]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/suggestions.rs
Auto merge of #105041 - matthiaskrgr:rollup-7ffry90, r=matthiaskrgr
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / suggestions.rs
1 use super::{DefIdOrName, Obligation, ObligationCause, ObligationCauseCode, PredicateObligation};
2
3 use crate::autoderef::Autoderef;
4 use crate::infer::InferCtxt;
5
6 use hir::def::CtorOf;
7 use hir::HirId;
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_data_structures::stack::ensure_sufficient_stack;
10 use rustc_errors::{
11     error_code, pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder,
12     ErrorGuaranteed, MultiSpan, Style,
13 };
14 use rustc_hir as hir;
15 use rustc_hir::def::DefKind;
16 use rustc_hir::def_id::DefId;
17 use rustc_hir::intravisit::Visitor;
18 use rustc_hir::lang_items::LangItem;
19 use rustc_hir::{AsyncGeneratorKind, GeneratorKind, Node};
20 use rustc_infer::infer::error_reporting::TypeErrCtxt;
21 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
22 use rustc_infer::infer::{InferOk, LateBoundRegionConversionTime};
23 use rustc_middle::hir::map;
24 use rustc_middle::ty::{
25     self, suggest_arbitrary_trait_bound, suggest_constraining_type_param, AdtKind, DefIdTree,
26     GeneratorDiagnosticData, GeneratorInteriorTypeCause, Infer, InferTy, IsSuggestable,
27     ToPredicate, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitable,
28 };
29 use rustc_middle::ty::{TypeAndMut, TypeckResults};
30 use rustc_span::symbol::{sym, Ident, Symbol};
31 use rustc_span::{BytePos, DesugaringKind, ExpnKind, Span, DUMMY_SP};
32 use rustc_target::spec::abi;
33 use std::fmt;
34
35 use super::InferCtxtPrivExt;
36 use crate::infer::InferCtxtExt as _;
37 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
38 use rustc_middle::ty::print::with_no_trimmed_paths;
39
40 #[derive(Debug)]
41 pub enum GeneratorInteriorOrUpvar {
42     // span of interior type
43     Interior(Span, Option<(Option<Span>, Span, Option<hir::HirId>, Option<Span>)>),
44     // span of upvar
45     Upvar(Span),
46 }
47
48 // This type provides a uniform interface to retrieve data on generators, whether it originated from
49 // the local crate being compiled or from a foreign crate.
50 #[derive(Debug)]
51 pub enum GeneratorData<'tcx, 'a> {
52     Local(&'a TypeckResults<'tcx>),
53     Foreign(&'tcx GeneratorDiagnosticData<'tcx>),
54 }
55
56 impl<'tcx, 'a> GeneratorData<'tcx, 'a> {
57     // Try to get information about variables captured by the generator that matches a type we are
58     // looking for with `ty_matches` function. We uses it to find upvar which causes a failure to
59     // meet an obligation
60     fn try_get_upvar_span<F>(
61         &self,
62         infer_context: &InferCtxt<'tcx>,
63         generator_did: DefId,
64         ty_matches: F,
65     ) -> Option<GeneratorInteriorOrUpvar>
66     where
67         F: Fn(ty::Binder<'tcx, Ty<'tcx>>) -> bool,
68     {
69         match self {
70             GeneratorData::Local(typeck_results) => {
71                 infer_context.tcx.upvars_mentioned(generator_did).and_then(|upvars| {
72                     upvars.iter().find_map(|(upvar_id, upvar)| {
73                         let upvar_ty = typeck_results.node_type(*upvar_id);
74                         let upvar_ty = infer_context.resolve_vars_if_possible(upvar_ty);
75                         if ty_matches(ty::Binder::dummy(upvar_ty)) {
76                             Some(GeneratorInteriorOrUpvar::Upvar(upvar.span))
77                         } else {
78                             None
79                         }
80                     })
81                 })
82             }
83             GeneratorData::Foreign(_) => None,
84         }
85     }
86
87     // Try to get the span of a type being awaited on that matches the type we are looking with the
88     // `ty_matches` function. We uses it to find awaited type which causes a failure to meet an
89     // obligation
90     fn get_from_await_ty<F>(
91         &self,
92         visitor: AwaitsVisitor,
93         hir: map::Map<'tcx>,
94         ty_matches: F,
95     ) -> Option<Span>
96     where
97         F: Fn(ty::Binder<'tcx, Ty<'tcx>>) -> bool,
98     {
99         match self {
100             GeneratorData::Local(typeck_results) => visitor
101                 .awaits
102                 .into_iter()
103                 .map(|id| hir.expect_expr(id))
104                 .find(|await_expr| {
105                     ty_matches(ty::Binder::dummy(typeck_results.expr_ty_adjusted(&await_expr)))
106                 })
107                 .map(|expr| expr.span),
108             GeneratorData::Foreign(generator_diagnostic_data) => visitor
109                 .awaits
110                 .into_iter()
111                 .map(|id| hir.expect_expr(id))
112                 .find(|await_expr| {
113                     ty_matches(ty::Binder::dummy(
114                         generator_diagnostic_data
115                             .adjustments
116                             .get(&await_expr.hir_id.local_id)
117                             .map_or::<&[ty::adjustment::Adjustment<'tcx>], _>(&[], |a| &a[..])
118                             .last()
119                             .map_or_else::<Ty<'tcx>, _, _>(
120                                 || {
121                                     generator_diagnostic_data
122                                         .nodes_types
123                                         .get(&await_expr.hir_id.local_id)
124                                         .cloned()
125                                         .unwrap_or_else(|| {
126                                             bug!(
127                                                 "node_type: no type for node `{}`",
128                                                 ty::tls::with(|tcx| tcx
129                                                     .hir()
130                                                     .node_to_string(await_expr.hir_id))
131                                             )
132                                         })
133                                 },
134                                 |adj| adj.target,
135                             ),
136                     ))
137                 })
138                 .map(|expr| expr.span),
139         }
140     }
141
142     /// Get the type, expression, span and optional scope span of all types
143     /// that are live across the yield of this generator
144     fn get_generator_interior_types(
145         &self,
146     ) -> ty::Binder<'tcx, &[GeneratorInteriorTypeCause<'tcx>]> {
147         match self {
148             GeneratorData::Local(typeck_result) => {
149                 typeck_result.generator_interior_types.as_deref()
150             }
151             GeneratorData::Foreign(generator_diagnostic_data) => {
152                 generator_diagnostic_data.generator_interior_types.as_deref()
153             }
154         }
155     }
156
157     // Used to get the source of the data, note we don't have as much information for generators
158     // originated from foreign crates
159     fn is_foreign(&self) -> bool {
160         match self {
161             GeneratorData::Local(_) => false,
162             GeneratorData::Foreign(_) => true,
163         }
164     }
165 }
166
167 // This trait is public to expose the diagnostics methods to clippy.
168 pub trait TypeErrCtxtExt<'tcx> {
169     fn suggest_restricting_param_bound(
170         &self,
171         err: &mut Diagnostic,
172         trait_pred: ty::PolyTraitPredicate<'tcx>,
173         associated_item: Option<(&'static str, Ty<'tcx>)>,
174         body_id: hir::HirId,
175     );
176
177     fn suggest_dereferences(
178         &self,
179         obligation: &PredicateObligation<'tcx>,
180         err: &mut Diagnostic,
181         trait_pred: ty::PolyTraitPredicate<'tcx>,
182     ) -> bool;
183
184     fn get_closure_name(&self, def_id: DefId, err: &mut Diagnostic, msg: &str) -> Option<Symbol>;
185
186     fn suggest_fn_call(
187         &self,
188         obligation: &PredicateObligation<'tcx>,
189         err: &mut Diagnostic,
190         trait_pred: ty::PolyTraitPredicate<'tcx>,
191     ) -> bool;
192
193     fn suggest_add_reference_to_arg(
194         &self,
195         obligation: &PredicateObligation<'tcx>,
196         err: &mut Diagnostic,
197         trait_pred: ty::PolyTraitPredicate<'tcx>,
198         has_custom_message: bool,
199     ) -> bool;
200
201     fn suggest_borrowing_for_object_cast(
202         &self,
203         err: &mut Diagnostic,
204         obligation: &PredicateObligation<'tcx>,
205         self_ty: Ty<'tcx>,
206         object_ty: Ty<'tcx>,
207     );
208
209     fn suggest_remove_reference(
210         &self,
211         obligation: &PredicateObligation<'tcx>,
212         err: &mut Diagnostic,
213         trait_pred: ty::PolyTraitPredicate<'tcx>,
214     ) -> bool;
215
216     fn suggest_remove_await(&self, obligation: &PredicateObligation<'tcx>, err: &mut Diagnostic);
217
218     fn suggest_change_mut(
219         &self,
220         obligation: &PredicateObligation<'tcx>,
221         err: &mut Diagnostic,
222         trait_pred: ty::PolyTraitPredicate<'tcx>,
223     );
224
225     fn suggest_semicolon_removal(
226         &self,
227         obligation: &PredicateObligation<'tcx>,
228         err: &mut Diagnostic,
229         span: Span,
230         trait_pred: ty::PolyTraitPredicate<'tcx>,
231     ) -> bool;
232
233     fn return_type_span(&self, obligation: &PredicateObligation<'tcx>) -> Option<Span>;
234
235     fn suggest_impl_trait(
236         &self,
237         err: &mut Diagnostic,
238         span: Span,
239         obligation: &PredicateObligation<'tcx>,
240         trait_pred: ty::PolyTraitPredicate<'tcx>,
241     ) -> bool;
242
243     fn point_at_returns_when_relevant(
244         &self,
245         err: &mut Diagnostic,
246         obligation: &PredicateObligation<'tcx>,
247     );
248
249     fn report_closure_arg_mismatch(
250         &self,
251         span: Span,
252         found_span: Option<Span>,
253         found: ty::PolyTraitRef<'tcx>,
254         expected: ty::PolyTraitRef<'tcx>,
255         cause: &ObligationCauseCode<'tcx>,
256     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
257
258     fn note_conflicting_closure_bounds(
259         &self,
260         cause: &ObligationCauseCode<'tcx>,
261         err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
262     );
263
264     fn suggest_fully_qualified_path(
265         &self,
266         err: &mut Diagnostic,
267         item_def_id: DefId,
268         span: Span,
269         trait_ref: DefId,
270     );
271
272     fn maybe_note_obligation_cause_for_async_await(
273         &self,
274         err: &mut Diagnostic,
275         obligation: &PredicateObligation<'tcx>,
276     ) -> bool;
277
278     fn note_obligation_cause_for_async_await(
279         &self,
280         err: &mut Diagnostic,
281         interior_or_upvar_span: GeneratorInteriorOrUpvar,
282         is_async: bool,
283         outer_generator: Option<DefId>,
284         trait_pred: ty::TraitPredicate<'tcx>,
285         target_ty: Ty<'tcx>,
286         typeck_results: Option<&ty::TypeckResults<'tcx>>,
287         obligation: &PredicateObligation<'tcx>,
288         next_code: Option<&ObligationCauseCode<'tcx>>,
289     );
290
291     fn note_obligation_cause_code<T>(
292         &self,
293         err: &mut Diagnostic,
294         predicate: &T,
295         param_env: ty::ParamEnv<'tcx>,
296         cause_code: &ObligationCauseCode<'tcx>,
297         obligated_types: &mut Vec<Ty<'tcx>>,
298         seen_requirements: &mut FxHashSet<DefId>,
299     ) where
300         T: fmt::Display + ToPredicate<'tcx, T>;
301
302     /// Suggest to await before try: future? => future.await?
