]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/object_safety.rs
Auto merge of #98457 - japaric:gh98378, r=m-ou-se
[rust.git] / compiler / rustc_trait_selection / src / traits / object_safety.rs
1 //! "Object safety" refers to the ability for a trait to be converted
2 //! to an object. In general, traits may only be converted to an
3 //! object if all of their methods meet certain criteria. In particular,
4 //! they must:
5 //!
6 //!   - have a suitable receiver from which we can extract a vtable and coerce to a "thin" version
7 //!     that doesn't contain the vtable;
8 //!   - not reference the erased type `Self` except for in this receiver;
9 //!   - not have generic type parameters.
10
11 use super::elaborate_predicates;
12
13 use crate::infer::TyCtxtInferExt;
14 use crate::traits::query::evaluate_obligation::InferCtxtExt;
15 use crate::traits::{self, Obligation, ObligationCause};
16 use hir::def::DefKind;
17 use rustc_errors::{FatalError, MultiSpan};
18 use rustc_hir as hir;
19 use rustc_hir::def_id::DefId;
20 use rustc_middle::ty::abstract_const::{walk_abstract_const, AbstractConst};
21 use rustc_middle::ty::{
22     self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor,
23 };
24 use rustc_middle::ty::{GenericArg, InternalSubsts};
25 use rustc_middle::ty::{Predicate, ToPredicate};
26 use rustc_session::lint::builtin::WHERE_CLAUSES_OBJECT_SAFETY;
27 use rustc_span::symbol::Symbol;
28 use rustc_span::Span;
29 use smallvec::SmallVec;
30
31 use std::iter;
32 use std::ops::ControlFlow;
33
34 pub use crate::traits::{MethodViolationCode, ObjectSafetyViolation};
35
36 /// Returns the object safety violations that affect
37 /// astconv -- currently, `Self` in supertraits. This is needed
38 /// because `object_safety_violations` can't be used during
39 /// type collection.
40 pub fn astconv_object_safety_violations(
41     tcx: TyCtxt<'_>,
42     trait_def_id: DefId,
43 ) -> Vec<ObjectSafetyViolation> {
44     debug_assert!(tcx.generics_of(trait_def_id).has_self);
45     let violations = traits::supertrait_def_ids(tcx, trait_def_id)
46         .map(|def_id| predicates_reference_self(tcx, def_id, true))
47         .filter(|spans| !spans.is_empty())
48         .map(ObjectSafetyViolation::SupertraitSelf)
49         .collect();
50
51     debug!("astconv_object_safety_violations(trait_def_id={:?}) = {:?}", trait_def_id, violations);
52
53     violations
54 }
55
56 fn object_safety_violations(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &'_ [ObjectSafetyViolation] {
57     debug_assert!(tcx.generics_of(trait_def_id).has_self);
58     debug!("object_safety_violations: {:?}", trait_def_id);
59
60     tcx.arena.alloc_from_iter(
61         traits::supertrait_def_ids(tcx, trait_def_id)
62             .flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id)),
63     )
64 }
65
66 /// We say a method is *vtable safe* if it can be invoked on a trait
67 /// object. Note that object-safe traits can have some
68 /// non-vtable-safe methods, so long as they require `Self: Sized` or
69 /// otherwise ensure that they cannot be used when `Self = Trait`.
70 pub fn is_vtable_safe_method(tcx: TyCtxt<'_>, trait_def_id: DefId, method: &ty::AssocItem) -> bool {
71     debug_assert!(tcx.generics_of(trait_def_id).has_self);
72     debug!("is_vtable_safe_method({:?}, {:?})", trait_def_id, method);
73     // Any method that has a `Self: Sized` bound cannot be called.
74     if generics_require_sized_self(tcx, method.def_id) {
75         return false;
76     }
77
78     match virtual_call_violation_for_method(tcx, trait_def_id, method) {
79         None | Some(MethodViolationCode::WhereClauseReferencesSelf) => true,
80         Some(_) => false,
81     }
82 }
83
84 fn object_safety_violations_for_trait(
85     tcx: TyCtxt<'_>,
86     trait_def_id: DefId,
87 ) -> Vec<ObjectSafetyViolation> {
88     // Check methods for violations.
89     let mut violations: Vec<_> = tcx
90         .associated_items(trait_def_id)
91         .in_definition_order()
92         .filter(|item| item.kind == ty::AssocKind::Fn)
93         .filter_map(|item| {
94             object_safety_violation_for_method(tcx, trait_def_id, &item)
95                 .map(|(code, span)| ObjectSafetyViolation::Method(item.name, code, span))
96         })
97         .filter(|violation| {
98             if let ObjectSafetyViolation::Method(
99                 _,
100                 MethodViolationCode::WhereClauseReferencesSelf,
101                 span,
102             ) = violation
103             {
104                 lint_object_unsafe_trait(tcx, *span, trait_def_id, &violation);
105                 false
106             } else {
107                 true
108             }
109         })
110         .collect();
111
112     // Check the trait itself.
