]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/object_safety.rs
Auto merge of #95993 - jyn514:fix-stage0-doctests, r=Mark-Simulacrum
[rust.git] / compiler / rustc_trait_selection / src / traits / object_safety.rs
1 //! "Object safety" refers to the ability for a trait to be converted
2 //! to an object. In general, traits may only be converted to an
3 //! object if all of their methods meet certain criteria. In particular,
4 //! they must:
5 //!
6 //!   - have a suitable receiver from which we can extract a vtable and coerce to a "thin" version
7 //!     that doesn't contain the vtable;
8 //!   - not reference the erased type `Self` except for in this receiver;
9 //!   - not have generic type parameters.
10
11 use super::elaborate_predicates;
12
13 use crate::infer::TyCtxtInferExt;
14 use crate::traits::const_evaluatable::{self, AbstractConst};
15 use crate::traits::query::evaluate_obligation::InferCtxtExt;
16 use crate::traits::{self, Obligation, ObligationCause};
17 use rustc_errors::{FatalError, MultiSpan};
18 use rustc_hir as hir;
19 use rustc_hir::def_id::DefId;
20 use rustc_middle::ty::subst::{GenericArg, InternalSubsts, Subst};
21 use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeVisitor};
22 use rustc_middle::ty::{Predicate, ToPredicate};
23 use rustc_session::lint::builtin::WHERE_CLAUSES_OBJECT_SAFETY;
24 use rustc_span::symbol::Symbol;
25 use rustc_span::Span;
26 use smallvec::SmallVec;
27
28 use std::iter;
29 use std::ops::ControlFlow;
30
31 pub use crate::traits::{MethodViolationCode, ObjectSafetyViolation};
32
33 /// Returns the object safety violations that affect
34 /// astconv -- currently, `Self` in supertraits. This is needed
35 /// because `object_safety_violations` can't be used during
36 /// type collection.
37 pub fn astconv_object_safety_violations(
38     tcx: TyCtxt<'_>,
39     trait_def_id: DefId,
40 ) -> Vec<ObjectSafetyViolation> {
41     debug_assert!(tcx.generics_of(trait_def_id).has_self);
42     let violations = traits::supertrait_def_ids(tcx, trait_def_id)
43         .map(|def_id| predicates_reference_self(tcx, def_id, true))
44         .filter(|spans| !spans.is_empty())
45         .map(ObjectSafetyViolation::SupertraitSelf)
46         .collect();
47
48     debug!("astconv_object_safety_violations(trait_def_id={:?}) = {:?}", trait_def_id, violations);
49
50     violations
51 }
52
53 fn object_safety_violations(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &'_ [ObjectSafetyViolation] {
54     debug_assert!(tcx.generics_of(trait_def_id).has_self);
55     debug!("object_safety_violations: {:?}", trait_def_id);
56
57     tcx.arena.alloc_from_iter(
58         traits::supertrait_def_ids(tcx, trait_def_id)
59             .flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id)),
60     )
61 }
62
63 /// We say a method is *vtable safe* if it can be invoked on a trait
64 /// object. Note that object-safe traits can have some
65 /// non-vtable-safe methods, so long as they require `Self: Sized` or
66 /// otherwise ensure that they cannot be used when `Self = Trait`.
67 pub fn is_vtable_safe_method(tcx: TyCtxt<'_>, trait_def_id: DefId, method: &ty::AssocItem) -> bool {
68     debug_assert!(tcx.generics_of(trait_def_id).has_self);
69     debug!("is_vtable_safe_method({:?}, {:?})", trait_def_id, method);
70     // Any method that has a `Self: Sized` bound cannot be called.
71     if generics_require_sized_self(tcx, method.def_id) {
72         return false;
73     }
74
75     match virtual_call_violation_for_method(tcx, trait_def_id, method) {
76         None | Some(MethodViolationCode::WhereClauseReferencesSelf) => true,
77         Some(_) => false,
78     }
79 }
80
81 fn object_safety_violations_for_trait(
82     tcx: TyCtxt<'_>,
83     trait_def_id: DefId,
84 ) -> Vec<ObjectSafetyViolation> {
85     // Check methods for violations.