303     fn suggest_await_before_try(
304         &self,
305         err: &mut Diagnostic,
306         obligation: &PredicateObligation<'tcx>,
307         trait_pred: ty::PolyTraitPredicate<'tcx>,
308         span: Span,
309     );
310
311     fn suggest_floating_point_literal(
312         &self,
313         obligation: &PredicateObligation<'tcx>,
314         err: &mut Diagnostic,
315         trait_ref: &ty::PolyTraitRef<'tcx>,
316     );
317
318     fn suggest_derive(
319         &self,
320         obligation: &PredicateObligation<'tcx>,
321         err: &mut Diagnostic,
322         trait_pred: ty::PolyTraitPredicate<'tcx>,
323     );
324
325     fn suggest_dereferencing_index(
326         &self,
327         obligation: &PredicateObligation<'tcx>,
328         err: &mut Diagnostic,
329         trait_pred: ty::PolyTraitPredicate<'tcx>,
330     );
331 }
332
333 fn predicate_constraint(generics: &hir::Generics<'_>, pred: ty::Predicate<'_>) -> (Span, String) {
334     (
335         generics.tail_span_for_predicate_suggestion(),
336         format!("{} {}", generics.add_where_or_trailing_comma(), pred),
337     )
338 }
339
340 /// Type parameter needs more bounds. The trivial case is `T` `where T: Bound`, but
341 /// it can also be an `impl Trait` param that needs to be decomposed to a type
342 /// param for cleaner code.
343 fn suggest_restriction<'tcx>(
344     tcx: TyCtxt<'tcx>,
345     hir_id: HirId,
346     hir_generics: &hir::Generics<'tcx>,
347     msg: &str,
348     err: &mut Diagnostic,
349     fn_sig: Option<&hir::FnSig<'_>>,
350     projection: Option<&ty::ProjectionTy<'_>>,
351     trait_pred: ty::PolyTraitPredicate<'tcx>,
352     // When we are dealing with a trait, `super_traits` will be `Some`:
353     // Given `trait T: A + B + C {}`
354     //              -  ^^^^^^^^^ GenericBounds
355     //              |
356     //              &Ident
357     super_traits: Option<(&Ident, &hir::GenericBounds<'_>)>,
358 ) {
359     if hir_generics.where_clause_span.from_expansion()
360         || hir_generics.where_clause_span.desugaring_kind().is_some()
361     {
362         return;
363     }
364     let Some(item_id) = hir_id.as_owner() else { return; };
365     let generics = tcx.generics_of(item_id);
366     // Given `fn foo(t: impl Trait)` where `Trait` requires assoc type `A`...
367     if let Some((param, bound_str, fn_sig)) =
368         fn_sig.zip(projection).and_then(|(sig, p)| match p.self_ty().kind() {
369             // Shenanigans to get the `Trait` from the `impl Trait`.
370             ty::Param(param) => {
371                 let param_def = generics.type_param(param, tcx);
372                 if param_def.kind.is_synthetic() {
373                     let bound_str =
374                         param_def.name.as_str().strip_prefix("impl ")?.trim_start().to_string();
375                     return Some((param_def, bound_str, sig));
376                 }
377                 None
378             }
379             _ => None,
380         })
381     {
382         let type_param_name = hir_generics.params.next_type_param_name(Some(&bound_str));
383         let trait_pred = trait_pred.fold_with(&mut ReplaceImplTraitFolder {
384             tcx,
385             param,
386             replace_ty: ty::ParamTy::new(generics.count() as u32, Symbol::intern(&type_param_name))
387                 .to_ty(tcx),
388         });
389         if !trait_pred.is_suggestable(tcx, false) {
390             return;
391         }
392         // We know we have an `impl Trait` that doesn't satisfy a required projection.
393
394         // Find all of the occurrences of `impl Trait` for `Trait` in the function arguments'
395         // types. There should be at least one, but there might be *more* than one. In that
396         // case we could just ignore it and try to identify which one needs the restriction,
397         // but instead we choose to suggest replacing all instances of `impl Trait` with `T`
398         // where `T: Trait`.
399         let mut ty_spans = vec![];
400         for input in fn_sig.decl.inputs {
401             ReplaceImplTraitVisitor { ty_spans: &mut ty_spans, param_did: param.def_id }
402                 .visit_ty(input);
403         }
404         // The type param `T: Trait` we will suggest to introduce.
405         let type_param = format!("{}: {}", type_param_name, bound_str);
406
407         let mut sugg = vec![
408             if let Some(span) = hir_generics.span_for_param_suggestion() {
409                 (span, format!(", {}", type_param))
410             } else {
411                 (hir_generics.span, format!("<{}>", type_param))
412             },
413             // `fn foo(t: impl Trait)`
414             //                       ^ suggest `where <T as Trait>::A: Bound`
415             predicate_constraint(hir_generics, trait_pred.to_predicate(tcx)),
416         ];
417         sugg.extend(ty_spans.into_iter().map(|s| (s, type_param_name.to_string())));
418
419         // Suggest `fn foo<T: Trait>(t: T) where <T as Trait>::A: Bound`.
420         // FIXME: once `#![feature(associated_type_bounds)]` is stabilized, we should suggest
421         // `fn foo(t: impl Trait<A: Bound>)` instead.
422         err.multipart_suggestion(
423             "introduce a type parameter with a trait bound instead of using `impl Trait`",
424             sugg,
425             Applicability::MaybeIncorrect,
426         );
427     } else {
428         if !trait_pred.is_suggestable(tcx, false) {
429             return;
430         }
431         // Trivial case: `T` needs an extra bound: `T: Bound`.
432         let (sp, suggestion) = match (
433             hir_generics
434                 .params
435                 .iter()
436                 .find(|p| !matches!(p.kind, hir::GenericParamKind::Type { synthetic: true, .. })),
437             super_traits,
438         ) {
439             (_, None) => predicate_constraint(hir_generics, trait_pred.to_predicate(tcx)),
440             (None, Some((ident, []))) => (
441                 ident.span.shrink_to_hi(),
442                 format!(": {}", trait_pred.print_modifiers_and_trait_path()),
443             ),
444             (_, Some((_, [.., bounds]))) => (
445                 bounds.span().shrink_to_hi(),
446                 format!(" + {}", trait_pred.print_modifiers_and_trait_path()),
447             ),
448             (Some(_), Some((_, []))) => (
449                 hir_generics.span.shrink_to_hi(),
450                 format!(": {}", trait_pred.print_modifiers_and_trait_path()),
451             ),
452         };
453
454         err.span_suggestion_verbose(
455             sp,
456             &format!("consider further restricting {}", msg),
457             suggestion,
458             Applicability::MachineApplicable,
459         );
460     }
461 }
462
463 impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
464     fn suggest_restricting_param_bound(
465         &self,
466         mut err: &mut Diagnostic,
467         trait_pred: ty::PolyTraitPredicate<'tcx>,
468         associated_ty: Option<(&'static str, Ty<'tcx>)>,
469         body_id: hir::HirId,
470     ) {
471         let trait_pred = self.resolve_numeric_literals_with_default(trait_pred);
472
473         let self_ty = trait_pred.skip_binder().self_ty();
474         let (param_ty, projection) = match self_ty.kind() {
475             ty::Param(_) => (true, None),
476             ty::Projection(projection) => (false, Some(projection)),
477             _ => (false, None),
478         };
479
480         // FIXME: Add check for trait bound that is already present, particularly `?Sized` so we
481         //        don't suggest `T: Sized + ?Sized`.
482         let mut hir_id = body_id;
483         while let Some(node) = self.tcx.hir().find(hir_id) {
484             match node {
485                 hir::Node::Item(hir::Item {
486                     ident,
487                     kind: hir::ItemKind::Trait(_, _, generics, bounds, _),
488                     ..
489                 }) if self_ty == self.tcx.types.self_param => {
490                     assert!(param_ty);
491                     // Restricting `Self` for a single method.
492                     suggest_restriction(
493                         self.tcx,
494                         hir_id,
495                         &generics,
496                         "`Self`",
497                         err,
498                         None,
499                         projection,
500                         trait_pred,
501                         Some((ident, bounds)),
502                     );
503                     return;
504                 }
505
506                 hir::Node::TraitItem(hir::TraitItem {
507                     generics,
508                     kind: hir::TraitItemKind::Fn(..),
509                     ..
510                 }) if self_ty == self.tcx.types.self_param => {
511                     assert!(param_ty);
512                     // Restricting `Self` for a single method.
513                     suggest_restriction(
514                         self.tcx, hir_id, &generics, "`Self`", err, None, projection, trait_pred,
515                         None,
516                     );
517                     return;
518                 }
519
520                 hir::Node::TraitItem(hir::TraitItem {
521                     generics,
522                     kind: hir::TraitItemKind::Fn(fn_sig, ..),
523                     ..
524                 })
525                 | hir::Node::ImplItem(hir::ImplItem {
526                     generics,
527                     kind: hir::ImplItemKind::Fn(fn_sig, ..),
528                     ..
529                 })
530                 | hir::Node::Item(hir::Item {
531                     kind: hir::ItemKind::Fn(fn_sig, generics, _), ..
532                 }) if projection.is_some() => {
533                     // Missing restriction on associated type of type parameter (unmet projection).
534                     suggest_restriction(
535                         self.tcx,
536                         hir_id,
537                         &generics,
538                         "the associated type",
539                         err,
540                         Some(fn_sig),
541                         projection,
542                         trait_pred,
543                         None,
544                     );
545                     return;
546                 }
547                 hir::Node::Item(hir::Item {
548                     kind:
549                         hir::ItemKind::Trait(_, _, generics, ..)
550                         | hir::ItemKind::Impl(hir::Impl { generics, .. }),
551                     ..
552                 }) if projection.is_some() => {
553                     // Missing restriction on associated type of type parameter (unmet projection).
554                     suggest_restriction(
555                         self.tcx,
556                         hir_id,
557                         &generics,
558                         "the associated type",
559                         err,
560                         None,
561                         projection,
562                         trait_pred,
563                         None,
564                     );
565                     return;
566                 }
567
568                 hir::Node::Item(hir::Item {
569                     kind:
570                         hir::ItemKind::Struct(_, generics)
571                         | hir::ItemKind::Enum(_, generics)
572                         | hir::ItemKind::Union(_, generics)
573                         | hir::ItemKind::Trait(_, _, generics, ..)
574                         | hir::ItemKind::Impl(hir::Impl { generics, .. })
575                         | hir::ItemKind::Fn(_, generics, _)
576                         | hir::ItemKind::TyAlias(_, generics)
577                         | hir::ItemKind::TraitAlias(generics, _)
578                         | hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }),
579                     ..
580                 })
581                 | hir::Node::TraitItem(hir::TraitItem { generics, .. })
582                 | hir::Node::ImplItem(hir::ImplItem { generics, .. })
583                     if param_ty =>
584                 {
585                     // We skip the 0'th subst (self) because we do not want
586                     // to consider the predicate as not suggestible if the
587                     // self type is an arg position `impl Trait` -- instead,
588                     // we handle that by adding ` + Bound` below.
589                     // FIXME(compiler-errors): It would be nice to do the same
590                     // this that we do in `suggest_restriction` and pull the
591                     // `impl Trait` into a new generic if it shows up somewhere
592                     // else in the predicate.
593                     if !trait_pred.skip_binder().trait_ref.substs[1..]
594                         .iter()
595                         .all(|g| g.is_suggestable(self.tcx, false))
596                     {
597                         return;
598                     }
599                     // Missing generic type parameter bound.
