]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs
Auto merge of #80993 - Aaron1011:collect-set-tokens, r=petrochenkov
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / suggestions.rs
1 use super::{
2     EvaluationResult, Obligation, ObligationCause, ObligationCauseCode, PredicateObligation,
3     SelectionContext,
4 };
5
6 use crate::autoderef::Autoderef;
7 use crate::infer::InferCtxt;
8 use crate::traits::normalize_projection_type;
9
10 use rustc_data_structures::fx::FxHashSet;
11 use rustc_data_structures::stack::ensure_sufficient_stack;
12 use rustc_errors::{error_code, struct_span_err, Applicability, DiagnosticBuilder, Style};
13 use rustc_hir as hir;
14 use rustc_hir::def::DefKind;
15 use rustc_hir::def_id::DefId;
16 use rustc_hir::intravisit::Visitor;
17 use rustc_hir::lang_items::LangItem;
18 use rustc_hir::{AsyncGeneratorKind, GeneratorKind, Node};
19 use rustc_middle::ty::{
20     self, suggest_constraining_type_param, AdtKind, DefIdTree, Infer, InferTy, ToPredicate, Ty,
21     TyCtxt, TypeFoldable, WithConstness,
22 };
23 use rustc_middle::ty::{TypeAndMut, TypeckResults};
24 use rustc_span::symbol::{kw, sym, Ident, Symbol};
25 use rustc_span::{BytePos, MultiSpan, Span, DUMMY_SP};
26 use rustc_target::spec::abi;
27 use std::fmt;
28
29 use super::InferCtxtPrivExt;
30 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
31
32 #[derive(Debug)]
33 pub enum GeneratorInteriorOrUpvar {
34     // span of interior type
35     Interior(Span),
36     // span of upvar
37     Upvar(Span),
38 }
39
40 // This trait is public to expose the diagnostics methods to clippy.
41 pub trait InferCtxtExt<'tcx> {
42     fn suggest_restricting_param_bound(
43         &self,
44         err: &mut DiagnosticBuilder<'_>,
45         trait_ref: ty::PolyTraitRef<'tcx>,
46         body_id: hir::HirId,
47     );
48
49     fn suggest_dereferences(
50         &self,
51         obligation: &PredicateObligation<'tcx>,
52         err: &mut DiagnosticBuilder<'tcx>,
53         trait_ref: ty::PolyTraitRef<'tcx>,
54         points_at_arg: bool,
55     );
56
57     fn get_closure_name(
58         &self,
59         def_id: DefId,
60         err: &mut DiagnosticBuilder<'_>,
61         msg: &str,
62     ) -> Option<String>;
63
64     fn suggest_fn_call(
65         &self,
66         obligation: &PredicateObligation<'tcx>,
67         err: &mut DiagnosticBuilder<'_>,
68         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
69         points_at_arg: bool,
70     );
71
72     fn suggest_add_reference_to_arg(
73         &self,
74         obligation: &PredicateObligation<'tcx>,
75         err: &mut DiagnosticBuilder<'_>,
76         trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
77         points_at_arg: bool,
78         has_custom_message: bool,
79     ) -> bool;
80
81     fn suggest_remove_reference(
82         &self,
83         obligation: &PredicateObligation<'tcx>,
84         err: &mut DiagnosticBuilder<'_>,
85         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
86     );
87
88     fn suggest_change_mut(
89         &self,
90         obligation: &PredicateObligation<'tcx>,
91         err: &mut DiagnosticBuilder<'_>,
92         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
93         points_at_arg: bool,
94     );
95
96     fn suggest_semicolon_removal(
97         &self,
98         obligation: &PredicateObligation<'tcx>,
99         err: &mut DiagnosticBuilder<'_>,
100         span: Span,
101         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
102     );
103
104     fn return_type_span(&self, obligation: &PredicateObligation<'tcx>) -> Option<Span>;
105
106     fn suggest_impl_trait(
107         &self,
108         err: &mut DiagnosticBuilder<'_>,
109         span: Span,
110         obligation: &PredicateObligation<'tcx>,
111         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
112     ) -> bool;
113
114     fn point_at_returns_when_relevant(
115         &self,
116         err: &mut DiagnosticBuilder<'_>,
117         obligation: &PredicateObligation<'tcx>,
118     );
119
120     fn report_closure_arg_mismatch(
121         &self,
122         span: Span,
123         found_span: Option<Span>,
124         expected_ref: ty::PolyTraitRef<'tcx>,
125         found: ty::PolyTraitRef<'tcx>,
126     ) -> DiagnosticBuilder<'tcx>;
127
128     fn suggest_fully_qualified_path(
129         &self,
130         err: &mut DiagnosticBuilder<'_>,
131         def_id: DefId,
132         span: Span,
133         trait_ref: DefId,
134     );
135
136     fn maybe_note_obligation_cause_for_async_await(
137         &self,
138         err: &mut DiagnosticBuilder<'_>,
139         obligation: &PredicateObligation<'tcx>,
140     ) -> bool;
141
142     fn note_obligation_cause_for_async_await(
143         &self,
144         err: &mut DiagnosticBuilder<'_>,
145         interior_or_upvar_span: GeneratorInteriorOrUpvar,
146         interior_extra_info: Option<(Option<Span>, Span, Option<hir::HirId>, Option<Span>)>,
147         inner_generator_body: Option<&hir::Body<'tcx>>,
148         outer_generator: Option<DefId>,
149         trait_ref: ty::TraitRef<'tcx>,
150         target_ty: Ty<'tcx>,
151         typeck_results: &ty::TypeckResults<'tcx>,
152         obligation: &PredicateObligation<'tcx>,
153         next_code: Option<&ObligationCauseCode<'tcx>>,
154     );
155
156     fn note_obligation_cause_code<T>(
157         &self,
158         err: &mut DiagnosticBuilder<'_>,
159         predicate: &T,
160         cause_code: &ObligationCauseCode<'tcx>,
161         obligated_types: &mut Vec<&ty::TyS<'tcx>>,
162         seen_requirements: &mut FxHashSet<DefId>,
163     ) where
164         T: fmt::Display;
165
166     fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder<'_>);
167
168     /// Suggest to await before try: future? => future.await?
169     fn suggest_await_before_try(
170         &self,
171         err: &mut DiagnosticBuilder<'_>,
172         obligation: &PredicateObligation<'tcx>,
173         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
174         span: Span,
175     );
176 }
177
178 fn predicate_constraint(generics: &hir::Generics<'_>, pred: String) -> (Span, String) {
179     (
180         generics.where_clause.tail_span_for_suggestion(),
181         format!(
182             "{} {}",
183             if !generics.where_clause.predicates.is_empty() { "," } else { " where" },
184             pred,
185         ),
186     )
187 }
188
189 /// Type parameter needs more bounds. The trivial case is `T` `where T: Bound`, but
190 /// it can also be an `impl Trait` param that needs to be decomposed to a type
191 /// param for cleaner code.
192 fn suggest_restriction(
193     tcx: TyCtxt<'tcx>,
194     generics: &hir::Generics<'tcx>,
195     msg: &str,
196     err: &mut DiagnosticBuilder<'_>,
197     fn_sig: Option<&hir::FnSig<'_>>,
198     projection: Option<&ty::ProjectionTy<'_>>,
199     trait_ref: ty::PolyTraitRef<'tcx>,
200     super_traits: Option<(&Ident, &hir::GenericBounds<'_>)>,
201 ) {
202     // When we are dealing with a trait, `super_traits` will be `Some`:
203     // Given `trait T: A + B + C {}`
204     //              -  ^^^^^^^^^ GenericBounds
205     //              |
206     //              &Ident
207     let span = generics.where_clause.span_for_predicates_or_empty_place();
208     if span.from_expansion() || span.desugaring_kind().is_some() {
209         return;
210     }
211     // Given `fn foo(t: impl Trait)` where `Trait` requires assoc type `A`...
212     if let Some((bound_str, fn_sig)) =
213         fn_sig.zip(projection).and_then(|(sig, p)| match p.self_ty().kind() {
214             // Shenanigans to get the `Trait` from the `impl Trait`.
215             ty::Param(param) => {
216                 // `fn foo(t: impl Trait)`
217                 //                 ^^^^^ get this string
218                 param.name.as_str().strip_prefix("impl").map(|s| (s.trim_start().to_string(), sig))
219             }
220             _ => None,
221         })
222     {
223         // We know we have an `impl Trait` that doesn't satisfy a required projection.
224
225         // Find all of the ocurrences of `impl Trait` for `Trait` in the function arguments'
226         // types. There should be at least one, but there might be *more* than one. In that
227         // case we could just ignore it and try to identify which one needs the restriction,
228         // but instead we choose to suggest replacing all instances of `impl Trait` with `T`
229         // where `T: Trait`.
230         let mut ty_spans = vec![];
231         let impl_trait_str = format!("impl {}", bound_str);
232         for input in fn_sig.decl.inputs {
233             if let hir::TyKind::Path(hir::QPath::Resolved(
234                 None,
235                 hir::Path { segments: [segment], .. },
236             )) = input.kind
237             {
238                 if segment.ident.as_str() == impl_trait_str.as_str() {
239                     // `fn foo(t: impl Trait)`
240                     //            ^^^^^^^^^^ get this to suggest `T` instead
241
242                     // There might be more than one `impl Trait`.
243                     ty_spans.push(input.span);
244                 }
245             }
246         }
247
248         let type_param_name = generics.params.next_type_param_name(Some(&bound_str));
249         // The type param `T: Trait` we will suggest to introduce.
250         let type_param = format!("{}: {}", type_param_name, bound_str);
251
252         // FIXME: modify the `trait_ref` instead of string shenanigans.
253         // Turn `<impl Trait as Foo>::Bar: Qux` into `<T as Foo>::Bar: Qux`.
254         let pred = trait_ref.without_const().to_predicate(tcx).to_string();
255         let pred = pred.replace(&impl_trait_str, &type_param_name);
256         let mut sugg = vec![
257             // Find the last of the generic parameters contained within the span of
258             // the generics
259             match generics
260                 .params
261                 .iter()
262                 .map(|p| p.bounds_span().unwrap_or(p.span))
263                 .filter(|&span| generics.span.contains(span) && span.desugaring_kind().is_none())
264                 .max_by_key(|span| span.hi())
265             {
266                 // `fn foo(t: impl Trait)`
267                 //        ^ suggest `<T: Trait>` here
268                 None => (generics.span, format!("<{}>", type_param)),
269                 // `fn foo<A>(t: impl Trait)`
270                 //        ^^^ suggest `<A, T: Trait>` here
271                 Some(span) => (span.shrink_to_hi(), format!(", {}", type_param)),
272             },
273             // `fn foo(t: impl Trait)`
274             //                       ^ suggest `where <T as Trait>::A: Bound`
275             predicate_constraint(generics, pred),
276         ];
277         sugg.extend(ty_spans.into_iter().map(|s| (s, type_param_name.to_string())));
278
279         // Suggest `fn foo<T: Trait>(t: T) where <T as Trait>::A: Bound`.
280         // FIXME: once `#![feature(associated_type_bounds)]` is stabilized, we should suggest
281         // `fn foo(t: impl Trait<A: Bound>)` instead.
282         err.multipart_suggestion(
283             "introduce a type parameter with a trait bound instead of using `impl Trait`",
284             sugg,
285             Applicability::MaybeIncorrect,
286         );
287     } else {
288         // Trivial case: `T` needs an extra bound: `T: Bound`.
