]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/object_safety.rs
Rollup merge of #104494 - GuillaumeGomez:migrate-gui-test-to-func, r=notriddle
[rust.git] / compiler / rustc_trait_selection / src / traits / object_safety.rs
1 //! "Object safety" refers to the ability for a trait to be converted
2 //! to an object. In general, traits may only be converted to an
3 //! object if all of their methods meet certain criteria. In particular,
4 //! they must:
5 //!
6 //!   - have a suitable receiver from which we can extract a vtable and coerce to a "thin" version
7 //!     that doesn't contain the vtable;
8 //!   - not reference the erased type `Self` except for in this receiver;
9 //!   - not have generic type parameters.
10
11 use super::{elaborate_predicates, elaborate_trait_ref};
12
13 use crate::infer::TyCtxtInferExt;
14 use crate::traits::query::evaluate_obligation::InferCtxtExt;
15 use crate::traits::{self, Obligation, ObligationCause};
16 use hir::def::DefKind;
17 use rustc_errors::{DelayDm, FatalError, MultiSpan};
18 use rustc_hir as hir;
19 use rustc_hir::def_id::DefId;
20 use rustc_middle::ty::abstract_const::{walk_abstract_const, AbstractConst};
21 use rustc_middle::ty::{
22     self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor,
23 };
24 use rustc_middle::ty::{GenericArg, InternalSubsts};
25 use rustc_middle::ty::{Predicate, ToPredicate};
26 use rustc_session::lint::builtin::WHERE_CLAUSES_OBJECT_SAFETY;
27 use rustc_span::symbol::Symbol;
28 use rustc_span::Span;
29 use smallvec::SmallVec;
30
31 use std::iter;
32 use std::ops::ControlFlow;
33
34 pub use crate::traits::{MethodViolationCode, ObjectSafetyViolation};
35
36 /// Returns the object safety violations that affect
37 /// astconv -- currently, `Self` in supertraits. This is needed
38 /// because `object_safety_violations` can't be used during
39 /// type collection.
40 pub fn astconv_object_safety_violations(
41     tcx: TyCtxt<'_>,
42     trait_def_id: DefId,
43 ) -> Vec<ObjectSafetyViolation> {
44     debug_assert!(tcx.generics_of(trait_def_id).has_self);
45     let violations = traits::supertrait_def_ids(tcx, trait_def_id)
46         .map(|def_id| predicates_reference_self(tcx, def_id, true))
47         .filter(|spans| !spans.is_empty())
48         .map(ObjectSafetyViolation::SupertraitSelf)
49         .collect();
50
51     debug!("astconv_object_safety_violations(trait_def_id={:?}) = {:?}", trait_def_id, violations);
52
53     violations
54 }
55
56 fn object_safety_violations(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &'_ [ObjectSafetyViolation] {
57     debug_assert!(tcx.generics_of(trait_def_id).has_self);
58     debug!("object_safety_violations: {:?}", trait_def_id);
59
60     tcx.arena.alloc_from_iter(
61         traits::supertrait_def_ids(tcx, trait_def_id)
62             .flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id)),
63     )
64 }
65
66 /// We say a method is *vtable safe* if it can be invoked on a trait
67 /// object. Note that object-safe traits can have some
68 /// non-vtable-safe methods, so long as they require `Self: Sized` or
69 /// otherwise ensure that they cannot be used when `Self = Trait`.
70 pub fn is_vtable_safe_method(tcx: TyCtxt<'_>, trait_def_id: DefId, method: &ty::AssocItem) -> bool {
71     debug_assert!(tcx.generics_of(trait_def_id).has_self);
72     debug!("is_vtable_safe_method({:?}, {:?})", trait_def_id, method);
73     // Any method that has a `Self: Sized` bound cannot be called.
74     if generics_require_sized_self(tcx, method.def_id) {
75         return false;
76     }
77
78     match virtual_call_violation_for_method(tcx, trait_def_id, method) {
79         None | Some(MethodViolationCode::WhereClauseReferencesSelf) => true,
80         Some(_) => false,
81     }
82 }
83
84 fn object_safety_violations_for_trait(
85     tcx: TyCtxt<'_>,
86     trait_def_id: DefId,
87 ) -> Vec<ObjectSafetyViolation> {
88     // Check methods for violations.