600                     let param_name = self_ty.to_string();
601                     let mut constraint = with_no_trimmed_paths!(
602                         trait_pred.print_modifiers_and_trait_path().to_string()
603                     );
604
605                     if let Some((name, term)) = associated_ty {
606                         // FIXME: this case overlaps with code in TyCtxt::note_and_explain_type_err.
607                         // That should be extracted into a helper function.
608                         if constraint.ends_with('>') {
609                             constraint = format!(
610                                 "{}, {} = {}>",
611                                 &constraint[..constraint.len() - 1],
612                                 name,
613                                 term
614                             );
615                         } else {
616                             constraint.push_str(&format!("<{} = {}>", name, term));
617                         }
618                     }
619
620                     if suggest_constraining_type_param(
621                         self.tcx,
622                         generics,
623                         &mut err,
624                         &param_name,
625                         &constraint,
626                         Some(trait_pred.def_id()),
627                     ) {
628                         return;
629                     }
630                 }
631
632                 hir::Node::Item(hir::Item {
633                     kind:
634                         hir::ItemKind::Struct(_, generics)
635                         | hir::ItemKind::Enum(_, generics)
636                         | hir::ItemKind::Union(_, generics)
637                         | hir::ItemKind::Trait(_, _, generics, ..)
638                         | hir::ItemKind::Impl(hir::Impl { generics, .. })
639                         | hir::ItemKind::Fn(_, generics, _)
640                         | hir::ItemKind::TyAlias(_, generics)
641                         | hir::ItemKind::TraitAlias(generics, _)
642                         | hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }),
643                     ..
644                 }) if !param_ty => {
645                     // Missing generic type parameter bound.
646                     if suggest_arbitrary_trait_bound(
647                         self.tcx,
648                         generics,
649                         &mut err,
650                         trait_pred,
651                         associated_ty,
652                     ) {
653                         return;
654                     }
655                 }
656                 hir::Node::Crate(..) => return,
657
658                 _ => {}
659             }
660
661             hir_id = self.tcx.hir().get_parent_item(hir_id).into();
662         }
663     }
664
665     /// When after several dereferencing, the reference satisfies the trait
666     /// binding. This function provides dereference suggestion for this
667     /// specific situation.
668     fn suggest_dereferences(
669         &self,
670         obligation: &PredicateObligation<'tcx>,
671         err: &mut Diagnostic,
672         trait_pred: ty::PolyTraitPredicate<'tcx>,
673     ) -> bool {
674         // It only make sense when suggesting dereferences for arguments
675         let ObligationCauseCode::FunctionArgumentObligation { arg_hir_id, .. } = obligation.cause.code()
676             else { return false; };
677         let Some(typeck_results) = &self.typeck_results
678             else { return false; };
679         let hir::Node::Expr(expr) = self.tcx.hir().get(*arg_hir_id)
680             else { return false; };
681         let Some(arg_ty) = typeck_results.expr_ty_adjusted_opt(expr)
682             else { return false; };
683
684         let span = obligation.cause.span;
685         let mut real_trait_pred = trait_pred;
686         let mut code = obligation.cause.code();
687         while let Some((parent_code, parent_trait_pred)) = code.parent() {
688             code = parent_code;
689             if let Some(parent_trait_pred) = parent_trait_pred {
690                 real_trait_pred = parent_trait_pred;
691             }
692
693             let real_ty = real_trait_pred.self_ty();
694             // We `erase_late_bound_regions` here because `make_subregion` does not handle
695             // `ReLateBound`, and we don't particularly care about the regions.
696             if self
697                 .can_eq(obligation.param_env, self.tcx.erase_late_bound_regions(real_ty), arg_ty)
698                 .is_err()
699             {
700                 continue;
701             }
702
703             if let ty::Ref(region, base_ty, mutbl) = *real_ty.skip_binder().kind() {
704                 let mut autoderef = Autoderef::new(
705                     self,
706                     obligation.param_env,
707                     obligation.cause.body_id,
708                     span,
709                     base_ty,
710                 );
711                 if let Some(steps) = autoderef.find_map(|(ty, steps)| {
712                     // Re-add the `&`
713                     let ty = self.tcx.mk_ref(region, TypeAndMut { ty, mutbl });
714
715                     // Remapping bound vars here
716                     let real_trait_pred_and_ty =
717                         real_trait_pred.map_bound(|inner_trait_pred| (inner_trait_pred, ty));
718                     let obligation = self.mk_trait_obligation_with_new_self_ty(
719                         obligation.param_env,
720                         real_trait_pred_and_ty,
721                     );
722                     Some(steps).filter(|_| self.predicate_may_hold(&obligation))
723                 }) {
724                     if steps > 0 {
725                         // Don't care about `&mut` because `DerefMut` is used less
726                         // often and user will not expect autoderef happens.
727                         if let Some(hir::Node::Expr(hir::Expr {
728                             kind:
729                                 hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Not, expr),
730                             ..
731                         })) = self.tcx.hir().find(*arg_hir_id)
732                         {
733                             let derefs = "*".repeat(steps);
734                             err.span_suggestion_verbose(
735                                 expr.span.shrink_to_lo(),
736                                 "consider dereferencing here",
737                                 derefs,
738                                 Applicability::MachineApplicable,
739                             );
740                             return true;
741                         }
742                     }
743                 } else if real_trait_pred != trait_pred {
744                     // This branch addresses #87437.
745
746                     // Remapping bound vars here
747                     let real_trait_pred_and_base_ty =
748                         real_trait_pred.map_bound(|inner_trait_pred| (inner_trait_pred, base_ty));
749                     let obligation = self.mk_trait_obligation_with_new_self_ty(
750                         obligation.param_env,
751                         real_trait_pred_and_base_ty,
752                     );
753                     if self.predicate_may_hold(&obligation) {
754                         err.span_suggestion_verbose(
755                             span.shrink_to_lo(),
756                             "consider dereferencing here",
757                             "*",
758                             Applicability::MachineApplicable,
759                         );
760                         return true;
761                     }
762                 }
763             }
764         }
765         false
766     }
767
768     /// Given a closure's `DefId`, return the given name of the closure.
769     ///
770     /// This doesn't account for reassignments, but it's only used for suggestions.
771     fn get_closure_name(&self, def_id: DefId, err: &mut Diagnostic, msg: &str) -> Option<Symbol> {
772         let get_name = |err: &mut Diagnostic, kind: &hir::PatKind<'_>| -> Option<Symbol> {
773             // Get the local name of this closure. This can be inaccurate because
774             // of the possibility of reassignment, but this should be good enough.
775             match &kind {
776                 hir::PatKind::Binding(hir::BindingAnnotation::NONE, _, ident, None) => {
777                     Some(ident.name)
778                 }
779                 _ => {
780                     err.note(msg);
781                     None
782                 }
783             }
784         };
785
786         let hir = self.tcx.hir();
787         let hir_id = hir.local_def_id_to_hir_id(def_id.as_local()?);
788         let parent_node = hir.get_parent_node(hir_id);
789         match hir.find(parent_node) {
790             Some(hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Local(local), .. })) => {
791                 get_name(err, &local.pat.kind)
792             }
793             // Different to previous arm because one is `&hir::Local` and the other
794             // is `P<hir::Local>`.
795             Some(hir::Node::Local(local)) => get_name(err, &local.pat.kind),
796             _ => None,
797         }
798     }
799
800     /// We tried to apply the bound to an `fn` or closure. Check whether calling it would
801     /// evaluate to a type that *would* satisfy the trait binding. If it would, suggest calling
802     /// it: `bar(foo)` â†’ `bar(foo())`. This case is *very* likely to be hit if `foo` is `async`.
803     fn suggest_fn_call(
804         &self,
805         obligation: &PredicateObligation<'tcx>,
806         err: &mut Diagnostic,
807         trait_pred: ty::PolyTraitPredicate<'tcx>,
808     ) -> bool {
809         if let ty::PredicateKind::Clause(ty::Clause::Trait(trait_pred)) = obligation.predicate.kind().skip_binder()
810             && Some(trait_pred.def_id()) == self.tcx.lang_items().sized_trait()
811         {
812             // Don't suggest calling to turn an unsized type into a sized type
813             return false;
814         }
815
816         // This is duplicated from `extract_callable_info` in typeck, which
817         // relies on autoderef, so we can't use it here.
818         let found = trait_pred.self_ty().skip_binder().peel_refs();
819         let Some((def_id_or_name, output, inputs)) = (match *found.kind()
820         {
821             ty::FnPtr(fn_sig) => {
822                 Some((DefIdOrName::Name("function pointer"), fn_sig.output(), fn_sig.inputs()))
823             }
824             ty::FnDef(def_id, _) => {
825                 let fn_sig = found.fn_sig(self.tcx);
826                 Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs()))
827             }
828             ty::Closure(def_id, substs) => {
829                 let fn_sig = substs.as_closure().sig();
830                 Some((
831                     DefIdOrName::DefId(def_id),
832                     fn_sig.output(),
833                     fn_sig.inputs().map_bound(|inputs| &inputs[1..]),
834                 ))
835             }
836             ty::Opaque(def_id, substs) => {
837                 self.tcx.bound_item_bounds(def_id).subst(self.tcx, substs).iter().find_map(|pred| {
838                     if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) = pred.kind().skip_binder()
839                     && Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
840                     // args tuple will always be substs[1]
841                     && let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
842                     {
843                         Some((
844                             DefIdOrName::DefId(def_id),
845                             pred.kind().rebind(proj.term.ty().unwrap()),
846                             pred.kind().rebind(args.as_slice()),
847                         ))
848                     } else {
849                         None
850                     }
851                 })
852             }
853             ty::Dynamic(data, _, ty::Dyn) => {
854                 data.iter().find_map(|pred| {
855                     if let ty::ExistentialPredicate::Projection(proj) = pred.skip_binder()
856                     && Some(proj.item_def_id) == self.tcx.lang_items().fn_once_output()
857                     // for existential projection, substs are shifted over by 1
858                     && let ty::Tuple(args) = proj.substs.type_at(0).kind()
859                     {
860                         Some((
861                             DefIdOrName::Name("trait object"),
862                             pred.rebind(proj.term.ty().unwrap()),
863                             pred.rebind(args.as_slice()),
864                         ))
865                     } else {
866                         None
867                     }
868                 })
869             }
870             ty::Param(_) => {
871                 obligation.param_env.caller_bounds().iter().find_map(|pred| {
872                     if let ty::PredicateKind::Clause(ty::Clause::Projection(proj)) = pred.kind().skip_binder()
873                     && Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
874                     && proj.projection_ty.self_ty() == found
875                     // args tuple will always be substs[1]
876                     && let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
877                     {
878                         Some((
879                             DefIdOrName::Name("type parameter"),
880                             pred.kind().rebind(proj.term.ty().unwrap()),
881                             pred.kind().rebind(args.as_slice()),
882                         ))
883                     } else {
884                         None
885                     }
886                 })
887             }
888             _ => None,
889         }) else { return false; };
890         let output = self.replace_bound_vars_with_fresh_vars(
891             obligation.cause.span,
892             LateBoundRegionConversionTime::FnCall,
893             output,
894         );
895         let inputs = inputs.skip_binder().iter().map(|ty| {
896             self.replace_bound_vars_with_fresh_vars(
897                 obligation.cause.span,
898                 LateBoundRegionConversionTime::FnCall,
899                 inputs.rebind(*ty),
900             )
901         });
902
903         // Remapping bound vars here
904         let trait_pred_and_self = trait_pred.map_bound(|trait_pred| (trait_pred, output));
905
906         let new_obligation =
907             self.mk_trait_obligation_with_new_self_ty(obligation.param_env, trait_pred_and_self);
908         if !self.predicate_must_hold_modulo_regions(&new_obligation) {
909             return false;
910         }
911
912         // Get the name of the callable and the arguments to be used in the suggestion.