289         let (sp, suggestion) = match super_traits {
290             None => predicate_constraint(
291                 generics,
292                 trait_ref.without_const().to_predicate(tcx).to_string(),
293             ),
294             Some((ident, bounds)) => match bounds {
295                 [.., bound] => (
296                     bound.span().shrink_to_hi(),
297                     format!(" + {}", trait_ref.print_only_trait_path().to_string()),
298                 ),
299                 [] => (
300                     ident.span.shrink_to_hi(),
301                     format!(": {}", trait_ref.print_only_trait_path().to_string()),
302                 ),
303             },
304         };
305
306         err.span_suggestion_verbose(
307             sp,
308             &format!("consider further restricting {}", msg),
309             suggestion,
310             Applicability::MachineApplicable,
311         );
312     }
313 }
314
315 impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
316     fn suggest_restricting_param_bound(
317         &self,
318         mut err: &mut DiagnosticBuilder<'_>,
319         trait_ref: ty::PolyTraitRef<'tcx>,
320         body_id: hir::HirId,
321     ) {
322         let self_ty = trait_ref.skip_binder().self_ty();
323         let (param_ty, projection) = match self_ty.kind() {
324             ty::Param(_) => (true, None),
325             ty::Projection(projection) => (false, Some(projection)),
326             _ => return,
327         };
328
329         // FIXME: Add check for trait bound that is already present, particularly `?Sized` so we
330         //        don't suggest `T: Sized + ?Sized`.
331         let mut hir_id = body_id;
332         while let Some(node) = self.tcx.hir().find(hir_id) {
333             match node {
334                 hir::Node::Item(hir::Item {
335                     ident,
336                     kind: hir::ItemKind::Trait(_, _, generics, bounds, _),
337                     ..
338                 }) if self_ty == self.tcx.types.self_param => {
339                     assert!(param_ty);
340                     // Restricting `Self` for a single method.
341                     suggest_restriction(
342                         self.tcx,
343                         &generics,
344                         "`Self`",
345                         err,
346                         None,
347                         projection,
348                         trait_ref,
349                         Some((ident, bounds)),
350                     );
351                     return;
352                 }
353
354                 hir::Node::TraitItem(hir::TraitItem {
355                     generics,
356                     kind: hir::TraitItemKind::Fn(..),
357                     ..
358                 }) if self_ty == self.tcx.types.self_param => {
359                     assert!(param_ty);
360                     // Restricting `Self` for a single method.
361                     suggest_restriction(
362                         self.tcx, &generics, "`Self`", err, None, projection, trait_ref, None,
363                     );
364                     return;
365                 }
366
367                 hir::Node::TraitItem(hir::TraitItem {
368                     generics,
369                     kind: hir::TraitItemKind::Fn(fn_sig, ..),
370                     ..
371                 })
372                 | hir::Node::ImplItem(hir::ImplItem {
373                     generics,
374                     kind: hir::ImplItemKind::Fn(fn_sig, ..),
375                     ..
376                 })
377                 | hir::Node::Item(hir::Item {
378                     kind: hir::ItemKind::Fn(fn_sig, generics, _), ..
379                 }) if projection.is_some() => {
380                     // Missing restriction on associated type of type parameter (unmet projection).
381                     suggest_restriction(
382                         self.tcx,
383                         &generics,
384                         "the associated type",
385                         err,
386                         Some(fn_sig),
387                         projection,
388                         trait_ref,
389                         None,
390                     );
391                     return;
392                 }
393                 hir::Node::Item(hir::Item {
394                     kind:
395                         hir::ItemKind::Trait(_, _, generics, _, _)
396                         | hir::ItemKind::Impl(hir::Impl { generics, .. }),
397                     ..
398                 }) if projection.is_some() => {
399                     // Missing restriction on associated type of type parameter (unmet projection).
400                     suggest_restriction(
401                         self.tcx,
402                         &generics,
403                         "the associated type",
404                         err,
405                         None,
406                         projection,
407                         trait_ref,
408                         None,
409                     );
410                     return;
411                 }
412
413                 hir::Node::Item(hir::Item {
414                     kind:
415                         hir::ItemKind::Struct(_, generics)
416                         | hir::ItemKind::Enum(_, generics)
417                         | hir::ItemKind::Union(_, generics)
418                         | hir::ItemKind::Trait(_, _, generics, ..)
419                         | hir::ItemKind::Impl(hir::Impl { generics, .. })
420                         | hir::ItemKind::Fn(_, generics, _)
421                         | hir::ItemKind::TyAlias(_, generics)
422                         | hir::ItemKind::TraitAlias(generics, _)
423                         | hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }),
424                     ..
425                 })
426                 | hir::Node::TraitItem(hir::TraitItem { generics, .. })
427                 | hir::Node::ImplItem(hir::ImplItem { generics, .. })
428                     if param_ty =>
429                 {
430                     // Missing generic type parameter bound.
431                     let param_name = self_ty.to_string();
432                     let constraint = trait_ref.print_only_trait_path().to_string();
433                     if suggest_constraining_type_param(
434                         self.tcx,
435                         generics,
436                         &mut err,
437                         &param_name,
438                         &constraint,
439                         Some(trait_ref.def_id()),
440                     ) {
441                         return;
442                     }
443                 }
444
445                 hir::Node::Crate(..) => return,
446
447                 _ => {}
448             }
449
450             hir_id = self.tcx.hir().get_parent_item(hir_id);
451         }
452     }
453
454     /// When after several dereferencing, the reference satisfies the trait
455     /// binding. This function provides dereference suggestion for this
456     /// specific situation.
457     fn suggest_dereferences(
458         &self,
459         obligation: &PredicateObligation<'tcx>,
460         err: &mut DiagnosticBuilder<'tcx>,
461         trait_ref: ty::PolyTraitRef<'tcx>,
462         points_at_arg: bool,
463     ) {
464         // It only make sense when suggesting dereferences for arguments
465         if !points_at_arg {
466             return;
467         }
468         let param_env = obligation.param_env;
469         let body_id = obligation.cause.body_id;
470         let span = obligation.cause.span;
471         let real_trait_ref = match &obligation.cause.code {
472             ObligationCauseCode::ImplDerivedObligation(cause)
473             | ObligationCauseCode::DerivedObligation(cause)
474             | ObligationCauseCode::BuiltinDerivedObligation(cause) => cause.parent_trait_ref,
475             _ => trait_ref,
476         };
477         let real_ty = match real_trait_ref.self_ty().no_bound_vars() {
478             Some(ty) => ty,
479             None => return,
480         };
481
482         if let ty::Ref(region, base_ty, mutbl) = *real_ty.kind() {
483             let mut autoderef = Autoderef::new(self, param_env, body_id, span, base_ty, span);
484             if let Some(steps) = autoderef.find_map(|(ty, steps)| {
485                 // Re-add the `&`
486                 let ty = self.tcx.mk_ref(region, TypeAndMut { ty, mutbl });
487                 let obligation =
488                     self.mk_trait_obligation_with_new_self_ty(param_env, real_trait_ref, ty);
489                 Some(steps).filter(|_| self.predicate_may_hold(&obligation))
490             }) {
491                 if steps > 0 {
492                     if let Ok(src) = self.tcx.sess.source_map().span_to_snippet(span) {
493                         // Don't care about `&mut` because `DerefMut` is used less
494                         // often and user will not expect autoderef happens.
495                         if src.starts_with('&') && !src.starts_with("&mut ") {
496                             let derefs = "*".repeat(steps);
497                             err.span_suggestion(
498                                 span,
499                                 "consider adding dereference here",
500                                 format!("&{}{}", derefs, &src[1..]),
501                                 Applicability::MachineApplicable,
502                             );
503                         }
504                     }
505                 }
506             }
507         }
508     }
509
510     /// Given a closure's `DefId`, return the given name of the closure.
511     ///
512     /// This doesn't account for reassignments, but it's only used for suggestions.
513     fn get_closure_name(
514         &self,
515         def_id: DefId,
516         err: &mut DiagnosticBuilder<'_>,
517         msg: &str,
518     ) -> Option<String> {
519         let get_name =
520             |err: &mut DiagnosticBuilder<'_>, kind: &hir::PatKind<'_>| -> Option<String> {
521                 // Get the local name of this closure. This can be inaccurate because
522                 // of the possibility of reassignment, but this should be good enough.
523                 match &kind {
524                     hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, _, name, None) => {
525                         Some(format!("{}", name))
526                     }
527                     _ => {
528                         err.note(&msg);
529                         None
530                     }
531                 }
532             };
533
534         let hir = self.tcx.hir();
535         let hir_id = hir.local_def_id_to_hir_id(def_id.as_local()?);
536         let parent_node = hir.get_parent_node(hir_id);
537         match hir.find(parent_node) {
538             Some(hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Local(local), .. })) => {
539                 get_name(err, &local.pat.kind)
540             }
541             // Different to previous arm because one is `&hir::Local` and the other
542             // is `P<hir::Local>`.
543             Some(hir::Node::Local(local)) => get_name(err, &local.pat.kind),
544             _ => None,
545         }
546     }
547
548     /// We tried to apply the bound to an `fn` or closure. Check whether calling it would
549     /// evaluate to a type that *would* satisfy the trait binding. If it would, suggest calling
550     /// it: `bar(foo)` â†’ `bar(foo())`. This case is *very* likely to be hit if `foo` is `async`.
551     fn suggest_fn_call(
552         &self,
553         obligation: &PredicateObligation<'tcx>,
554         err: &mut DiagnosticBuilder<'_>,
555         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
556         points_at_arg: bool,
557     ) {
558         let self_ty = match trait_ref.self_ty().no_bound_vars() {
559             None => return,
560             Some(ty) => ty,
561         };
562
563         let (def_id, output_ty, callable) = match *self_ty.kind() {
564             ty::Closure(def_id, substs) => (def_id, substs.as_closure().sig().output(), "closure"),
565             ty::FnDef(def_id, _) => (def_id, self_ty.fn_sig(self.tcx).output(), "function"),
566             _ => return,
567         };
568         let msg = format!("use parentheses to call the {}", callable);
569
570         // `mk_trait_obligation_with_new_self_ty` only works for types with no escaping bound
571         // variables, so bail out if we have any.
572         let output_ty = match output_ty.no_bound_vars() {
573             Some(ty) => ty,
574             None => return,
575         };
576
577         let new_obligation =
578             self.mk_trait_obligation_with_new_self_ty(obligation.param_env, trait_ref, output_ty);
579
580         match self.evaluate_obligation(&new_obligation) {
581             Ok(
582                 EvaluationResult::EvaluatedToOk
583                 | EvaluationResult::EvaluatedToOkModuloRegions
584                 | EvaluationResult::EvaluatedToAmbig,
585             ) => {}
586             _ => return,
587         }
588         let hir = self.tcx.hir();
589         // Get the name of the callable and the arguments to be used in the suggestion.
590         let (snippet, sugg) = match hir.get_if_local(def_id) {
591             Some(hir::Node::Expr(hir::Expr {
592                 kind: hir::ExprKind::Closure(_, decl, _, span, ..),
593                 ..
594             })) => {
595                 err.span_label(*span, "consider calling this closure");
596                 let name = match self.get_closure_name(def_id, err, &msg) {
597                     Some(name) => name,
598                     None => return,
599                 };
600                 let args = decl.inputs.iter().map(|_| "_").collect::<Vec<_>>().join(", ");
601                 let sugg = format!("({})", args);
602                 (format!("{}{}", name, sugg), sugg)
603             }
604             Some(hir::Node::Item(hir::Item {
605                 ident,
606                 kind: hir::ItemKind::Fn(.., body_id),
607                 ..
608             })) => {
609                 err.span_label(ident.span, "consider calling this function");
610                 let body = hir.body(*body_id);
611                 let args = body
612                     .params
613                     .iter()
614                     .map(|arg| match &arg.pat.kind {
615                         hir::PatKind::Binding(_, _, ident, None)
616                         // FIXME: provide a better suggestion when encountering `SelfLower`, it
617                         // should suggest a method call.