86     let mut violations: Vec<_> = tcx
87         .associated_items(trait_def_id)
88         .in_definition_order()
89         .filter(|item| item.kind == ty::AssocKind::Fn)
90         .filter_map(|item| {
91             object_safety_violation_for_method(tcx, trait_def_id, &item)
92                 .map(|(code, span)| ObjectSafetyViolation::Method(item.name, code, span))
93         })
94         .filter(|violation| {
95             if let ObjectSafetyViolation::Method(
96                 _,
97                 MethodViolationCode::WhereClauseReferencesSelf,
98                 span,
99             ) = violation
100             {
101                 lint_object_unsafe_trait(tcx, *span, trait_def_id, violation);
102                 false
103             } else {
104                 true
105             }
106         })
107         .collect();
108
109     // Check the trait itself.
110     if trait_has_sized_self(tcx, trait_def_id) {
111         // We don't want to include the requirement from `Sized` itself to be `Sized` in the list.
112         let spans = get_sized_bounds(tcx, trait_def_id);
113         violations.push(ObjectSafetyViolation::SizedSelf(spans));
114     }
115     let spans = predicates_reference_self(tcx, trait_def_id, false);
116     if !spans.is_empty() {
117         violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
118     }
119     let spans = bounds_reference_self(tcx, trait_def_id);
120     if !spans.is_empty() {
121         violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
122     }
123
124     violations.extend(
125         tcx.associated_items(trait_def_id)
126             .in_definition_order()
127             .filter(|item| item.kind == ty::AssocKind::Const)
128             .map(|item| {
129                 let ident = item.ident(tcx);
130                 ObjectSafetyViolation::AssocConst(ident.name, ident.span)
131             }),
132     );
133
134     if !tcx.features().generic_associated_types_extended {
135         violations.extend(
136             tcx.associated_items(trait_def_id)
137                 .in_definition_order()
138                 .filter(|item| item.kind == ty::AssocKind::Type)
139                 .filter(|item| !tcx.generics_of(item.def_id).params.is_empty())
140                 .map(|item| {
141                     let ident = item.ident(tcx);
142                     ObjectSafetyViolation::GAT(ident.name, ident.span)
143                 }),
144         );
145     }
146
147     debug!(
148         "object_safety_violations_for_trait(trait_def_id={:?}) = {:?}",
149         trait_def_id, violations
150     );
151
152     violations
153 }
154
155 /// Lint object-unsafe trait.
156 fn lint_object_unsafe_trait(
157     tcx: TyCtxt<'_>,
158     span: Span,
159     trait_def_id: DefId,
160     violation: &ObjectSafetyViolation,
161 ) {
162     // Using `CRATE_NODE_ID` is wrong, but it's hard to get a more precise id.
163     // It's also hard to get a use site span, so we use the method definition span.
164     tcx.struct_span_lint_hir(WHERE_CLAUSES_OBJECT_SAFETY, hir::CRATE_HIR_ID, span, |lint| {
165         let mut err = lint.build(&format!(
166             "the trait `{}` cannot be made into an object",
167             tcx.def_path_str(trait_def_id)
168         ));
169         let node = tcx.hir().get_if_local(trait_def_id);
170         let mut spans = MultiSpan::from_span(span);
171         if let Some(hir::Node::Item(item)) = node {
172             spans.push_span_label(item.ident.span, "this trait cannot be made into an object...");
173             spans.push_span_label(span, format!("...because {}", violation.error_msg()));
174         } else {
175             spans.push_span_label(
176                 span,
177                 format!(
178                     "the trait cannot be made into an object because {}",
179                     violation.error_msg()
180                 ),
181             );
182         };
183         err.span_note(
184             spans,
185             "for a trait to be \"object safe\" it needs to allow building a vtable to allow the \
186              call to be resolvable dynamically; for more information visit \
187              <https://doc.rust-lang.org/reference/items/traits.html#object-safety>",
188         );
189         if node.is_some() {
190             // Only provide the help if its a local trait, otherwise it's not
191             violation.solution(&mut err);
192         }
193         err.emit();
194     });
195 }
196
197 fn sized_trait_bound_spans<'tcx>(
198     tcx: TyCtxt<'tcx>,
199     bounds: hir::GenericBounds<'tcx>,
200 ) -> impl 'tcx + Iterator<Item = Span> {
201     bounds.iter().filter_map(move |b| match b {
202         hir::GenericBound::Trait(trait_ref, hir::TraitBoundModifier::None)
203             if trait_has_sized_self(
204                 tcx,
205                 trait_ref.trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
206             ) =>
207         {
208             // Fetch spans for supertraits that are `Sized`: `trait T: Super`
209             Some(trait_ref.span)
210         }
211         _ => None,
212     })
213 }
214
215 fn get_sized_bounds(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
216     tcx.hir()
217         .get_if_local(trait_def_id)
218         .and_then(|node| match node {
219             hir::Node::Item(hir::Item {
220                 kind: hir::ItemKind::Trait(.., generics, bounds, _),
221                 ..