913         let hir = self.tcx.hir();
914
915         let msg = match def_id_or_name {
916             DefIdOrName::DefId(def_id) => match self.tcx.def_kind(def_id) {
917                 DefKind::Ctor(CtorOf::Struct, _) => {
918                     "use parentheses to construct this tuple struct".to_string()
919                 }
920                 DefKind::Ctor(CtorOf::Variant, _) => {
921                     "use parentheses to construct this tuple variant".to_string()
922                 }
923                 kind => format!("use parentheses to call this {}", kind.descr(def_id)),
924             },
925             DefIdOrName::Name(name) => format!("use parentheses to call this {name}"),
926         };
927
928         let args = inputs
929             .map(|ty| {
930                 if ty.is_suggestable(self.tcx, false) {
931                     format!("/* {ty} */")
932                 } else {
933                     "/* value */".to_string()
934                 }
935             })
936             .collect::<Vec<_>>()
937             .join(", ");
938
939         if matches!(obligation.cause.code(), ObligationCauseCode::FunctionArgumentObligation { .. })
940             && obligation.cause.span.can_be_used_for_suggestions()
941         {
942             // When the obligation error has been ensured to have been caused by
943             // an argument, the `obligation.cause.span` points at the expression
944             // of the argument, so we can provide a suggestion. Otherwise, we give
945             // a more general note.
946             err.span_suggestion_verbose(
947                 obligation.cause.span.shrink_to_hi(),
948                 &msg,
949                 format!("({args})"),
950                 Applicability::HasPlaceholders,
951             );
952         } else if let DefIdOrName::DefId(def_id) = def_id_or_name {
953             let name = match hir.get_if_local(def_id) {
954                 Some(hir::Node::Expr(hir::Expr {
955                     kind: hir::ExprKind::Closure(hir::Closure { fn_decl_span, .. }),
956                     ..
957                 })) => {
958                     err.span_label(*fn_decl_span, "consider calling this closure");
959                     let Some(name) = self.get_closure_name(def_id, err, &msg) else {
960                         return false;
961                     };
962                     name.to_string()
963                 }
964                 Some(hir::Node::Item(hir::Item { ident, kind: hir::ItemKind::Fn(..), .. })) => {
965                     err.span_label(ident.span, "consider calling this function");
966                     ident.to_string()
967                 }
968                 Some(hir::Node::Ctor(..)) => {
969                     let name = self.tcx.def_path_str(def_id);
970                     err.span_label(
971                         self.tcx.def_span(def_id),
972                         format!("consider calling the constructor for `{}`", name),
973                     );
974                     name
975                 }
976                 _ => return false,
977             };
978             err.help(&format!("{msg}: `{name}({args})`"));
979         }
980         true
981     }
982
983     fn suggest_add_reference_to_arg(
984         &self,
985         obligation: &PredicateObligation<'tcx>,
986         err: &mut Diagnostic,
987         poly_trait_pred: ty::PolyTraitPredicate<'tcx>,
988         has_custom_message: bool,
989     ) -> bool {
990         let span = obligation.cause.span;
991
992         let code = if let ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } =
993             obligation.cause.code()
994         {
995             &parent_code
996         } else if let ObligationCauseCode::ItemObligation(_)
997         | ObligationCauseCode::ExprItemObligation(..) = obligation.cause.code()
998         {
999             obligation.cause.code()
1000         } else if let ExpnKind::Desugaring(DesugaringKind::ForLoop) =
1001             span.ctxt().outer_expn_data().kind
1002         {
1003             obligation.cause.code()
1004         } else {
1005             return false;
1006         };
1007
1008         // List of traits for which it would be nonsensical to suggest borrowing.
1009         // For instance, immutable references are always Copy, so suggesting to
1010         // borrow would always succeed, but it's probably not what the user wanted.
1011         let mut never_suggest_borrow: Vec<_> =
1012             [LangItem::Copy, LangItem::Clone, LangItem::Unpin, LangItem::Sized]
1013                 .iter()
1014                 .filter_map(|lang_item| self.tcx.lang_items().get(*lang_item))
1015                 .collect();
1016
1017         if let Some(def_id) = self.tcx.get_diagnostic_item(sym::Send) {
1018             never_suggest_borrow.push(def_id);
1019         }
1020
1021         let param_env = obligation.param_env;
1022
1023         // Try to apply the original trait binding obligation by borrowing.
1024         let mut try_borrowing = |old_pred: ty::PolyTraitPredicate<'tcx>,
1025                                  blacklist: &[DefId]|
1026          -> bool {
1027             if blacklist.contains(&old_pred.def_id()) {
1028                 return false;
1029             }
1030             // We map bounds to `&T` and `&mut T`
1031             let trait_pred_and_imm_ref = old_pred.map_bound(|trait_pred| {
1032                 (
1033                     trait_pred,
1034                     self.tcx.mk_imm_ref(self.tcx.lifetimes.re_static, trait_pred.self_ty()),
1035                 )
1036             });
1037             let trait_pred_and_mut_ref = old_pred.map_bound(|trait_pred| {
1038                 (
1039                     trait_pred,
1040                     self.tcx.mk_mut_ref(self.tcx.lifetimes.re_static, trait_pred.self_ty()),
1041                 )
1042             });
1043
1044             let mk_result = |trait_pred_and_new_ty| {
1045                 let obligation =
1046                     self.mk_trait_obligation_with_new_self_ty(param_env, trait_pred_and_new_ty);
1047                 self.predicate_must_hold_modulo_regions(&obligation)
1048             };
1049             let imm_ref_self_ty_satisfies_pred = mk_result(trait_pred_and_imm_ref);
1050             let mut_ref_self_ty_satisfies_pred = mk_result(trait_pred_and_mut_ref);
1051
1052             let (ref_inner_ty_satisfies_pred, ref_inner_ty_mut) =
1053                 if let ObligationCauseCode::ItemObligation(_) | ObligationCauseCode::ExprItemObligation(..) = obligation.cause.code()
1054                     && let ty::Ref(_, ty, mutability) = old_pred.self_ty().skip_binder().kind()
1055                 {
1056                     (
1057                         mk_result(old_pred.map_bound(|trait_pred| (trait_pred, *ty))),
1058                         mutability.is_mut(),
1059                     )
1060                 } else {
1061                     (false, false)
1062                 };
1063
1064             if imm_ref_self_ty_satisfies_pred
1065                 || mut_ref_self_ty_satisfies_pred
1066                 || ref_inner_ty_satisfies_pred
1067             {
1068                 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1069                     // We don't want a borrowing suggestion on the fields in structs,
1070                     // ```
1071                     // struct Foo {
1072                     //  the_foos: Vec<Foo>
1073                     // }
1074                     // ```
1075                     if !matches!(
1076                         span.ctxt().outer_expn_data().kind,
1077                         ExpnKind::Root | ExpnKind::Desugaring(DesugaringKind::ForLoop)
1078                     ) {
1079                         return false;
1080                     }
1081                     if snippet.starts_with('&') {
1082                         // This is already a literal borrow and the obligation is failing
1083                         // somewhere else in the obligation chain. Do not suggest non-sense.
1084                         return false;
1085                     }
1086                     // We have a very specific type of error, where just borrowing this argument
1087                     // might solve the problem. In cases like this, the important part is the
1088                     // original type obligation, not the last one that failed, which is arbitrary.
1089                     // Because of this, we modify the error to refer to the original obligation and
1090                     // return early in the caller.
1091
1092                     let msg = format!("the trait bound `{}` is not satisfied", old_pred);
1093                     if has_custom_message {
1094                         err.note(&msg);
1095                     } else {
1096                         err.message =
1097                             vec![(rustc_errors::DiagnosticMessage::Str(msg), Style::NoStyle)];
1098                     }
1099                     err.span_label(
1100                         span,
1101                         format!(
1102                             "the trait `{}` is not implemented for `{}`",
1103                             old_pred.print_modifiers_and_trait_path(),
1104                             old_pred.self_ty().skip_binder(),
1105                         ),
1106                     );
1107
1108                     if imm_ref_self_ty_satisfies_pred && mut_ref_self_ty_satisfies_pred {
1109                         err.span_suggestions(
1110                             span.shrink_to_lo(),
1111                             "consider borrowing here",
1112                             ["&".to_string(), "&mut ".to_string()],
1113                             Applicability::MaybeIncorrect,
1114                         );
1115                     } else {
1116                         let is_mut = mut_ref_self_ty_satisfies_pred || ref_inner_ty_mut;
1117                         err.span_suggestion_verbose(
1118                             span.shrink_to_lo(),
1119                             &format!(
1120                                 "consider{} borrowing here",
1121                                 if is_mut { " mutably" } else { "" }
1122                             ),
1123                             format!("&{}", if is_mut { "mut " } else { "" }),
1124                             Applicability::MaybeIncorrect,
1125                         );
1126                     }
1127                     return true;
1128                 }
1129             }
1130             return false;
1131         };
1132
1133         if let ObligationCauseCode::ImplDerivedObligation(cause) = &*code {
1134             try_borrowing(cause.derived.parent_trait_pred, &[])
1135         } else if let ObligationCauseCode::BindingObligation(_, _)
1136         | ObligationCauseCode::ItemObligation(_)
1137         | ObligationCauseCode::ExprItemObligation(..)
1138         | ObligationCauseCode::ExprBindingObligation(..) = code
1139         {
1140             try_borrowing(poly_trait_pred, &never_suggest_borrow)
1141         } else {
1142             false
1143         }
1144     }
1145
1146     // Suggest borrowing the type
1147     fn suggest_borrowing_for_object_cast(
1148         &self,
1149         err: &mut Diagnostic,
1150         obligation: &PredicateObligation<'tcx>,
1151         self_ty: Ty<'tcx>,
1152         object_ty: Ty<'tcx>,
1153     ) {
1154         let ty::Dynamic(predicates, _, ty::Dyn) = object_ty.kind() else { return; };
1155         let self_ref_ty = self.tcx.mk_imm_ref(self.tcx.lifetimes.re_erased, self_ty);
1156
1157         for predicate in predicates.iter() {
1158             if !self.predicate_must_hold_modulo_regions(
1159                 &obligation.with(self.tcx, predicate.with_self_ty(self.tcx, self_ref_ty)),
1160             ) {
1161                 return;
1162             }
1163         }
1164
1165         err.span_suggestion(
1166             obligation.cause.span.shrink_to_lo(),
1167             &format!(
1168                 "consider borrowing the value, since `&{self_ty}` can be coerced into `{object_ty}`"
1169             ),
1170             "&",
1171             Applicability::MaybeIncorrect,
1172         );
1173     }
1174
1175     /// Whenever references are used by mistake, like `for (i, e) in &vec.iter().enumerate()`,
1176     /// suggest removing these references until we reach a type that implements the trait.
1177     fn suggest_remove_reference(
1178         &self,
1179         obligation: &PredicateObligation<'tcx>,
1180         err: &mut Diagnostic,
1181         trait_pred: ty::PolyTraitPredicate<'tcx>,
1182     ) -> bool {
1183         let span = obligation.cause.span;
1184
1185         let mut suggested = false;
1186         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1187             let refs_number =
1188                 snippet.chars().filter(|c| !c.is_whitespace()).take_while(|c| *c == '&').count();
1189             if let Some('\'') = snippet.chars().filter(|c| !c.is_whitespace()).nth(refs_number) {
1190                 // Do not suggest removal of borrow from type arguments.
