index.shift_out(1);
878         t
879     }
880
881     fn fold_region(&mut self, r0: ty::Region<'tcx>) -> ty::Region<'tcx> {
882         let r1 = match *r0 {
883             ty::ReVar(_) => self
884                 .infcx
885                 .inner
886                 .borrow_mut()
887                 .unwrap_region_constraints()
888                 .opportunistic_resolve_region(self.infcx.tcx, r0),
889             _ => r0,
890         };
891
892         let r2 = match *r1 {
893             ty::RePlaceholder(p) => {
894                 let replace_var = self.mapped_regions.get(&p);
895                 match replace_var {
896                     Some(replace_var) => {
897                         let index = self
898                             .universe_indices
899                             .iter()
900                             .position(|u| matches!(u, Some(pu) if *pu == p.universe))
901                             .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
902                         let db = ty::DebruijnIndex::from_usize(
903                             self.universe_indices.len() - index + self.current_index.as_usize() - 1,
904                         );
905                         self.tcx().mk_region(ty::ReLateBound(db, *replace_var))
906                     }
907                     None => r1,
908                 }
909             }
910             _ => r1,
911         };
912
913         debug!(?r0, ?r1, ?r2, "fold_region");
914
915         r2
916     }
917
918     fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
919         match *ty.kind() {
920             ty::Placeholder(p) => {
921                 let replace_var = self.mapped_types.get(&p);
922                 match replace_var {
923                     Some(replace_var) => {
924                         let index = self
925                             .universe_indices
926                             .iter()
927                             .position(|u| matches!(u, Some(pu) if *pu == p.universe))
928                             .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
929                         let db = ty::DebruijnIndex::from_usize(
930                             self.universe_indices.len() - index + self.current_index.as_usize() - 1,
931                         );
932                         self.tcx().mk_ty(ty::Bound(db, *replace_var))
933                     }
934                     None => ty,
935                 }
936             }
937
938             _ if ty.has_placeholders() || ty.has_infer_regions() => ty.super_fold_with(self),
939             _ => ty,
940         }
941     }
942
943     fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
944         if let ty::ConstKind::Placeholder(p) = ct.kind() {
945             let replace_var = self.mapped_consts.get(&p);
946             match replace_var {
947                 Some(replace_var) => {
948                     let index = self
949                         .universe_indices
950                         .iter()
951                         .position(|u| matches!(u, Some(pu) if *pu == p.universe))
952                         .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
953                     let db = ty::DebruijnIndex::from_usize(
954                         self.universe_indices.len() - index + self.current_index.as_usize() - 1,
955                     );
956                     self.tcx().mk_const(ty::ConstKind::Bound(db, *replace_var), ct.ty())
957                 }
958                 None => ct,
959             }
960         } else {
961             ct.super_fold_with(self)
962         }
963     }
964 }
965
966 /// The guts of `normalize`: normalize a specific projection like `<T
967 /// as Trait>::Item`. The result is always a type (and possibly
968 /// additional obligations). If ambiguity arises, which implies that
969 /// there are unresolved type variables in the projection, we will
970 /// substitute a fresh type variable `$X` and generate a new
971 /// obligation `<T as Trait>::Item == $X` for later.
972 pub fn normalize_projection_type<'a, 'b, 'tcx>(
973     selcx: &'a mut SelectionContext<'b, 'tcx>,
974     param_env: ty::ParamEnv<'tcx>,
975     projection_ty: ty::ProjectionTy<'tcx>,
976     cause: ObligationCause<'tcx>,
977     depth: usize,
978     obligations: &mut Vec<PredicateObligation<'tcx>>,
979 ) -> Term<'tcx> {
980     opt_normalize_projection_type(
981         selcx,
982         param_env,
983         projection_ty,
984         cause.clone(),
985         depth,
986         obligations,
987     )
988     .ok()
989     .flatten()
990     .unwrap_or_else(move || {
991         // if we bottom out in ambiguity, create a type variable
992         // and a deferred predicate to resolve this when more type
993         // information is available.
994
995         selcx
996             .infcx()
997             .infer_projection(param_env, projection_ty, cause, depth + 1, obligations)
998             .into()
999     })
1000 }
1001
1002 /// The guts of `normalize`: normalize a specific projection like `<T
1003 /// as Trait>::Item`. The result is always a type (and possibly
1004 /// additional obligations). Returns `None` in the case of ambiguity,
1005 /// which indicates that there are unbound type variables.
1006 ///
1007 /// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
1008 /// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
1009 /// often immediately appended to another obligations vector. So now this
1010 /// function takes an obligations vector and appends to it directly, which is
1011 /// slightly uglier but avoids the need for an extra short-lived allocation.
1012 #[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
1013 fn opt_normalize_projection_type<'a, 'b, 'tcx>(
1014     selcx: &'a mut SelectionContext<'b, 'tcx>,
1015     param_env: ty::ParamEnv<'tcx>,
1016     projection_ty: ty::ProjectionTy<'tcx>,
1017     cause: ObligationCause<'tcx>,
1018     depth: usize,
1019     obligations: &mut Vec<PredicateObligation<'tcx>>,
1020 ) -> Result<Option<Term<'tcx>>, InProgress> {
1021     let infcx = selcx.infcx();
1022     // Don't use the projection cache in intercrate mode -
1023     // the `infcx` may be re-used between intercrate in non-intercrate
1024     // mode, which could lead to using incorrect cache results.
1025     let use_cache = !selcx.is_intercrate();
1026
1027     let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
1028     let cache_key = ProjectionCacheKey::new(projection_ty);
1029
1030     // FIXME(#20304) For now, I am caching here, which is good, but it
1031     // means we don't capture the type variables that are created in
1032     // the case of ambiguity. Which means we may create a large stream
1033     // of such variables. OTOH, if we move the caching up a level, we
1034     // would not benefit from caching when proving `T: Trait<U=Foo>`
1035     // bounds. It might be the case that we want two distinct caches,
1036     // or else another kind of cache entry.
1037
1038     let cache_result = if use_cache {
1039         infcx.inner.borrow_mut().projection_cache().try_start(cache_key)
1040     } else {
1041         Ok(())
1042     };
1043     match cache_result {
1044         Ok(()) => debug!("no cache"),
1045         Err(ProjectionCacheEntry::Ambiguous) => {
1046             // If we found ambiguity the last time, that means we will continue
1047             // to do so until some type in the key changes (and we know it
1048             // hasn't, because we just fully resolved it).
1049             debug!("found cache entry: ambiguous");
1050             return Ok(None);
1051         }
1052         Err(ProjectionCacheEntry::InProgress) => {
1053             // Under lazy normalization, this can arise when
1054             // bootstrapping.  That is, imagine an environment with a
1055             // where-clause like `A::B == u32`. Now, if we are asked
1056             // to normalize `A::B`, we will want to check the
1057             // where-clauses in scope. So we will try to unify `A::B`
1058             // with `A::B`, which can trigger a recursive
1059             // normalization.
1060
1061             debug!("found cache entry: in-progress");
1062
1063             // Cache that normalizing this projection resulted in a cycle. This
1064             // should ensure that, unless this happens within a snapshot that's
1065             // rolled back, fulfillment or evaluation will notice the cycle.
1066
1067             if use_cache {
1068                 infcx.inner.borrow_mut().projection_cache().recur(cache_key);
1069             }
1070             return Err(InProgress);
1071         }
1072         Err(ProjectionCacheEntry::Recur) => {
1073             debug!("recur cache");
1074             return Err(InProgress);
1075         }
1076         Err(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
1077             // This is the hottest path in this function.
1078             //
1079             // If we find the value in the cache, then return it along
1080             // with the obligations that went along with it. Note
1081             // that, when using a fulfillment context, these
1082             // obligations could in principle be ignored: they have
1083             // already been registered when the cache entry was
1084             // created (and hence the new ones will quickly be
1085             // discarded as duplicated). But when doing trait
1086             // evaluation this is not the case, and dropping the trait
1087             // evaluations can causes ICEs (e.g., #43132).