222             }) => Some(
223                 generics
224                     .where_clause
225                     .predicates
226                     .iter()
227                     .filter_map(|pred| {
228                         match pred {
229                             hir::WherePredicate::BoundPredicate(pred)
230                                 if pred.bounded_ty.hir_id.owner.to_def_id() == trait_def_id =>
231                             {
232                                 // Fetch spans for trait bounds that are Sized:
233                                 // `trait T where Self: Pred`
234                                 Some(sized_trait_bound_spans(tcx, pred.bounds))
235                             }
236                             _ => None,
237                         }
238                     })
239                     .flatten()
240                     // Fetch spans for supertraits that are `Sized`: `trait T: Super`.
241                     .chain(sized_trait_bound_spans(tcx, bounds))
242                     .collect::<SmallVec<[Span; 1]>>(),
243             ),
244             _ => None,
245         })
246         .unwrap_or_else(SmallVec::new)
247 }
248
249 fn predicates_reference_self(
250     tcx: TyCtxt<'_>,
251     trait_def_id: DefId,
252     supertraits_only: bool,
253 ) -> SmallVec<[Span; 1]> {
254     let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
255     let predicates = if supertraits_only {
256         tcx.super_predicates_of(trait_def_id)
257     } else {
258         tcx.predicates_of(trait_def_id)
259     };
260     predicates
261         .predicates
262         .iter()
263         .map(|&(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), sp))
264         .filter_map(|predicate| predicate_references_self(tcx, predicate))
265         .collect()
266 }
267
268 fn bounds_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
269     tcx.associated_items(trait_def_id)
270         .in_definition_order()
271         .filter(|item| item.kind == ty::AssocKind::Type)
272         .flat_map(|item| tcx.explicit_item_bounds(item.def_id))
273         .filter_map(|pred_span| predicate_references_self(tcx, *pred_span))
274         .collect()
275 }
276
277 fn predicate_references_self<'tcx>(
278     tcx: TyCtxt<'tcx>,
279     (predicate, sp): (ty::Predicate<'tcx>, Span),
280 ) -> Option<Span> {
281     let self_ty = tcx.types.self_param;
282     let has_self_ty = |arg: &GenericArg<'_>| arg.walk().any(|arg| arg == self_ty.into());
283     match predicate.kind().skip_binder() {
284         ty::PredicateKind::Trait(ref data) => {
285             // In the case of a trait predicate, we can skip the "self" type.
286             if data.trait_ref.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
287         }
288         ty::PredicateKind::Projection(ref data) => {
289             // And similarly for projections. This should be redundant with
290             // the previous check because any projection should have a
291             // matching `Trait` predicate with the same inputs, but we do
292             // the check to be safe.
293             //
294             // It's also won't be redundant if we allow type-generic associated
295             // types for trait objects.
296             //
297             // Note that we *do* allow projection *outputs* to contain
298             // `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
299             // we just require the user to specify *both* outputs
300             // in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
301             //
302             // This is ALT2 in issue #56288, see that for discussion of the
303             // possible alternatives.
304             if data.projection_ty.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
305         }
306         ty::PredicateKind::WellFormed(..)
307         | ty::PredicateKind::ObjectSafe(..)
308         | ty::PredicateKind::TypeOutlives(..)
309         | ty::PredicateKind::RegionOutlives(..)
310         | ty::PredicateKind::ClosureKind(..)
311         | ty::PredicateKind::Subtype(..)
312         | ty::PredicateKind::Coerce(..)
313         | ty::PredicateKind::ConstEvaluatable(..)
314         | ty::PredicateKind::ConstEquate(..)
315         | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
316     }
317 }
318
319 fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
320     generics_require_sized_self(tcx, trait_def_id)
321 }
322
323 fn generics_require_sized_self(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
324     let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
325         return false; /* No Sized trait, can't require it! */
326     };
327
328     // Search for a predicate like `Self : Sized` amongst the trait bounds.
329     let predicates = tcx.predicates_of(def_id);
330     let predicates = predicates.instantiate_identity(tcx).predicates;
331     elaborate_predicates(tcx, predicates.into_iter()).any(|obligation| {
332         match obligation.predicate.kind().skip_binder() {
333             ty::PredicateKind::Trait(ref trait_pred) => {
334                 trait_pred.def_id() == sized_def_id && trait_pred.self_ty().is_param(0)
335             }
336             ty::PredicateKind::Projection(..)