89     let mut violations: Vec<_> = tcx
90         .associated_items(trait_def_id)
91         .in_definition_order()
92         .filter(|item| item.kind == ty::AssocKind::Fn)
93         .filter_map(|item| {
94             object_safety_violation_for_method(tcx, trait_def_id, &item)
95                 .map(|(code, span)| ObjectSafetyViolation::Method(item.name, code, span))
96         })
97         .filter(|violation| {
98             if let ObjectSafetyViolation::Method(
99                 _,
100                 MethodViolationCode::WhereClauseReferencesSelf,
101                 span,
102             ) = violation
103             {
104                 lint_object_unsafe_trait(tcx, *span, trait_def_id, &violation);
105                 false
106             } else {
107                 true
108             }
109         })
110         .collect();
111
112     // Check the trait itself.
113     if trait_has_sized_self(tcx, trait_def_id) {
114         // We don't want to include the requirement from `Sized` itself to be `Sized` in the list.
115         let spans = get_sized_bounds(tcx, trait_def_id);
116         violations.push(ObjectSafetyViolation::SizedSelf(spans));
117     }
118     let spans = predicates_reference_self(tcx, trait_def_id, false);
119     if !spans.is_empty() {
120         violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
121     }
122     let spans = bounds_reference_self(tcx, trait_def_id);
123     if !spans.is_empty() {
124         violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
125     }
126
127     violations.extend(
128         tcx.associated_items(trait_def_id)
129             .in_definition_order()
130             .filter(|item| item.kind == ty::AssocKind::Const)
131             .map(|item| {
132                 let ident = item.ident(tcx);
133                 ObjectSafetyViolation::AssocConst(ident.name, ident.span)
134             }),
135     );
136
137     if !tcx.features().generic_associated_types_extended {
138         violations.extend(
139             tcx.associated_items(trait_def_id)
140                 .in_definition_order()
141                 .filter(|item| item.kind == ty::AssocKind::Type)
142                 .filter(|item| !tcx.generics_of(item.def_id).params.is_empty())
143                 .map(|item| {
144                     let ident = item.ident(tcx);
145                     ObjectSafetyViolation::GAT(ident.name, ident.span)
146                 }),
147         );
148     }
149
150     debug!(
151         "object_safety_violations_for_trait(trait_def_id={:?}) = {:?}",
152         trait_def_id, violations
153     );
154
155     violations
156 }
157
158 /// Lint object-unsafe trait.
159 fn lint_object_unsafe_trait(
160     tcx: TyCtxt<'_>,
161     span: Span,
162     trait_def_id: DefId,
163     violation: &ObjectSafetyViolation,
164 ) {
165     // Using `CRATE_NODE_ID` is wrong, but it's hard to get a more precise id.
166     // It's also hard to get a use site span, so we use the method definition span.
167     tcx.struct_span_lint_hir(
168         WHERE_CLAUSES_OBJECT_SAFETY,
169         hir::CRATE_HIR_ID,
170         span,
171         DelayDm(|| format!("the trait `{}` cannot be made into an object", tcx.def_path_str(trait_def_id))),
172         |err| {
173             let node = tcx.hir().get_if_local(trait_def_id);
174             let mut spans = MultiSpan::from_span(span);
175             if let Some(hir::Node::Item(item)) = node {
176                 spans.push_span_label(
177                     item.ident.span,
178                     "this trait cannot be made into an object...",
179                 );
180                 spans.push_span_label(span, format!("...because {}", violation.error_msg()));
181             } else {
182                 spans.push_span_label(
183                     span,
184                     format!(
185                         "the trait cannot be made into an object because {}",
186                         violation.error_msg()
187                     ),
188                 );
189             };
190             err.span_note(
191                 spans,
192                 "for a trait to be \"object safe\" it needs to allow building a vtable to allow the \
193                 call to be resolvable dynamically; for more information visit \
194                 <https://doc.rust-lang.org/reference/items/traits.html#object-safety>",
195             );
196             if node.is_some() {
197                 // Only provide the help if its a local trait, otherwise it's not
198                 violation.solution(err);
199             }
200             err
201         },
202     );
203 }
204
205 fn sized_trait_bound_spans<'tcx>(
206     tcx: TyCtxt<'tcx>,
207     bounds: hir::GenericBounds<'tcx>,
208 ) -> impl 'tcx + Iterator<Item = Span> {
209     bounds.iter().filter_map(move |b| match b {
210         hir::GenericBound::Trait(trait_ref, hir::TraitBoundModifier::None)
211             if trait_has_sized_self(
212                 tcx,
213                 trait_ref.trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
214             ) =>
215         {
216             // Fetch spans for supertraits that are `Sized`: `trait T: Super`
217             Some(trait_ref.span)
218         }
219         _ => None,
220     })
221 }
222
223 fn get_sized_bounds(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
224     tcx.hir()
225         .get_if_local(trait_def_id)
226         .and_then(|node| match node {
227             hir::Node::Item(hir::Item {
228                 kind: hir::ItemKind::Trait(.., generics, bounds, _),
229                 ..