1088             debug!(?ty, "found normalized ty");
1089             obligations.extend(ty.obligations);
1090             return Ok(Some(ty.value));
1091         }
1092         Err(ProjectionCacheEntry::Error) => {
1093             debug!("opt_normalize_projection_type: found error");
1094             let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
1095             obligations.extend(result.obligations);
1096             return Ok(Some(result.value.into()));
1097         }
1098     }
1099
1100     let obligation =
1101         Obligation::with_depth(selcx.tcx(), cause.clone(), depth, param_env, projection_ty);
1102
1103     match project(selcx, &obligation) {
1104         Ok(Projected::Progress(Progress {
1105             term: projected_term,
1106             obligations: mut projected_obligations,
1107         })) => {
1108             // if projection succeeded, then what we get out of this
1109             // is also non-normalized (consider: it was derived from
1110             // an impl, where-clause etc) and hence we must
1111             // re-normalize it
1112
1113             let projected_term = selcx.infcx().resolve_vars_if_possible(projected_term);
1114
1115             let mut result = if projected_term.has_projections() {
1116                 let mut normalizer = AssocTypeNormalizer::new(
1117                     selcx,
1118                     param_env,
1119                     cause,
1120                     depth + 1,
1121                     &mut projected_obligations,
1122                 );
1123                 let normalized_ty = normalizer.fold(projected_term);
1124
1125                 Normalized { value: normalized_ty, obligations: projected_obligations }
1126             } else {
1127                 Normalized { value: projected_term, obligations: projected_obligations }
1128             };
1129
1130             let mut deduped: SsoHashSet<_> = Default::default();
1131             result.obligations.drain_filter(|projected_obligation| {
1132                 if !deduped.insert(projected_obligation.clone()) {
1133                     return true;
1134                 }
1135                 false
1136             });
1137
1138             if use_cache {
1139                 infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
1140             }
1141             obligations.extend(result.obligations);
1142             Ok(Some(result.value))
1143         }
1144         Ok(Projected::NoProgress(projected_ty)) => {
1145             let result = Normalized { value: projected_ty, obligations: vec![] };
1146             if use_cache {
1147                 infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
1148             }
1149             // No need to extend `obligations`.
1150             Ok(Some(result.value))
1151         }
1152         Err(ProjectionError::TooManyCandidates) => {
1153             debug!("opt_normalize_projection_type: too many candidates");
1154             if use_cache {
1155                 infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
1156             }
1157             Ok(None)
1158         }
1159         Err(ProjectionError::TraitSelectionError(_)) => {
1160             debug!("opt_normalize_projection_type: ERROR");
1161             // if we got an error processing the `T as Trait` part,
1162             // just return `ty::err` but add the obligation `T :
1163             // Trait`, which when processed will cause the error to be
1164             // reported later
1165
1166             if use_cache {
1167                 infcx.inner.borrow_mut().projection_cache().error(cache_key);
1168             }
1169             let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
1170             obligations.extend(result.obligations);
1171             Ok(Some(result.value.into()))
1172         }
1173     }
1174 }
1175
1176 /// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
1177 /// hold. In various error cases, we cannot generate a valid
1178 /// normalized projection. Therefore, we create an inference variable
1179 /// return an associated obligation that, when fulfilled, will lead to
1180 /// an error.
1181 ///
1182 /// Note that we used to return `Error` here, but that was quite
1183 /// dubious -- the premise was that an error would *eventually* be
1184 /// reported, when the obligation was processed. But in general once
1185 /// you see an `Error` you are supposed to be able to assume that an
1186 /// error *has been* reported, so that you can take whatever heuristic
1187 /// paths you want to take. To make things worse, it was possible for
1188 /// cycles to arise, where you basically had a setup like `<MyType<$0>
1189 /// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
1190 /// Trait>::Foo> to `[type error]` would lead to an obligation of
1191 /// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
1192 /// an error for this obligation, but we legitimately should not,
1193 /// because it contains `[type error]`. Yuck! (See issue #29857 for
1194 /// one case where this arose.)
1195 fn normalize_to_error<'a, 'tcx>(
1196     selcx: &mut SelectionContext<'a, 'tcx>,
1197     param_env: ty::ParamEnv<'tcx>,
1198     projection_ty: ty::ProjectionTy<'tcx>,
1199     cause: ObligationCause<'tcx>,
1200     depth: usize,
1201 ) -> NormalizedTy<'tcx> {
1202     let trait_ref = ty::Binder::dummy(projection_ty.trait_ref(selcx.tcx()));
1203     let trait_obligation = Obligation {
1204         cause,
1205         recursion_depth: depth,
1206         param_env,
1207         predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
1208     };
1209     let tcx = selcx.infcx().tcx;
1210     let def_id = projection_ty.item_def_id;
1211     let new_value = selcx.infcx().next_ty_var(TypeVariableOrigin {
1212         kind: TypeVariableOriginKind::NormalizeProjectionType,
1213         span: tcx.def_span(def_id),
1214     });
1215     Normalized { value: new_value, obligations: vec![trait_obligation] }
1216 }
1217
1218 enum Projected<'tcx> {
1219     Progress(Progress<'tcx>),
1220     NoProgress(ty::Term<'tcx>),
1221 }
1222
1223 struct Progress<'tcx> {
1224     term: ty::Term<'tcx>,
1225     obligations: Vec<PredicateObligation<'tcx>>,
1226 }
1227
1228 impl<'tcx> Progress<'tcx> {
1229     fn error(tcx: TyCtxt<'tcx>) -> Self {
1230         Progress { term: tcx.ty_error().into(), obligations: vec![] }
1231     }
1232
1233     fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
1234         self.obligations.append(&mut obligations);
1235         self
1236     }
1237 }
1238
1239 /// Computes the result of a projection type (if we can).
1240 ///
1241 /// IMPORTANT:
1242 /// - `obligation` must be fully normalized
1243 #[instrument(level = "info", skip(selcx))]
1244 fn project<'cx, 'tcx>(
1245     selcx: &mut SelectionContext<'cx, 'tcx>,
1246     obligation: &ProjectionTyObligation<'tcx>,
1247 ) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
1248     if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
1249         // This should really be an immediate error, but some existing code
1250         // relies on being able to recover from this.
1251         return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
1252             OverflowError::Canonical,
1253         )));
1254     }
1255
1256     if obligation.predicate.references_error() {
1257         return Ok(Projected::Progress(Progress::error(selcx.tcx())));
1258     }
1259
1260     let mut candidates = ProjectionCandidateSet::None;
1261
1262     assemble_candidate_for_impl_trait_in_trait(selcx, obligation, &mut candidates);
1263
1264     // Make sure that the following procedures are kept in order. ParamEnv
1265     // needs to be first because it has highest priority, and Select checks
1266     // the return value of push_candidate which assumes it's ran at last.
1267     assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
1268
1269     assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
1270
1271     assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
1272
1273     if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
1274         // Avoid normalization cycle from selection (see
1275         // `assemble_candidates_from_object_ty`).
1276         // FIXME(lazy_normalization): Lazy normalization should save us from
1277         // having to special case this.
1278     } else {
1279         assemble_candidates_from_impls(selcx, obligation, &mut candidates);
1280     };
1281
1282     match candidates {
1283         ProjectionCandidateSet::Single(candidate) => {
1284             Ok(Projected::Progress(confirm_candidate(selcx, obligation, candidate)))
1285         }
1286         ProjectionCandidateSet::None => Ok(Projected::NoProgress(
1287             // FIXME(associated_const_generics): this may need to change in the future?
1288             // need to investigate whether or not this is fine.