618                         if ident.name != kw::SelfLower => ident.to_string(),
619                         _ => "_".to_string(),
620                     })
621                     .collect::<Vec<_>>()
622                     .join(", ");
623                 let sugg = format!("({})", args);
624                 (format!("{}{}", ident, sugg), sugg)
625             }
626             _ => return,
627         };
628         if points_at_arg {
629             // When the obligation error has been ensured to have been caused by
630             // an argument, the `obligation.cause.span` points at the expression
631             // of the argument, so we can provide a suggestion. This is signaled
632             // by `points_at_arg`. Otherwise, we give a more general note.
633             err.span_suggestion_verbose(
634                 obligation.cause.span.shrink_to_hi(),
635                 &msg,
636                 sugg,
637                 Applicability::HasPlaceholders,
638             );
639         } else {
640             err.help(&format!("{}: `{}`", msg, snippet));
641         }
642     }
643
644     fn suggest_add_reference_to_arg(
645         &self,
646         obligation: &PredicateObligation<'tcx>,
647         err: &mut DiagnosticBuilder<'_>,
648         trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
649         points_at_arg: bool,
650         has_custom_message: bool,
651     ) -> bool {
652         if !points_at_arg {
653             return false;
654         }
655
656         let span = obligation.cause.span;
657         let param_env = obligation.param_env;
658         let trait_ref = trait_ref.skip_binder();
659
660         if let ObligationCauseCode::ImplDerivedObligation(obligation) = &obligation.cause.code {
661             // Try to apply the original trait binding obligation by borrowing.
662             let self_ty = trait_ref.self_ty();
663             let found = self_ty.to_string();
664             let new_self_ty = self.tcx.mk_imm_ref(self.tcx.lifetimes.re_static, self_ty);
665             let substs = self.tcx.mk_substs_trait(new_self_ty, &[]);
666             let new_trait_ref = ty::TraitRef::new(obligation.parent_trait_ref.def_id(), substs);
667             let new_obligation = Obligation::new(
668                 ObligationCause::dummy(),
669                 param_env,
670                 new_trait_ref.without_const().to_predicate(self.tcx),
671             );
672
673             if self.predicate_must_hold_modulo_regions(&new_obligation) {
674                 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
675                     // We have a very specific type of error, where just borrowing this argument
676                     // might solve the problem. In cases like this, the important part is the
677                     // original type obligation, not the last one that failed, which is arbitrary.
678                     // Because of this, we modify the error to refer to the original obligation and
679                     // return early in the caller.
680
681                     let msg = format!(
682                         "the trait bound `{}: {}` is not satisfied",
683                         found,
684                         obligation.parent_trait_ref.skip_binder().print_only_trait_path(),
685                     );
686                     if has_custom_message {
687                         err.note(&msg);
688                     } else {
689                         err.message = vec![(msg, Style::NoStyle)];
690                     }
691                     if snippet.starts_with('&') {
692                         // This is already a literal borrow and the obligation is failing
693                         // somewhere else in the obligation chain. Do not suggest non-sense.
694                         return false;
695                     }
696                     err.span_label(
697                         span,
698                         &format!(
699                             "expected an implementor of trait `{}`",
700                             obligation.parent_trait_ref.skip_binder().print_only_trait_path(),
701                         ),
702                     );
703
704                     // This if is to prevent a special edge-case
705                     if !span.from_expansion() {
706                         // We don't want a borrowing suggestion on the fields in structs,
707                         // ```
708                         // struct Foo {
709                         //  the_foos: Vec<Foo>
710                         // }
711                         // ```
712
713                         err.span_suggestion(
714                             span,
715                             "consider borrowing here",
716                             format!("&{}", snippet),
717                             Applicability::MaybeIncorrect,
718                         );
719                     }
720                     return true;
721                 }
722             }
723         }
724         false
725     }
726
727     /// Whenever references are used by mistake, like `for (i, e) in &vec.iter().enumerate()`,
728     /// suggest removing these references until we reach a type that implements the trait.
729     fn suggest_remove_reference(
730         &self,
731         obligation: &PredicateObligation<'tcx>,
732         err: &mut DiagnosticBuilder<'_>,
733         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
734     ) {
735         let span = obligation.cause.span;
736
737         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
738             let refs_number =
739                 snippet.chars().filter(|c| !c.is_whitespace()).take_while(|c| *c == '&').count();
740             if let Some('\'') = snippet.chars().filter(|c| !c.is_whitespace()).nth(refs_number) {
741                 // Do not suggest removal of borrow from type arguments.
742                 return;
743             }
744
745             let mut suggested_ty = match trait_ref.self_ty().no_bound_vars() {
746                 Some(ty) => ty,
747                 None => return,
748             };
749
750             for refs_remaining in 0..refs_number {
751                 if let ty::Ref(_, inner_ty, _) = suggested_ty.kind() {
752                     suggested_ty = inner_ty;
753
754                     let new_obligation = self.mk_trait_obligation_with_new_self_ty(
755                         obligation.param_env,
756                         trait_ref,
757                         suggested_ty,
758                     );
759
760                     if self.predicate_may_hold(&new_obligation) {
761                         let sp = self
762                             .tcx
763                             .sess
764                             .source_map()
765                             .span_take_while(span, |c| c.is_whitespace() || *c == '&');
766
767                         let remove_refs = refs_remaining + 1;
768
769                         let msg = if remove_refs == 1 {
770                             "consider removing the leading `&`-reference".to_string()
771                         } else {
772                             format!("consider removing {} leading `&`-references", remove_refs)
773                         };
774
775                         err.span_suggestion_short(
776                             sp,
777                             &msg,
778                             String::new(),
779                             Applicability::MachineApplicable,
780                         );
781                         break;
782                     }
783                 } else {
784                     break;
785                 }
786             }
787         }
788     }
789
790     /// Check if the trait bound is implemented for a different mutability and note it in the
791     /// final error.
792     fn suggest_change_mut(
793         &self,
794         obligation: &PredicateObligation<'tcx>,
795         err: &mut DiagnosticBuilder<'_>,
796         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
797         points_at_arg: bool,
798     ) {
799         let span = obligation.cause.span;
800         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
801             let refs_number =
802                 snippet.chars().filter(|c| !c.is_whitespace()).take_while(|c| *c == '&').count();
803             if let Some('\'') = snippet.chars().filter(|c| !c.is_whitespace()).nth(refs_number) {
804                 // Do not suggest removal of borrow from type arguments.
805                 return;
806             }
807             let trait_ref = self.resolve_vars_if_possible(trait_ref);
808             if trait_ref.has_infer_types_or_consts() {
809                 // Do not ICE while trying to find if a reborrow would succeed on a trait with
810                 // unresolved bindings.
811                 return;
812             }
813
814             if let ty::Ref(region, t_type, mutability) = *trait_ref.skip_binder().self_ty().kind() {
815                 if region.is_late_bound() || t_type.has_escaping_bound_vars() {
816                     // Avoid debug assertion in `mk_obligation_for_def_id`.
817                     //
818                     // If the self type has escaping bound vars then it's not
819                     // going to be the type of an expression, so the suggestion
820                     // probably won't apply anyway.
821                     return;
822                 }
823
824                 let suggested_ty = match mutability {
825                     hir::Mutability::Mut => self.tcx.mk_imm_ref(region, t_type),
826                     hir::Mutability::Not => self.tcx.mk_mut_ref(region, t_type),
827                 };
828
829                 let new_obligation = self.mk_trait_obligation_with_new_self_ty(
830                     obligation.param_env,
831                     trait_ref,
832                     suggested_ty,
833                 );
834                 let suggested_ty_would_satisfy_obligation = self
835                     .evaluate_obligation_no_overflow(&new_obligation)
836                     .must_apply_modulo_regions();
837                 if suggested_ty_would_satisfy_obligation {
838                     let sp = self
839                         .tcx
840                         .sess
841                         .source_map()
842                         .span_take_while(span, |c| c.is_whitespace() || *c == '&');
843                     if points_at_arg && mutability == hir::Mutability::Not && refs_number > 0 {
844                         err.span_suggestion_verbose(
845                             sp,
846                             "consider changing this borrow's mutability",
847                             "&mut ".to_string(),
848                             Applicability::MachineApplicable,
849                         );
850                     } else {
851                         err.note(&format!(
852                             "`{}` is implemented for `{:?}`, but not for `{:?}`",
853                             trait_ref.print_only_trait_path(),
854                             suggested_ty,
855                             trait_ref.skip_binder().self_ty(),
856                         ));
857                     }
858                 }
859             }
860         }
861     }
862
863     fn suggest_semicolon_removal(
864         &self,
865         obligation: &PredicateObligation<'tcx>,
866         err: &mut DiagnosticBuilder<'_>,
867         span: Span,
868         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
869     ) {
870         let is_empty_tuple =
871             |ty: ty::Binder<Ty<'_>>| *ty.skip_binder().kind() == ty::Tuple(ty::List::empty());
872
873         let hir = self.tcx.hir();
874         let parent_node = hir.get_parent_node(obligation.cause.body_id);
875         let node = hir.find(parent_node);
876         if let Some(hir::Node::Item(hir::Item {
877             kind: hir::ItemKind::Fn(sig, _, body_id), ..
878         })) = node
879         {
880             let body = hir.body(*body_id);
881             if let hir::ExprKind::Block(blk, _) = &body.value.kind {
882                 if sig.decl.output.span().overlaps(span)
883                     && blk.expr.is_none()
884                     && is_empty_tuple(trait_ref.self_ty())
885                 {
886                     // FIXME(estebank): When encountering a method with a trait
887                     // bound not satisfied in the return type with a body that has
888                     // no return, suggest removal of semicolon on last statement.
889                     // Once that is added, close #54771.
890                     if let Some(ref stmt) = blk.stmts.last() {
891                         let sp = self.tcx.sess.source_map().end_point(stmt.span);
892                         err.span_label(sp, "consider removing this semicolon");
893                     }
894                 }
895             }
896         }
897     }
898
899     fn return_type_span(&self, obligation: &PredicateObligation<'tcx>) -> Option<Span> {
900         let hir = self.tcx.hir();
901         let parent_node = hir.get_parent_node(obligation.cause.body_id);
902         let sig = match hir.find(parent_node) {
903             Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(sig, ..), .. })) => sig,
904             _ => return None,
905         };
906
907         if let hir::FnRetTy::Return(ret_ty) = sig.decl.output { Some(ret_ty.span) } else { None }
908     }
909
910     /// If all conditions are met to identify a returned `dyn Trait`, suggest using `impl Trait` if
911     /// applicable and signal that the error has been expanded appropriately and needs to be
912     /// emitted.
913     fn suggest_impl_trait(
914         &self,
915         err: &mut DiagnosticBuilder<'_>,
916         span: Span,
917         obligation: &PredicateObligation<'tcx>,
918         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
919     ) -> bool {
920         match obligation.cause.code.peel_derives() {
921             // Only suggest `impl Trait` if the return type is unsized because it is `dyn Trait`.
922             ObligationCauseCode::SizedReturnType => {}
923             _ => return false,
924         }
925
926         let hir = self.tcx.hir();
927         let parent_node = hir.get_parent_node(obligation.cause.body_id);
928         let node = hir.find(parent_node);
929         let (sig, body_id) = if let Some(hir::Node::Item(hir::Item {
930             kind: hir::ItemKind::Fn(sig, _, body_id),
931             ..
932         })) = node
933         {
934             (sig, body_id)
935         } else {
936             return false;
937         };
938         let body = hir.body(*body_id);
939         let trait_ref = self.resolve_vars_if_possible(trait_ref);
940         let ty = trait_ref.skip_binder().self_ty();
941         let is_object_safe = match ty.kind() {
942             ty::Dynamic(predicates, _) => {
943                 // If the `dyn Trait` is not object safe, do not suggest `Box<dyn Trait>`.
944                 predicates
945                     .principal_def_id()
946                     .map_or(true, |def_id| self.tcx.object_safety_violations(def_id).is_empty())
947             }
948             // We only want to suggest `impl Trait` to `dyn Trait`s.