230             }) => Some(
231                 generics
232                     .predicates
233                     .iter()
234                     .filter_map(|pred| {
235                         match pred {
236                             hir::WherePredicate::BoundPredicate(pred)
237                                 if pred.bounded_ty.hir_id.owner.to_def_id() == trait_def_id =>
238                             {
239                                 // Fetch spans for trait bounds that are Sized:
240                                 // `trait T where Self: Pred`
241                                 Some(sized_trait_bound_spans(tcx, pred.bounds))
242                             }
243                             _ => None,
244                         }
245                     })
246                     .flatten()
247                     // Fetch spans for supertraits that are `Sized`: `trait T: Super`.
248                     .chain(sized_trait_bound_spans(tcx, bounds))
249                     .collect::<SmallVec<[Span; 1]>>(),
250             ),
251             _ => None,
252         })
253         .unwrap_or_else(SmallVec::new)
254 }
255
256 fn predicates_reference_self(
257     tcx: TyCtxt<'_>,
258     trait_def_id: DefId,
259     supertraits_only: bool,
260 ) -> SmallVec<[Span; 1]> {
261     let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
262     let predicates = if supertraits_only {
263         tcx.super_predicates_of(trait_def_id)
264     } else {
265         tcx.predicates_of(trait_def_id)
266     };
267     predicates
268         .predicates
269         .iter()
270         .map(|&(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), sp))
271         .filter_map(|predicate| predicate_references_self(tcx, predicate))
272         .collect()
273 }
274
275 fn bounds_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
276     tcx.associated_items(trait_def_id)
277         .in_definition_order()
278         .filter(|item| item.kind == ty::AssocKind::Type)
279         .flat_map(|item| tcx.explicit_item_bounds(item.def_id))
280         .filter_map(|pred_span| predicate_references_self(tcx, *pred_span))
281         .collect()
282 }
283
284 fn predicate_references_self<'tcx>(
285     tcx: TyCtxt<'tcx>,
286     (predicate, sp): (ty::Predicate<'tcx>, Span),
287 ) -> Option<Span> {
288     let self_ty = tcx.types.self_param;
289     let has_self_ty = |arg: &GenericArg<'tcx>| arg.walk().any(|arg| arg == self_ty.into());
290     match predicate.kind().skip_binder() {
291         ty::PredicateKind::Trait(ref data) => {
292             // In the case of a trait predicate, we can skip the "self" type.
293             if data.trait_ref.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
294         }
295         ty::PredicateKind::Projection(ref data) => {
296             // And similarly for projections. This should be redundant with
297             // the previous check because any projection should have a
298             // matching `Trait` predicate with the same inputs, but we do
299             // the check to be safe.
300             //
301             // It's also won't be redundant if we allow type-generic associated
302             // types for trait objects.
303             //
304             // Note that we *do* allow projection *outputs* to contain
305             // `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
306             // we just require the user to specify *both* outputs
307             // in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
308             //
309             // This is ALT2 in issue #56288, see that for discussion of the
310             // possible alternatives.
311             if data.projection_ty.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
312         }
313         ty::PredicateKind::WellFormed(..)
314         | ty::PredicateKind::ObjectSafe(..)
315         | ty::PredicateKind::TypeOutlives(..)
316         | ty::PredicateKind::RegionOutlives(..)
317         | ty::PredicateKind::ClosureKind(..)
318         | ty::PredicateKind::Subtype(..)
319         | ty::PredicateKind::Coerce(..)
320         | ty::PredicateKind::ConstEvaluatable(..)
321         | ty::PredicateKind::ConstEquate(..)
322         | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
323     }
324 }
325
326 fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
327     generics_require_sized_self(tcx, trait_def_id)
328 }
329
330 fn generics_require_sized_self(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
331     let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
332         return false; /* No Sized trait, can't require it! */
333     };
334
335     // Search for a predicate like `Self : Sized` amongst the trait bounds.
336     let predicates = tcx.predicates_of(def_id);
337     let predicates = predicates.instantiate_identity(tcx).predicates;
338     elaborate_predicates(tcx, predicates.into_iter()).any(|obligation| {
339         match obligation.predicate.kind().skip_binder() {
340             ty::PredicateKind::Trait(ref trait_pred) => {
341                 trait_pred.def_id() == sized_def_id && trait_pred.self_ty().is_param(0)
342             }
343             ty::PredicateKind::Projection(..)
344             | ty::PredicateKind::Subtype(..)