337             | ty::PredicateKind::Subtype(..)
338             | ty::PredicateKind::Coerce(..)
339             | ty::PredicateKind::RegionOutlives(..)
340             | ty::PredicateKind::WellFormed(..)
341             | ty::PredicateKind::ObjectSafe(..)
342             | ty::PredicateKind::ClosureKind(..)
343             | ty::PredicateKind::TypeOutlives(..)
344             | ty::PredicateKind::ConstEvaluatable(..)
345             | ty::PredicateKind::ConstEquate(..)
346             | ty::PredicateKind::TypeWellFormedFromEnv(..) => false,
347         }
348     })
349 }
350
351 /// Returns `Some(_)` if this method makes the containing trait not object safe.
352 fn object_safety_violation_for_method(
353     tcx: TyCtxt<'_>,
354     trait_def_id: DefId,
355     method: &ty::AssocItem,
356 ) -> Option<(MethodViolationCode, Span)> {
357     debug!("object_safety_violation_for_method({:?}, {:?})", trait_def_id, method);
358     // Any method that has a `Self : Sized` requisite is otherwise
359     // exempt from the regulations.
360     if generics_require_sized_self(tcx, method.def_id) {
361         return None;
362     }
363
364     let violation = virtual_call_violation_for_method(tcx, trait_def_id, method);
365     // Get an accurate span depending on the violation.
366     violation.map(|v| {
367         let node = tcx.hir().get_if_local(method.def_id);
368         let span = match (v, node) {
369             (MethodViolationCode::ReferencesSelfInput(arg), Some(node)) => node
370                 .fn_decl()
371                 .and_then(|decl| decl.inputs.get(arg + 1))
372                 .map_or(method.ident(tcx).span, |arg| arg.span),
373             (MethodViolationCode::UndispatchableReceiver, Some(node)) => node
374                 .fn_decl()
375                 .and_then(|decl| decl.inputs.get(0))
376                 .map_or(method.ident(tcx).span, |arg| arg.span),
377             (MethodViolationCode::ReferencesSelfOutput, Some(node)) => {
378                 node.fn_decl().map_or(method.ident(tcx).span, |decl| decl.output.span())
379             }
380             _ => method.ident(tcx).span,
381         };
382         (v, span)
383     })
384 }
385
386 /// Returns `Some(_)` if this method cannot be called on a trait
387 /// object; this does not necessarily imply that the enclosing trait
388 /// is not object safe, because the method might have a where clause
389 /// `Self:Sized`.
390 fn virtual_call_violation_for_method<'tcx>(
391     tcx: TyCtxt<'tcx>,
392     trait_def_id: DefId,
393     method: &ty::AssocItem,
394 ) -> Option<MethodViolationCode> {
395     let sig = tcx.fn_sig(method.def_id);
396
397     // The method's first parameter must be named `self`
398     if !method.fn_has_self_parameter {
399         // We'll attempt to provide a structured suggestion for `Self: Sized`.
400         let sugg =
401             tcx.hir().get_if_local(method.def_id).as_ref().and_then(|node| node.generics()).map(
402                 |generics| match generics.where_clause.predicates {
403                     [] => (" where Self: Sized", generics.where_clause.span),
404                     [.., pred] => (", Self: Sized", pred.span().shrink_to_hi()),
405                 },
406             );
407         // Get the span pointing at where the `self` receiver should be.
408         let sm = tcx.sess.source_map();
409         let self_span = method.ident(tcx).span.to(tcx
410             .hir()
411             .span_if_local(method.def_id)
412             .unwrap_or_else(|| sm.next_point(method.ident(tcx).span))
413             .shrink_to_hi());
414         let self_span = sm.span_through_char(self_span, '(').shrink_to_hi();
415         return Some(MethodViolationCode::StaticMethod(
416             sugg,
417             self_span,
418             !sig.inputs().skip_binder().is_empty(),
419         ));
420     }
421
422     for (i, &input_ty) in sig.skip_binder().inputs()[1..].iter().enumerate() {
423         if contains_illegal_self_type_reference(tcx, trait_def_id, sig.rebind(input_ty)) {
424             return Some(MethodViolationCode::ReferencesSelfInput(i));
425         }
426     }
427     if contains_illegal_self_type_reference(tcx, trait_def_id, sig.output()) {
428         return Some(MethodViolationCode::ReferencesSelfOutput);
429     }
430
431     // We can't monomorphize things like `fn foo<A>(...)`.