949             // For example, `fn foo() -> str` needs to be filtered out.
950             _ => return false,
951         };
952
953         let ret_ty = if let hir::FnRetTy::Return(ret_ty) = sig.decl.output {
954             ret_ty
955         } else {
956             return false;
957         };
958
959         // Use `TypeVisitor` instead of the output type directly to find the span of `ty` for
960         // cases like `fn foo() -> (dyn Trait, i32) {}`.
961         // Recursively look for `TraitObject` types and if there's only one, use that span to
962         // suggest `impl Trait`.
963
964         // Visit to make sure there's a single `return` type to suggest `impl Trait`,
965         // otherwise suggest using `Box<dyn Trait>` or an enum.
966         let mut visitor = ReturnsVisitor::default();
967         visitor.visit_body(&body);
968
969         let typeck_results = self.in_progress_typeck_results.map(|t| t.borrow()).unwrap();
970
971         let mut ret_types = visitor
972             .returns
973             .iter()
974             .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
975             .map(|ty| self.resolve_vars_if_possible(ty));
976         let (last_ty, all_returns_have_same_type, only_never_return) = ret_types.clone().fold(
977             (None, true, true),
978             |(last_ty, mut same, only_never_return): (std::option::Option<Ty<'_>>, bool, bool),
979              ty| {
980                 let ty = self.resolve_vars_if_possible(ty);
981                 same &=
982                     !matches!(ty.kind(), ty::Error(_))
983                         && last_ty.map_or(true, |last_ty| {
984                             // FIXME: ideally we would use `can_coerce` here instead, but `typeck` comes
985                             // *after* in the dependency graph.
986                             match (ty.kind(), last_ty.kind()) {
987                                 (Infer(InferTy::IntVar(_)), Infer(InferTy::IntVar(_)))
988                                 | (Infer(InferTy::FloatVar(_)), Infer(InferTy::FloatVar(_)))
989                                 | (Infer(InferTy::FreshIntTy(_)), Infer(InferTy::FreshIntTy(_)))
990                                 | (
991                                     Infer(InferTy::FreshFloatTy(_)),
992                                     Infer(InferTy::FreshFloatTy(_)),
993                                 ) => true,
994                                 _ => ty == last_ty,
995                             }
996                         });
997                 (Some(ty), same, only_never_return && matches!(ty.kind(), ty::Never))
998             },
999         );
1000         let all_returns_conform_to_trait =
1001             if let Some(ty_ret_ty) = typeck_results.node_type_opt(ret_ty.hir_id) {
1002                 match ty_ret_ty.kind() {
1003                     ty::Dynamic(predicates, _) => {
1004                         let cause = ObligationCause::misc(ret_ty.span, ret_ty.hir_id);
1005                         let param_env = ty::ParamEnv::empty();
1006                         only_never_return
1007                             || ret_types.all(|returned_ty| {
1008                                 predicates.iter().all(|predicate| {
1009                                     let pred = predicate.with_self_ty(self.tcx, returned_ty);
1010                                     let obl = Obligation::new(cause.clone(), param_env, pred);
1011                                     self.predicate_may_hold(&obl)
1012                                 })
1013                             })
1014                     }
1015                     _ => false,
1016                 }
1017             } else {
1018                 true
1019             };
1020
1021         let sm = self.tcx.sess.source_map();
1022         let snippet = if let (true, hir::TyKind::TraitObject(..), Ok(snippet), true) = (
1023             // Verify that we're dealing with a return `dyn Trait`
1024             ret_ty.span.overlaps(span),
1025             &ret_ty.kind,
1026             sm.span_to_snippet(ret_ty.span),
1027             // If any of the return types does not conform to the trait, then we can't
1028             // suggest `impl Trait` nor trait objects: it is a type mismatch error.
1029             all_returns_conform_to_trait,
1030         ) {
1031             snippet
1032         } else {
1033             return false;
1034         };
1035         err.code(error_code!(E0746));
1036         err.set_primary_message("return type cannot have an unboxed trait object");
1037         err.children.clear();
1038         let impl_trait_msg = "for information on `impl Trait`, see \
1039             <https://doc.rust-lang.org/book/ch10-02-traits.html\
1040             #returning-types-that-implement-traits>";
1041         let trait_obj_msg = "for information on trait objects, see \
1042             <https://doc.rust-lang.org/book/ch17-02-trait-objects.html\
1043             #using-trait-objects-that-allow-for-values-of-different-types>";
1044         let has_dyn = snippet.split_whitespace().next().map_or(false, |s| s == "dyn");
1045         let trait_obj = if has_dyn { &snippet[4..] } else { &snippet[..] };
1046         if only_never_return {
1047             // No return paths, probably using `panic!()` or similar.
1048             // Suggest `-> T`, `-> impl Trait`, and if `Trait` is object safe, `-> Box<dyn Trait>`.
1049             suggest_trait_object_return_type_alternatives(
1050                 err,
1051                 ret_ty.span,
1052                 trait_obj,
1053                 is_object_safe,
1054             );
1055         } else if let (Some(last_ty), true) = (last_ty, all_returns_have_same_type) {
1056             // Suggest `-> impl Trait`.
1057             err.span_suggestion(
1058                 ret_ty.span,
1059                 &format!(
1060                     "use `impl {1}` as the return type, as all return paths are of type `{}`, \
1061                      which implements `{1}`",
1062                     last_ty, trait_obj,
1063                 ),
1064                 format!("impl {}", trait_obj),
1065                 Applicability::MachineApplicable,
1066             );
1067             err.note(impl_trait_msg);
1068         } else {
1069             if is_object_safe {
1070                 // Suggest `-> Box<dyn Trait>` and `Box::new(returned_value)`.
1071                 // Get all the return values and collect their span and suggestion.
1072                 if let Some(mut suggestions) = visitor
1073                     .returns
1074                     .iter()
1075                     .map(|expr| {
1076                         let snip = sm.span_to_snippet(expr.span).ok()?;
1077                         Some((expr.span, format!("Box::new({})", snip)))
1078                     })
1079                     .collect::<Option<Vec<_>>>()
1080                 {
1081                     // Add the suggestion for the return type.
1082                     suggestions.push((ret_ty.span, format!("Box<dyn {}>", trait_obj)));
1083                     err.multipart_suggestion(
1084                         "return a boxed trait object instead",
1085                         suggestions,
1086                         Applicability::MaybeIncorrect,
1087                     );
1088                 }
1089             } else {
1090                 // This is currently not possible to trigger because E0038 takes precedence, but
1091                 // leave it in for completeness in case anything changes in an earlier stage.
1092                 err.note(&format!(
1093                     "if trait `{}` was object safe, you could return a trait object",
1094                     trait_obj,
1095                 ));
1096             }
1097             err.note(trait_obj_msg);
1098             err.note(&format!(
1099                 "if all the returned values were of the same type you could use `impl {}` as the \
1100                  return type",
1101                 trait_obj,
1102             ));
1103             err.note(impl_trait_msg);
1104             err.note("you can create a new `enum` with a variant for each returned type");
1105         }
1106         true
1107     }
1108
1109     fn point_at_returns_when_relevant(
1110         &self,
1111         err: &mut DiagnosticBuilder<'_>,
1112         obligation: &PredicateObligation<'tcx>,
1113     ) {
1114         match obligation.cause.code.peel_derives() {
1115             ObligationCauseCode::SizedReturnType => {}
1116             _ => return,
1117         }
1118
1119         let hir = self.tcx.hir();
1120         let parent_node = hir.get_parent_node(obligation.cause.body_id);
1121         let node = hir.find(parent_node);
1122         if let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })) =
1123             node
1124         {
1125             let body = hir.body(*body_id);
1126             // Point at all the `return`s in the function as they have failed trait bounds.
1127             let mut visitor = ReturnsVisitor::default();
1128             visitor.visit_body(&body);
1129             let typeck_results = self.in_progress_typeck_results.map(|t| t.borrow()).unwrap();
1130             for expr in &visitor.returns {
1131                 if let Some(returned_ty) = typeck_results.node_type_opt(expr.hir_id) {
1132                     let ty = self.resolve_vars_if_possible(returned_ty);
1133                     err.span_label(expr.span, &format!("this returned value is of type `{}`", ty));
1134                 }
1135             }
1136         }
1137     }
1138
1139     fn report_closure_arg_mismatch(
1140         &self,
1141         span: Span,
1142         found_span: Option<Span>,
1143         expected_ref: ty::PolyTraitRef<'tcx>,
1144         found: ty::PolyTraitRef<'tcx>,
1145     ) -> DiagnosticBuilder<'tcx> {
1146         crate fn build_fn_sig_string<'tcx>(
1147             tcx: TyCtxt<'tcx>,
1148             trait_ref: ty::PolyTraitRef<'tcx>,
1149         ) -> String {
1150             let inputs = trait_ref.skip_binder().substs.type_at(1);
1151             let sig = if let ty::Tuple(inputs) = inputs.kind() {
1152                 tcx.mk_fn_sig(
1153                     inputs.iter().map(|k| k.expect_ty()),
1154                     tcx.mk_ty_infer(ty::TyVar(ty::TyVid { index: 0 })),
1155                     false,
1156                     hir::Unsafety::Normal,
1157                     abi::Abi::Rust,
1158                 )
1159             } else {
1160                 tcx.mk_fn_sig(
1161                     std::iter::once(inputs),
1162                     tcx.mk_ty_infer(ty::TyVar(ty::TyVid { index: 0 })),
1163                     false,
1164                     hir::Unsafety::Normal,
1165                     abi::Abi::Rust,
1166                 )
1167             };
1168             trait_ref.rebind(sig).to_string()
1169         }
1170
1171         let argument_is_closure = expected_ref.skip_binder().substs.type_at(0).is_closure();
1172         let mut err = struct_span_err!(
1173             self.tcx.sess,
1174             span,
1175             E0631,
1176             "type mismatch in {} arguments",
1177             if argument_is_closure { "closure" } else { "function" }
1178         );
1179
1180         let found_str = format!("expected signature of `{}`", build_fn_sig_string(self.tcx, found));
1181         err.span_label(span, found_str);
1182
1183         let found_span = found_span.unwrap_or(span);
1184         let expected_str =
1185             format!("found signature of `{}`", build_fn_sig_string(self.tcx, expected_ref));
1186         err.span_label(found_span, expected_str);
1187
1188         err
1189     }
1190
1191     fn suggest_fully_qualified_path(
1192         &self,
1193         err: &mut DiagnosticBuilder<'_>,
1194         def_id: DefId,
1195         span: Span,
1196         trait_ref: DefId,
1197     ) {
1198         if let Some(assoc_item) = self.tcx.opt_associated_item(def_id) {
1199             if let ty::AssocKind::Const | ty::AssocKind::Type = assoc_item.kind {
1200                 err.note(&format!(
1201                     "{}s cannot be accessed directly on a `trait`, they can only be \
1202                         accessed through a specific `impl`",
1203                     assoc_item.kind.as_def_kind().descr(def_id)
1204                 ));
1205                 err.span_suggestion(
1206                     span,
1207                     "use the fully qualified path to an implementation",
1208                     format!("<Type as {}>::{}", self.tcx.def_path_str(trait_ref), assoc_item.ident),
1209                     Applicability::HasPlaceholders,
1210                 );
1211             }
1212         }
1213     }
1214
1215     /// Adds an async-await specific note to the diagnostic when the future does not implement
1216     /// an auto trait because of a captured type.
1217     ///
1218     /// ```text
1219     /// note: future does not implement `Qux` as this value is used across an await
1220     ///   --> $DIR/issue-64130-3-other.rs:17:5
1221     ///    |
1222     /// LL |     let x = Foo;
1223     ///    |         - has type `Foo`
1224     /// LL |     baz().await;
1225     ///    |     ^^^^^^^^^^^ await occurs here, with `x` maybe used later
1226     /// LL | }
1227     ///    | - `x` is later dropped here
1228     /// ```
1229     ///
1230     /// When the diagnostic does not implement `Send` or `Sync` specifically, then the diagnostic
1231     /// is "replaced" with a different message and a more specific error.