345             | ty::PredicateKind::Coerce(..)
346             | ty::PredicateKind::RegionOutlives(..)
347             | ty::PredicateKind::WellFormed(..)
348             | ty::PredicateKind::ObjectSafe(..)
349             | ty::PredicateKind::ClosureKind(..)
350             | ty::PredicateKind::TypeOutlives(..)
351             | ty::PredicateKind::ConstEvaluatable(..)
352             | ty::PredicateKind::ConstEquate(..)
353             | ty::PredicateKind::TypeWellFormedFromEnv(..) => false,
354         }
355     })
356 }
357
358 /// Returns `Some(_)` if this method makes the containing trait not object safe.
359 fn object_safety_violation_for_method(
360     tcx: TyCtxt<'_>,
361     trait_def_id: DefId,
362     method: &ty::AssocItem,
363 ) -> Option<(MethodViolationCode, Span)> {
364     debug!("object_safety_violation_for_method({:?}, {:?})", trait_def_id, method);
365     // Any method that has a `Self : Sized` requisite is otherwise
366     // exempt from the regulations.
367     if generics_require_sized_self(tcx, method.def_id) {
368         return None;
369     }
370
371     let violation = virtual_call_violation_for_method(tcx, trait_def_id, method);
372     // Get an accurate span depending on the violation.
373     violation.map(|v| {
374         let node = tcx.hir().get_if_local(method.def_id);
375         let span = match (&v, node) {
376             (MethodViolationCode::ReferencesSelfInput(Some(span)), _) => *span,
377             (MethodViolationCode::UndispatchableReceiver(Some(span)), _) => *span,
378             (MethodViolationCode::ReferencesSelfOutput, Some(node)) => {
379                 node.fn_decl().map_or(method.ident(tcx).span, |decl| decl.output.span())
380             }
381             _ => method.ident(tcx).span,
382         };
383         (v, span)
384     })
385 }
386
387 /// Returns `Some(_)` if this method cannot be called on a trait
388 /// object; this does not necessarily imply that the enclosing trait
389 /// is not object safe, because the method might have a where clause
390 /// `Self:Sized`.
391 fn virtual_call_violation_for_method<'tcx>(
392     tcx: TyCtxt<'tcx>,
393     trait_def_id: DefId,
394     method: &ty::AssocItem,
395 ) -> Option<MethodViolationCode> {
396     let sig = tcx.fn_sig(method.def_id);
397
398     // The method's first parameter must be named `self`
399     if !method.fn_has_self_parameter {
400         let sugg = if let Some(hir::Node::TraitItem(hir::TraitItem {
401             generics,
402             kind: hir::TraitItemKind::Fn(sig, _),
403             ..
404         })) = tcx.hir().get_if_local(method.def_id).as_ref()
405         {
406             let sm = tcx.sess.source_map();
407             Some((
408                 (
409                     format!("&self{}", if sig.decl.inputs.is_empty() { "" } else { ", " }),
410                     sm.span_through_char(sig.span, '(').shrink_to_hi(),
411                 ),
412                 (
413                     format!("{} Self: Sized", generics.add_where_or_trailing_comma()),
414                     generics.tail_span_for_predicate_suggestion(),
415                 ),
416             ))
417         } else {
418             None
419         };
420         return Some(MethodViolationCode::StaticMethod(sugg));
421     }
422
423     for (i, &input_ty) in sig.skip_binder().inputs().iter().enumerate().skip(1) {
424         if contains_illegal_self_type_reference(tcx, trait_def_id, sig.rebind(input_ty)) {
425             let span = if let Some(hir::Node::TraitItem(hir::TraitItem {
426                 kind: hir::TraitItemKind::Fn(sig, _),
427                 ..
428             })) = tcx.hir().get_if_local(method.def_id).as_ref()
429             {
430                 Some(sig.decl.inputs[i].span)
431             } else {
432                 None
433             };
434             return Some(MethodViolationCode::ReferencesSelfInput(span));
435         }
436     }
437     if contains_illegal_self_type_reference(tcx, trait_def_id, sig.output()) {
438         return Some(MethodViolationCode::ReferencesSelfOutput);
439     }
440     if contains_illegal_impl_trait_in_trait(tcx, sig.output()) {
441         return Some(MethodViolationCode::ReferencesImplTraitInTrait);
442     }
443
444     // We can't monomorphize things like `fn foo<A>(...)`.
445     let own_counts = tcx.generics_of(method.def_id).own_counts();
446     if own_counts.types + own_counts.consts != 0 {
447         return Some(MethodViolationCode::Generic);
448     }
449
450     let receiver_ty = tcx.liberate_late_bound_regions(method.def_id, sig.input(0));
451
452     // Until `unsized_locals` is fully implemented, `self: Self` can't be dispatched on.