1289             selcx
1290                 .tcx()
1291                 .mk_projection(obligation.predicate.item_def_id, obligation.predicate.substs)
1292                 .into(),
1293         )),
1294         // Error occurred while trying to processing impls.
1295         ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
1296         // Inherent ambiguity that prevents us from even enumerating the
1297         // candidates.
1298         ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
1299     }
1300 }
1301
1302 /// If the predicate's item is an `ImplTraitPlaceholder`, we do a select on the
1303 /// corresponding trait ref. If this yields an `impl`, then we're able to project
1304 /// to a concrete type, since we have an `impl`'s method  to provide the RPITIT.
1305 fn assemble_candidate_for_impl_trait_in_trait<'cx, 'tcx>(
1306     selcx: &mut SelectionContext<'cx, 'tcx>,
1307     obligation: &ProjectionTyObligation<'tcx>,
1308     candidate_set: &mut ProjectionCandidateSet<'tcx>,
1309 ) {
1310     let tcx = selcx.tcx();
1311     if tcx.def_kind(obligation.predicate.item_def_id) == DefKind::ImplTraitPlaceholder {
1312         let trait_fn_def_id = tcx.impl_trait_in_trait_parent(obligation.predicate.item_def_id);
1313         // If we are trying to project an RPITIT with trait's default `Self` parameter,
1314         // then we must be within a default trait body.
1315         if obligation.predicate.self_ty()
1316             == ty::InternalSubsts::identity_for_item(tcx, obligation.predicate.item_def_id)
1317                 .type_at(0)
1318             && tcx.associated_item(trait_fn_def_id).defaultness(tcx).has_value()
1319         {
1320             candidate_set.push_candidate(ProjectionCandidate::ImplTraitInTrait(
1321                 ImplTraitInTraitCandidate::Trait,
1322             ));
1323             return;
1324         }
1325
1326         let trait_def_id = tcx.parent(trait_fn_def_id);
1327         let trait_substs =
1328             obligation.predicate.substs.truncate_to(tcx, tcx.generics_of(trait_def_id));
1329         // FIXME(named-returns): Binders
1330         let trait_predicate =
1331             ty::Binder::dummy(ty::TraitRef { def_id: trait_def_id, substs: trait_substs });
1332
1333         let _ = selcx.infcx().commit_if_ok(|_| {
1334             match selcx.select(&obligation.with(tcx, trait_predicate)) {
1335                 Ok(Some(super::ImplSource::UserDefined(data))) => {
1336                     candidate_set.push_candidate(ProjectionCandidate::ImplTraitInTrait(
1337                         ImplTraitInTraitCandidate::Impl(data),
1338                     ));
1339                     Ok(())
1340                 }
1341                 Ok(None) => {
1342                     candidate_set.mark_ambiguous();
1343                     return Err(());
1344                 }
1345                 Ok(Some(_)) => {
1346                     // Don't know enough about the impl to provide a useful signature
1347                     return Err(());
1348                 }
1349                 Err(e) => {
1350                     debug!(error = ?e, "selection error");
1351                     candidate_set.mark_error(e);
1352                     return Err(());
1353                 }
1354             }
1355         });
1356     }
1357 }
1358
1359 /// The first thing we have to do is scan through the parameter
1360 /// environment to see whether there are any projection predicates
1361 /// there that can answer this question.
1362 fn assemble_candidates_from_param_env<'cx, 'tcx>(
1363     selcx: &mut SelectionContext<'cx, 'tcx>,
1364     obligation: &ProjectionTyObligation<'tcx>,
1365     candidate_set: &mut ProjectionCandidateSet<'tcx>,
1366 ) {
1367     assemble_candidates_from_predicates(
1368         selcx,
1369         obligation,
1370         candidate_set,
1371         ProjectionCandidate::ParamEnv,
1372         obligation.param_env.caller_bounds().iter(),
1373         false,
1374     );
1375 }
1376
1377 /// In the case of a nested projection like `<<A as Foo>::FooT as Bar>::BarT`, we may find
1378 /// that the definition of `Foo` has some clues:
1379 ///
1380 /// ```ignore (illustrative)
1381 /// trait Foo {
1382 ///     type FooT : Bar<BarT=i32>
1383 /// }
1384 /// ```
1385 ///
1386 /// Here, for example, we could conclude that the result is `i32`.
1387 fn assemble_candidates_from_trait_def<'cx, 'tcx>(
1388     selcx: &mut SelectionContext<'cx, 'tcx>,
1389     obligation: &ProjectionTyObligation<'tcx>,
1390     candidate_set: &mut ProjectionCandidateSet<'tcx>,
1391 ) {
1392     debug!("assemble_candidates_from_trait_def(..)");
1393
1394     let tcx = selcx.tcx();
1395     // Check whether the self-type is itself a projection.
1396     // If so, extract what we know from the trait and try to come up with a good answer.
1397     let bounds = match *obligation.predicate.self_ty().kind() {
1398         ty::Projection(ref data) => tcx.bound_item_bounds(data.item_def_id).subst(tcx, data.substs),
1399         ty::Opaque(def_id, substs) => tcx.bound_item_bounds(def_id).subst(tcx, substs),
1400         ty::Infer(ty::TyVar(_)) => {
1401             // If the self-type is an inference variable, then it MAY wind up
1402             // being a projected type, so induce an ambiguity.
1403             candidate_set.mark_ambiguous();
1404             return;
1405         }
1406         _ => return,
1407     };
1408
1409     assemble_candidates_from_predicates(
1410         selcx,
1411         obligation,
1412         candidate_set,
1413         ProjectionCandidate::TraitDef,
1414         bounds.iter(),
1415         true,
1416     );
1417 }
1418
1419 /// In the case of a trait object like
1420 /// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
1421 /// predicate in the trait object.
1422 ///
1423 /// We don't go through the select candidate for these bounds to avoid cycles:
1424 /// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
1425 /// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
1426 /// this then has to be normalized without having to prove
1427 /// `dyn Iterator<Item = ()>: Iterator` again.
1428 fn assemble_candidates_from_object_ty<'cx, 'tcx>(
1429     selcx: &mut SelectionContext<'cx, 'tcx>,
1430     obligation: &ProjectionTyObligation<'tcx>,
1431     candidate_set: &mut ProjectionCandidateSet<'tcx>,
1432 ) {
1433     debug!("assemble_candidates_from_object_ty(..)");
1434
1435     let tcx = selcx.tcx();
1436
1437     let self_ty = obligation.predicate.self_ty();
1438     let object_ty = selcx.infcx().shallow_resolve(self_ty);
1439     let data = match object_ty.kind() {
1440         ty::Dynamic(data, ..) => data,
1441         ty::Infer(ty::TyVar(_)) => {
1442             // If the self-type is an inference variable, then it MAY wind up
1443             // being an object type, so induce an ambiguity.