113     if trait_has_sized_self(tcx, trait_def_id) {
114         // We don't want to include the requirement from `Sized` itself to be `Sized` in the list.
115         let spans = get_sized_bounds(tcx, trait_def_id);
116         violations.push(ObjectSafetyViolation::SizedSelf(spans));
117     }
118     let spans = predicates_reference_self(tcx, trait_def_id, false);
119     if !spans.is_empty() {
120         violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
121     }
122     let spans = bounds_reference_self(tcx, trait_def_id);
123     if !spans.is_empty() {
124         violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
125     }
126
127     violations.extend(
128         tcx.associated_items(trait_def_id)
129             .in_definition_order()
130             .filter(|item| item.kind == ty::AssocKind::Const)
131             .map(|item| {
132                 let ident = item.ident(tcx);
133                 ObjectSafetyViolation::AssocConst(ident.name, ident.span)
134             }),
135     );
136
137     if !tcx.features().generic_associated_types_extended {
138         violations.extend(
139             tcx.associated_items(trait_def_id)
140                 .in_definition_order()
141                 .filter(|item| item.kind == ty::AssocKind::Type)
142                 .filter(|item| !tcx.generics_of(item.def_id).params.is_empty())
143                 .map(|item| {
144                     let ident = item.ident(tcx);
145                     ObjectSafetyViolation::GAT(ident.name, ident.span)
146                 }),
147         );
148     }
149
150     debug!(
151         "object_safety_violations_for_trait(trait_def_id={:?}) = {:?}",
152         trait_def_id, violations
153     );
154
155     violations
156 }
157
158 /// Lint object-unsafe trait.
159 fn lint_object_unsafe_trait(
160     tcx: TyCtxt<'_>,
161     span: Span,
162     trait_def_id: DefId,
163     violation: &ObjectSafetyViolation,
164 ) {
165     // Using `CRATE_NODE_ID` is wrong, but it's hard to get a more precise id.
166     // It's also hard to get a use site span, so we use the method definition span.
167     tcx.struct_span_lint_hir(WHERE_CLAUSES_OBJECT_SAFETY, hir::CRATE_HIR_ID, span, |lint| {
168         let mut err = lint.build(&format!(
169             "the trait `{}` cannot be made into an object",
170             tcx.def_path_str(trait_def_id)
171         ));
172         let node = tcx.hir().get_if_local(trait_def_id);
173         let mut spans = MultiSpan::from_span(span);
174         if let Some(hir::Node::Item(item)) = node {
175             spans.push_span_label(item.ident.span, "this trait cannot be made into an object...");
176             spans.push_span_label(span, format!("...because {}", violation.error_msg()));
177         } else {
178             spans.push_span_label(
179                 span,
180                 format!(
181                     "the trait cannot be made into an object because {}",
182                     violation.error_msg()
183                 ),
184             );
185         };
186         err.span_note(
187             spans,
188             "for a trait to be \"object safe\" it needs to allow building a vtable to allow the \
189              call to be resolvable dynamically; for more information visit \
190              <https://doc.rust-lang.org/reference/items/traits.html#object-safety>",
191         );
192         if node.is_some() {
193             // Only provide the help if its a local trait, otherwise it's not
194             violation.solution(&mut err);
195         }
196         err.emit();
197     });
198 }
199
200 fn sized_trait_bound_spans<'tcx>(
201     tcx: TyCtxt<'tcx>,
202     bounds: hir::GenericBounds<'tcx>,
203 ) -> impl 'tcx + Iterator<Item = Span> {
204     bounds.iter().filter_map(move |b| match b {
205         hir::GenericBound::Trait(trait_ref, hir::TraitBoundModifier::None)
206             if trait_has_sized_self(
207                 tcx,
208                 trait_ref.trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
209             ) =>
210         {
211             // Fetch spans for supertraits that are `Sized`: `trait T: Super`
212             Some(trait_ref.span)
213         }
214         _ => None,
215     })
216 }
217
218 fn get_sized_bounds(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
219     tcx.hir()
220         .get_if_local(trait_def_id)
221         .and_then(|node| match node {
222             hir::Node::Item(hir::Item {
223                 kind: hir::ItemKind::Trait(.., generics, bounds, _),
224                 ..