453     // However, this is already considered object-safe. We allow it as a special case here.
454     // FIXME(mikeyhew) get rid of this `if` statement once `receiver_is_dispatchable` allows
455     // `Receiver: Unsize<Receiver[Self => dyn Trait]>`.
456     if receiver_ty != tcx.types.self_param {
457         if !receiver_is_dispatchable(tcx, method, receiver_ty) {
458             let span = if let Some(hir::Node::TraitItem(hir::TraitItem {
459                 kind: hir::TraitItemKind::Fn(sig, _),
460                 ..
461             })) = tcx.hir().get_if_local(method.def_id).as_ref()
462             {
463                 Some(sig.decl.inputs[0].span)
464             } else {
465                 None
466             };
467             return Some(MethodViolationCode::UndispatchableReceiver(span));
468         } else {
469             // Do sanity check to make sure the receiver actually has the layout of a pointer.
470
471             use rustc_target::abi::Abi;
472
473             let param_env = tcx.param_env(method.def_id);
474
475             let abi_of_ty = |ty: Ty<'tcx>| -> Option<Abi> {
476                 match tcx.layout_of(param_env.and(ty)) {
477                     Ok(layout) => Some(layout.abi),
478                     Err(err) => {
479                         // #78372
480                         tcx.sess.delay_span_bug(
481                             tcx.def_span(method.def_id),
482                             &format!("error: {}\n while computing layout for type {:?}", err, ty),
483                         );
484                         None
485                     }
486                 }
487             };
488
489             // e.g., `Rc<()>`
490             let unit_receiver_ty =
491                 receiver_for_self_ty(tcx, receiver_ty, tcx.mk_unit(), method.def_id);
492
493             match abi_of_ty(unit_receiver_ty) {
494                 Some(Abi::Scalar(..)) => (),
495                 abi => {
496                     tcx.sess.delay_span_bug(
497                         tcx.def_span(method.def_id),
498                         &format!(
499                             "receiver when `Self = ()` should have a Scalar ABI; found {:?}",
500                             abi
501                         ),
502                     );
503                 }
504             }
505
506             let trait_object_ty =
507                 object_ty_for_trait(tcx, trait_def_id, tcx.mk_region(ty::ReStatic));
508
509             // e.g., `Rc<dyn Trait>`
510             let trait_object_receiver =
511                 receiver_for_self_ty(tcx, receiver_ty, trait_object_ty, method.def_id);
512
513             match abi_of_ty(trait_object_receiver) {
514                 Some(Abi::ScalarPair(..)) => (),
515                 abi => {
516                     tcx.sess.delay_span_bug(
517                         tcx.def_span(method.def_id),
518                         &format!(
519                             "receiver when `Self = {}` should have a ScalarPair ABI; found {:?}",
520                             trait_object_ty, abi
521                         ),
522                     );
523                 }
524             }
525         }
526     }
527
528     // NOTE: This check happens last, because it results in a lint, and not a
529     // hard error.
530     if tcx
531         .predicates_of(method.def_id)
532         .predicates
533         .iter()
534         // A trait object can't claim to live more than the concrete type,
535         // so outlives predicates will always hold.
536         .cloned()
537         .filter(|(p, _)| p.to_opt_type_outlives().is_none())
538         .any(|pred| contains_illegal_self_type_reference(tcx, trait_def_id, pred))
539     {
540         return Some(MethodViolationCode::WhereClauseReferencesSelf);
541     }
542
543     None
544 }
545
546 /// Performs a type substitution to produce the version of `receiver_ty` when `Self = self_ty`.
547 /// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`.
548 fn receiver_for_self_ty<'tcx>(
549     tcx: TyCtxt<'tcx>,
550     receiver_ty: Ty<'tcx>,
551     self_ty: Ty<'tcx>,
552     method_def_id: DefId,
553 ) -> Ty<'tcx> {
554     debug!("receiver_for_self_ty({:?}, {:?}, {:?})", receiver_ty, self_ty, method_def_id);
555     let substs = InternalSubsts::for_item(tcx, method_def_id, |param, _| {
556         if param.index == 0 { self_ty.into() } else { tcx.mk_param_from_def(param) }
557     });
558
559     let result = EarlyBinder(receiver_ty).subst(tcx, substs);
560     debug!(
561         "receiver_for_self_ty({:?}, {:?}, {:?}) = {:?}",
562         receiver_ty, self_ty, method_def_id, result
563     );
564     result
565 }
566
567 /// Creates the object type for the current trait. For example,
568 /// if the current trait is `Deref`, then this will be
569 /// `dyn Deref<Target = Self::Target> + 'static`.