1444             candidate_set.mark_ambiguous();
1445             return;
1446         }
1447         _ => return,
1448     };
1449     let env_predicates = data
1450         .projection_bounds()
1451         .filter(|bound| bound.item_def_id() == obligation.predicate.item_def_id)
1452         .map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
1453
1454     assemble_candidates_from_predicates(
1455         selcx,
1456         obligation,
1457         candidate_set,
1458         ProjectionCandidate::Object,
1459         env_predicates,
1460         false,
1461     );
1462 }
1463
1464 #[instrument(
1465     level = "debug",
1466     skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
1467 )]
1468 fn assemble_candidates_from_predicates<'cx, 'tcx>(
1469     selcx: &mut SelectionContext<'cx, 'tcx>,
1470     obligation: &ProjectionTyObligation<'tcx>,
1471     candidate_set: &mut ProjectionCandidateSet<'tcx>,
1472     ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
1473     env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
1474     potentially_unnormalized_candidates: bool,
1475 ) {
1476     let infcx = selcx.infcx();
1477     for predicate in env_predicates {
1478         let bound_predicate = predicate.kind();
1479         if let ty::PredicateKind::Clause(ty::Clause::Projection(data)) =
1480             predicate.kind().skip_binder()
1481         {
1482             let data = bound_predicate.rebind(data);
1483             if data.projection_def_id() != obligation.predicate.item_def_id {
1484                 continue;
1485             }
1486
1487             let is_match = infcx.probe(|_| {
1488                 selcx.match_projection_projections(
1489                     obligation,
1490                     data,
1491                     potentially_unnormalized_candidates,
1492                 )
1493             });
1494
1495             match is_match {
1496                 ProjectionMatchesProjection::Yes => {
1497                     candidate_set.push_candidate(ctor(data));
1498
1499                     if potentially_unnormalized_candidates
1500                         && !obligation.predicate.has_non_region_infer()
1501                     {
1502                         // HACK: Pick the first trait def candidate for a fully
1503                         // inferred predicate. This is to allow duplicates that
1504                         // differ only in normalization.
1505                         return;
1506                     }
1507                 }
1508                 ProjectionMatchesProjection::Ambiguous => {
1509                     candidate_set.mark_ambiguous();
1510                 }
1511                 ProjectionMatchesProjection::No => {}
1512             }
1513         }
1514     }
1515 }
1516
1517 #[instrument(level = "debug", skip(selcx, obligation, candidate_set))]
1518 fn assemble_candidates_from_impls<'cx, 'tcx>(
1519     selcx: &mut SelectionContext<'cx, 'tcx>,
1520     obligation: &ProjectionTyObligation<'tcx>,
1521     candidate_set: &mut ProjectionCandidateSet<'tcx>,
1522 ) {
1523     // Can't assemble candidate from impl for RPITIT
1524     if selcx.tcx().def_kind(obligation.predicate.item_def_id) == DefKind::ImplTraitPlaceholder {
1525         return;
1526     }
1527
1528     // If we are resolving `<T as TraitRef<...>>::Item == Type`,
1529     // start out by selecting the predicate `T as TraitRef<...>`:
1530     let poly_trait_ref = ty::Binder::dummy(obligation.predicate.trait_ref(selcx.tcx()));
1531     let trait_obligation = obligation.with(selcx.tcx(), poly_trait_ref);
1532     let _ = selcx.infcx().commit_if_ok(|_| {
1533         let impl_source = match selcx.select(&trait_obligation) {
1534             Ok(Some(impl_source)) => impl_source,
1535             Ok(None) => {
1536                 candidate_set.mark_ambiguous();
1537                 return Err(());
1538             }
1539             Err(e) => {
1540                 debug!(error = ?e, "selection error");
1541                 candidate_set.mark_error(e);
1542                 return Err(());
1543             }
1544         };
1545
1546         let eligible = match &impl_source {
1547             super::ImplSource::Closure(_)
1548             | super::ImplSource::Generator(_)
1549             | super::ImplSource::Future(_)
1550             | super::ImplSource::FnPointer(_)
1551             | super::ImplSource::TraitAlias(_) => true,
1552             super::ImplSource::UserDefined(impl_data) => {
1553                 // We have to be careful when projecting out of an
1554                 // impl because of specialization. If we are not in
1555                 // codegen (i.e., projection mode is not "any"), and the
1556                 // impl's type is declared as default, then we disable
1557                 // projection (even if the trait ref is fully
1558                 // monomorphic). In the case where trait ref is not
1559                 // fully monomorphic (i.e., includes type parameters),
1560                 // this is because those type parameters may
1561                 // ultimately be bound to types from other crates that
1562                 // may have specialized impls we can't see. In the
1563                 // case where the trait ref IS fully monomorphic, this
1564                 // is a policy decision that we made in the RFC in
1565                 // order to preserve flexibility for the crate that
1566                 // defined the specializable impl to specialize later
1567                 // for existing types.
1568                 //
1569                 // In either case, we handle this by not adding a
1570                 // candidate for an impl if it contains a `default`
1571                 // type.
1572                 //
1573                 // NOTE: This should be kept in sync with the similar code in
1574                 // `rustc_ty_utils::instance::resolve_associated_item()`.
1575                 let node_item =
1576                     assoc_def(selcx, impl_data.impl_def_id, obligation.predicate.item_def_id)
1577                         .map_err(|ErrorGuaranteed { .. }| ())?;
1578
1579                 if node_item.is_final() {
1580                     // Non-specializable items are always projectable.
1581                     true
1582                 } else {
1583                     // Only reveal a specializable default if we're past type-checking
1584                     // and the obligation is monomorphic, otherwise passes such as
1585                     // transmute checking and polymorphic MIR optimizations could
1586                     // get a result which isn't correct for all monomorphizations.
1587                     if obligation.param_env.reveal() == Reveal::All {
1588                         // NOTE(eddyb) inference variables can resolve to parameters, so
1589                         // assume `poly_trait_ref` isn't monomorphic, if it contains any.
1590                         let poly_trait_ref = selcx.infcx().resolve_vars_if_possible(poly_trait_ref);
1591                         !poly_trait_ref.still_further_specializable()
1592                     } else {
1593                         debug!(
1594                             assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
1595                             ?obligation.predicate,
1596                             "assemble_candidates_from_impls: not eligible due to default",
1597                         );
1598                         false
1599                     }
1600                 }
1601             }
1602             super::ImplSource::Builtin(..) => {
1603                 // While a builtin impl may be known to exist, the associated type may not yet
1604                 // be known. Any type with multiple potential associated types is therefore
1605                 // not eligible.
1606                 let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
1607
1608                 let lang_items = selcx.tcx().lang_items();
1609                 if lang_items.discriminant_kind_trait() == Some(poly_trait_ref.def_id()) {
1610                     match self_ty.kind() {
1611                         ty::Bool
1612                         | ty::Char
1613                         | ty::Int(_)
1614                         | ty::Uint(_)
1615                         | ty::Float(_)
1616                         | ty::Adt(..)
1617                         | ty::Foreign(_)
1618                         | ty::Str
1619                         | ty::Array(..)
1620                         | ty::Slice(_)
1621                         | ty::RawPtr(..)
1622                         | ty::Ref(..)
1623                         | ty::FnDef(..)
1624                         | ty::FnPtr(..)
1625                         | ty::Dynamic(..)
1626                         | ty::Closure(..)
1627                         | ty::Generator(..)
1628                         | ty::GeneratorWitness(..)
1629                         | ty::Never
1630                         | ty::Tuple(..)
1631                         // Integers and floats always have `u8` as their discriminant.
1632                         | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1633
1634                          // type parameters, opaques, and unnormalized projections have pointer
1635                         // metadata if they're known (e.g. by the param_env) to be sized
1636                         ty::Param(_)
1637                         | ty::Projection(..)
1638                         | ty::Opaque(..)
1639                         | ty::Bound(..)
1640                         | ty::Placeholder(..)
1641                         | ty::Infer(..)
1642                         | ty::Error(_) => false,
1643                     }
1644                 } else if lang_items.pointee_trait() == Some(poly_trait_ref.def_id()) {
1645                     let tail = selcx.tcx().struct_tail_with_normalize(
1646                         self_ty,
1647                         |ty| {
1648                             // We throw away any obligations we get from this, since we normalize
1649                             // and confirm these obligations once again during confirmation
1650                             normalize_with_depth(
1651                                 selcx,
1652                                 obligation.param_env,
1653                                 obligation.cause.clone(),
1654                                 obligation.recursion_depth + 1,
1655                                 ty,
1656                             )
1657                             .value
1658                         },
1659                         || {},
1660                     );
1661
1662                     match tail.kind() {
1663                         ty::Bool
1664                         | ty::Char
1665                         | ty::Int(_)
1666                         | ty::Uint(_)
1667                         | ty::Float(_)
1668                         | ty::Str
1669                         | ty::Array(..)