1191                 return false;
1192             }
1193
1194             // Skipping binder here, remapping below
1195             let mut suggested_ty = trait_pred.self_ty().skip_binder();
1196
1197             for refs_remaining in 0..refs_number {
1198                 let ty::Ref(_, inner_ty, _) = suggested_ty.kind() else {
1199                     break;
1200                 };
1201                 suggested_ty = *inner_ty;
1202
1203                 // Remapping bound vars here
1204                 let trait_pred_and_suggested_ty =
1205                     trait_pred.map_bound(|trait_pred| (trait_pred, suggested_ty));
1206
1207                 let new_obligation = self.mk_trait_obligation_with_new_self_ty(
1208                     obligation.param_env,
1209                     trait_pred_and_suggested_ty,
1210                 );
1211
1212                 if self.predicate_may_hold(&new_obligation) {
1213                     let sp = self
1214                         .tcx
1215                         .sess
1216                         .source_map()
1217                         .span_take_while(span, |c| c.is_whitespace() || *c == '&');
1218
1219                     let remove_refs = refs_remaining + 1;
1220
1221                     let msg = if remove_refs == 1 {
1222                         "consider removing the leading `&`-reference".to_string()
1223                     } else {
1224                         format!("consider removing {} leading `&`-references", remove_refs)
1225                     };
1226
1227                     err.span_suggestion_short(sp, &msg, "", Applicability::MachineApplicable);
1228                     suggested = true;
1229                     break;
1230                 }
1231             }
1232         }
1233         suggested
1234     }
1235
1236     fn suggest_remove_await(&self, obligation: &PredicateObligation<'tcx>, err: &mut Diagnostic) {
1237         let span = obligation.cause.span;
1238
1239         if let ObligationCauseCode::AwaitableExpr(hir_id) = obligation.cause.code().peel_derives() {
1240             let hir = self.tcx.hir();
1241             if let Some(node) = hir_id.and_then(|hir_id| hir.find(hir_id)) {
1242                 if let hir::Node::Expr(expr) = node {
1243                     // FIXME: use `obligation.predicate.kind()...trait_ref.self_ty()` to see if we have `()`
1244                     // and if not maybe suggest doing something else? If we kept the expression around we
1245                     // could also check if it is an fn call (very likely) and suggest changing *that*, if
1246                     // it is from the local crate.
1247                     err.span_suggestion(
1248                         span,
1249                         "remove the `.await`",
1250                         "",
1251                         Applicability::MachineApplicable,
1252                     );
1253                     // FIXME: account for associated `async fn`s.
1254                     if let hir::Expr { span, kind: hir::ExprKind::Call(base, _), .. } = expr {
1255                         if let ty::PredicateKind::Clause(ty::Clause::Trait(pred)) =
1256                             obligation.predicate.kind().skip_binder()
1257                         {
1258                             err.span_label(
1259                                 *span,
1260                                 &format!("this call returns `{}`", pred.self_ty()),
1261                             );
1262                         }
1263                         if let Some(typeck_results) = &self.typeck_results
1264                             && let ty = typeck_results.expr_ty_adjusted(base)
1265                             && let ty::FnDef(def_id, _substs) = ty.kind()
1266                             && let Some(hir::Node::Item(hir::Item { ident, span, vis_span, .. })) =
1267                                 hir.get_if_local(*def_id)
1268                         {
1269                             let msg = format!(
1270                                 "alternatively, consider making `fn {}` asynchronous",
1271                                 ident
1272                             );
1273                             if vis_span.is_empty() {
1274                                 err.span_suggestion_verbose(
1275                                     span.shrink_to_lo(),
1276                                     &msg,
1277                                     "async ",
1278                                     Applicability::MaybeIncorrect,
1279                                 );
1280                             } else {
1281                                 err.span_suggestion_verbose(
1282                                     vis_span.shrink_to_hi(),
1283                                     &msg,
1284                                     " async",
1285                                     Applicability::MaybeIncorrect,
1286                                 );
1287                             }
1288                         }
1289                     }
1290                 }
1291             }
1292         }
1293     }
1294
1295     /// Check if the trait bound is implemented for a different mutability and note it in the
1296     /// final error.
1297     fn suggest_change_mut(
1298         &self,
1299         obligation: &PredicateObligation<'tcx>,
1300         err: &mut Diagnostic,
1301         trait_pred: ty::PolyTraitPredicate<'tcx>,
1302     ) {
1303         let points_at_arg = matches!(
1304             obligation.cause.code(),
1305             ObligationCauseCode::FunctionArgumentObligation { .. },
1306         );
1307
1308         let span = obligation.cause.span;
1309         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1310             let refs_number =
1311                 snippet.chars().filter(|c| !c.is_whitespace()).take_while(|c| *c == '&').count();
1312             if let Some('\'') = snippet.chars().filter(|c| !c.is_whitespace()).nth(refs_number) {
1313                 // Do not suggest removal of borrow from type arguments.
1314                 return;
1315             }
1316             let trait_pred = self.resolve_vars_if_possible(trait_pred);
1317             if trait_pred.has_non_region_infer() {
1318                 // Do not ICE while trying to find if a reborrow would succeed on a trait with
1319                 // unresolved bindings.
1320                 return;
1321             }
1322
1323             // Skipping binder here, remapping below
1324             if let ty::Ref(region, t_type, mutability) = *trait_pred.skip_binder().self_ty().kind()
1325             {
1326                 let suggested_ty = match mutability {
1327                     hir::Mutability::Mut => self.tcx.mk_imm_ref(region, t_type),
1328                     hir::Mutability::Not => self.tcx.mk_mut_ref(region, t_type),
1329                 };
1330
1331                 // Remapping bound vars here
1332                 let trait_pred_and_suggested_ty =
1333                     trait_pred.map_bound(|trait_pred| (trait_pred, suggested_ty));
1334
1335                 let new_obligation = self.mk_trait_obligation_with_new_self_ty(
1336                     obligation.param_env,
1337                     trait_pred_and_suggested_ty,
1338                 );
1339                 let suggested_ty_would_satisfy_obligation = self
1340                     .evaluate_obligation_no_overflow(&new_obligation)
1341                     .must_apply_modulo_regions();
1342                 if suggested_ty_would_satisfy_obligation {
1343                     let sp = self
1344                         .tcx
1345                         .sess
1346                         .source_map()
1347                         .span_take_while(span, |c| c.is_whitespace() || *c == '&');
1348                     if points_at_arg && mutability.is_not() && refs_number > 0 {
1349                         err.span_suggestion_verbose(
1350                             sp,
1351                             "consider changing this borrow's mutability",
1352                             "&mut ",
1353                             Applicability::MachineApplicable,
1354                         );
1355                     } else {
1356                         err.note(&format!(
1357                             "`{}` is implemented for `{:?}`, but not for `{:?}`",
1358                             trait_pred.print_modifiers_and_trait_path(),
1359                             suggested_ty,
1360                             trait_pred.skip_binder().self_ty(),
1361                         ));
1362                     }
1363                 }
1364             }
1365         }
1366     }
1367
1368     fn suggest_semicolon_removal(
1369         &self,
1370         obligation: &PredicateObligation<'tcx>,
1371         err: &mut Diagnostic,
1372         span: Span,
1373         trait_pred: ty::PolyTraitPredicate<'tcx>,
1374     ) -> bool {
1375         let hir = self.tcx.hir();
1376         let parent_node = hir.get_parent_node(obligation.cause.body_id);
1377         let node = hir.find(parent_node);
1378         if let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(sig, _, body_id), .. })) = node
1379             && let hir::ExprKind::Block(blk, _) = &hir.body(*body_id).value.kind
1380             && sig.decl.output.span().overlaps(span)
1381             && blk.expr.is_none()
1382             && trait_pred.self_ty().skip_binder().is_unit()
1383             && let Some(stmt) = blk.stmts.last()
1384             && let hir::StmtKind::Semi(expr) = stmt.kind
1385             // Only suggest this if the expression behind the semicolon implements the predicate
1386             && let Some(typeck_results) = &self.typeck_results
1387             && let Some(ty) = typeck_results.expr_ty_opt(expr)
1388             && self.predicate_may_hold(&self.mk_trait_obligation_with_new_self_ty(
1389                 obligation.param_env, trait_pred.map_bound(|trait_pred| (trait_pred, ty))
1390             ))
1391         {
1392             err.span_label(
1393                 expr.span,
1394                 &format!(
1395                     "this expression has type `{}`, which implements `{}`",
1396                     ty,
1397                     trait_pred.print_modifiers_and_trait_path()
1398                 )
1399             );
1400             err.span_suggestion(
1401                 self.tcx.sess.source_map().end_point(stmt.span),
1402                 "remove this semicolon",
1403                 "",
1404                 Applicability::MachineApplicable
1405             );
1406             return true;
1407         }
1408         false
1409     }
1410
1411     fn return_type_span(&self, obligation: &PredicateObligation<'tcx>) -> Option<Span> {
1412         let hir = self.tcx.hir();
1413         let parent_node = hir.get_parent_node(obligation.cause.body_id);
1414         let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(sig, ..), .. })) = hir.find(parent_node) else {
1415             return None;
1416         };
1417
1418         if let hir::FnRetTy::Return(ret_ty) = sig.decl.output { Some(ret_ty.span) } else { None }
1419     }
1420
1421     /// If all conditions are met to identify a returned `dyn Trait`, suggest using `impl Trait` if
1422     /// applicable and signal that the error has been expanded appropriately and needs to be
1423     /// emitted.
1424     fn suggest_impl_trait(
1425         &self,
1426         err: &mut Diagnostic,
1427         span: Span,
1428         obligation: &PredicateObligation<'tcx>,
1429         trait_pred: ty::PolyTraitPredicate<'tcx>,
1430     ) -> bool {
1431         match obligation.cause.code().peel_derives() {
1432             // Only suggest `impl Trait` if the return type is unsized because it is `dyn Trait`.
1433             ObligationCauseCode::SizedReturnType => {}
1434             _ => return false,
1435         }
1436
1437         let hir = self.tcx.hir();
1438         let fn_hir_id = hir.get_parent_node(obligation.cause.body_id);
1439         let node = hir.find(fn_hir_id);
1440         let Some(hir::Node::Item(hir::Item {
1441             kind: hir::ItemKind::Fn(sig, _, body_id),
1442             ..
1443         })) = node
1444         else {
1445             return false;
1446         };
1447         let body = hir.body(*body_id);
1448         let trait_pred = self.resolve_vars_if_possible(trait_pred);
1449         let ty = trait_pred.skip_binder().self_ty();
1450         let is_object_safe = match ty.kind() {
1451             ty::Dynamic(predicates, _, ty::Dyn) => {
1452                 // If the `dyn Trait` is not object safe, do not suggest `Box<dyn Trait>`.
1453                 predicates
1454                     .principal_def_id()
1455                     .map_or(true, |def_id| self.tcx.object_safety_violations(def_id).is_empty())
1456             }
1457             // We only want to suggest `impl Trait` to `dyn Trait`s.
1458             // For example, `fn foo() -> str` needs to be filtered out.
1459             _ => return false,
1460         };
1461
1462         let hir::FnRetTy::Return(ret_ty) = sig.decl.output else {
1463             return false;
1464         };
1465
1466         // Use `TypeVisitor` instead of the output type directly to find the span of `ty` for
1467         // cases like `fn foo() -> (dyn Trait, i32) {}`.