225             }) => Some(
226                 generics
227                     .predicates
228                     .iter()
229                     .filter_map(|pred| {
230                         match pred {
231                             hir::WherePredicate::BoundPredicate(pred)
232                                 if pred.bounded_ty.hir_id.owner.to_def_id() == trait_def_id =>
233                             {
234                                 // Fetch spans for trait bounds that are Sized:
235                                 // `trait T where Self: Pred`
236                                 Some(sized_trait_bound_spans(tcx, pred.bounds))
237                             }
238                             _ => None,
239                         }
240                     })
241                     .flatten()
242                     // Fetch spans for supertraits that are `Sized`: `trait T: Super`.
243                     .chain(sized_trait_bound_spans(tcx, bounds))
244                     .collect::<SmallVec<[Span; 1]>>(),
245             ),
246             _ => None,
247         })
248         .unwrap_or_else(SmallVec::new)
249 }
250
251 fn predicates_reference_self(
252     tcx: TyCtxt<'_>,
253     trait_def_id: DefId,
254     supertraits_only: bool,
255 ) -> SmallVec<[Span; 1]> {
256     let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
257     let predicates = if supertraits_only {
258         tcx.super_predicates_of(trait_def_id)
259     } else {
260         tcx.predicates_of(trait_def_id)
261     };
262     predicates
263         .predicates
264         .iter()
265         .map(|&(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), sp))
266         .filter_map(|predicate| predicate_references_self(tcx, predicate))
267         .collect()
268 }
269
270 fn bounds_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
271     tcx.associated_items(trait_def_id)
272         .in_definition_order()
273         .filter(|item| item.kind == ty::AssocKind::Type)
274         .flat_map(|item| tcx.explicit_item_bounds(item.def_id))
275         .filter_map(|pred_span| predicate_references_self(tcx, *pred_span))
276         .collect()
277 }
278
279 fn predicate_references_self<'tcx>(
280     tcx: TyCtxt<'tcx>,
281     (predicate, sp): (ty::Predicate<'tcx>, Span),
282 ) -> Option<Span> {
283     let self_ty = tcx.types.self_param;
284     let has_self_ty = |arg: &GenericArg<'tcx>| arg.walk().any(|arg| arg == self_ty.into());
285     match predicate.kind().skip_binder() {
286         ty::PredicateKind::Trait(ref data) => {
287             // In the case of a trait predicate, we can skip the "self" type.
288             if data.trait_ref.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
289         }
290         ty::PredicateKind::Projection(ref data) => {
291             // And similarly for projections. This should be redundant with
292             // the previous check because any projection should have a
293             // matching `Trait` predicate with the same inputs, but we do
294             // the check to be safe.
295             //
296             // It's also won't be redundant if we allow type-generic associated
297             // types for trait objects.
298             //
299             // Note that we *do* allow projection *outputs* to contain
300             // `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
301             // we just require the user to specify *both* outputs
302             // in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
303             //
304             // This is ALT2 in issue #56288, see that for discussion of the
305             // possible alternatives.
306             if data.projection_ty.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
307         }
308         ty::PredicateKind::WellFormed(..)
309         | ty::PredicateKind::ObjectSafe(..)
310         | ty::PredicateKind::TypeOutlives(..)
311         | ty::PredicateKind::RegionOutlives(..)
312         | ty::PredicateKind::ClosureKind(..)
313         | ty::PredicateKind::Subtype(..)
314         | ty::PredicateKind::Coerce(..)
315         | ty::PredicateKind::ConstEvaluatable(..)
316         | ty::PredicateKind::ConstEquate(..)
317         | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
318     }
319 }
320
321 fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
322     generics_require_sized_self(tcx, trait_def_id)
323 }
324
325 fn generics_require_sized_self(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
326     let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
327         return false; /* No Sized trait, can't require it! */
328     };
329
330     // Search for a predicate like `Self : Sized` amongst the trait bounds.
331     let predicates = tcx.predicates_of(def_id);
332     let predicates = predicates.instantiate_identity(tcx).predicates;
333     elaborate_predicates(tcx, predicates.into_iter()).any(|obligation| {
334         match obligation.predicate.kind().skip_binder() {
335             ty::PredicateKind::Trait(ref trait_pred) => {
336                 trait_pred.def_id() == sized_def_id && trait_pred.self_ty().is_param(0)
337             }
338             ty::PredicateKind::Projection(..)
339             | ty::PredicateKind::Subtype(..)
340             | ty::PredicateKind::Coerce(..)
341             | ty::PredicateKind::RegionOutlives(..)
342             | ty::PredicateKind::WellFormed(..)
343             | ty::PredicateKind::ObjectSafe(..)
344             | ty::PredicateKind::ClosureKind(..)
345             | ty::PredicateKind::TypeOutlives(..)
346             | ty::PredicateKind::ConstEvaluatable(..)