432     let own_counts = tcx.generics_of(method.def_id).own_counts();
433     if own_counts.types + own_counts.consts != 0 {
434         return Some(MethodViolationCode::Generic);
435     }
436
437     if tcx
438         .predicates_of(method.def_id)
439         .predicates
440         .iter()
441         // A trait object can't claim to live more than the concrete type,
442         // so outlives predicates will always hold.
443         .cloned()
444         .filter(|(p, _)| p.to_opt_type_outlives().is_none())
445         .any(|pred| contains_illegal_self_type_reference(tcx, trait_def_id, pred))
446     {
447         return Some(MethodViolationCode::WhereClauseReferencesSelf);
448     }
449
450     let receiver_ty = tcx.liberate_late_bound_regions(method.def_id, sig.input(0));
451
452     // Until `unsized_locals` is fully implemented, `self: Self` can't be dispatched on.
453     // However, this is already considered object-safe. We allow it as a special case here.
454     // FIXME(mikeyhew) get rid of this `if` statement once `receiver_is_dispatchable` allows
455     // `Receiver: Unsize<Receiver[Self => dyn Trait]>`.
456     if receiver_ty != tcx.types.self_param {
457         if !receiver_is_dispatchable(tcx, method, receiver_ty) {
458             return Some(MethodViolationCode::UndispatchableReceiver);
459         } else {
460             // Do sanity check to make sure the receiver actually has the layout of a pointer.
461
462             use rustc_target::abi::Abi;
463
464             let param_env = tcx.param_env(method.def_id);
465
466             let abi_of_ty = |ty: Ty<'tcx>| -> Option<Abi> {
467                 match tcx.layout_of(param_env.and(ty)) {
468                     Ok(layout) => Some(layout.abi),
469                     Err(err) => {
470                         // #78372
471                         tcx.sess.delay_span_bug(
472                             tcx.def_span(method.def_id),
473                             &format!("error: {}\n while computing layout for type {:?}", err, ty),
474                         );
475                         None
476                     }
477                 }
478             };
479
480             // e.g., `Rc<()>`
481             let unit_receiver_ty =
482                 receiver_for_self_ty(tcx, receiver_ty, tcx.mk_unit(), method.def_id);
483
484             match abi_of_ty(unit_receiver_ty) {
485                 Some(Abi::Scalar(..)) => (),
486                 abi => {
487                     tcx.sess.delay_span_bug(
488                         tcx.def_span(method.def_id),
489                         &format!(
490                             "receiver when `Self = ()` should have a Scalar ABI; found {:?}",
491                             abi
492                         ),
493                     );
494                 }
495             }
496
497             let trait_object_ty =
498                 object_ty_for_trait(tcx, trait_def_id, tcx.mk_region(ty::ReStatic));
499
500             // e.g., `Rc<dyn Trait>`
501             let trait_object_receiver =
502                 receiver_for_self_ty(tcx, receiver_ty, trait_object_ty, method.def_id);
503
504             match abi_of_ty(trait_object_receiver) {
505                 Some(Abi::ScalarPair(..)) => (),
506                 abi => {
507                     tcx.sess.delay_span_bug(
508                         tcx.def_span(method.def_id),
509                         &format!(
510                             "receiver when `Self = {}` should have a ScalarPair ABI; found {:?}",
511                             trait_object_ty, abi
512                         ),
513                     );
514                 }
515             }
516         }
517     }
518
519     None
520 }
521
522 /// Performs a type substitution to produce the version of `receiver_ty` when `Self = self_ty`.
523 /// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`.
524 fn receiver_for_self_ty<'tcx>(
525     tcx: TyCtxt<'tcx>,
526     receiver_ty: Ty<'tcx>,
527     self_ty: Ty<'tcx>,
528     method_def_id: DefId,
529 ) -> Ty<'tcx> {
530     debug!("receiver_for_self_ty({:?}, {:?}, {:?})", receiver_ty, self_ty, method_def_id);
531     let substs = InternalSubsts::for_item(tcx, method_def_id, |param, _| {
532         if param.index == 0 { self_ty.into() } else { tcx.mk_param_from_def(param) }
533     });
534
535     let result = receiver_ty.subst(tcx, substs);
536     debug!(
537         "receiver_for_self_ty({:?}, {:?}, {:?}) = {:?}",
538         receiver_ty, self_ty, method_def_id, result
539     );
540     result
541 }
542
543 /// Creates the object type for the current trait. For example,
544 /// if the current trait is `Deref`, then this will be
545 /// `dyn Deref<Target = Self::Target> + 'static`.