1670                         | ty::Slice(_)
1671                         | ty::RawPtr(..)
1672                         | ty::Ref(..)
1673                         | ty::FnDef(..)
1674                         | ty::FnPtr(..)
1675                         | ty::Dynamic(..)
1676                         | ty::Closure(..)
1677                         | ty::Generator(..)
1678                         | ty::GeneratorWitness(..)
1679                         | ty::Never
1680                         // Extern types have unit metadata, according to RFC 2850
1681                         | ty::Foreign(_)
1682                         // If returned by `struct_tail_without_normalization` this is a unit struct
1683                         // without any fields, or not a struct, and therefore is Sized.
1684                         | ty::Adt(..)
1685                         // If returned by `struct_tail_without_normalization` this is the empty tuple.
1686                         | ty::Tuple(..)
1687                         // Integers and floats are always Sized, and so have unit type metadata.
1688                         | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1689
1690                         // type parameters, opaques, and unnormalized projections have pointer
1691                         // metadata if they're known (e.g. by the param_env) to be sized
1692                         ty::Param(_) | ty::Projection(..) | ty::Opaque(..)
1693                             if selcx.infcx().predicate_must_hold_modulo_regions(
1694                                 &obligation.with(
1695                                     selcx.tcx(),
1696                                     ty::Binder::dummy(
1697                                         selcx.tcx().at(obligation.cause.span()).mk_trait_ref(LangItem::Sized, [self_ty]),
1698                                     )
1699                                     .without_const(),
1700                                 ),
1701                             ) =>
1702                         {
1703                             true
1704                         }
1705
1706                         // FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
1707                         ty::Param(_)
1708                         | ty::Projection(..)
1709                         | ty::Opaque(..)
1710                         | ty::Bound(..)
1711                         | ty::Placeholder(..)
1712                         | ty::Infer(..)
1713                         | ty::Error(_) => {
1714                             if tail.has_infer_types() {
1715                                 candidate_set.mark_ambiguous();
1716                             }
1717                             false
1718                         }
1719                     }
1720                 } else {
1721                     bug!("unexpected builtin trait with associated type: {poly_trait_ref:?}")
1722                 }
1723             }
1724             super::ImplSource::Param(..) => {
1725                 // This case tell us nothing about the value of an
1726                 // associated type. Consider:
1727                 //
1728                 // ```
1729                 // trait SomeTrait { type Foo; }
1730                 // fn foo<T:SomeTrait>(...) { }
1731                 // ```
1732                 //
1733                 // If the user writes `<T as SomeTrait>::Foo`, then the `T
1734                 // : SomeTrait` binding does not help us decide what the
1735                 // type `Foo` is (at least, not more specifically than
1736                 // what we already knew).
1737                 //
1738                 // But wait, you say! What about an example like this:
1739                 //
1740                 // ```
1741                 // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
1742                 // ```
1743                 //
1744                 // Doesn't the `T : SomeTrait<Foo=usize>` predicate help
1745                 // resolve `T::Foo`? And of course it does, but in fact
1746                 // that single predicate is desugared into two predicates
1747                 // in the compiler: a trait predicate (`T : SomeTrait`) and a
1748                 // projection. And the projection where clause is handled
1749                 // in `assemble_candidates_from_param_env`.
1750                 false
1751             }
1752             super::ImplSource::Object(_) => {
1753                 // Handled by the `Object` projection candidate. See
1754                 // `assemble_candidates_from_object_ty` for an explanation of
1755                 // why we special case object types.
1756                 false
1757             }
1758             super::ImplSource::AutoImpl(..)
1759             | super::ImplSource::TraitUpcasting(_)
1760             | super::ImplSource::ConstDestruct(_) => {
1761                 // These traits have no associated types.
1762                 selcx.tcx().sess.delay_span_bug(
1763                     obligation.cause.span,
1764                     &format!("Cannot project an associated type from `{:?}`", impl_source),
1765                 );
1766                 return Err(());
1767             }
1768         };
1769
1770         if eligible {
1771             if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
1772                 Ok(())
1773             } else {
1774                 Err(())
1775             }
1776         } else {
1777             Err(())
1778         }
1779     });
1780 }
1781
1782 fn confirm_candidate<'cx, 'tcx>(
1783     selcx: &mut SelectionContext<'cx, 'tcx>,
1784     obligation: &ProjectionTyObligation<'tcx>,
1785     candidate: ProjectionCandidate<'tcx>,
1786 ) -> Progress<'tcx> {
1787     debug!(?obligation, ?candidate, "confirm_candidate");
1788     let mut progress = match candidate {
1789         ProjectionCandidate::ParamEnv(poly_projection)
1790         | ProjectionCandidate::Object(poly_projection) => {
1791             confirm_param_env_candidate(selcx, obligation, poly_projection, false)
1792         }
1793
1794         ProjectionCandidate::TraitDef(poly_projection) => {
1795             confirm_param_env_candidate(selcx, obligation, poly_projection, true)
1796         }
1797
1798         ProjectionCandidate::Select(impl_source) => {
1799             confirm_select_candidate(selcx, obligation, impl_source)
1800         }
1801         ProjectionCandidate::ImplTraitInTrait(ImplTraitInTraitCandidate::Impl(data)) => {
1802             confirm_impl_trait_in_trait_candidate(selcx, obligation, data)
1803         }
1804         // If we're projecting an RPITIT for a default trait body, that's just
1805         // the same def-id, but as an opaque type (with regular RPIT semantics).
1806         ProjectionCandidate::ImplTraitInTrait(ImplTraitInTraitCandidate::Trait) => Progress {
1807             term: selcx
1808                 .tcx()
1809                 .mk_opaque(obligation.predicate.item_def_id, obligation.predicate.substs)
1810                 .into(),
1811             obligations: vec![],
1812         },
1813     };
1814
1815     // When checking for cycle during evaluation, we compare predicates with
1816     // "syntactic" equality. Since normalization generally introduces a type
1817     // with new region variables, we need to resolve them to existing variables
1818     // when possible for this to work. See `auto-trait-projection-recursion.rs`
1819     // for a case where this matters.
1820     if progress.term.has_infer_regions() {
1821         progress.term =
1822             progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx()));
1823     }
1824     progress
1825 }
1826
1827 fn confirm_select_candidate<'cx, 'tcx>(
1828     selcx: &mut SelectionContext<'cx, 'tcx>,
1829     obligation: &ProjectionTyObligation<'tcx>,
1830     impl_source: Selection<'tcx>,
1831 ) -> Progress<'tcx> {
1832     match impl_source {
1833         super::ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
1834         super::ImplSource::Generator(data) => confirm_generator_candidate(selcx, obligation, data),
1835         super::ImplSource::Future(data) => confirm_future_candidate(selcx, obligation, data),
1836         super::ImplSource::Closure(data) => confirm_closure_candidate(selcx, obligation, data),
1837         super::ImplSource::FnPointer(data) => confirm_fn_pointer_candidate(selcx, obligation, data),
1838         super::ImplSource::Builtin(data) => confirm_builtin_candidate(selcx, obligation, data),
1839         super::ImplSource::Object(_)
1840         | super::ImplSource::AutoImpl(..)
1841         | super::ImplSource::Param(..)
1842         | super::ImplSource::TraitUpcasting(_)
1843         | super::ImplSource::TraitAlias(..)