1468         // Recursively look for `TraitObject` types and if there's only one, use that span to
1469         // suggest `impl Trait`.
1470
1471         // Visit to make sure there's a single `return` type to suggest `impl Trait`,
1472         // otherwise suggest using `Box<dyn Trait>` or an enum.
1473         let mut visitor = ReturnsVisitor::default();
1474         visitor.visit_body(&body);
1475
1476         let typeck_results = self.typeck_results.as_ref().unwrap();
1477         let Some(liberated_sig) = typeck_results.liberated_fn_sigs().get(fn_hir_id).copied() else { return false; };
1478
1479         let ret_types = visitor
1480             .returns
1481             .iter()
1482             .filter_map(|expr| Some((expr.span, typeck_results.node_type_opt(expr.hir_id)?)))
1483             .map(|(expr_span, ty)| (expr_span, self.resolve_vars_if_possible(ty)));
1484         let (last_ty, all_returns_have_same_type, only_never_return) = ret_types.clone().fold(
1485             (None, true, true),
1486             |(last_ty, mut same, only_never_return): (std::option::Option<Ty<'_>>, bool, bool),
1487              (_, ty)| {
1488                 let ty = self.resolve_vars_if_possible(ty);
1489                 same &=
1490                     !matches!(ty.kind(), ty::Error(_))
1491                         && last_ty.map_or(true, |last_ty| {
1492                             // FIXME: ideally we would use `can_coerce` here instead, but `typeck` comes
1493                             // *after* in the dependency graph.
1494                             match (ty.kind(), last_ty.kind()) {
1495                                 (Infer(InferTy::IntVar(_)), Infer(InferTy::IntVar(_)))
1496                                 | (Infer(InferTy::FloatVar(_)), Infer(InferTy::FloatVar(_)))
1497                                 | (Infer(InferTy::FreshIntTy(_)), Infer(InferTy::FreshIntTy(_)))
1498                                 | (
1499                                     Infer(InferTy::FreshFloatTy(_)),
1500                                     Infer(InferTy::FreshFloatTy(_)),
1501                                 ) => true,
1502                                 _ => ty == last_ty,
1503                             }
1504                         });
1505                 (Some(ty), same, only_never_return && matches!(ty.kind(), ty::Never))
1506             },
1507         );
1508         let mut spans_and_needs_box = vec![];
1509
1510         match liberated_sig.output().kind() {
1511             ty::Dynamic(predicates, _, ty::Dyn) => {
1512                 let cause = ObligationCause::misc(ret_ty.span, fn_hir_id);
1513                 let param_env = ty::ParamEnv::empty();
1514
1515                 if !only_never_return {
1516                     for (expr_span, return_ty) in ret_types {
1517                         let self_ty_satisfies_dyn_predicates = |self_ty| {
1518                             predicates.iter().all(|predicate| {
1519                                 let pred = predicate.with_self_ty(self.tcx, self_ty);
1520                                 let obl = Obligation::new(self.tcx, cause.clone(), param_env, pred);
1521                                 self.predicate_may_hold(&obl)
1522                             })
1523                         };
1524
1525                         if let ty::Adt(def, substs) = return_ty.kind()
1526                             && def.is_box()
1527                             && self_ty_satisfies_dyn_predicates(substs.type_at(0))
1528                         {
1529                             spans_and_needs_box.push((expr_span, false));
1530                         } else if self_ty_satisfies_dyn_predicates(return_ty) {
1531                             spans_and_needs_box.push((expr_span, true));
1532                         } else {
1533                             return false;
1534                         }
1535                     }
1536                 }
1537             }
1538             _ => return false,
1539         };
1540
1541         let sm = self.tcx.sess.source_map();
1542         if !ret_ty.span.overlaps(span) {
1543             return false;
1544         }
1545         let snippet = if let hir::TyKind::TraitObject(..) = ret_ty.kind {
1546             if let Ok(snippet) = sm.span_to_snippet(ret_ty.span) {
1547                 snippet
1548             } else {
1549                 return false;
1550             }
1551         } else {
1552             // Substitute the type, so we can print a fixup given `type Alias = dyn Trait`
1553             let name = liberated_sig.output().to_string();
1554             let name =
1555                 name.strip_prefix('(').and_then(|name| name.strip_suffix(')')).unwrap_or(&name);
1556             if !name.starts_with("dyn ") {
1557                 return false;
1558             }
1559             name.to_owned()
1560         };
1561
1562         err.code(error_code!(E0746));
1563         err.set_primary_message("return type cannot have an unboxed trait object");
1564         err.children.clear();
1565         let impl_trait_msg = "for information on `impl Trait`, see \
1566             <https://doc.rust-lang.org/book/ch10-02-traits.html\
1567             #returning-types-that-implement-traits>";
1568         let trait_obj_msg = "for information on trait objects, see \
1569             <https://doc.rust-lang.org/book/ch17-02-trait-objects.html\
1570             #using-trait-objects-that-allow-for-values-of-different-types>";
1571
1572         let has_dyn = snippet.split_whitespace().next().map_or(false, |s| s == "dyn");
1573         let trait_obj = if has_dyn { &snippet[4..] } else { &snippet };
1574         if only_never_return {
1575             // No return paths, probably using `panic!()` or similar.
1576             // Suggest `-> T`, `-> impl Trait`, and if `Trait` is object safe, `-> Box<dyn Trait>`.
1577             suggest_trait_object_return_type_alternatives(
1578                 err,
1579                 ret_ty.span,
1580                 trait_obj,
1581                 is_object_safe,
1582             );
1583         } else if let (Some(last_ty), true) = (last_ty, all_returns_have_same_type) {
1584             // Suggest `-> impl Trait`.
1585             err.span_suggestion(
1586                 ret_ty.span,
1587                 &format!(
1588                     "use `impl {1}` as the return type, as all return paths are of type `{}`, \
1589                      which implements `{1}`",
1590                     last_ty, trait_obj,
1591                 ),
1592                 format!("impl {}", trait_obj),
1593                 Applicability::MachineApplicable,
1594             );
1595             err.note(impl_trait_msg);
1596         } else {
1597             if is_object_safe {
1598                 // Suggest `-> Box<dyn Trait>` and `Box::new(returned_value)`.
1599                 err.multipart_suggestion(
1600                     "return a boxed trait object instead",
1601                     vec![
1602                         (ret_ty.span.shrink_to_lo(), "Box<".to_string()),
1603                         (span.shrink_to_hi(), ">".to_string()),
1604                     ],
1605                     Applicability::MaybeIncorrect,
1606                 );
1607                 for (span, needs_box) in spans_and_needs_box {
1608                     if needs_box {
1609                         err.multipart_suggestion(
1610                             "... and box this value",
1611                             vec![
1612                                 (span.shrink_to_lo(), "Box::new(".to_string()),
1613                                 (span.shrink_to_hi(), ")".to_string()),
1614                             ],
1615                             Applicability::MaybeIncorrect,
1616                         );
1617                     }
1618                 }
1619             } else {
1620                 // This is currently not possible to trigger because E0038 takes precedence, but
1621                 // leave it in for completeness in case anything changes in an earlier stage.
1622                 err.note(&format!(
1623                     "if trait `{}` were object-safe, you could return a trait object",
1624                     trait_obj,
1625                 ));
1626             }
1627             err.note(trait_obj_msg);
1628             err.note(&format!(
1629                 "if all the returned values were of the same type you could use `impl {}` as the \
1630                  return type",
1631                 trait_obj,
1632             ));
1633             err.note(impl_trait_msg);
1634             err.note("you can create a new `enum` with a variant for each returned type");
1635         }
1636         true
1637     }
1638
1639     fn point_at_returns_when_relevant(
1640         &self,
1641         err: &mut Diagnostic,
1642         obligation: &PredicateObligation<'tcx>,
1643     ) {
1644         match obligation.cause.code().peel_derives() {
1645             ObligationCauseCode::SizedReturnType => {}
1646             _ => return,
1647         }
1648
1649         let hir = self.tcx.hir();
1650         let parent_node = hir.get_parent_node(obligation.cause.body_id);
1651         let node = hir.find(parent_node);
1652         if let Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })) =
1653             node
1654         {
1655             let body = hir.body(*body_id);
1656             // Point at all the `return`s in the function as they have failed trait bounds.
1657             let mut visitor = ReturnsVisitor::default();
1658             visitor.visit_body(&body);
1659             let typeck_results = self.typeck_results.as_ref().unwrap();
1660             for expr in &visitor.returns {
1661                 if let Some(returned_ty) = typeck_results.node_type_opt(expr.hir_id) {
1662                     let ty = self.resolve_vars_if_possible(returned_ty);
1663                     err.span_label(expr.span, &format!("this returned value is of type `{}`", ty));
1664                 }
1665             }
1666         }
1667     }
1668
1669     fn report_closure_arg_mismatch(
1670         &self,
1671         span: Span,
1672         found_span: Option<Span>,
1673         found: ty::PolyTraitRef<'tcx>,
1674         expected: ty::PolyTraitRef<'tcx>,
1675         cause: &ObligationCauseCode<'tcx>,
1676     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
1677         pub(crate) fn build_fn_sig_ty<'tcx>(
1678             infcx: &InferCtxt<'tcx>,
1679             trait_ref: ty::PolyTraitRef<'tcx>,
1680         ) -> Ty<'tcx> {
1681             let inputs = trait_ref.skip_binder().substs.type_at(1);
1682             let sig = match inputs.kind() {
1683                 ty::Tuple(inputs) if infcx.tcx.is_fn_trait(trait_ref.def_id()) => {
1684                     infcx.tcx.mk_fn_sig(
1685                         inputs.iter(),
1686                         infcx.next_ty_var(TypeVariableOrigin {
1687                             span: DUMMY_SP,
1688                             kind: TypeVariableOriginKind::MiscVariable,
1689                         }),
1690                         false,
1691                         hir::Unsafety::Normal,
1692                         abi::Abi::Rust,
1693                     )
1694                 }
1695                 _ => infcx.tcx.mk_fn_sig(
1696                     std::iter::once(inputs),
1697                     infcx.next_ty_var(TypeVariableOrigin {
1698                         span: DUMMY_SP,
1699                         kind: TypeVariableOriginKind::MiscVariable,
1700                     }),
1701                     false,
1702                     hir::Unsafety::Normal,
1703                     abi::Abi::Rust,
1704                 ),
1705             };
1706
1707             infcx.tcx.mk_fn_ptr(trait_ref.rebind(sig))
1708         }
1709
1710         let argument_kind = match expected.skip_binder().self_ty().kind() {
1711             ty::Closure(..) => "closure",
1712             ty::Generator(..) => "generator",
1713             _ => "function",
1714         };
1715         let mut err = struct_span_err!(
1716             self.tcx.sess,
1717             span,
1718             E0631,
1719             "type mismatch in {argument_kind} arguments",
1720         );
1721
1722         err.span_label(span, "expected due to this");
1723
1724         let found_span = found_span.unwrap_or(span);
1725         err.span_label(found_span, "found signature defined here");
1726
1727         let expected = build_fn_sig_ty(self, expected);
1728         let found = build_fn_sig_ty(self, found);
1729
1730         let (expected_str, found_str) = self.cmp(expected, found);
1731
1732         let signature_kind = format!("{argument_kind} signature");
1733         err.note_expected_found(&signature_kind, expected_str, &signature_kind, found_str);
1734
1735         self.note_conflicting_closure_bounds(cause, &mut err);
1736
1737         err
1738     }
1739
1740     // Add a note if there are two `Fn`-family bounds that have conflicting argument
1741     // requirements, which will always cause a closure to have a type error.