347             | ty::PredicateKind::ConstEquate(..)
348             | ty::PredicateKind::TypeWellFormedFromEnv(..) => false,
349         }
350     })
351 }
352
353 /// Returns `Some(_)` if this method makes the containing trait not object safe.
354 fn object_safety_violation_for_method(
355     tcx: TyCtxt<'_>,
356     trait_def_id: DefId,
357     method: &ty::AssocItem,
358 ) -> Option<(MethodViolationCode, Span)> {
359     debug!("object_safety_violation_for_method({:?}, {:?})", trait_def_id, method);
360     // Any method that has a `Self : Sized` requisite is otherwise
361     // exempt from the regulations.
362     if generics_require_sized_self(tcx, method.def_id) {
363         return None;
364     }
365
366     let violation = virtual_call_violation_for_method(tcx, trait_def_id, method);
367     // Get an accurate span depending on the violation.
368     violation.map(|v| {
369         let node = tcx.hir().get_if_local(method.def_id);
370         let span = match (&v, node) {
371             (MethodViolationCode::ReferencesSelfInput(Some(span)), _) => *span,
372             (MethodViolationCode::UndispatchableReceiver(Some(span)), _) => *span,
373             (MethodViolationCode::ReferencesSelfOutput, Some(node)) => {
374                 node.fn_decl().map_or(method.ident(tcx).span, |decl| decl.output.span())
375             }
376             _ => method.ident(tcx).span,
377         };
378         (v, span)
379     })
380 }
381
382 /// Returns `Some(_)` if this method cannot be called on a trait
383 /// object; this does not necessarily imply that the enclosing trait
384 /// is not object safe, because the method might have a where clause
385 /// `Self:Sized`.
386 fn virtual_call_violation_for_method<'tcx>(
387     tcx: TyCtxt<'tcx>,
388     trait_def_id: DefId,
389     method: &ty::AssocItem,
390 ) -> Option<MethodViolationCode> {
391     let sig = tcx.fn_sig(method.def_id);
392
393     // The method's first parameter must be named `self`
394     if !method.fn_has_self_parameter {
395         let sugg = if let Some(hir::Node::TraitItem(hir::TraitItem {
396             generics,
397             kind: hir::TraitItemKind::Fn(sig, _),
398             ..
399         })) = tcx.hir().get_if_local(method.def_id).as_ref()
400         {
401             let sm = tcx.sess.source_map();
402             Some((
403                 (
404                     format!("&self{}", if sig.decl.inputs.is_empty() { "" } else { ", " }),
405                     sm.span_through_char(sig.span, '(').shrink_to_hi(),
406                 ),
407                 (
408                     format!("{} Self: Sized", generics.add_where_or_trailing_comma()),
409                     generics.tail_span_for_predicate_suggestion(),
410                 ),
411             ))
412         } else {
413             None
414         };
415         return Some(MethodViolationCode::StaticMethod(sugg));
416     }
417
418     for (i, &input_ty) in sig.skip_binder().inputs().iter().enumerate().skip(1) {
419         if contains_illegal_self_type_reference(tcx, trait_def_id, sig.rebind(input_ty)) {
420             let span = if let Some(hir::Node::TraitItem(hir::TraitItem {
421                 kind: hir::TraitItemKind::Fn(sig, _),
422                 ..
423             })) = tcx.hir().get_if_local(method.def_id).as_ref()
424             {
425                 Some(sig.decl.inputs[i].span)
426             } else {
427                 None
428             };
429             return Some(MethodViolationCode::ReferencesSelfInput(span));
430         }
431     }
432     if contains_illegal_self_type_reference(tcx, trait_def_id, sig.output()) {
433         return Some(MethodViolationCode::ReferencesSelfOutput);
434     }
435     if contains_illegal_impl_trait_in_trait(tcx, sig.output()) {
436         return Some(MethodViolationCode::ReferencesImplTraitInTrait);
437     }
438
439     // We can't monomorphize things like `fn foo<A>(...)`.
440     let own_counts = tcx.generics_of(method.def_id).own_counts();
441     if own_counts.types + own_counts.consts != 0 {
442         return Some(MethodViolationCode::Generic);
443     }
444
445     if tcx
446         .predicates_of(method.def_id)
447         .predicates
448         .iter()
449         // A trait object can't claim to live more than the concrete type,
450         // so outlives predicates will always hold.
451         .cloned()
452         .filter(|(p, _)| p.to_opt_type_outlives().is_none())
453         .any(|pred| contains_illegal_self_type_reference(tcx, trait_def_id, pred))
454     {
455         return Some(MethodViolationCode::WhereClauseReferencesSelf);
456     }
457
458     let receiver_ty = tcx.liberate_late_bound_regions(method.def_id, sig.input(0));
459
460     // Until `unsized_locals` is fully implemented, `self: Self` can't be dispatched on.