570 #[instrument(level = "trace", skip(tcx), ret)]
571 fn object_ty_for_trait<'tcx>(
572     tcx: TyCtxt<'tcx>,
573     trait_def_id: DefId,
574     lifetime: ty::Region<'tcx>,
575 ) -> Ty<'tcx> {
576     let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
577     debug!(?trait_ref);
578
579     let trait_predicate = trait_ref.map_bound(|trait_ref| {
580         ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref))
581     });
582     debug!(?trait_predicate);
583
584     let mut elaborated_predicates: Vec<_> = elaborate_trait_ref(tcx, trait_ref)
585         .filter_map(|obligation| {
586             debug!(?obligation);
587             let pred = obligation.predicate.to_opt_poly_projection_pred()?;
588             Some(pred.map_bound(|p| {
589                 ty::ExistentialPredicate::Projection(ty::ExistentialProjection {
590                     item_def_id: p.projection_ty.item_def_id,
591                     substs: p.projection_ty.substs,
592                     term: p.term,
593                 })
594             }))
595         })
596         .collect();
597     // NOTE: Since #37965, the existential predicates list has depended on the
598     // list of predicates to be sorted. This is mostly to enforce that the primary
599     // predicate comes first.
600     elaborated_predicates.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
601     elaborated_predicates.dedup();
602
603     let existential_predicates = tcx
604         .mk_poly_existential_predicates(iter::once(trait_predicate).chain(elaborated_predicates));
605     debug!(?existential_predicates);
606
607     tcx.mk_dynamic(existential_predicates, lifetime, ty::Dyn)
608 }
609
610 /// Checks the method's receiver (the `self` argument) can be dispatched on when `Self` is a
611 /// trait object. We require that `DispatchableFromDyn` be implemented for the receiver type
612 /// in the following way:
613 /// - let `Receiver` be the type of the `self` argument, i.e `Self`, `&Self`, `Rc<Self>`,
614 /// - require the following bound:
615 ///
616 ///   ```ignore (not-rust)
617 ///   Receiver[Self => T]: DispatchFromDyn<Receiver[Self => dyn Trait]>
618 ///   ```
619 ///
620 ///   where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`"
621 ///   (substitution notation).
622 ///
623 /// Some examples of receiver types and their required obligation:
624 /// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`,
625 /// - `self: Rc<Self>` requires `Rc<Self>: DispatchFromDyn<Rc<dyn Trait>>`,
626 /// - `self: Pin<Box<Self>>` requires `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<dyn Trait>>>`.
627 ///
628 /// The only case where the receiver is not dispatchable, but is still a valid receiver
629 /// type (just not object-safe), is when there is more than one level of pointer indirection.
630 /// E.g., `self: &&Self`, `self: &Rc<Self>`, `self: Box<Box<Self>>`. In these cases, there
631 /// is no way, or at least no inexpensive way, to coerce the receiver from the version where
632 /// `Self = dyn Trait` to the version where `Self = T`, where `T` is the unknown erased type
633 /// contained by the trait object, because the object that needs to be coerced is behind
634 /// a pointer.
635 ///
636 /// In practice, we cannot use `dyn Trait` explicitly in the obligation because it would result
637 /// in a new check that `Trait` is object safe, creating a cycle (until object_safe_for_dispatch
638 /// is stabilized, see tracking issue <https://github.com/rust-lang/rust/issues/43561>).
639 /// Instead, we fudge a little by introducing a new type parameter `U` such that
640 /// `Self: Unsize<U>` and `U: Trait + ?Sized`, and use `U` in place of `dyn Trait`.
641 /// Written as a chalk-style query:
642 /// ```ignore (not-rust)
643 /// forall (U: Trait + ?Sized) {
644 ///     if (Self: Unsize<U>) {
645 ///         Receiver: DispatchFromDyn<Receiver[Self => U]>
646 ///     }
647 /// }
648 /// ```
649 /// for `self: &'a mut Self`, this means `&'a mut Self: DispatchFromDyn<&'a mut U>`
650 /// for `self: Rc<Self>`, this means `Rc<Self>: DispatchFromDyn<Rc<U>>`
651 /// for `self: Pin<Box<Self>>`, this means `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<U>>>`
652 //
653 // FIXME(mikeyhew) when unsized receivers are implemented as part of unsized rvalues, add this
654 // fallback query: `Receiver: Unsize<Receiver[Self => U]>` to support receivers like
655 // `self: Wrapper<Self>`.