1742     fn note_conflicting_closure_bounds(
1743         &self,
1744         cause: &ObligationCauseCode<'tcx>,
1745         err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
1746     ) {
1747         // First, look for an `ExprBindingObligation`, which means we can get
1748         // the unsubstituted predicate list of the called function. And check
1749         // that the predicate that we failed to satisfy is a `Fn`-like trait.
1750         if let ObligationCauseCode::ExprBindingObligation(def_id, _, _, idx) = cause
1751             && let predicates = self.tcx.predicates_of(def_id).instantiate_identity(self.tcx)
1752             && let Some(pred) = predicates.predicates.get(*idx)
1753             && let ty::PredicateKind::Clause(ty::Clause::Trait(trait_pred)) = pred.kind().skip_binder()
1754             && self.tcx.is_fn_trait(trait_pred.def_id())
1755         {
1756             let expected_self =
1757                 self.tcx.anonymize_late_bound_regions(pred.kind().rebind(trait_pred.self_ty()));
1758             let expected_substs = self
1759                 .tcx
1760                 .anonymize_late_bound_regions(pred.kind().rebind(trait_pred.trait_ref.substs));
1761
1762             // Find another predicate whose self-type is equal to the expected self type,
1763             // but whose substs don't match.
1764             let other_pred = std::iter::zip(&predicates.predicates, &predicates.spans)
1765                 .enumerate()
1766                 .find(|(other_idx, (pred, _))| match pred.kind().skip_binder() {
1767                     ty::PredicateKind::Clause(ty::Clause::Trait(trait_pred))
1768                         if self.tcx.is_fn_trait(trait_pred.def_id())
1769                             && other_idx != idx
1770                             // Make sure that the self type matches
1771                             // (i.e. constraining this closure)
1772                             && expected_self
1773                                 == self.tcx.anonymize_late_bound_regions(
1774                                     pred.kind().rebind(trait_pred.self_ty()),
1775                                 )
1776                             // But the substs don't match (i.e. incompatible args)
1777                             && expected_substs
1778                                 != self.tcx.anonymize_late_bound_regions(
1779                                     pred.kind().rebind(trait_pred.trait_ref.substs),
1780                                 ) =>
1781                     {
1782                         true
1783                     }
1784                     _ => false,
1785                 });
1786             // If we found one, then it's very likely the cause of the error.
1787             if let Some((_, (_, other_pred_span))) = other_pred {
1788                 err.span_note(
1789                     *other_pred_span,
1790                     "closure inferred to have a different signature due to this bound",
1791                 );
1792             }
1793         }
1794     }
1795
1796     fn suggest_fully_qualified_path(
1797         &self,
1798         err: &mut Diagnostic,
1799         item_def_id: DefId,
1800         span: Span,
1801         trait_ref: DefId,
1802     ) {
1803         if let Some(assoc_item) = self.tcx.opt_associated_item(item_def_id) {
1804             if let ty::AssocKind::Const | ty::AssocKind::Type = assoc_item.kind {
1805                 err.note(&format!(
1806                     "{}s cannot be accessed directly on a `trait`, they can only be \
1807                         accessed through a specific `impl`",
1808                     assoc_item.kind.as_def_kind().descr(item_def_id)
1809                 ));
1810                 err.span_suggestion(
1811                     span,
1812                     "use the fully qualified path to an implementation",
1813                     format!("<Type as {}>::{}", self.tcx.def_path_str(trait_ref), assoc_item.name),
1814                     Applicability::HasPlaceholders,
1815                 );
1816             }
1817         }
1818     }
1819
1820     /// Adds an async-await specific note to the diagnostic when the future does not implement
1821     /// an auto trait because of a captured type.
1822     ///
1823     /// ```text
1824     /// note: future does not implement `Qux` as this value is used across an await
1825     ///   --> $DIR/issue-64130-3-other.rs:17:5
1826     ///    |
1827     /// LL |     let x = Foo;
1828     ///    |         - has type `Foo`
1829     /// LL |     baz().await;
1830     ///    |     ^^^^^^^^^^^ await occurs here, with `x` maybe used later
1831     /// LL | }
1832     ///    | - `x` is later dropped here
1833     /// ```
1834     ///
1835     /// When the diagnostic does not implement `Send` or `Sync` specifically, then the diagnostic
1836     /// is "replaced" with a different message and a more specific error.
1837     ///
1838     /// ```text
1839     /// error: future cannot be sent between threads safely
1840     ///   --> $DIR/issue-64130-2-send.rs:21:5
1841     ///    |
1842     /// LL | fn is_send<T: Send>(t: T) { }
1843     ///    |               ---- required by this bound in `is_send`
1844     /// ...
1845     /// LL |     is_send(bar());
1846     ///    |     ^^^^^^^ future returned by `bar` is not send
1847     ///    |
1848     ///    = help: within `impl std::future::Future`, the trait `std::marker::Send` is not
1849     ///            implemented for `Foo`
1850     /// note: future is not send as this value is used across an await
1851     ///   --> $DIR/issue-64130-2-send.rs:15:5
1852     ///    |
1853     /// LL |     let x = Foo;
1854     ///    |         - has type `Foo`
1855     /// LL |     baz().await;
1856     ///    |     ^^^^^^^^^^^ await occurs here, with `x` maybe used later
1857     /// LL | }
1858     ///    | - `x` is later dropped here
1859     /// ```
1860     ///
1861     /// Returns `true` if an async-await specific note was added to the diagnostic.
1862     #[instrument(level = "debug", skip_all, fields(?obligation.predicate, ?obligation.cause.span))]
1863     fn maybe_note_obligation_cause_for_async_await(
1864         &self,
1865         err: &mut Diagnostic,
1866         obligation: &PredicateObligation<'tcx>,
1867     ) -> bool {
1868         let hir = self.tcx.hir();
1869
1870         // Attempt to detect an async-await error by looking at the obligation causes, looking
1871         // for a generator to be present.
1872         //
1873         // When a future does not implement a trait because of a captured type in one of the
1874         // generators somewhere in the call stack, then the result is a chain of obligations.
1875         //
1876         // Given an `async fn` A that calls an `async fn` B which captures a non-send type and that
1877         // future is passed as an argument to a function C which requires a `Send` type, then the
1878         // chain looks something like this:
1879         //
1880         // - `BuiltinDerivedObligation` with a generator witness (B)
1881         // - `BuiltinDerivedObligation` with a generator (B)
1882         // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
1883         // - `BuiltinDerivedObligation` with a generator witness (A)
1884         // - `BuiltinDerivedObligation` with a generator (A)
1885         // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
1886         // - `BindingObligation` with `impl_send (Send requirement)
1887         //
1888         // The first obligation in the chain is the most useful and has the generator that captured
1889         // the type. The last generator (`outer_generator` below) has information about where the
1890         // bound was introduced. At least one generator should be present for this diagnostic to be
1891         // modified.
1892         let (mut trait_ref, mut target_ty) = match obligation.predicate.kind().skip_binder() {
1893             ty::PredicateKind::Clause(ty::Clause::Trait(p)) => (Some(p), Some(p.self_ty())),
1894             _ => (None, None),
1895         };
1896         let mut generator = None;
1897         let mut outer_generator = None;
1898         let mut next_code = Some(obligation.cause.code());
1899
1900         let mut seen_upvar_tys_infer_tuple = false;
1901
1902         while let Some(code) = next_code {
1903             debug!(?code);
1904             match code {
1905                 ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
1906                     next_code = Some(parent_code);
1907                 }
1908                 ObligationCauseCode::ImplDerivedObligation(cause) => {
1909                     let ty = cause.derived.parent_trait_pred.skip_binder().self_ty();
1910                     debug!(
1911                         parent_trait_ref = ?cause.derived.parent_trait_pred,
1912                         self_ty.kind = ?ty.kind(),
1913                         "ImplDerived",
1914                     );
1915
1916                     match *ty.kind() {
1917                         ty::Generator(did, ..) => {
1918                             generator = generator.or(Some(did));
1919                             outer_generator = Some(did);
1920                         }
1921                         ty::GeneratorWitness(..) => {}
1922                         ty::Tuple(_) if !seen_upvar_tys_infer_tuple => {
1923                             // By introducing a tuple of upvar types into the chain of obligations
1924                             // of a generator, the first non-generator item is now the tuple itself,
1925                             // we shall ignore this.
1926
1927                             seen_upvar_tys_infer_tuple = true;
1928                         }
1929                         _ if generator.is_none() => {
1930                             trait_ref = Some(cause.derived.parent_trait_pred.skip_binder());
1931                             target_ty = Some(ty);
1932                         }
1933                         _ => {}
1934                     }
1935
1936                     next_code = Some(&cause.derived.parent_code);
1937                 }
1938                 ObligationCauseCode::DerivedObligation(derived_obligation)
1939                 | ObligationCauseCode::BuiltinDerivedObligation(derived_obligation) => {
1940                     let ty = derived_obligation.parent_trait_pred.skip_binder().self_ty();
1941                     debug!(
1942                         parent_trait_ref = ?derived_obligation.parent_trait_pred,
1943                         self_ty.kind = ?ty.kind(),
1944                     );
1945
1946                     match *ty.kind() {
1947                         ty::Generator(did, ..) => {
1948                             generator = generator.or(Some(did));
1949                             outer_generator = Some(did);
1950                         }
1951                         ty::GeneratorWitness(..) => {}
1952                         ty::Tuple(_) if !seen_upvar_tys_infer_tuple => {
1953                             // By introducing a tuple of upvar types into the chain of obligations
1954                             // of a generator, the first non-generator item is now the tuple itself,
1955                             // we shall ignore this.
1956
1957                             seen_upvar_tys_infer_tuple = true;
1958                         }
1959                         _ if generator.is_none() => {
1960                             trait_ref = Some(derived_obligation.parent_trait_pred.skip_binder());
1961                             target_ty = Some(ty);
1962                         }
1963                         _ => {}
1964                     }
1965
1966                     next_code = Some(&derived_obligation.parent_code);
1967                 }
1968                 _ => break,
1969             }
1970         }
1971
1972         // Only continue if a generator was found.
1973         debug!(?generator, ?trait_ref, ?target_ty);
1974         let (Some(generator_did), Some(trait_ref), Some(target_ty)) = (generator, trait_ref, target_ty) else {
1975             return false;
1976         };
1977
1978         let span = self.tcx.def_span(generator_did);
1979
1980         let generator_did_root = self.tcx.typeck_root_def_id(generator_did);
1981         debug!(
1982             ?generator_did,
1983             ?generator_did_root,
1984             typeck_results.hir_owner = ?self.typeck_results.as_ref().map(|t| t.hir_owner),
1985             ?span,
1986         );
1987
1988         let generator_body = generator_did
1989             .as_local()
1990             .and_then(|def_id| hir.maybe_body_owned_by(def_id))
1991             .map(|body_id| hir.body(body_id));
1992         let mut visitor = AwaitsVisitor::default();
1993         if let Some(body) = generator_body {
1994             visitor.visit_body(body);
1995         }
1996         debug!(awaits = ?visitor.awaits);
1997
1998         // Look for a type inside the generator interior that matches the target type to get
1999         // a span.