461     // However, this is already considered object-safe. We allow it as a special case here.
462     // FIXME(mikeyhew) get rid of this `if` statement once `receiver_is_dispatchable` allows
463     // `Receiver: Unsize<Receiver[Self => dyn Trait]>`.
464     if receiver_ty != tcx.types.self_param {
465         if !receiver_is_dispatchable(tcx, method, receiver_ty) {
466             let span = if let Some(hir::Node::TraitItem(hir::TraitItem {
467                 kind: hir::TraitItemKind::Fn(sig, _),
468                 ..
469             })) = tcx.hir().get_if_local(method.def_id).as_ref()
470             {
471                 Some(sig.decl.inputs[0].span)
472             } else {
473                 None
474             };
475             return Some(MethodViolationCode::UndispatchableReceiver(span));
476         } else {
477             // Do sanity check to make sure the receiver actually has the layout of a pointer.
478
479             use rustc_target::abi::Abi;
480
481             let param_env = tcx.param_env(method.def_id);
482
483             let abi_of_ty = |ty: Ty<'tcx>| -> Option<Abi> {
484                 match tcx.layout_of(param_env.and(ty)) {
485                     Ok(layout) => Some(layout.abi),
486                     Err(err) => {
487                         // #78372
488                         tcx.sess.delay_span_bug(
489                             tcx.def_span(method.def_id),
490                             &format!("error: {}\n while computing layout for type {:?}", err, ty),
491                         );
492                         None
493                     }
494                 }
495             };
496
497             // e.g., `Rc<()>`
498             let unit_receiver_ty =
499                 receiver_for_self_ty(tcx, receiver_ty, tcx.mk_unit(), method.def_id);
500
501             match abi_of_ty(unit_receiver_ty) {
502                 Some(Abi::Scalar(..)) => (),
503                 abi => {
504                     tcx.sess.delay_span_bug(
505                         tcx.def_span(method.def_id),
506                         &format!(
507                             "receiver when `Self = ()` should have a Scalar ABI; found {:?}",
508                             abi
509                         ),
510                     );
511                 }
512             }
513
514             let trait_object_ty =
515                 object_ty_for_trait(tcx, trait_def_id, tcx.mk_region(ty::ReStatic));
516
517             // e.g., `Rc<dyn Trait>`
518             let trait_object_receiver =
519                 receiver_for_self_ty(tcx, receiver_ty, trait_object_ty, method.def_id);
520
521             match abi_of_ty(trait_object_receiver) {
522                 Some(Abi::ScalarPair(..)) => (),
523                 abi => {
524                     tcx.sess.delay_span_bug(
525                         tcx.def_span(method.def_id),
526                         &format!(
527                             "receiver when `Self = {}` should have a ScalarPair ABI; found {:?}",
528                             trait_object_ty, abi
529                         ),
530                     );
531                 }
532             }
533         }
534     }
535
536     None
537 }
538
539 /// Performs a type substitution to produce the version of `receiver_ty` when `Self = self_ty`.
540 /// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`.
541 fn receiver_for_self_ty<'tcx>(
542     tcx: TyCtxt<'tcx>,
543     receiver_ty: Ty<'tcx>,
544     self_ty: Ty<'tcx>,
545     method_def_id: DefId,
546 ) -> Ty<'tcx> {
547     debug!("receiver_for_self_ty({:?}, {:?}, {:?})", receiver_ty, self_ty, method_def_id);
548     let substs = InternalSubsts::for_item(tcx, method_def_id, |param, _| {
549         if param.index == 0 { self_ty.into() } else { tcx.mk_param_from_def(param) }
550     });
551
552     let result = EarlyBinder(receiver_ty).subst(tcx, substs);
553     debug!(
554         "receiver_for_self_ty({:?}, {:?}, {:?}) = {:?}",
555         receiver_ty, self_ty, method_def_id, result
556     );
557     result
558 }
559
560 /// Creates the object type for the current trait. For example,
561 /// if the current trait is `Deref`, then this will be
562 /// `dyn Deref<Target = Self::Target> + 'static`.