546 fn object_ty_for_trait<'tcx>(
547     tcx: TyCtxt<'tcx>,
548     trait_def_id: DefId,
549     lifetime: ty::Region<'tcx>,
550 ) -> Ty<'tcx> {
551     debug!("object_ty_for_trait: trait_def_id={:?}", trait_def_id);
552
553     let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
554
555     let trait_predicate = trait_ref.map_bound(|trait_ref| {
556         ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref))
557     });
558
559     let mut associated_types = traits::supertraits(tcx, trait_ref)
560         .flat_map(|super_trait_ref| {
561             tcx.associated_items(super_trait_ref.def_id())
562                 .in_definition_order()
563                 .map(move |item| (super_trait_ref, item))
564         })
565         .filter(|(_, item)| item.kind == ty::AssocKind::Type)
566         .collect::<Vec<_>>();
567
568     // existential predicates need to be in a specific order
569     associated_types.sort_by_cached_key(|(_, item)| tcx.def_path_hash(item.def_id));
570
571     let projection_predicates = associated_types.into_iter().map(|(super_trait_ref, item)| {
572         // We *can* get bound lifetimes here in cases like
573         // `trait MyTrait: for<'s> OtherTrait<&'s T, Output=bool>`.
574         super_trait_ref.map_bound(|super_trait_ref| {
575             ty::ExistentialPredicate::Projection(ty::ExistentialProjection {
576                 term: tcx.mk_projection(item.def_id, super_trait_ref.substs).into(),
577                 item_def_id: item.def_id,
578                 substs: super_trait_ref.substs,
579             })
580         })
581     });
582
583     let existential_predicates = tcx
584         .mk_poly_existential_predicates(iter::once(trait_predicate).chain(projection_predicates));
585
586     let object_ty = tcx.mk_dynamic(existential_predicates, lifetime);
587
588     debug!("object_ty_for_trait: object_ty=`{}`", object_ty);
589
590     object_ty
591 }
592
593 /// Checks the method's receiver (the `self` argument) can be dispatched on when `Self` is a
594 /// trait object. We require that `DispatchableFromDyn` be implemented for the receiver type
595 /// in the following way:
596 /// - let `Receiver` be the type of the `self` argument, i.e `Self`, `&Self`, `Rc<Self>`,
597 /// - require the following bound:
598 ///
599 ///   ```
600 ///   Receiver[Self => T]: DispatchFromDyn<Receiver[Self => dyn Trait]>
601 ///   ```
602 ///
603 ///   where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`"
604 ///   (substitution notation).
605 ///
606 /// Some examples of receiver types and their required obligation:
607 /// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`,
608 /// - `self: Rc<Self>` requires `Rc<Self>: DispatchFromDyn<Rc<dyn Trait>>`,
609 /// - `self: Pin<Box<Self>>` requires `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<dyn Trait>>>`.
610 ///
611 /// The only case where the receiver is not dispatchable, but is still a valid receiver
612 /// type (just not object-safe), is when there is more than one level of pointer indirection.
613 /// E.g., `self: &&Self`, `self: &Rc<Self>`, `self: Box<Box<Self>>`. In these cases, there
614 /// is no way, or at least no inexpensive way, to coerce the receiver from the version where
615 /// `Self = dyn Trait` to the version where `Self = T`, where `T` is the unknown erased type
616 /// contained by the trait object, because the object that needs to be coerced is behind
617 /// a pointer.
618 ///
619 /// In practice, we cannot use `dyn Trait` explicitly in the obligation because it would result
620 /// in a new check that `Trait` is object safe, creating a cycle (until object_safe_for_dispatch
621 /// is stabilized, see tracking issue <https://github.com/rust-lang/rust/issues/43561>).
622 /// Instead, we fudge a little by introducing a new type parameter `U` such that
623 /// `Self: Unsize<U>` and `U: Trait + ?Sized`, and use `U` in place of `dyn Trait`.
624 /// Written as a chalk-style query:
625 ///
626 ///     forall (U: Trait + ?Sized) {
627 ///         if (Self: Unsize<U>) {
628 ///             Receiver: DispatchFromDyn<Receiver[Self => U]>
629 ///         }
630 ///     }
631 ///
632 /// for `self: &'a mut Self`, this means `&'a mut Self: DispatchFromDyn<&'a mut U>`
633 /// for `self: Rc<Self>`, this means `Rc<Self>: DispatchFromDyn<Rc<U>>`
634 /// for `self: Pin<Box<Self>>`, this means `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<U>>>`
635 //
636 // FIXME(mikeyhew) when unsized receivers are implemented as part of unsized rvalues, add this
637 // fallback query: `Receiver: Unsize<Receiver[Self => U]>` to support receivers like
638 // `self: Wrapper<Self>`.