1232     ///
1233     /// ```text
1234     /// error: future cannot be sent between threads safely
1235     ///   --> $DIR/issue-64130-2-send.rs:21:5
1236     ///    |
1237     /// LL | fn is_send<T: Send>(t: T) { }
1238     ///    |               ---- required by this bound in `is_send`
1239     /// ...
1240     /// LL |     is_send(bar());
1241     ///    |     ^^^^^^^ future returned by `bar` is not send
1242     ///    |
1243     ///    = help: within `impl std::future::Future`, the trait `std::marker::Send` is not
1244     ///            implemented for `Foo`
1245     /// note: future is not send as this value is used across an await
1246     ///   --> $DIR/issue-64130-2-send.rs:15:5
1247     ///    |
1248     /// LL |     let x = Foo;
1249     ///    |         - has type `Foo`
1250     /// LL |     baz().await;
1251     ///    |     ^^^^^^^^^^^ await occurs here, with `x` maybe used later
1252     /// LL | }
1253     ///    | - `x` is later dropped here
1254     /// ```
1255     ///
1256     /// Returns `true` if an async-await specific note was added to the diagnostic.
1257     fn maybe_note_obligation_cause_for_async_await(
1258         &self,
1259         err: &mut DiagnosticBuilder<'_>,
1260         obligation: &PredicateObligation<'tcx>,
1261     ) -> bool {
1262         debug!(
1263             "maybe_note_obligation_cause_for_async_await: obligation.predicate={:?} \
1264                 obligation.cause.span={:?}",
1265             obligation.predicate, obligation.cause.span
1266         );
1267         let hir = self.tcx.hir();
1268
1269         // Attempt to detect an async-await error by looking at the obligation causes, looking
1270         // for a generator to be present.
1271         //
1272         // When a future does not implement a trait because of a captured type in one of the
1273         // generators somewhere in the call stack, then the result is a chain of obligations.
1274         //
1275         // Given a `async fn` A that calls a `async fn` B which captures a non-send type and that
1276         // future is passed as an argument to a function C which requires a `Send` type, then the
1277         // chain looks something like this:
1278         //
1279         // - `BuiltinDerivedObligation` with a generator witness (B)
1280         // - `BuiltinDerivedObligation` with a generator (B)
1281         // - `BuiltinDerivedObligation` with `std::future::GenFuture` (B)
1282         // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
1283         // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
1284         // - `BuiltinDerivedObligation` with a generator witness (A)
1285         // - `BuiltinDerivedObligation` with a generator (A)
1286         // - `BuiltinDerivedObligation` with `std::future::GenFuture` (A)
1287         // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
1288         // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
1289         // - `BindingObligation` with `impl_send (Send requirement)
1290         //
1291         // The first obligation in the chain is the most useful and has the generator that captured
1292         // the type. The last generator (`outer_generator` below) has information about where the
1293         // bound was introduced. At least one generator should be present for this diagnostic to be
1294         // modified.
1295         let (mut trait_ref, mut target_ty) = match obligation.predicate.skip_binders() {
1296             ty::PredicateAtom::Trait(p, _) => (Some(p.trait_ref), Some(p.self_ty())),
1297             _ => (None, None),
1298         };
1299         let mut generator = None;
1300         let mut outer_generator = None;
1301         let mut next_code = Some(&obligation.cause.code);
1302
1303         let mut seen_upvar_tys_infer_tuple = false;
1304
1305         while let Some(code) = next_code {
1306             debug!("maybe_note_obligation_cause_for_async_await: code={:?}", code);
1307             match code {
1308                 ObligationCauseCode::DerivedObligation(derived_obligation)
1309                 | ObligationCauseCode::BuiltinDerivedObligation(derived_obligation)
1310                 | ObligationCauseCode::ImplDerivedObligation(derived_obligation) => {
1311                     let ty = derived_obligation.parent_trait_ref.skip_binder().self_ty();
1312                     debug!(
1313                         "maybe_note_obligation_cause_for_async_await: \
1314                             parent_trait_ref={:?} self_ty.kind={:?}",
1315                         derived_obligation.parent_trait_ref,
1316                         ty.kind()
1317                     );
1318
1319                     match *ty.kind() {
1320                         ty::Generator(did, ..) => {
1321                             generator = generator.or(Some(did));
1322                             outer_generator = Some(did);
1323                         }
1324                         ty::GeneratorWitness(..) => {}
1325                         ty::Tuple(_) if !seen_upvar_tys_infer_tuple => {
1326                             // By introducing a tuple of upvar types into the chain of obligations
1327                             // of a generator, the first non-generator item is now the tuple itself,
1328                             // we shall ignore this.
1329
1330                             seen_upvar_tys_infer_tuple = true;
1331                         }
1332                         _ if generator.is_none() => {
1333                             trait_ref = Some(derived_obligation.parent_trait_ref.skip_binder());
1334                             target_ty = Some(ty);
1335                         }
1336                         _ => {}
1337                     }
1338
1339                     next_code = Some(derived_obligation.parent_code.as_ref());
1340                 }
1341                 _ => break,
1342             }
1343         }
1344
1345         // Only continue if a generator was found.
1346         debug!(
1347             "maybe_note_obligation_cause_for_async_await: generator={:?} trait_ref={:?} \
1348                 target_ty={:?}",
1349             generator, trait_ref, target_ty
1350         );
1351         let (generator_did, trait_ref, target_ty) = match (generator, trait_ref, target_ty) {
1352             (Some(generator_did), Some(trait_ref), Some(target_ty)) => {
1353                 (generator_did, trait_ref, target_ty)
1354             }
1355             _ => return false,
1356         };
1357
1358         let span = self.tcx.def_span(generator_did);
1359
1360         // Do not ICE on closure typeck (#66868).
1361         if !generator_did.is_local() {
1362             return false;
1363         }
1364
1365         // Get the typeck results from the infcx if the generator is the function we are
1366         // currently type-checking; otherwise, get them by performing a query.
1367         // This is needed to avoid cycles.
1368         let in_progress_typeck_results = self.in_progress_typeck_results.map(|t| t.borrow());
1369         let generator_did_root = self.tcx.closure_base_def_id(generator_did);
1370         debug!(
1371             "maybe_note_obligation_cause_for_async_await: generator_did={:?} \
1372              generator_did_root={:?} in_progress_typeck_results.hir_owner={:?} span={:?}",
1373             generator_did,
1374             generator_did_root,
1375             in_progress_typeck_results.as_ref().map(|t| t.hir_owner),
1376             span
1377         );
1378         let query_typeck_results;
1379         let typeck_results: &TypeckResults<'tcx> = match &in_progress_typeck_results {
1380             Some(t) if t.hir_owner.to_def_id() == generator_did_root => t,
1381             _ => {
1382                 query_typeck_results = self.tcx.typeck(generator_did.expect_local());
1383                 &query_typeck_results
1384             }
1385         };
1386
1387         let generator_body = generator_did
1388             .as_local()
1389             .map(|def_id| hir.local_def_id_to_hir_id(def_id))
1390             .and_then(|hir_id| hir.maybe_body_owned_by(hir_id))
1391             .map(|body_id| hir.body(body_id));
1392         let mut visitor = AwaitsVisitor::default();
1393         if let Some(body) = generator_body {
1394             visitor.visit_body(body);
1395         }
1396         debug!("maybe_note_obligation_cause_for_async_await: awaits = {:?}", visitor.awaits);
1397
1398         // Look for a type inside the generator interior that matches the target type to get
1399         // a span.
1400         let target_ty_erased = self.tcx.erase_regions(target_ty);
1401         let ty_matches = |ty| -> bool {
1402             // Careful: the regions for types that appear in the
1403             // generator interior are not generally known, so we
1404             // want to erase them when comparing (and anyway,
1405             // `Send` and other bounds are generally unaffected by
1406             // the choice of region).  When erasing regions, we
1407             // also have to erase late-bound regions. This is
1408             // because the types that appear in the generator
1409             // interior generally contain "bound regions" to
1410             // represent regions that are part of the suspended
1411             // generator frame. Bound regions are preserved by
1412             // `erase_regions` and so we must also call
1413             // `erase_late_bound_regions`.
1414             let ty_erased = self.tcx.erase_late_bound_regions(ty);
1415             let ty_erased = self.tcx.erase_regions(ty_erased);
1416             let eq = ty::TyS::same_type(ty_erased, target_ty_erased);
1417             debug!(
1418                 "maybe_note_obligation_cause_for_async_await: ty_erased={:?} \
1419                     target_ty_erased={:?} eq={:?}",
1420                 ty_erased, target_ty_erased, eq
1421             );
1422             eq
1423         };
1424
1425         let mut interior_or_upvar_span = None;
1426         let mut interior_extra_info = None;
1427
1428         if let Some(upvars) = self.tcx.upvars_mentioned(generator_did) {
1429             interior_or_upvar_span = upvars.iter().find_map(|(upvar_id, upvar)| {
1430                 let upvar_ty = typeck_results.node_type(*upvar_id);
1431                 let upvar_ty = self.resolve_vars_if_possible(upvar_ty);
1432                 if ty_matches(ty::Binder::dummy(upvar_ty)) {
1433                     Some(GeneratorInteriorOrUpvar::Upvar(upvar.span))
1434                 } else {
1435                     None
1436                 }
1437             });
1438         };
1439
1440         // The generator interior types share the same binders
1441         if let Some(cause) =
1442             typeck_results.generator_interior_types.as_ref().skip_binder().iter().find(
1443                 |ty::GeneratorInteriorTypeCause { ty, .. }| {
1444                     ty_matches(typeck_results.generator_interior_types.rebind(ty))
1445                 },
1446             )
1447         {
1448             // Check to see if any awaited expressions have the target type.
1449             let from_awaited_ty = visitor
1450                 .awaits
1451                 .into_iter()
1452                 .map(|id| hir.expect_expr(id))
1453                 .find(|await_expr| {
1454                     let ty = typeck_results.expr_ty_adjusted(&await_expr);
1455                     debug!(
1456                         "maybe_note_obligation_cause_for_async_await: await_expr={:?}",
1457                         await_expr
1458                     );
1459                     ty_matches(ty::Binder::dummy(ty))
1460                 })
1461                 .map(|expr| expr.span);
1462             let ty::GeneratorInteriorTypeCause { span, scope_span, yield_span, expr, .. } = cause;
1463
1464             interior_or_upvar_span = Some(GeneratorInteriorOrUpvar::Interior(*span));
1465             interior_extra_info = Some((*scope_span, *yield_span, *expr, from_awaited_ty));
1466         };
1467
1468         debug!(
1469             "maybe_note_obligation_cause_for_async_await: interior_or_upvar={:?} \
1470                 generator_interior_types={:?}",
1471             interior_or_upvar_span, typeck_results.generator_interior_types
1472         );
1473         if let Some(interior_or_upvar_span) = interior_or_upvar_span {
1474             self.note_obligation_cause_for_async_await(
1475                 err,
1476                 interior_or_upvar_span,
1477                 interior_extra_info,
1478                 generator_body,
1479                 outer_generator,
1480                 trait_ref,
1481                 target_ty,
1482                 typeck_results,
1483                 obligation,
1484                 next_code,
1485             );
1486             true
1487         } else {
1488             false
1489         }
1490     }
1491
1492     /// Unconditionally adds the diagnostic note described in
1493     /// `maybe_note_obligation_cause_for_async_await`'s documentation comment.