563 fn object_ty_for_trait<'tcx>(
564     tcx: TyCtxt<'tcx>,
565     trait_def_id: DefId,
566     lifetime: ty::Region<'tcx>,
567 ) -> Ty<'tcx> {
568     debug!("object_ty_for_trait: trait_def_id={:?}", trait_def_id);
569
570     let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
571
572     let trait_predicate = trait_ref.map_bound(|trait_ref| {
573         ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref))
574     });
575
576     let mut associated_types = traits::supertraits(tcx, trait_ref)
577         .flat_map(|super_trait_ref| {
578             tcx.associated_items(super_trait_ref.def_id())
579                 .in_definition_order()
580                 .map(move |item| (super_trait_ref, item))
581         })
582         .filter(|(_, item)| item.kind == ty::AssocKind::Type)
583         .collect::<Vec<_>>();
584
585     // existential predicates need to be in a specific order
586     associated_types.sort_by_cached_key(|(_, item)| tcx.def_path_hash(item.def_id));
587
588     let projection_predicates = associated_types.into_iter().map(|(super_trait_ref, item)| {
589         // We *can* get bound lifetimes here in cases like
590         // `trait MyTrait: for<'s> OtherTrait<&'s T, Output=bool>`.
591         super_trait_ref.map_bound(|super_trait_ref| {
592             ty::ExistentialPredicate::Projection(ty::ExistentialProjection {
593                 term: tcx.mk_projection(item.def_id, super_trait_ref.substs).into(),
594                 item_def_id: item.def_id,
595                 substs: super_trait_ref.substs,
596             })
597         })
598     });
599
600     let existential_predicates = tcx
601         .mk_poly_existential_predicates(iter::once(trait_predicate).chain(projection_predicates));
602
603     let object_ty = tcx.mk_dynamic(existential_predicates, lifetime, ty::Dyn);
604
605     debug!("object_ty_for_trait: object_ty=`{}`", object_ty);
606
607     object_ty
608 }
609
610 /// Checks the method's receiver (the `self` argument) can be dispatched on when `Self` is a
611 /// trait object. We require that `DispatchableFromDyn` be implemented for the receiver type
612 /// in the following way:
613 /// - let `Receiver` be the type of the `self` argument, i.e `Self`, `&Self`, `Rc<Self>`,
614 /// - require the following bound:
615 ///
616 ///   ```ignore (not-rust)
617 ///   Receiver[Self => T]: DispatchFromDyn<Receiver[Self => dyn Trait]>
618 ///   ```
619 ///
620 ///   where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`"
621 ///   (substitution notation).
622 ///
623 /// Some examples of receiver types and their required obligation:
624 /// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`,
625 /// - `self: Rc<Self>` requires `Rc<Self>: DispatchFromDyn<Rc<dyn Trait>>`,
626 /// - `self: Pin<Box<Self>>` requires `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<dyn Trait>>>`.
627 ///
628 /// The only case where the receiver is not dispatchable, but is still a valid receiver
629 /// type (just not object-safe), is when there is more than one level of pointer indirection.
630 /// E.g., `self: &&Self`, `self: &Rc<Self>`, `self: Box<Box<Self>>`. In these cases, there
631 /// is no way, or at least no inexpensive way, to coerce the receiver from the version where
632 /// `Self = dyn Trait` to the version where `Self = T`, where `T` is the unknown erased type
633 /// contained by the trait object, because the object that needs to be coerced is behind
634 /// a pointer.
635 ///
636 /// In practice, we cannot use `dyn Trait` explicitly in the obligation because it would result
637 /// in a new check that `Trait` is object safe, creating a cycle (until object_safe_for_dispatch
638 /// is stabilized, see tracking issue <https://github.com/rust-lang/rust/issues/43561>).
639 /// Instead, we fudge a little by introducing a new type parameter `U` such that
640 /// `Self: Unsize<U>` and `U: Trait + ?Sized`, and use `U` in place of `dyn Trait`.
641 /// Written as a chalk-style query:
642 /// ```ignore (not-rust)
643 /// forall (U: Trait + ?Sized) {
644 ///     if (Self: Unsize<U>) {
645 ///         Receiver: DispatchFromDyn<Receiver[Self => U]>
646 ///     }
647 /// }
648 /// ```
649 /// for `self: &'a mut Self`, this means `&'a mut Self: DispatchFromDyn<&'a mut U>`
650 /// for `self: Rc<Self>`, this means `Rc<Self>: DispatchFromDyn<Rc<U>>`
651 /// for `self: Pin<Box<Self>>`, this means `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<U>>>`
652 //
653 // FIXME(mikeyhew) when unsized receivers are implemented as part of unsized rvalues, add this
654 // fallback query: `Receiver: Unsize<Receiver[Self => U]>` to support receivers like
655 // `self: Wrapper<Self>`.