656 #[allow(dead_code)]
657 fn receiver_is_dispatchable<'tcx>(
658     tcx: TyCtxt<'tcx>,
659     method: &ty::AssocItem,
660     receiver_ty: Ty<'tcx>,
661 ) -> bool {
662     debug!("receiver_is_dispatchable: method = {:?}, receiver_ty = {:?}", method, receiver_ty);
663
664     let traits = (tcx.lang_items().unsize_trait(), tcx.lang_items().dispatch_from_dyn_trait());
665     let (Some(unsize_did), Some(dispatch_from_dyn_did)) = traits else {
666         debug!("receiver_is_dispatchable: Missing Unsize or DispatchFromDyn traits");
667         return false;
668     };
669
670     // the type `U` in the query
671     // use a bogus type parameter to mimic a forall(U) query using u32::MAX for now.
672     // FIXME(mikeyhew) this is a total hack. Once object_safe_for_dispatch is stabilized, we can
673     // replace this with `dyn Trait`
674     let unsized_self_ty: Ty<'tcx> =
675         tcx.mk_ty_param(u32::MAX, Symbol::intern("RustaceansAreAwesome"));
676
677     // `Receiver[Self => U]`
678     let unsized_receiver_ty =
679         receiver_for_self_ty(tcx, receiver_ty, unsized_self_ty, method.def_id);
680
681     // create a modified param env, with `Self: Unsize<U>` and `U: Trait` added to caller bounds
682     // `U: ?Sized` is already implied here
683     let param_env = {
684         let param_env = tcx.param_env(method.def_id);
685
686         // Self: Unsize<U>
687         let unsize_predicate = ty::Binder::dummy(ty::TraitRef {
688             def_id: unsize_did,
689             substs: tcx.mk_substs_trait(tcx.types.self_param, &[unsized_self_ty.into()]),
690         })
691         .without_const()
692         .to_predicate(tcx);
693
694         // U: Trait<Arg1, ..., ArgN>
695         let trait_predicate = {
696             let substs =
697                 InternalSubsts::for_item(tcx, method.trait_container(tcx).unwrap(), |param, _| {
698                     if param.index == 0 {
699                         unsized_self_ty.into()
700                     } else {
701                         tcx.mk_param_from_def(param)
702                     }
703                 });
704
705             ty::Binder::dummy(ty::TraitRef { def_id: unsize_did, substs })
706                 .without_const()
707                 .to_predicate(tcx)
708         };
709
710         let caller_bounds: Vec<Predicate<'tcx>> =
711             param_env.caller_bounds().iter().chain([unsize_predicate, trait_predicate]).collect();
712
713         ty::ParamEnv::new(
714             tcx.intern_predicates(&caller_bounds),
715             param_env.reveal(),
716             param_env.constness(),
717         )
718     };
719
720     // Receiver: DispatchFromDyn<Receiver[Self => U]>
721     let obligation = {
722         let predicate = ty::Binder::dummy(ty::TraitRef {
723             def_id: dispatch_from_dyn_did,
724             substs: tcx.mk_substs_trait(receiver_ty, &[unsized_receiver_ty.into()]),
725         })
726         .without_const();
727
728         Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate)
729     };
730
731     let infcx = tcx.infer_ctxt().build();
732     // the receiver is dispatchable iff the obligation holds
733     infcx.predicate_must_hold_modulo_regions(&obligation)
734 }
735
736 fn contains_illegal_self_type_reference<'tcx, T: TypeVisitable<'tcx>>(
737     tcx: TyCtxt<'tcx>,
738     trait_def_id: DefId,
739     value: T,
740 ) -> bool {
741     // This is somewhat subtle. In general, we want to forbid
742     // references to `Self` in the argument and return types,
743     // since the value of `Self` is erased. However, there is one
744     // exception: it is ok to reference `Self` in order to access
745     // an associated type of the current trait, since we retain
746     // the value of those associated types in the object type
747     // itself.
748     //
749     // ```rust
750     // trait SuperTrait {
751     //     type X;
752     // }
753     //
754     // trait Trait : SuperTrait {
755     //     type Y;
756     //     fn foo(&self, x: Self) // bad
757     //     fn foo(&self) -> Self // bad
758     //     fn foo(&self) -> Option<Self> // bad
759     //     fn foo(&self) -> Self::Y // OK, desugars to next example
760     //     fn foo(&self) -> <Self as Trait>::Y // OK
761     //     fn foo(&self) -> Self::X // OK, desugars to next example
762     //     fn foo(&self) -> <Self as SuperTrait>::X // OK
763     // }
764     // ```
765     //
766     // However, it is not as simple as allowing `Self` in a projected
767     // type, because there are illegal ways to use `Self` as well:
768     //
769     // ```rust
770     // trait Trait : SuperTrait {
771     //     ...