1494     fn note_obligation_cause_for_async_await(
1495         &self,
1496         err: &mut DiagnosticBuilder<'_>,
1497         interior_or_upvar_span: GeneratorInteriorOrUpvar,
1498         interior_extra_info: Option<(Option<Span>, Span, Option<hir::HirId>, Option<Span>)>,
1499         inner_generator_body: Option<&hir::Body<'tcx>>,
1500         outer_generator: Option<DefId>,
1501         trait_ref: ty::TraitRef<'tcx>,
1502         target_ty: Ty<'tcx>,
1503         typeck_results: &ty::TypeckResults<'tcx>,
1504         obligation: &PredicateObligation<'tcx>,
1505         next_code: Option<&ObligationCauseCode<'tcx>>,
1506     ) {
1507         let source_map = self.tcx.sess.source_map();
1508
1509         let is_async = inner_generator_body
1510             .and_then(|body| body.generator_kind())
1511             .map(|generator_kind| matches!(generator_kind, hir::GeneratorKind::Async(..)))
1512             .unwrap_or(false);
1513         let (await_or_yield, an_await_or_yield) =
1514             if is_async { ("await", "an await") } else { ("yield", "a yield") };
1515         let future_or_generator = if is_async { "future" } else { "generator" };
1516
1517         // Special case the primary error message when send or sync is the trait that was
1518         // not implemented.
1519         let is_send = self.tcx.is_diagnostic_item(sym::send_trait, trait_ref.def_id);
1520         let is_sync = self.tcx.is_diagnostic_item(sym::sync_trait, trait_ref.def_id);
1521         let hir = self.tcx.hir();
1522         let trait_explanation = if is_send || is_sync {
1523             let (trait_name, trait_verb) =
1524                 if is_send { ("`Send`", "sent") } else { ("`Sync`", "shared") };
1525
1526             err.clear_code();
1527             err.set_primary_message(format!(
1528                 "{} cannot be {} between threads safely",
1529                 future_or_generator, trait_verb
1530             ));
1531
1532             let original_span = err.span.primary_span().unwrap();
1533             let mut span = MultiSpan::from_span(original_span);
1534
1535             let message = outer_generator
1536                 .and_then(|generator_did| {
1537                     Some(match self.tcx.generator_kind(generator_did).unwrap() {
1538                         GeneratorKind::Gen => format!("generator is not {}", trait_name),
1539                         GeneratorKind::Async(AsyncGeneratorKind::Fn) => self
1540                             .tcx
1541                             .parent(generator_did)
1542                             .and_then(|parent_did| parent_did.as_local())
1543                             .map(|parent_did| hir.local_def_id_to_hir_id(parent_did))
1544                             .and_then(|parent_hir_id| hir.opt_name(parent_hir_id))
1545                             .map(|name| {
1546                                 format!("future returned by `{}` is not {}", name, trait_name)
1547                             })?,
1548                         GeneratorKind::Async(AsyncGeneratorKind::Block) => {
1549                             format!("future created by async block is not {}", trait_name)
1550                         }
1551                         GeneratorKind::Async(AsyncGeneratorKind::Closure) => {
1552                             format!("future created by async closure is not {}", trait_name)
1553                         }
1554                     })
1555                 })
1556                 .unwrap_or_else(|| format!("{} is not {}", future_or_generator, trait_name));
1557
1558             span.push_span_label(original_span, message);
1559             err.set_span(span);
1560
1561             format!("is not {}", trait_name)
1562         } else {
1563             format!("does not implement `{}`", trait_ref.print_only_trait_path())
1564         };
1565
1566         let mut explain_yield =
1567             |interior_span: Span, yield_span: Span, scope_span: Option<Span>| {
1568                 let mut span = MultiSpan::from_span(yield_span);
1569                 if let Ok(snippet) = source_map.span_to_snippet(interior_span) {
1570                     // #70935: If snippet contains newlines, display "the value" instead
1571                     // so that we do not emit complex diagnostics.
1572                     let snippet = &format!("`{}`", snippet);
1573                     let snippet = if snippet.contains('\n') { "the value" } else { snippet };
1574                     // The multispan can be complex here, like:
1575                     // note: future is not `Send` as this value is used across an await
1576                     //   --> $DIR/issue-70935-complex-spans.rs:13:9
1577                     //    |
1578                     // LL |            baz(|| async{
1579                     //    |  __________^___-
1580                     //    | | _________|
1581                     //    | ||
1582                     // LL | ||             foo(tx.clone());
1583                     // LL | ||         }).await;
1584                     //    | ||         -      ^- value is later dropped here
1585                     //    | ||_________|______|
1586                     //    | |__________|      await occurs here, with value maybe used later
1587                     //    |            has type `closure` which is not `Send`
1588                     //
1589                     // So, detect it and separate into some notes, like:
1590                     //
1591                     // note: future is not `Send` as this value is used across an await
1592                     //   --> $DIR/issue-70935-complex-spans.rs:13:9
1593                     //    |
1594                     // LL | /         baz(|| async{
1595                     // LL | |             foo(tx.clone());
1596                     // LL | |         }).await;
1597                     //    | |________________^ first, await occurs here, with the value maybe used later...
1598                     // note: the value is later dropped here
1599                     //   --> $DIR/issue-70935-complex-spans.rs:15:17
1600                     //    |
1601                     // LL |         }).await;
1602                     //    |                 ^
1603                     //
1604                     // If available, use the scope span to annotate the drop location.
1605                     if let Some(scope_span) = scope_span {
1606                         let scope_span = source_map.end_point(scope_span);
1607                         let is_overlapped =
1608                             yield_span.overlaps(scope_span) || yield_span.overlaps(interior_span);
1609                         if is_overlapped {
1610                             span.push_span_label(
1611                                 yield_span,
1612                                 format!(
1613                                     "first, {} occurs here, with {} maybe used later...",
1614                                     await_or_yield, snippet
1615                                 ),
1616                             );
1617                             err.span_note(
1618                                 span,
1619                                 &format!(
1620                                     "{} {} as this value is used across {}",
1621                                     future_or_generator, trait_explanation, an_await_or_yield
1622                                 ),
1623                             );
1624                             if source_map.is_multiline(interior_span) {
1625                                 err.span_note(
1626                                     scope_span,
1627                                     &format!("{} is later dropped here", snippet),
1628                                 );
1629                                 err.span_note(
1630                                     interior_span,
1631                                     &format!(
1632                                         "this has type `{}` which {}",
1633                                         target_ty, trait_explanation
1634                                     ),
1635                                 );
1636                             } else {
1637                                 let mut span = MultiSpan::from_span(scope_span);
1638                                 span.push_span_label(
1639                                     interior_span,
1640                                     format!("has type `{}` which {}", target_ty, trait_explanation),
1641                                 );
1642                                 err.span_note(span, &format!("{} is later dropped here", snippet));
1643                             }
1644                         } else {
1645                             span.push_span_label(
1646                                 yield_span,
1647                                 format!(
1648                                     "{} occurs here, with {} maybe used later",
1649                                     await_or_yield, snippet
1650                                 ),
1651                             );
1652                             span.push_span_label(
1653                                 scope_span,
1654                                 format!("{} is later dropped here", snippet),
1655                             );
1656                             span.push_span_label(
1657                                 interior_span,
1658                                 format!("has type `{}` which {}", target_ty, trait_explanation),
1659                             );
1660                             err.span_note(
1661                                 span,
1662                                 &format!(
1663                                     "{} {} as this value is used across {}",
1664                                     future_or_generator, trait_explanation, an_await_or_yield
1665                                 ),
1666                             );
1667                         }
1668                     } else {
1669                         span.push_span_label(
1670                             yield_span,
1671                             format!(
1672                                 "{} occurs here, with {} maybe used later",
1673                                 await_or_yield, snippet
1674                             ),
1675                         );
1676                         span.push_span_label(
1677                             interior_span,
1678                             format!("has type `{}` which {}", target_ty, trait_explanation),
1679                         );
1680                         err.span_note(
1681                             span,
1682                             &format!(
1683                                 "{} {} as this value is used across {}",
1684                                 future_or_generator, trait_explanation, an_await_or_yield
1685                             ),
1686                         );
1687                     }
1688                 }
1689             };
1690         match interior_or_upvar_span {
1691             GeneratorInteriorOrUpvar::Interior(interior_span) => {
1692                 if let Some((scope_span, yield_span, expr, from_awaited_ty)) = interior_extra_info {
1693                     if let Some(await_span) = from_awaited_ty {
1694                         // The type causing this obligation is one being awaited at await_span.
1695                         let mut span = MultiSpan::from_span(await_span);
1696                         span.push_span_label(
1697                             await_span,
1698                             format!(
1699                                 "await occurs here on type `{}`, which {}",
1700                                 target_ty, trait_explanation
1701                             ),
1702                         );
1703                         err.span_note(
1704                             span,
1705                             &format!(
1706                                 "future {not_trait} as it awaits another future which {not_trait}",
1707                                 not_trait = trait_explanation
1708                             ),
1709                         );
1710                     } else {
1711                         // Look at the last interior type to get a span for the `.await`.
1712                         debug!(
1713                             "note_obligation_cause_for_async_await generator_interior_types: {:#?}",
1714                             typeck_results.generator_interior_types
1715                         );
1716                         explain_yield(interior_span, yield_span, scope_span);
1717                     }
1718
1719                     if let Some(expr_id) = expr {
1720                         let expr = hir.expect_expr(expr_id);
1721                         debug!("target_ty evaluated from {:?}", expr);
1722
1723                         let parent = hir.get_parent_node(expr_id);
1724                         if let Some(hir::Node::Expr(e)) = hir.find(parent) {
1725                             let parent_span = hir.span(parent);
1726                             let parent_did = parent.owner.to_def_id();
1727                             // ```rust
1728                             // impl T {
1729                             //     fn foo(&self) -> i32 {}
1730                             // }
1731                             // T.foo();
1732                             // ^^^^^^^ a temporary `&T` created inside this method call due to `&self`
1733                             // ```
1734                             //
1735                             let is_region_borrow = typeck_results
1736                                 .expr_adjustments(expr)
1737                                 .iter()
1738                                 .any(|adj| adj.is_region_borrow());
1739
1740                             // ```rust
1741                             // struct Foo(*const u8);
1742                             // bar(Foo(std::ptr::null())).await;
1743                             //     ^^^^^^^^^^^^^^^^^^^^^ raw-ptr `*T` created inside this struct ctor.
1744                             // ```
1745                             debug!("parent_def_kind: {:?}", self.tcx.def_kind(parent_did));
1746                             let is_raw_borrow_inside_fn_like_call =
1747                                 match self.tcx.def_kind(parent_did) {
1748                                     DefKind::Fn | DefKind::Ctor(..) => target_ty.is_unsafe_ptr(),
1749                                     _ => false,
1750                                 };
1751
1752                             if (typeck_results.is_method_call(e) && is_region_borrow)
1753                                 || is_raw_borrow_inside_fn_like_call
1754                             {
1755                                 err.span_help(
1756                                     parent_span,
1757                                     "consider moving this into a `let` \
1758                         binding to create a shorter lived borrow",
1759                                 );
1760                             }
1761                         }
1762                     }
1763                 }
1764             }
1765             GeneratorInteriorOrUpvar::Upvar(upvar_span) => {
1766                 let mut span = MultiSpan::from_span(upvar_span);
1767                 span.push_span_label(
1768                     upvar_span,
1769                     format!("has type `{}` which {}", target_ty, trait_explanation),
1770                 );
1771                 err.span_note(span, &format!("captured value {}", trait_explanation));
1772             }
1773         }
1774
1775         // Add a note for the item obligation that remains - normally a note pointing to the
1776         // bound that introduced the obligation (e.g. `T: Send`).