656 #[allow(dead_code)]
657 fn receiver_is_dispatchable<'tcx>(
658     tcx: TyCtxt<'tcx>,
659     method: &ty::AssocItem,
660     receiver_ty: Ty<'tcx>,
661 ) -> bool {
662     debug!("receiver_is_dispatchable: method = {:?}, receiver_ty = {:?}", method, receiver_ty);
663
664     let traits = (tcx.lang_items().unsize_trait(), tcx.lang_items().dispatch_from_dyn_trait());
665     let (Some(unsize_did), Some(dispatch_from_dyn_did)) = traits else {
666         debug!("receiver_is_dispatchable: Missing Unsize or DispatchFromDyn traits");
667         return false;
668     };
669
670     // the type `U` in the query
671     // use a bogus type parameter to mimic a forall(U) query using u32::MAX for now.
672     // FIXME(mikeyhew) this is a total hack. Once object_safe_for_dispatch is stabilized, we can
673     // replace this with `dyn Trait`
674     let unsized_self_ty: Ty<'tcx> =
675         tcx.mk_ty_param(u32::MAX, Symbol::intern("RustaceansAreAwesome"));
676
677     // `Receiver[Self => U]`
678     let unsized_receiver_ty =
679         receiver_for_self_ty(tcx, receiver_ty, unsized_self_ty, method.def_id);
680
681     // create a modified param env, with `Self: Unsize<U>` and `U: Trait` added to caller bounds
682     // `U: ?Sized` is already implied here
683     let param_env = {
684         let param_env = tcx.param_env(method.def_id);
685
686         // Self: Unsize<U>
687         let unsize_predicate = ty::Binder::dummy(ty::TraitRef {
688             def_id: unsize_did,
689             substs: tcx.mk_substs_trait(tcx.types.self_param, &[unsized_self_ty.into()]),
690         })
691         .without_const()
692         .to_predicate(tcx);
693
694         // U: Trait<Arg1, ..., ArgN>
695         let trait_predicate = {
696             let substs =
697                 InternalSubsts::for_item(tcx, method.trait_container(tcx).unwrap(), |param, _| {
698                     if param.index == 0 {
699                         unsized_self_ty.into()
700                     } else {
701                         tcx.mk_param_from_def(param)
702                     }
703                 });
704
705             ty::Binder::dummy(ty::TraitRef { def_id: unsize_did, substs })
706                 .without_const()
707                 .to_predicate(tcx)
708         };
709
710         let caller_bounds: Vec<Predicate<'tcx>> =
711             param_env.caller_bounds().iter().chain([unsize_predicate, trait_predicate]).collect();
712
713         ty::ParamEnv::new(
714             tcx.intern_predicates(&caller_bounds),
715             param_env.reveal(),
716             param_env.constness(),
717         )
718     };
719
720     // Receiver: DispatchFromDyn<Receiver[Self => U]>
721     let obligation = {
722         let predicate = ty::Binder::dummy(ty::TraitRef {
723             def_id: dispatch_from_dyn_did,
724             substs: tcx.mk_substs_trait(receiver_ty, &[unsized_receiver_ty.into()]),
725         })
726         .without_const()
727         .to_predicate(tcx);
728
729         Obligation::new(ObligationCause::dummy(), param_env, predicate)
730     };
731
732     tcx.infer_ctxt().enter(|ref infcx| {
733         // the receiver is dispatchable iff the obligation holds
734         infcx.predicate_must_hold_modulo_regions(&obligation)
735     })
736 }
737
738 fn contains_illegal_self_type_reference<'tcx, T: TypeVisitable<'tcx>>(
739     tcx: TyCtxt<'tcx>,
740     trait_def_id: DefId,
741     value: T,
742 ) -> bool {
743     // This is somewhat subtle. In general, we want to forbid
744     // references to `Self` in the argument and return types,
745     // since the value of `Self` is erased. However, there is one
746     // exception: it is ok to reference `Self` in order to access
747     // an associated type of the current trait, since we retain
748     // the value of those associated types in the object type
749     // itself.
750     //
751     // ```rust
752     // trait SuperTrait {
753     //     type X;
754     // }
755     //
756     // trait Trait : SuperTrait {
757     //     type Y;
758     //     fn foo(&self, x: Self) // bad
759     //     fn foo(&self) -> Self // bad
760     //     fn foo(&self) -> Option<Self> // bad
761     //     fn foo(&self) -> Self::Y // OK, desugars to next example
762     //     fn foo(&self) -> <Self as Trait>::Y // OK
763     //     fn foo(&self) -> Self::X // OK, desugars to next example
764     //     fn foo(&self) -> <Self as SuperTrait>::X // OK
765     // }
766     // ```
767     //
768     // However, it is not as simple as allowing `Self` in a projected
769     // type, because there are illegal ways to use `Self` as well:
770     //
771     // ```rust
772     // trait Trait : SuperTrait {
773     //     ...