639 #[allow(dead_code)]
640 fn receiver_is_dispatchable<'tcx>(
641     tcx: TyCtxt<'tcx>,
642     method: &ty::AssocItem,
643     receiver_ty: Ty<'tcx>,
644 ) -> bool {
645     debug!("receiver_is_dispatchable: method = {:?}, receiver_ty = {:?}", method, receiver_ty);
646
647     let traits = (tcx.lang_items().unsize_trait(), tcx.lang_items().dispatch_from_dyn_trait());
648     let (Some(unsize_did), Some(dispatch_from_dyn_did)) = traits else {
649         debug!("receiver_is_dispatchable: Missing Unsize or DispatchFromDyn traits");
650         return false;
651     };
652
653     // the type `U` in the query
654     // use a bogus type parameter to mimic a forall(U) query using u32::MAX for now.
655     // FIXME(mikeyhew) this is a total hack. Once object_safe_for_dispatch is stabilized, we can
656     // replace this with `dyn Trait`
657     let unsized_self_ty: Ty<'tcx> =
658         tcx.mk_ty_param(u32::MAX, Symbol::intern("RustaceansAreAwesome"));
659
660     // `Receiver[Self => U]`
661     let unsized_receiver_ty =
662         receiver_for_self_ty(tcx, receiver_ty, unsized_self_ty, method.def_id);
663
664     // create a modified param env, with `Self: Unsize<U>` and `U: Trait` added to caller bounds
665     // `U: ?Sized` is already implied here
666     let param_env = {
667         let param_env = tcx.param_env(method.def_id);
668
669         // Self: Unsize<U>
670         let unsize_predicate = ty::Binder::dummy(ty::TraitRef {
671             def_id: unsize_did,
672             substs: tcx.mk_substs_trait(tcx.types.self_param, &[unsized_self_ty.into()]),
673         })
674         .without_const()
675         .to_predicate(tcx);
676
677         // U: Trait<Arg1, ..., ArgN>
678         let trait_predicate = {
679             let substs =
680                 InternalSubsts::for_item(tcx, method.container.assert_trait(), |param, _| {
681                     if param.index == 0 {
682                         unsized_self_ty.into()
683                     } else {
684                         tcx.mk_param_from_def(param)
685                     }
686                 });
687
688             ty::Binder::dummy(ty::TraitRef { def_id: unsize_did, substs })
689                 .without_const()
690                 .to_predicate(tcx)
691         };
692
693         let caller_bounds: Vec<Predicate<'tcx>> =
694             param_env.caller_bounds().iter().chain([unsize_predicate, trait_predicate]).collect();
695
696         ty::ParamEnv::new(
697             tcx.intern_predicates(&caller_bounds),
698             param_env.reveal(),
699             param_env.constness(),
700         )
701     };
702
703     // Receiver: DispatchFromDyn<Receiver[Self => U]>
704     let obligation = {
705         let predicate = ty::Binder::dummy(ty::TraitRef {
706             def_id: dispatch_from_dyn_did,
707             substs: tcx.mk_substs_trait(receiver_ty, &[unsized_receiver_ty.into()]),
708         })
709         .without_const()
710         .to_predicate(tcx);
711
712         Obligation::new(ObligationCause::dummy(), param_env, predicate)
713     };
714
715     tcx.infer_ctxt().enter(|ref infcx| {
716         // the receiver is dispatchable iff the obligation holds
717         infcx.predicate_must_hold_modulo_regions(&obligation)
718     })
719 }
720
721 fn contains_illegal_self_type_reference<'tcx, T: TypeFoldable<'tcx>>(
722     tcx: TyCtxt<'tcx>,
723     trait_def_id: DefId,
724     value: T,
725 ) -> bool {
726     // This is somewhat subtle. In general, we want to forbid
727     // references to `Self` in the argument and return types,
728     // since the value of `Self` is erased. However, there is one
729     // exception: it is ok to reference `Self` in order to access
730     // an associated type of the current trait, since we retain
731     // the value of those associated types in the object type
732     // itself.