1777         debug!("note_obligation_cause_for_async_await: next_code={:?}", next_code);
1778         self.note_obligation_cause_code(
1779             err,
1780             &obligation.predicate,
1781             next_code.unwrap(),
1782             &mut Vec::new(),
1783             &mut Default::default(),
1784         );
1785     }
1786
1787     fn note_obligation_cause_code<T>(
1788         &self,
1789         err: &mut DiagnosticBuilder<'_>,
1790         predicate: &T,
1791         cause_code: &ObligationCauseCode<'tcx>,
1792         obligated_types: &mut Vec<&ty::TyS<'tcx>>,
1793         seen_requirements: &mut FxHashSet<DefId>,
1794     ) where
1795         T: fmt::Display,
1796     {
1797         let tcx = self.tcx;
1798         match *cause_code {
1799             ObligationCauseCode::ExprAssignable
1800             | ObligationCauseCode::MatchExpressionArm { .. }
1801             | ObligationCauseCode::Pattern { .. }
1802             | ObligationCauseCode::IfExpression { .. }
1803             | ObligationCauseCode::IfExpressionWithNoElse
1804             | ObligationCauseCode::MainFunctionType
1805             | ObligationCauseCode::StartFunctionType
1806             | ObligationCauseCode::IntrinsicType
1807             | ObligationCauseCode::MethodReceiver
1808             | ObligationCauseCode::ReturnNoExpression
1809             | ObligationCauseCode::UnifyReceiver(..)
1810             | ObligationCauseCode::MiscObligation => {}
1811             ObligationCauseCode::SliceOrArrayElem => {
1812                 err.note("slice and array elements must have `Sized` type");
1813             }
1814             ObligationCauseCode::TupleElem => {
1815                 err.note("only the last element of a tuple may have a dynamically sized type");
1816             }
1817             ObligationCauseCode::ProjectionWf(data) => {
1818                 err.note(&format!("required so that the projection `{}` is well-formed", data,));
1819             }
1820             ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
1821                 err.note(&format!(
1822                     "required so that reference `{}` does not outlive its referent",
1823                     ref_ty,
1824                 ));
1825             }
1826             ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
1827                 err.note(&format!(
1828                     "required so that the lifetime bound of `{}` for `{}` is satisfied",
1829                     region, object_ty,
1830                 ));
1831             }
1832             ObligationCauseCode::ItemObligation(item_def_id) => {
1833                 let item_name = tcx.def_path_str(item_def_id);
1834                 let msg = format!("required by `{}`", item_name);
1835                 if let Some(sp) = tcx.hir().span_if_local(item_def_id) {
1836                     let sp = tcx.sess.source_map().guess_head_span(sp);
1837                     err.span_label(sp, &msg);
1838                 } else {
1839                     err.note(&msg);
1840                 }
1841             }
1842             ObligationCauseCode::BindingObligation(item_def_id, span) => {
1843                 let item_name = tcx.def_path_str(item_def_id);
1844                 let msg = format!("required by this bound in `{}`", item_name);
1845                 if let Some(ident) = tcx.opt_item_name(item_def_id) {
1846                     let sm = tcx.sess.source_map();
1847                     let same_line =
1848                         match (sm.lookup_line(ident.span.hi()), sm.lookup_line(span.lo())) {
1849                             (Ok(l), Ok(r)) => l.line == r.line,
1850                             _ => true,
1851                         };
1852                     if !ident.span.overlaps(span) && !same_line {
1853                         err.span_label(ident.span, "required by a bound in this");
1854                     }
1855                 }
1856                 if span != DUMMY_SP {
1857                     err.span_label(span, &msg);
1858                 } else {
1859                     err.note(&msg);
1860                 }
1861             }
1862             ObligationCauseCode::ObjectCastObligation(object_ty) => {
1863                 err.note(&format!(
1864                     "required for the cast to the object type `{}`",
1865                     self.ty_to_string(object_ty)
1866                 ));
1867             }
1868             ObligationCauseCode::Coercion { source: _, target } => {
1869                 err.note(&format!("required by cast to type `{}`", self.ty_to_string(target)));
1870             }
1871             ObligationCauseCode::RepeatVec(suggest_const_in_array_repeat_expressions) => {
1872                 err.note(
1873                     "the `Copy` trait is required because the repeated element will be copied",
1874                 );
1875                 if suggest_const_in_array_repeat_expressions {
1876                     err.note(
1877                         "this array initializer can be evaluated at compile-time, see issue \
1878                          #49147 <https://github.com/rust-lang/rust/issues/49147> \
1879                          for more information",
1880                     );
1881                     if tcx.sess.opts.unstable_features.is_nightly_build() {
1882                         err.help(
1883                             "add `#![feature(const_in_array_repeat_expressions)]` to the \
1884                              crate attributes to enable",
1885                         );
1886                     }
1887                 }
1888             }
1889             ObligationCauseCode::VariableType(hir_id) => {
1890                 let parent_node = self.tcx.hir().get_parent_node(hir_id);
1891                 match self.tcx.hir().find(parent_node) {
1892                     Some(Node::Local(hir::Local {
1893                         init: Some(hir::Expr { kind: hir::ExprKind::Index(_, _), span, .. }),
1894                         ..
1895                     })) => {
1896                         // When encountering an assignment of an unsized trait, like
1897                         // `let x = ""[..];`, provide a suggestion to borrow the initializer in
1898                         // order to use have a slice instead.
1899                         err.span_suggestion_verbose(
1900                             span.shrink_to_lo(),
1901                             "consider borrowing here",
1902                             "&".to_owned(),
1903                             Applicability::MachineApplicable,
1904                         );
1905                         err.note("all local variables must have a statically known size");
1906                     }
1907                     Some(Node::Param(param)) => {
1908                         err.span_suggestion_verbose(
1909                             param.ty_span.shrink_to_lo(),
1910                             "function arguments must have a statically known size, borrowed types \
1911                             always have a known size",
1912                             "&".to_owned(),
1913                             Applicability::MachineApplicable,
1914                         );
1915                     }
1916                     _ => {
1917                         err.note("all local variables must have a statically known size");
1918                     }
1919                 }
1920                 if !self.tcx.features().unsized_locals {
1921                     err.help("unsized locals are gated as an unstable feature");
1922                 }
1923             }
1924             ObligationCauseCode::SizedArgumentType(sp) => {
1925                 if let Some(span) = sp {
1926                     err.span_suggestion_verbose(
1927                         span.shrink_to_lo(),
1928                         "function arguments must have a statically known size, borrowed types \
1929                          always have a known size",
1930                         "&".to_string(),
1931                         Applicability::MachineApplicable,
1932                     );
1933                 } else {
1934                     err.note("all function arguments must have a statically known size");
1935                 }
1936                 if tcx.sess.opts.unstable_features.is_nightly_build()
1937                     && !self.tcx.features().unsized_fn_params
1938                 {
1939                     err.help("unsized fn params are gated as an unstable feature");
1940                 }
1941             }
1942             ObligationCauseCode::SizedReturnType => {
1943                 err.note("the return type of a function must have a statically known size");
1944             }
1945             ObligationCauseCode::SizedYieldType => {
1946                 err.note("the yield type of a generator must have a statically known size");
1947             }
1948             ObligationCauseCode::AssignmentLhsSized => {
1949                 err.note("the left-hand-side of an assignment must have a statically known size");
1950             }
1951             ObligationCauseCode::TupleInitializerSized => {
1952                 err.note("tuples must have a statically known size to be initialized");
1953             }
1954             ObligationCauseCode::StructInitializerSized => {
1955                 err.note("structs must have a statically known size to be initialized");
1956             }
1957             ObligationCauseCode::FieldSized { adt_kind: ref item, last, span } => {
1958                 match *item {
1959                     AdtKind::Struct => {
1960                         if last {
1961                             err.note(
1962                                 "the last field of a packed struct may only have a \
1963                                 dynamically sized type if it does not need drop to be run",
1964                             );
1965                         } else {
1966                             err.note(
1967                                 "only the last field of a struct may have a dynamically sized type",
1968                             );
1969                         }
1970                     }
1971                     AdtKind::Union => {
1972                         err.note("no field of a union may have a dynamically sized type");
1973                     }
1974                     AdtKind::Enum => {
1975                         err.note("no field of an enum variant may have a dynamically sized type");
1976                     }
1977                 }
1978                 err.help("change the field's type to have a statically known size");
1979                 err.span_suggestion(
1980                     span.shrink_to_lo(),
1981                     "borrowed types always have a statically known size",
1982                     "&".to_string(),
1983                     Applicability::MachineApplicable,
1984                 );
1985                 err.multipart_suggestion(
1986                     "the `Box` type always has a statically known size and allocates its contents \
1987                      in the heap",
1988                     vec![
1989                         (span.shrink_to_lo(), "Box<".to_string()),
1990                         (span.shrink_to_hi(), ">".to_string()),
1991                     ],
1992                     Applicability::MachineApplicable,
1993                 );
1994             }
1995             ObligationCauseCode::ConstSized => {
1996                 err.note("constant expressions must have a statically known size");
1997             }
1998             ObligationCauseCode::InlineAsmSized => {
1999                 err.note("all inline asm arguments must have a statically known size");
2000             }
2001             ObligationCauseCode::ConstPatternStructural => {
2002                 err.note("constants used for pattern-matching must derive `PartialEq` and `Eq`");
2003             }
2004             ObligationCauseCode::SharedStatic => {
2005                 err.note("shared static variables must have a type that implements `Sync`");
2006             }
2007             ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
2008                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_ref);
2009                 let ty = parent_trait_ref.skip_binder().self_ty();
2010                 if parent_trait_ref.references_error() {
2011                     err.cancel();
2012                     return;
2013                 }
2014
2015                 // If the obligation for a tuple is set directly by a Generator or Closure,
2016                 // then the tuple must be the one containing capture types.
2017                 let is_upvar_tys_infer_tuple = if !matches!(ty.kind(), ty::Tuple(..)) {
2018                     false
2019                 } else {
2020                     if let ObligationCauseCode::BuiltinDerivedObligation(ref data) =
2021                         *data.parent_code
2022                     {
2023                         let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_ref);
2024                         let ty = parent_trait_ref.skip_binder().self_ty();
2025                         matches!(ty.kind(), ty::Generator(..))
2026                             || matches!(ty.kind(), ty::Closure(..))
2027                     } else {
2028                         false
2029                     }
2030                 };
2031
2032                 // Don't print the tuple of capture types
2033                 if !is_upvar_tys_infer_tuple {
2034                     err.note(&format!("required because it appears within the type `{}`", ty));
2035                 }
2036
2037                 obligated_types.push(ty);
2038
2039                 let parent_predicate = parent_trait_ref.without_const().to_predicate(tcx);
2040                 if !self.is_recursive_obligation(obligated_types, &data.parent_code) {
2041                     // #74711: avoid a stack overflow
2042                     ensure_sufficient_stack(|| {
2043                         self.note_obligation_cause_code(
2044                             err,
2045                             &parent_predicate,
2046                             &data.parent_code,
2047                             obligated_types,
2048                             seen_requirements,
2049                         )
2050                     });
2051                 }
2052             }
2053             ObligationCauseCode::ImplDerivedObligation(ref data) => {
2054                 let mut parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_ref);
2055                 let parent_def_id = parent_trait_ref.def_id();
2056                 err.note(&format!(
2057                     "required because of the requirements on the impl of `{}` for `{}`",
2058                     parent_trait_ref.print_only_trait_path(),
2059                     parent_trait_ref.skip_binder().self_ty()
2060                 ));
2061
2062                 let mut parent_predicate = parent_trait_ref.without_const().to_predicate(tcx);
2063                 let mut data = data;
2064                 let mut count = 0;
2065                 seen_requirements.insert(parent_def_id);
2066                 while let ObligationCauseCode::ImplDerivedObligation(child) = &*data.parent_code {
2067                     // Skip redundant recursive obligation notes. See `ui/issue-20413.rs`.