1844         | super::ImplSource::ConstDestruct(_) => {
1845             // we don't create Select candidates with this kind of resolution
1846             span_bug!(
1847                 obligation.cause.span,
1848                 "Cannot project an associated type from `{:?}`",
1849                 impl_source
1850             )
1851         }
1852     }
1853 }
1854
1855 fn confirm_generator_candidate<'cx, 'tcx>(
1856     selcx: &mut SelectionContext<'cx, 'tcx>,
1857     obligation: &ProjectionTyObligation<'tcx>,
1858     impl_source: ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>,
1859 ) -> Progress<'tcx> {
1860     let gen_sig = impl_source.substs.as_generator().poly_sig();
1861     let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1862         selcx,
1863         obligation.param_env,
1864         obligation.cause.clone(),
1865         obligation.recursion_depth + 1,
1866         gen_sig,
1867     );
1868
1869     debug!(?obligation, ?gen_sig, ?obligations, "confirm_generator_candidate");
1870
1871     let tcx = selcx.tcx();
1872
1873     let gen_def_id = tcx.require_lang_item(LangItem::Generator, None);
1874
1875     let predicate = super::util::generator_trait_ref_and_outputs(
1876         tcx,
1877         gen_def_id,
1878         obligation.predicate.self_ty(),
1879         gen_sig,
1880     )
1881     .map_bound(|(trait_ref, yield_ty, return_ty)| {
1882         let name = tcx.associated_item(obligation.predicate.item_def_id).name;
1883         let ty = if name == sym::Return {
1884             return_ty
1885         } else if name == sym::Yield {
1886             yield_ty
1887         } else {
1888             bug!()
1889         };
1890
1891         ty::ProjectionPredicate {
1892             projection_ty: ty::ProjectionTy {
1893                 substs: trait_ref.substs,
1894                 item_def_id: obligation.predicate.item_def_id,
1895             },
1896             term: ty.into(),
1897         }
1898     });
1899
1900     confirm_param_env_candidate(selcx, obligation, predicate, false)
1901         .with_addl_obligations(impl_source.nested)
1902         .with_addl_obligations(obligations)
1903 }
1904
1905 fn confirm_future_candidate<'cx, 'tcx>(
1906     selcx: &mut SelectionContext<'cx, 'tcx>,
1907     obligation: &ProjectionTyObligation<'tcx>,
1908     impl_source: ImplSourceFutureData<'tcx, PredicateObligation<'tcx>>,
1909 ) -> Progress<'tcx> {
1910     let gen_sig = impl_source.substs.as_generator().poly_sig();
1911     let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1912         selcx,
1913         obligation.param_env,
1914         obligation.cause.clone(),
1915         obligation.recursion_depth + 1,
1916         gen_sig,
1917     );
1918
1919     debug!(?obligation, ?gen_sig, ?obligations, "confirm_future_candidate");
1920
1921     let tcx = selcx.tcx();
1922     let fut_def_id = tcx.require_lang_item(LangItem::Future, None);
1923
1924     let predicate = super::util::future_trait_ref_and_outputs(
1925         tcx,
1926         fut_def_id,
1927         obligation.predicate.self_ty(),
1928         gen_sig,
1929     )
1930     .map_bound(|(trait_ref, return_ty)| {
1931         debug_assert_eq!(tcx.associated_item(obligation.predicate.item_def_id).name, sym::Output);
1932
1933         ty::ProjectionPredicate {
1934             projection_ty: ty::ProjectionTy {
1935                 substs: trait_ref.substs,
1936                 item_def_id: obligation.predicate.item_def_id,
1937             },
1938             term: return_ty.into(),
1939         }
1940     });
1941
1942     confirm_param_env_candidate(selcx, obligation, predicate, false)
1943         .with_addl_obligations(impl_source.nested)
1944         .with_addl_obligations(obligations)
1945 }
1946
1947 fn confirm_builtin_candidate<'cx, 'tcx>(
1948     selcx: &mut SelectionContext<'cx, 'tcx>,
1949     obligation: &ProjectionTyObligation<'tcx>,
1950     data: ImplSourceBuiltinData<PredicateObligation<'tcx>>,
1951 ) -> Progress<'tcx> {
1952     let tcx = selcx.tcx();
1953     let self_ty = obligation.predicate.self_ty();
1954     let substs = tcx.mk_substs([self_ty.into()].iter());
1955     let lang_items = tcx.lang_items();
1956     let item_def_id = obligation.predicate.item_def_id;
1957     let trait_def_id = tcx.trait_of_item(item_def_id).unwrap();
1958     let (term, obligations) = if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
1959         let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
1960         assert_eq!(discriminant_def_id, item_def_id);
1961
1962         (self_ty.discriminant_ty(tcx).into(), Vec::new())
1963     } else if lang_items.pointee_trait() == Some(trait_def_id) {
1964         let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
1965         assert_eq!(metadata_def_id, item_def_id);
1966
1967         let mut obligations = Vec::new();
1968         let (metadata_ty, check_is_sized) = self_ty.ptr_metadata_ty(tcx, |ty| {
1969             normalize_with_depth_to(
1970                 selcx,
1971                 obligation.param_env,
1972                 obligation.cause.clone(),
1973                 obligation.recursion_depth + 1,
1974                 ty,
1975                 &mut obligations,
1976             )
1977         });
1978         if check_is_sized {
1979             let sized_predicate = ty::Binder::dummy(
1980                 tcx.at(obligation.cause.span()).mk_trait_ref(LangItem::Sized, [self_ty]),
1981             )
1982             .without_const();
1983             obligations.push(obligation.with(tcx, sized_predicate));
1984         }
1985         (metadata_ty.into(), obligations)
1986     } else {
1987         bug!("unexpected builtin trait with associated type: {:?}", obligation.predicate);
1988     };
1989
1990     let predicate =
1991         ty::ProjectionPredicate { projection_ty: ty::ProjectionTy { substs, item_def_id }, term };
1992
1993     confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1994         .with_addl_obligations(obligations)
1995         .with_addl_obligations(data.nested)
1996 }
1997
1998 fn confirm_fn_pointer_candidate<'cx, 'tcx>(
1999     selcx: &mut SelectionContext<'cx, 'tcx>,
2000     obligation: &ProjectionTyObligation<'tcx>,
2001     fn_pointer_impl_source: ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>,
2002 ) -> Progress<'tcx> {
2003     let fn_type = selcx.infcx().shallow_resolve(fn_pointer_impl_source.fn_ty);
2004     let sig = fn_type.fn_sig(selcx.tcx());
2005     let Normalized { value: sig, obligations } = normalize_with_depth(
2006         selcx,
2007         obligation.param_env,
2008         obligation.cause.clone(),
2009         obligation.recursion_depth + 1,
2010         sig,
2011     );
2012
2013     confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
2014         .with_addl_obligations(fn_pointer_impl_source.nested)
2015         .with_addl_obligations(obligations)
2016 }
2017
2018 fn confirm_closure_candidate<'cx, 'tcx>(
2019     selcx: &mut SelectionContext<'cx, 'tcx>,
2020     obligation: &ProjectionTyObligation<'tcx>,
2021     impl_source: ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>,
2022 ) -> Progress<'tcx> {
2023     let closure_sig = impl_source.substs.as_closure().sig();
2024     let Normalized { value: closure_sig, obligations } = normalize_with_depth(
2025         selcx,
2026         obligation.param_env,
2027         obligation.cause.clone(),
2028         obligation.recursion_depth + 1,
2029         closure_sig,
2030     );
2031
2032     debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
2033
2034     confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
2035         .with_addl_obligations(impl_source.nested)
2036         .with_addl_obligations(obligations)
2037 }
2038
2039 fn confirm_callable_candidate<'cx, 'tcx>(
2040     selcx: &mut SelectionContext<'cx, 'tcx>,
2041     obligation: &ProjectionTyObligation<'tcx>,
2042     fn_sig: ty::PolyFnSig<'tcx>,
2043     flag: util::TupleArgumentsFlag,
2044 ) -> Progress<'tcx> {
2045     let tcx = selcx.tcx();
2046
2047     debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
2048
2049     let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
2050     let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
2051
2052     let predicate = super::util::closure_trait_ref_and_return_type(
2053         tcx,
2054         fn_once_def_id,
2055         obligation.predicate.self_ty(),
2056         fn_sig,
2057         flag,
2058     )
2059     .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
2060         projection_ty: ty::ProjectionTy {
2061             substs: trait_ref.substs,
2062             item_def_id: fn_once_output_def_id,
2063         },