733     //
734     // ```rust
735     // trait SuperTrait {
736     //     type X;
737     // }
738     //
739     // trait Trait : SuperTrait {
740     //     type Y;
741     //     fn foo(&self, x: Self) // bad
742     //     fn foo(&self) -> Self // bad
743     //     fn foo(&self) -> Option<Self> // bad
744     //     fn foo(&self) -> Self::Y // OK, desugars to next example
745     //     fn foo(&self) -> <Self as Trait>::Y // OK
746     //     fn foo(&self) -> Self::X // OK, desugars to next example
747     //     fn foo(&self) -> <Self as SuperTrait>::X // OK
748     // }
749     // ```
750     //
751     // However, it is not as simple as allowing `Self` in a projected
752     // type, because there are illegal ways to use `Self` as well:
753     //
754     // ```rust
755     // trait Trait : SuperTrait {
756     //     ...
757     //     fn foo(&self) -> <Self as SomeOtherTrait>::X;
758     // }
759     // ```
760     //
761     // Here we will not have the type of `X` recorded in the
762     // object type, and we cannot resolve `Self as SomeOtherTrait`
763     // without knowing what `Self` is.
764
765     struct IllegalSelfTypeVisitor<'tcx> {
766         tcx: TyCtxt<'tcx>,
767         trait_def_id: DefId,
768         supertraits: Option<Vec<DefId>>,
769     }
770
771     impl<'tcx> TypeVisitor<'tcx> for IllegalSelfTypeVisitor<'tcx> {
772         type BreakTy = ();
773
774         fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
775             match t.kind() {
776                 ty::Param(_) => {
777                     if t == self.tcx.types.self_param {
778                         ControlFlow::BREAK
779                     } else {
780                         ControlFlow::CONTINUE
781                     }
782                 }
783                 ty::Projection(ref data) => {
784                     // This is a projected type `<Foo as SomeTrait>::X`.
785
786                     // Compute supertraits of current trait lazily.
787                     if self.supertraits.is_none() {
788                         let trait_ref = ty::TraitRef::identity(self.tcx, self.trait_def_id);
789                         self.supertraits = Some(
790                             traits::supertraits(self.tcx, trait_ref).map(|t| t.def_id()).collect(),
791                         );
792                     }
793
794                     // Determine whether the trait reference `Foo as
795                     // SomeTrait` is in fact a supertrait of the
796                     // current trait. In that case, this type is
797                     // legal, because the type `X` will be specified
798                     // in the object type.  Note that we can just use
799                     // direct equality here because all of these types
800                     // are part of the formal parameter listing, and
801                     // hence there should be no inference variables.
802                     let is_supertrait_of_current_trait = self
803                         .supertraits
804                         .as_ref()
805                         .unwrap()
806                         .contains(&data.trait_ref(self.tcx).def_id);
807
808                     if is_supertrait_of_current_trait {
809                         ControlFlow::CONTINUE // do not walk contained types, do not report error, do collect $200
810                     } else {
811                         t.super_visit_with(self) // DO walk contained types, POSSIBLY reporting an error
812                     }
813                 }
814                 _ => t.super_visit_with(self), // walk contained types, if any
815             }
816         }
817
818         fn visit_unevaluated_const(
819             &mut self,
820             uv: ty::Unevaluated<'tcx>,
821         ) -> ControlFlow<Self::BreakTy> {
822             // Constants can only influence object safety if they reference `Self`.
823             // This is only possible for unevaluated constants, so we walk these here.
824             //
825             // If `AbstractConst::new` returned an error we already failed compilation
826             // so we don't have to emit an additional error here.
827             //
828             // We currently recurse into abstract consts here but do not recurse in
829             // `is_const_evaluatable`. This means that the object safety check is more
830             // liberal than the const eval check.
831             //
832             // This shouldn't really matter though as we can't really use any
833             // constants which are not considered const evaluatable.
834             use rustc_middle::thir::abstract_const::Node;
835             if let Ok(Some(ct)) = AbstractConst::new(self.tcx, uv.shrink()) {
836                 const_evaluatable::walk_abstract_const(self.tcx, ct, |node| {
837                     match node.root(self.tcx) {
838                         Node::Leaf(leaf) => self.visit_const(leaf),
839                         Node::Cast(_, _, ty) => self.visit_ty(ty),
840                         Node::Binop(..) | Node::UnaryOp(..) | Node::FunctionCall(_, _) => {
841                             ControlFlow::CONTINUE
842                         }
843                     }
844                 })
845             } else {
846                 ControlFlow::CONTINUE
847             }
848         }
849     }
850
851     value
852         .visit_with(&mut IllegalSelfTypeVisitor { tcx, trait_def_id, supertraits: None })
853         .is_break()
854 }
855
856 pub fn provide(providers: &mut ty::query::Providers) {
857     *providers = ty::query::Providers { object_safety_violations, ..*providers };
858 }