772     //     fn foo(&self) -> <Self as SomeOtherTrait>::X;
773     // }
774     // ```
775     //
776     // Here we will not have the type of `X` recorded in the
777     // object type, and we cannot resolve `Self as SomeOtherTrait`
778     // without knowing what `Self` is.
779
780     struct IllegalSelfTypeVisitor<'tcx> {
781         tcx: TyCtxt<'tcx>,
782         trait_def_id: DefId,
783         supertraits: Option<Vec<DefId>>,
784     }
785
786     impl<'tcx> TypeVisitor<'tcx> for IllegalSelfTypeVisitor<'tcx> {
787         type BreakTy = ();
788
789         fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
790             match t.kind() {
791                 ty::Param(_) => {
792                     if t == self.tcx.types.self_param {
793                         ControlFlow::BREAK
794                     } else {
795                         ControlFlow::CONTINUE
796                     }
797                 }
798                 ty::Projection(ref data)
799                     if self.tcx.def_kind(data.item_def_id) == DefKind::ImplTraitPlaceholder =>
800                 {
801                     // We'll deny these later in their own pass
802                     ControlFlow::CONTINUE
803                 }
804                 ty::Projection(ref data) => {
805                     // This is a projected type `<Foo as SomeTrait>::X`.
806
807                     // Compute supertraits of current trait lazily.
808                     if self.supertraits.is_none() {
809                         let trait_ref = ty::TraitRef::identity(self.tcx, self.trait_def_id);
810                         self.supertraits = Some(
811                             traits::supertraits(self.tcx, trait_ref).map(|t| t.def_id()).collect(),
812                         );
813                     }
814
815                     // Determine whether the trait reference `Foo as
816                     // SomeTrait` is in fact a supertrait of the
817                     // current trait. In that case, this type is
818                     // legal, because the type `X` will be specified
819                     // in the object type.  Note that we can just use
820                     // direct equality here because all of these types
821                     // are part of the formal parameter listing, and
822                     // hence there should be no inference variables.
823                     let is_supertrait_of_current_trait = self
824                         .supertraits
825                         .as_ref()
826                         .unwrap()
827                         .contains(&data.trait_ref(self.tcx).def_id);
828
829                     if is_supertrait_of_current_trait {
830                         ControlFlow::CONTINUE // do not walk contained types, do not report error, do collect $200
831                     } else {
832                         t.super_visit_with(self) // DO walk contained types, POSSIBLY reporting an error
833                     }
834                 }
835                 _ => t.super_visit_with(self), // walk contained types, if any
836             }
837         }
838
839         fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
840             // Constants can only influence object safety if they reference `Self`.
841             // This is only possible for unevaluated constants, so we walk these here.
842             //
843             // If `AbstractConst::from_const` returned an error we already failed compilation
844             // so we don't have to emit an additional error here.
845             use rustc_middle::ty::abstract_const::Node;
846             if let Ok(Some(ct)) = AbstractConst::from_const(self.tcx, ct) {
847                 walk_abstract_const(self.tcx, ct, |node| match node.root(self.tcx) {
848                     Node::Leaf(leaf) => self.visit_const(leaf),
849                     Node::Cast(_, _, ty) => self.visit_ty(ty),
850                     Node::Binop(..) | Node::UnaryOp(..) | Node::FunctionCall(_, _) => {
851                         ControlFlow::CONTINUE
852                     }
853                 })
854             } else {
855                 ct.super_visit_with(self)
856             }
857         }
858     }
859
860     value
861         .visit_with(&mut IllegalSelfTypeVisitor { tcx, trait_def_id, supertraits: None })
862         .is_break()
863 }
864
865 pub fn contains_illegal_impl_trait_in_trait<'tcx>(
866     tcx: TyCtxt<'tcx>,
867     ty: ty::Binder<'tcx, Ty<'tcx>>,
868 ) -> bool {
869     // FIXME(RPITIT): Perhaps we should use a visitor here?
870     ty.skip_binder().walk().any(|arg| {
871         if let ty::GenericArgKind::Type(ty) = arg.unpack()
872             && let ty::Projection(proj) = ty.kind()
873         {
874             tcx.def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder
875         } else {
876             false
877         }
878     })
879 }
880
881 pub fn provide(providers: &mut ty::query::Providers) {
882     *providers = ty::query::Providers { object_safety_violations, ..*providers };
883 }