2064         term: ret_type.into(),
2065     });
2066
2067     confirm_param_env_candidate(selcx, obligation, predicate, true)
2068 }
2069
2070 fn confirm_param_env_candidate<'cx, 'tcx>(
2071     selcx: &mut SelectionContext<'cx, 'tcx>,
2072     obligation: &ProjectionTyObligation<'tcx>,
2073     poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
2074     potentially_unnormalized_candidate: bool,
2075 ) -> Progress<'tcx> {
2076     let infcx = selcx.infcx();
2077     let cause = &obligation.cause;
2078     let param_env = obligation.param_env;
2079
2080     let cache_entry = infcx.replace_bound_vars_with_fresh_vars(
2081         cause.span,
2082         LateBoundRegionConversionTime::HigherRankedType,
2083         poly_cache_entry,
2084     );
2085
2086     let cache_projection = cache_entry.projection_ty;
2087     let mut nested_obligations = Vec::new();
2088     let obligation_projection = obligation.predicate;
2089     let obligation_projection = ensure_sufficient_stack(|| {
2090         normalize_with_depth_to(
2091             selcx,
2092             obligation.param_env,
2093             obligation.cause.clone(),
2094             obligation.recursion_depth + 1,
2095             obligation_projection,
2096             &mut nested_obligations,
2097         )
2098     });
2099     let cache_projection = if potentially_unnormalized_candidate {
2100         ensure_sufficient_stack(|| {
2101             normalize_with_depth_to(
2102                 selcx,
2103                 obligation.param_env,
2104                 obligation.cause.clone(),
2105                 obligation.recursion_depth + 1,
2106                 cache_projection,
2107                 &mut nested_obligations,
2108             )
2109         })
2110     } else {
2111         cache_projection
2112     };
2113
2114     debug!(?cache_projection, ?obligation_projection);
2115
2116     match infcx.at(cause, param_env).eq(cache_projection, obligation_projection) {
2117         Ok(InferOk { value: _, obligations }) => {
2118             nested_obligations.extend(obligations);
2119             assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
2120             // FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
2121             // a term instead.
2122             Progress { term: cache_entry.term, obligations: nested_obligations }
2123         }
2124         Err(e) => {
2125             let msg = format!(
2126                 "Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
2127                 obligation, poly_cache_entry, e,
2128             );
2129             debug!("confirm_param_env_candidate: {}", msg);
2130             let err = infcx.tcx.ty_error_with_message(obligation.cause.span, &msg);
2131             Progress { term: err.into(), obligations: vec![] }
2132         }
2133     }
2134 }
2135
2136 fn confirm_impl_candidate<'cx, 'tcx>(
2137     selcx: &mut SelectionContext<'cx, 'tcx>,
2138     obligation: &ProjectionTyObligation<'tcx>,
2139     impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
2140 ) -> Progress<'tcx> {
2141     let tcx = selcx.tcx();
2142
2143     let ImplSourceUserDefinedData { impl_def_id, substs, mut nested } = impl_impl_source;
2144     let assoc_item_id = obligation.predicate.item_def_id;
2145     let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
2146
2147     let param_env = obligation.param_env;
2148     let Ok(assoc_ty) = assoc_def(selcx, impl_def_id, assoc_item_id) else {
2149         return Progress { term: tcx.ty_error().into(), obligations: nested };
2150     };
2151
2152     if !assoc_ty.item.defaultness(tcx).has_value() {
2153         // This means that the impl is missing a definition for the
2154         // associated type. This error will be reported by the type
2155         // checker method `check_impl_items_against_trait`, so here we
2156         // just return Error.
2157         debug!(
2158             "confirm_impl_candidate: no associated type {:?} for {:?}",
2159             assoc_ty.item.name, obligation.predicate
2160         );
2161         return Progress { term: tcx.ty_error().into(), obligations: nested };
2162     }
2163     // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
2164     //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
2165     //
2166     // * `obligation.predicate.substs` is `[Vec<u32>, S]`
2167     // * `substs` is `[u32]`
2168     // * `substs` ends up as `[u32, S]`
2169     let substs = obligation.predicate.substs.rebase_onto(tcx, trait_def_id, substs);
2170     let substs =
2171         translate_substs(selcx.infcx(), param_env, impl_def_id, substs, assoc_ty.defining_node);
2172     let ty = tcx.bound_type_of(assoc_ty.item.def_id);
2173     let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
2174     let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
2175         let identity_substs =
2176             crate::traits::InternalSubsts::identity_for_item(tcx, assoc_ty.item.def_id);
2177         let did = ty::WithOptConstParam::unknown(assoc_ty.item.def_id);
2178         let kind = ty::ConstKind::Unevaluated(ty::UnevaluatedConst::new(did, identity_substs));
2179         ty.map_bound(|ty| tcx.mk_const(kind, ty).into())
2180     } else {
2181         ty.map_bound(|ty| ty.into())
2182     };
2183     if !check_substs_compatible(tcx, &assoc_ty.item, substs) {
2184         let err = tcx.ty_error_with_message(
2185             obligation.cause.span,
2186             "impl item and trait item have different parameters",
2187         );
2188         Progress { term: err.into(), obligations: nested }
2189     } else {
2190         assoc_ty_own_obligations(selcx, obligation, &mut nested);
2191         Progress { term: term.subst(tcx, substs), obligations: nested }
2192     }
2193 }
2194
2195 // Verify that the trait item and its implementation have compatible substs lists
2196 fn check_substs_compatible<'tcx>(
2197     tcx: TyCtxt<'tcx>,
2198     assoc_item: &ty::AssocItem,
2199     substs: ty::SubstsRef<'tcx>,
2200 ) -> bool {
2201     fn check_substs_compatible_inner<'tcx>(
2202         tcx: TyCtxt<'tcx>,
2203         generics: &'tcx ty::Generics,
2204         args: &'tcx [ty::GenericArg<'tcx>],
2205     ) -> bool {
2206         if generics.count() != args.len() {
2207             return false;
2208         }
2209
2210         let (parent_args, own_args) = args.split_at(generics.parent_count);
2211
2212         if let Some(parent) = generics.parent
2213             && let parent_generics = tcx.generics_of(parent)
2214             && !check_substs_compatible_inner(tcx, parent_generics, parent_args) {
2215             return false;
2216         }
2217
2218         for (param, arg) in std::iter::zip(&generics.params, own_args) {
2219             match (&param.kind, arg.unpack()) {
2220                 (ty::GenericParamDefKind::Type { .. }, ty::GenericArgKind::Type(_))
2221                 | (ty::GenericParamDefKind::Lifetime, ty::GenericArgKind::Lifetime(_))
2222                 | (ty::GenericParamDefKind::Const { .. }, ty::GenericArgKind::Const(_)) => {}
2223                 _ => return false,
2224             }
2225         }
2226
2227         true
2228     }
2229
2230     let generics = tcx.generics_of(assoc_item.def_id);
2231     // Chop off any additional substs (RPITIT) substs
2232     let substs = &substs[0..generics.count().min(substs.len())];
2233     check_substs_compatible_inner(tcx, generics, substs)
2234 }
2235
2236 fn confirm_impl_trait_in_trait_candidate<'tcx>(
2237     selcx: &mut SelectionContext<'_, 'tcx>,
2238     obligation: &ProjectionTyObligation<'tcx>,
2239     data: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
2240 ) -> Progress<'tcx> {
2241     let tcx = selcx.tcx();
2242     let mut obligations = data.nested;
2243
2244     let trait_fn_def_id = tcx.impl_trait_in_trait_parent(obligation.predicate.item_def_id);
2245     let Ok(leaf_def) = assoc_def(selcx, data.impl_def_id, trait_fn_def_id) else {
2246         return Progress { term: tcx.ty_error().into(), obligations };
2247     };
2248     if !leaf_def.item.defaultness(tcx).has_value() {
2249         return Progress { term: tcx.ty_error().into(), obligations };
2250     }
2251
2252     // Use the default `impl Trait` for the trait, e.g., for a default trait body
2253     if leaf_def.item.container == ty::AssocItemContainer::TraitContainer {
2254         return Progress {
2255             term: tcx
2256                 .mk_opaque(obligation.predicate.item_def_id, obligation.predicate.substs)
2257                 .into(),
2258             obligations,
2259         };
2260     }
2261
2262     // Rebase from {trait}::{fn}::{opaque} to {impl}::{fn}::{opaque},
2263     // since `data.substs` are the impl substs.