774     //     fn foo(&self) -> <Self as SomeOtherTrait>::X;
775     // }
776     // ```
777     //
778     // Here we will not have the type of `X` recorded in the
779     // object type, and we cannot resolve `Self as SomeOtherTrait`
780     // without knowing what `Self` is.
781
782     struct IllegalSelfTypeVisitor<'tcx> {
783         tcx: TyCtxt<'tcx>,
784         trait_def_id: DefId,
785         supertraits: Option<Vec<DefId>>,
786     }
787
788     impl<'tcx> TypeVisitor<'tcx> for IllegalSelfTypeVisitor<'tcx> {
789         type BreakTy = ();
790
791         fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
792             match t.kind() {
793                 ty::Param(_) => {
794                     if t == self.tcx.types.self_param {
795                         ControlFlow::BREAK
796                     } else {
797                         ControlFlow::CONTINUE
798                     }
799                 }
800                 ty::Projection(ref data)
801                     if self.tcx.def_kind(data.item_def_id) == DefKind::ImplTraitPlaceholder =>
802                 {
803                     // We'll deny these later in their own pass
804                     ControlFlow::CONTINUE
805                 }
806                 ty::Projection(ref data) => {
807                     // This is a projected type `<Foo as SomeTrait>::X`.
808
809                     // Compute supertraits of current trait lazily.
810                     if self.supertraits.is_none() {
811                         let trait_ref = ty::TraitRef::identity(self.tcx, self.trait_def_id);
812                         self.supertraits = Some(
813                             traits::supertraits(self.tcx, trait_ref).map(|t| t.def_id()).collect(),
814                         );
815                     }
816
817                     // Determine whether the trait reference `Foo as
818                     // SomeTrait` is in fact a supertrait of the
819                     // current trait. In that case, this type is
820                     // legal, because the type `X` will be specified
821                     // in the object type.  Note that we can just use
822                     // direct equality here because all of these types
823                     // are part of the formal parameter listing, and
824                     // hence there should be no inference variables.
825                     let is_supertrait_of_current_trait = self
826                         .supertraits
827                         .as_ref()
828                         .unwrap()
829                         .contains(&data.trait_ref(self.tcx).def_id);
830
831                     if is_supertrait_of_current_trait {
832                         ControlFlow::CONTINUE // do not walk contained types, do not report error, do collect $200
833                     } else {
834                         t.super_visit_with(self) // DO walk contained types, POSSIBLY reporting an error
835                     }
836                 }
837                 _ => t.super_visit_with(self), // walk contained types, if any
838             }
839         }
840
841         fn visit_ty_unevaluated(
842             &mut self,
843             uv: ty::UnevaluatedConst<'tcx>,
844         ) -> ControlFlow<Self::BreakTy> {
845             // Constants can only influence object safety if they reference `Self`.
846             // This is only possible for unevaluated constants, so we walk these here.
847             //
848             // If `AbstractConst::new` returned an error we already failed compilation
849             // so we don't have to emit an additional error here.
850             //
851             // We currently recurse into abstract consts here but do not recurse in
852             // `is_const_evaluatable`. This means that the object safety check is more
853             // liberal than the const eval check.
854             //
855             // This shouldn't really matter though as we can't really use any
856             // constants which are not considered const evaluatable.
857             use rustc_middle::ty::abstract_const::Node;
858             if let Ok(Some(ct)) = AbstractConst::new(self.tcx, uv) {
859                 walk_abstract_const(self.tcx, ct, |node| match node.root(self.tcx) {
860                     Node::Leaf(leaf) => self.visit_const(leaf),
861                     Node::Cast(_, _, ty) => self.visit_ty(ty),
862                     Node::Binop(..) | Node::UnaryOp(..) | Node::FunctionCall(_, _) => {
863                         ControlFlow::CONTINUE
864                     }
865                 })
866             } else {
867                 ControlFlow::CONTINUE
868             }
869         }
870     }
871
872     value
873         .visit_with(&mut IllegalSelfTypeVisitor { tcx, trait_def_id, supertraits: None })
874         .is_break()
875 }
876
877 pub fn contains_illegal_impl_trait_in_trait<'tcx>(
878     tcx: TyCtxt<'tcx>,
879     ty: ty::Binder<'tcx, Ty<'tcx>>,
880 ) -> bool {
881     // FIXME(RPITIT): Perhaps we should use a visitor here?
882     ty.skip_binder().walk().any(|arg| {
883         if let ty::GenericArgKind::Type(ty) = arg.unpack()
884             && let ty::Projection(proj) = ty.kind()
885         {
886             tcx.def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder
887         } else {
888             false
889         }
890     })
891 }
892
893 pub fn provide(providers: &mut ty::query::Providers) {
894     *providers = ty::query::Providers { object_safety_violations, ..*providers };
895 }