2068                     let child_trait_ref = self.resolve_vars_if_possible(child.parent_trait_ref);
2069                     let child_def_id = child_trait_ref.def_id();
2070                     if seen_requirements.insert(child_def_id) {
2071                         break;
2072                     }
2073                     count += 1;
2074                     data = child;
2075                     parent_predicate = child_trait_ref.without_const().to_predicate(tcx);
2076                     parent_trait_ref = child_trait_ref;
2077                 }
2078                 if count > 0 {
2079                     err.note(&format!("{} redundant requirements hidden", count));
2080                     err.note(&format!(
2081                         "required because of the requirements on the impl of `{}` for `{}`",
2082                         parent_trait_ref.print_only_trait_path(),
2083                         parent_trait_ref.skip_binder().self_ty()
2084                     ));
2085                 }
2086                 // #74711: avoid a stack overflow
2087                 ensure_sufficient_stack(|| {
2088                     self.note_obligation_cause_code(
2089                         err,
2090                         &parent_predicate,
2091                         &data.parent_code,
2092                         obligated_types,
2093                         seen_requirements,
2094                     )
2095                 });
2096             }
2097             ObligationCauseCode::DerivedObligation(ref data) => {
2098                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_ref);
2099                 let parent_predicate = parent_trait_ref.without_const().to_predicate(tcx);
2100                 // #74711: avoid a stack overflow
2101                 ensure_sufficient_stack(|| {
2102                     self.note_obligation_cause_code(
2103                         err,
2104                         &parent_predicate,
2105                         &data.parent_code,
2106                         obligated_types,
2107                         seen_requirements,
2108                     )
2109                 });
2110             }
2111             ObligationCauseCode::CompareImplMethodObligation { .. } => {
2112                 err.note(&format!(
2113                     "the requirement `{}` appears on the impl method but not on the corresponding \
2114                      trait method",
2115                     predicate
2116                 ));
2117             }
2118             ObligationCauseCode::CompareImplTypeObligation { .. } => {
2119                 err.note(&format!(
2120                     "the requirement `{}` appears on the associated impl type but not on the \
2121                      corresponding associated trait type",
2122                     predicate
2123                 ));
2124             }
2125             ObligationCauseCode::CompareImplConstObligation => {
2126                 err.note(&format!(
2127                     "the requirement `{}` appears on the associated impl constant \
2128                      but not on the corresponding associated trait constant",
2129                     predicate
2130                 ));
2131             }
2132             ObligationCauseCode::ReturnType
2133             | ObligationCauseCode::ReturnValue(_)
2134             | ObligationCauseCode::BlockTailExpression(_) => (),
2135             ObligationCauseCode::TrivialBound => {
2136                 err.help("see issue #48214");
2137                 if tcx.sess.opts.unstable_features.is_nightly_build() {
2138                     err.help("add `#![feature(trivial_bounds)]` to the crate attributes to enable");
2139                 }
2140             }
2141         }
2142     }
2143
2144     fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder<'_>) {
2145         let current_limit = self.tcx.sess.recursion_limit();
2146         let suggested_limit = current_limit * 2;
2147         err.help(&format!(
2148             "consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate (`{}`)",
2149             suggested_limit, self.tcx.crate_name,
2150         ));
2151     }
2152
2153     fn suggest_await_before_try(
2154         &self,
2155         err: &mut DiagnosticBuilder<'_>,
2156         obligation: &PredicateObligation<'tcx>,
2157         trait_ref: ty::Binder<ty::TraitRef<'tcx>>,
2158         span: Span,
2159     ) {
2160         debug!(
2161             "suggest_await_before_try: obligation={:?}, span={:?}, trait_ref={:?}, trait_ref_self_ty={:?}",
2162             obligation,
2163             span,
2164             trait_ref,
2165             trait_ref.self_ty()
2166         );
2167         let body_hir_id = obligation.cause.body_id;
2168         let item_id = self.tcx.hir().get_parent_node(body_hir_id);
2169
2170         if let Some(body_id) = self.tcx.hir().maybe_body_owned_by(item_id) {
2171             let body = self.tcx.hir().body(body_id);
2172             if let Some(hir::GeneratorKind::Async(_)) = body.generator_kind {
2173                 let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
2174
2175                 let self_ty = self.resolve_vars_if_possible(trait_ref.self_ty());
2176
2177                 // Do not check on infer_types to avoid panic in evaluate_obligation.
2178                 if self_ty.has_infer_types() {
2179                     return;
2180                 }
2181                 let self_ty = self.tcx.erase_regions(self_ty);
2182
2183                 let impls_future = self.tcx.type_implements_trait((
2184                     future_trait,
2185                     self_ty.skip_binder(),
2186                     ty::List::empty(),
2187                     obligation.param_env,
2188                 ));
2189
2190                 let item_def_id = self
2191                     .tcx
2192                     .associated_items(future_trait)
2193                     .in_definition_order()
2194                     .next()
2195                     .unwrap()
2196                     .def_id;
2197                 // `<T as Future>::Output`
2198                 let projection_ty = ty::ProjectionTy {
2199                     // `T`
2200                     substs: self.tcx.mk_substs_trait(
2201                         trait_ref.self_ty().skip_binder(),
2202                         self.fresh_substs_for_item(span, item_def_id),
2203                     ),
2204                     // `Future::Output`
2205                     item_def_id,
2206                 };
2207
2208                 let mut selcx = SelectionContext::new(self);
2209
2210                 let mut obligations = vec![];
2211                 let normalized_ty = normalize_projection_type(
2212                     &mut selcx,
2213                     obligation.param_env,
2214                     projection_ty,
2215                     obligation.cause.clone(),
2216                     0,
2217                     &mut obligations,
2218                 );
2219
2220                 debug!(
2221                     "suggest_await_before_try: normalized_projection_type {:?}",
2222                     self.resolve_vars_if_possible(normalized_ty)
2223                 );
2224                 let try_obligation = self.mk_trait_obligation_with_new_self_ty(
2225                     obligation.param_env,
2226                     trait_ref,
2227                     normalized_ty,
2228                 );
2229                 debug!("suggest_await_before_try: try_trait_obligation {:?}", try_obligation);
2230                 if self.predicate_may_hold(&try_obligation) && impls_future {
2231                     if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
2232                         if snippet.ends_with('?') {
2233                             err.span_suggestion_verbose(
2234                                 span.with_hi(span.hi() - BytePos(1)).shrink_to_hi(),
2235                                 "consider `await`ing on the `Future`",
2236                                 ".await".to_string(),
2237                                 Applicability::MaybeIncorrect,
2238                             );
2239                         }
2240                     }
2241                 }
2242             }
2243         }
2244     }
2245 }
2246
2247 /// Collect all the returned expressions within the input expression.
2248 /// Used to point at the return spans when we want to suggest some change to them.
2249 #[derive(Default)]
2250 pub struct ReturnsVisitor<'v> {
2251     pub returns: Vec<&'v hir::Expr<'v>>,
2252     in_block_tail: bool,
2253 }
2254
2255 impl<'v> Visitor<'v> for ReturnsVisitor<'v> {
2256     type Map = hir::intravisit::ErasedMap<'v>;
2257
2258     fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
2259         hir::intravisit::NestedVisitorMap::None
2260     }
2261
2262     fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
2263         // Visit every expression to detect `return` paths, either through the function's tail
2264         // expression or `return` statements. We walk all nodes to find `return` statements, but
2265         // we only care about tail expressions when `in_block_tail` is `true`, which means that
2266         // they're in the return path of the function body.
2267         match ex.kind {
2268             hir::ExprKind::Ret(Some(ex)) => {
2269                 self.returns.push(ex);
2270             }
2271             hir::ExprKind::Block(block, _) if self.in_block_tail => {
2272                 self.in_block_tail = false;
2273                 for stmt in block.stmts {
2274                     hir::intravisit::walk_stmt(self, stmt);
2275                 }
2276                 self.in_block_tail = true;
2277                 if let Some(expr) = block.expr {
2278                     self.visit_expr(expr);
2279                 }
2280             }
2281             hir::ExprKind::If(_, then, else_opt) if self.in_block_tail => {
2282                 self.visit_expr(then);
2283                 if let Some(el) = else_opt {
2284                     self.visit_expr(el);
2285                 }
2286             }
2287             hir::ExprKind::Match(_, arms, _) if self.in_block_tail => {
2288                 for arm in arms {
2289                     self.visit_expr(arm.body);
2290                 }
2291             }
2292             // We need to walk to find `return`s in the entire body.
2293             _ if !self.in_block_tail => hir::intravisit::walk_expr(self, ex),
2294             _ => self.returns.push(ex),
2295         }
2296     }
2297
2298     fn visit_body(&mut self, body: &'v hir::Body<'v>) {
2299         assert!(!self.in_block_tail);
2300         if body.generator_kind().is_none() {
2301             if let hir::ExprKind::Block(block, None) = body.value.kind {
2302                 if block.expr.is_some() {
2303                     self.in_block_tail = true;
2304                 }
2305             }
2306         }
2307         hir::intravisit::walk_body(self, body);
2308     }
2309 }
2310
2311 /// Collect all the awaited expressions within the input expression.
2312 #[derive(Default)]
2313 struct AwaitsVisitor {
2314     awaits: Vec<hir::HirId>,
2315 }
2316
2317 impl<'v> Visitor<'v> for AwaitsVisitor {
2318     type Map = hir::intravisit::ErasedMap<'v>;
2319
2320     fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
2321         hir::intravisit::NestedVisitorMap::None
2322     }
2323
2324     fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
2325         if let hir::ExprKind::Yield(_, hir::YieldSource::Await { expr: Some(id) }) = ex.kind {
2326             self.awaits.push(id)
2327         }
2328         hir::intravisit::walk_expr(self, ex)
2329     }
2330 }
2331
2332 pub trait NextTypeParamName {
2333     fn next_type_param_name(&self, name: Option<&str>) -> String;
2334 }
2335
2336 impl NextTypeParamName for &[hir::GenericParam<'_>] {
2337     fn next_type_param_name(&self, name: Option<&str>) -> String {
2338         // This is the list of possible parameter names that we might suggest.
2339         let name = name.and_then(|n| n.chars().next()).map(|c| c.to_string().to_uppercase());
2340         let name = name.as_deref();
2341         let possible_names = [name.unwrap_or("T"), "T", "U", "V", "X", "Y", "Z", "A", "B", "C"];
2342         let used_names = self
2343             .iter()
2344             .filter_map(|p| match p.name {
2345                 hir::ParamName::Plain(ident) => Some(ident.name),
2346                 _ => None,
2347             })
2348             .collect::<Vec<_>>();
2349
2350         possible_names
2351             .iter()
2352             .find(|n| !used_names.contains(&Symbol::intern(n)))
2353             .unwrap_or(&"ParamName")
2354             .to_string()
2355     }
2356 }
2357
2358 fn suggest_trait_object_return_type_alternatives(
2359     err: &mut DiagnosticBuilder<'_>,
2360     ret_ty: Span,
2361     trait_obj: &str,
2362     is_object_safe: bool,
2363 ) {
2364     err.span_suggestion(
2365         ret_ty,
2366         "use some type `T` that is `T: Sized` as the return type if all return paths have the \
2367             same type",
2368         "T".to_string(),
2369         Applicability::MaybeIncorrect,
2370     );
2371     err.span_suggestion(
2372         ret_ty,
2373         &format!(
2374             "use `impl {}` as the return type if all return paths have the same type but you \
2375                 want to expose only the trait in the signature",
2376             trait_obj,
2377         ),
2378         format!("impl {}", trait_obj),
2379         Applicability::MaybeIncorrect,
2380     );
2381     if is_object_safe {
2382         err.span_suggestion(
2383             ret_ty,
2384             &format!(
2385                 "use a boxed trait object if all return paths implement trait `{}`",
2386                 trait_obj,
2387             ),
2388             format!("Box<dyn {}>", trait_obj),
2389             Applicability::MaybeIncorrect,
2390         );
2391     }
2392 }