2264     let impl_fn_substs =
2265         obligation.predicate.substs.rebase_onto(tcx, tcx.parent(trait_fn_def_id), data.substs);
2266     let impl_fn_substs = translate_substs(
2267         selcx.infcx(),
2268         obligation.param_env,
2269         data.impl_def_id,
2270         impl_fn_substs,
2271         leaf_def.defining_node,
2272     );
2273
2274     if !check_substs_compatible(tcx, &leaf_def.item, impl_fn_substs) {
2275         let err = tcx.ty_error_with_message(
2276             obligation.cause.span,
2277             "impl method and trait method have different parameters",
2278         );
2279         return Progress { term: err.into(), obligations };
2280     }
2281
2282     let impl_fn_def_id = leaf_def.item.def_id;
2283
2284     let cause = ObligationCause::new(
2285         obligation.cause.span,
2286         obligation.cause.body_id,
2287         super::ItemObligation(impl_fn_def_id),
2288     );
2289     let predicates = normalize_with_depth_to(
2290         selcx,
2291         obligation.param_env,
2292         cause.clone(),
2293         obligation.recursion_depth + 1,
2294         tcx.predicates_of(impl_fn_def_id).instantiate(tcx, impl_fn_substs),
2295         &mut obligations,
2296     );
2297     obligations.extend(std::iter::zip(predicates.predicates, predicates.spans).map(
2298         |(pred, span)| {
2299             Obligation::with_depth(
2300                 tcx,
2301                 ObligationCause::new(
2302                     obligation.cause.span,
2303                     obligation.cause.body_id,
2304                     if span.is_dummy() {
2305                         super::ItemObligation(impl_fn_def_id)
2306                     } else {
2307                         super::BindingObligation(impl_fn_def_id, span)
2308                     },
2309                 ),
2310                 obligation.recursion_depth + 1,
2311                 obligation.param_env,
2312                 pred,
2313             )
2314         },
2315     ));
2316
2317     let ty = super::normalize_to(
2318         selcx,
2319         obligation.param_env,
2320         cause.clone(),
2321         tcx.bound_trait_impl_trait_tys(impl_fn_def_id)
2322             .map_bound(|tys| {
2323                 tys.map_or_else(|_| tcx.ty_error(), |tys| tys[&obligation.predicate.item_def_id])
2324             })
2325             .subst(tcx, impl_fn_substs),
2326         &mut obligations,
2327     );
2328
2329     Progress { term: ty.into(), obligations }
2330 }
2331
2332 // Get obligations corresponding to the predicates from the where-clause of the
2333 // associated type itself.
2334 fn assoc_ty_own_obligations<'cx, 'tcx>(
2335     selcx: &mut SelectionContext<'cx, 'tcx>,
2336     obligation: &ProjectionTyObligation<'tcx>,
2337     nested: &mut Vec<PredicateObligation<'tcx>>,
2338 ) {
2339     let tcx = selcx.tcx();
2340     for predicate in tcx
2341         .predicates_of(obligation.predicate.item_def_id)
2342         .instantiate_own(tcx, obligation.predicate.substs)
2343         .predicates
2344     {
2345         let normalized = normalize_with_depth_to(
2346             selcx,
2347             obligation.param_env,
2348             obligation.cause.clone(),
2349             obligation.recursion_depth + 1,
2350             predicate,
2351             nested,
2352         );
2353         nested.push(Obligation::with_depth(
2354             tcx,
2355             obligation.cause.clone(),
2356             obligation.recursion_depth + 1,
2357             obligation.param_env,
2358             normalized,
2359         ));
2360     }
2361 }
2362
2363 /// Locate the definition of an associated type in the specialization hierarchy,
2364 /// starting from the given impl.
2365 ///
2366 /// Based on the "projection mode", this lookup may in fact only examine the
2367 /// topmost impl. See the comments for `Reveal` for more details.
2368 fn assoc_def(
2369     selcx: &SelectionContext<'_, '_>,
2370     impl_def_id: DefId,
2371     assoc_def_id: DefId,
2372 ) -> Result<specialization_graph::LeafDef, ErrorGuaranteed> {
2373     let tcx = selcx.tcx();
2374     let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
2375     let trait_def = tcx.trait_def(trait_def_id);
2376
2377     // This function may be called while we are still building the
2378     // specialization graph that is queried below (via TraitDef::ancestors()),
2379     // so, in order to avoid unnecessary infinite recursion, we manually look
2380     // for the associated item at the given impl.
2381     // If there is no such item in that impl, this function will fail with a
2382     // cycle error if the specialization graph is currently being built.
2383     if let Some(&impl_item_id) = tcx.impl_item_implementor_ids(impl_def_id).get(&assoc_def_id) {
2384         let item = tcx.associated_item(impl_item_id);
2385         let impl_node = specialization_graph::Node::Impl(impl_def_id);
2386         return Ok(specialization_graph::LeafDef {
2387             item: *item,
2388             defining_node: impl_node,
2389             finalizing_node: if item.defaultness(tcx).is_default() {
2390                 None
2391             } else {
2392                 Some(impl_node)
2393             },
2394         });
2395     }
2396
2397     let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
2398     if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_def_id) {
2399         Ok(assoc_item)
2400     } else {
2401         // This is saying that neither the trait nor
2402         // the impl contain a definition for this
2403         // associated type.  Normally this situation
2404         // could only arise through a compiler bug --
2405         // if the user wrote a bad item name, it
2406         // should have failed in astconv.
2407         bug!(
2408             "No associated type `{}` for {}",
2409             tcx.item_name(assoc_def_id),
2410             tcx.def_path_str(impl_def_id)
2411         )
2412     }
2413 }
2414
2415 pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
2416     fn from_poly_projection_predicate(
2417         selcx: &mut SelectionContext<'cx, 'tcx>,
2418         predicate: ty::PolyProjectionPredicate<'tcx>,
2419     ) -> Option<Self>;
2420 }
2421
2422 impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
2423     fn from_poly_projection_predicate(
2424         selcx: &mut SelectionContext<'cx, 'tcx>,
2425         predicate: ty::PolyProjectionPredicate<'tcx>,
2426     ) -> Option<Self> {
2427         let infcx = selcx.infcx();
2428         // We don't do cross-snapshot caching of obligations with escaping regions,
2429         // so there's no cache key to use
2430         predicate.no_bound_vars().map(|predicate| {
2431             ProjectionCacheKey::new(
2432                 // We don't attempt to match up with a specific type-variable state
2433                 // from a specific call to `opt_normalize_projection_type` - if
2434                 // there's no precise match, the original cache entry is "stranded"
2435                 // anyway.
2436                 infcx.resolve_vars_if_possible(predicate.projection_ty),
2437             )
2438         })
2439     }
2440 }