2000         let target_ty_erased = self.tcx.erase_regions(target_ty);
2001         let ty_matches = |ty| -> bool {
2002             // Careful: the regions for types that appear in the
2003             // generator interior are not generally known, so we
2004             // want to erase them when comparing (and anyway,
2005             // `Send` and other bounds are generally unaffected by
2006             // the choice of region).  When erasing regions, we
2007             // also have to erase late-bound regions. This is
2008             // because the types that appear in the generator
2009             // interior generally contain "bound regions" to
2010             // represent regions that are part of the suspended
2011             // generator frame. Bound regions are preserved by
2012             // `erase_regions` and so we must also call
2013             // `erase_late_bound_regions`.
2014             let ty_erased = self.tcx.erase_late_bound_regions(ty);
2015             let ty_erased = self.tcx.erase_regions(ty_erased);
2016             let eq = ty_erased == target_ty_erased;
2017             debug!(?ty_erased, ?target_ty_erased, ?eq);
2018             eq
2019         };
2020
2021         // Get the typeck results from the infcx if the generator is the function we are currently
2022         // type-checking; otherwise, get them by performing a query.  This is needed to avoid
2023         // cycles. If we can't use resolved types because the generator comes from another crate,
2024         // we still provide a targeted error but without all the relevant spans.
2025         let generator_data = match &self.typeck_results {
2026             Some(t) if t.hir_owner.to_def_id() == generator_did_root => GeneratorData::Local(&t),
2027             _ if generator_did.is_local() => {
2028                 GeneratorData::Local(self.tcx.typeck(generator_did.expect_local()))
2029             }
2030             _ if let Some(generator_diag_data) = self.tcx.generator_diagnostic_data(generator_did) => {
2031                 GeneratorData::Foreign(generator_diag_data)
2032             }
2033             _ => return false,
2034         };
2035
2036         let mut interior_or_upvar_span = None;
2037
2038         let from_awaited_ty = generator_data.get_from_await_ty(visitor, hir, ty_matches);
2039         debug!(?from_awaited_ty);
2040
2041         // The generator interior types share the same binders
2042         if let Some(cause) =
2043             generator_data.get_generator_interior_types().skip_binder().iter().find(
2044                 |ty::GeneratorInteriorTypeCause { ty, .. }| {
2045                     ty_matches(generator_data.get_generator_interior_types().rebind(*ty))
2046                 },
2047             )
2048         {
2049             let ty::GeneratorInteriorTypeCause { span, scope_span, yield_span, expr, .. } = cause;
2050
2051             interior_or_upvar_span = Some(GeneratorInteriorOrUpvar::Interior(
2052                 *span,
2053                 Some((*scope_span, *yield_span, *expr, from_awaited_ty)),
2054             ));
2055         }
2056
2057         if interior_or_upvar_span.is_none() {
2058             interior_or_upvar_span =
2059                 generator_data.try_get_upvar_span(&self, generator_did, ty_matches);
2060         }
2061
2062         if interior_or_upvar_span.is_none() && generator_data.is_foreign() {
2063             interior_or_upvar_span = Some(GeneratorInteriorOrUpvar::Interior(span, None));
2064         }
2065
2066         debug!(?interior_or_upvar_span);
2067         if let Some(interior_or_upvar_span) = interior_or_upvar_span {
2068             let is_async = self.tcx.generator_is_async(generator_did);
2069             let typeck_results = match generator_data {
2070                 GeneratorData::Local(typeck_results) => Some(typeck_results),
2071                 GeneratorData::Foreign(_) => None,
2072             };
2073             self.note_obligation_cause_for_async_await(
2074                 err,
2075                 interior_or_upvar_span,
2076                 is_async,
2077                 outer_generator,
2078                 trait_ref,
2079                 target_ty,
2080                 typeck_results,
2081                 obligation,
2082                 next_code,
2083             );
2084             true
2085         } else {
2086             false
2087         }
2088     }
2089
2090     /// Unconditionally adds the diagnostic note described in
2091     /// `maybe_note_obligation_cause_for_async_await`'s documentation comment.
2092     #[instrument(level = "debug", skip_all)]
2093     fn note_obligation_cause_for_async_await(
2094         &self,
2095         err: &mut Diagnostic,
2096         interior_or_upvar_span: GeneratorInteriorOrUpvar,
2097         is_async: bool,
2098         outer_generator: Option<DefId>,
2099         trait_pred: ty::TraitPredicate<'tcx>,
2100         target_ty: Ty<'tcx>,
2101         typeck_results: Option<&ty::TypeckResults<'tcx>>,
2102         obligation: &PredicateObligation<'tcx>,
2103         next_code: Option<&ObligationCauseCode<'tcx>>,
2104     ) {
2105         let source_map = self.tcx.sess.source_map();
2106
2107         let (await_or_yield, an_await_or_yield) =
2108             if is_async { ("await", "an await") } else { ("yield", "a yield") };
2109         let future_or_generator = if is_async { "future" } else { "generator" };
2110
2111         // Special case the primary error message when send or sync is the trait that was
2112         // not implemented.
2113         let hir = self.tcx.hir();
2114         let trait_explanation = if let Some(name @ (sym::Send | sym::Sync)) =
2115             self.tcx.get_diagnostic_name(trait_pred.def_id())
2116         {
2117             let (trait_name, trait_verb) =
2118                 if name == sym::Send { ("`Send`", "sent") } else { ("`Sync`", "shared") };
2119
2120             err.clear_code();
2121             err.set_primary_message(format!(
2122                 "{} cannot be {} between threads safely",
2123                 future_or_generator, trait_verb
2124             ));
2125
2126             let original_span = err.span.primary_span().unwrap();
2127             let mut span = MultiSpan::from_span(original_span);
2128
2129             let message = outer_generator
2130                 .and_then(|generator_did| {
2131                     Some(match self.tcx.generator_kind(generator_did).unwrap() {
2132                         GeneratorKind::Gen => format!("generator is not {}", trait_name),
2133                         GeneratorKind::Async(AsyncGeneratorKind::Fn) => self
2134                             .tcx
2135                             .parent(generator_did)
2136                             .as_local()
2137                             .map(|parent_did| hir.local_def_id_to_hir_id(parent_did))
2138                             .and_then(|parent_hir_id| hir.opt_name(parent_hir_id))
2139                             .map(|name| {
2140                                 format!("future returned by `{}` is not {}", name, trait_name)
2141                             })?,
2142                         GeneratorKind::Async(AsyncGeneratorKind::Block) => {
2143                             format!("future created by async block is not {}", trait_name)
2144                         }
2145                         GeneratorKind::Async(AsyncGeneratorKind::Closure) => {
2146                             format!("future created by async closure is not {}", trait_name)
2147                         }
2148                     })
2149                 })
2150                 .unwrap_or_else(|| format!("{} is not {}", future_or_generator, trait_name));
2151
2152             span.push_span_label(original_span, message);
2153             err.set_span(span);
2154
2155             format!("is not {}", trait_name)
2156         } else {
2157             format!("does not implement `{}`", trait_pred.print_modifiers_and_trait_path())
2158         };
2159
2160         let mut explain_yield = |interior_span: Span,
2161                                  yield_span: Span,
2162                                  scope_span: Option<Span>| {
2163             let mut span = MultiSpan::from_span(yield_span);
2164             if let Ok(snippet) = source_map.span_to_snippet(interior_span) {
2165                 // #70935: If snippet contains newlines, display "the value" instead
2166                 // so that we do not emit complex diagnostics.
2167                 let snippet = &format!("`{}`", snippet);
2168                 let snippet = if snippet.contains('\n') { "the value" } else { snippet };
2169                 // note: future is not `Send` as this value is used across an await
2170                 //   --> $DIR/issue-70935-complex-spans.rs:13:9
2171                 //    |
2172                 // LL |            baz(|| async {
2173                 //    |  ______________-
2174                 //    | |
2175                 //    | |
2176                 // LL | |              foo(tx.clone());
2177                 // LL | |          }).await;
2178                 //    | |          - ^^^^^^ await occurs here, with value maybe used later
2179                 //    | |__________|
2180                 //    |            has type `closure` which is not `Send`
2181                 // note: value is later dropped here
2182                 // LL | |          }).await;
2183                 //    | |                  ^
2184                 //
2185                 span.push_span_label(
2186                     yield_span,
2187                     format!("{} occurs here, with {} maybe used later", await_or_yield, snippet),
2188                 );
2189                 span.push_span_label(
2190                     interior_span,
2191                     format!("has type `{}` which {}", target_ty, trait_explanation),
2192                 );
2193                 // If available, use the scope span to annotate the drop location.
2194                 let mut scope_note = None;
2195                 if let Some(scope_span) = scope_span {
2196                     let scope_span = source_map.end_point(scope_span);
2197
2198                     let msg = format!("{} is later dropped here", snippet);
2199                     if source_map.is_multiline(yield_span.between(scope_span)) {
2200                         span.push_span_label(scope_span, msg);
2201                     } else {
2202                         scope_note = Some((scope_span, msg));
2203                     }
2204                 }
2205                 err.span_note(
2206                     span,
2207                     &format!(
2208                         "{} {} as this value is used across {}",
2209                         future_or_generator, trait_explanation, an_await_or_yield
2210                     ),
2211                 );
2212                 if let Some((span, msg)) = scope_note {
2213                     err.span_note(span, &msg);
2214                 }
2215             }
2216         };
2217         match interior_or_upvar_span {
2218             GeneratorInteriorOrUpvar::Interior(interior_span, interior_extra_info) => {
2219                 if let Some((scope_span, yield_span, expr, from_awaited_ty)) = interior_extra_info {
2220                     if let Some(await_span) = from_awaited_ty {
2221                         // The type causing this obligation is one being awaited at await_span.
2222                         let mut span = MultiSpan::from_span(await_span);
2223                         span.push_span_label(
2224                             await_span,
2225                             format!(
2226                                 "await occurs here on type `{}`, which {}",
2227                                 target_ty, trait_explanation
2228                             ),
2229                         );
2230                         err.span_note(
2231                             span,
2232                             &format!(
2233                                 "future {not_trait} as it awaits another future which {not_trait}",
2234                                 not_trait = trait_explanation
2235                             ),
2236                         );
2237                     } else {
2238                         // Look at the last interior type to get a span for the `.await`.
2239                         debug!(
2240                             generator_interior_types = ?format_args!(
2241                                 "{:#?}", typeck_results.as_ref().map(|t| &t.generator_interior_types)
2242                             ),
2243                         );
2244                         explain_yield(interior_span, yield_span, scope_span);
2245                     }
2246
2247                     if let Some(expr_id) = expr {
2248                         let expr = hir.expect_expr(expr_id);
2249                         debug!("target_ty evaluated from {:?}", expr);
2250
2251                         let parent = hir.get_parent_node(expr_id);
2252                         if let Some(hir::Node::Expr(e)) = hir.find(parent) {
2253                             let parent_span = hir.span(parent);
2254                             let parent_did = parent.owner.to_def_id();
2255                             // ```rust
2256                             // impl T {
2257                             //     fn foo(&self) -> i32 {}
2258                             // }
2259                             // T.foo();
2260                             // ^^^^^^^ a temporary `&T` created inside this method call due to `&self`
2261                             // ```
2262                             //
2263                             let is_region_borrow = if let Some(typeck_results) = typeck_results {
2264                                 typeck_results
2265                                     .expr_adjustments(expr)
2266                                     .iter()
2267                                     .any(|adj| adj.is_region_borrow())
2268                             } else {
2269                                 false
2270                             };
2271
2272                             // ```rust
2273                             // struct Foo(*const u8);
2274                             // bar(Foo(std::ptr::null())).await;
2275                             //     ^^^^^^^^^^^^^^^^^^^^^ raw-ptr `*T` created inside this struct ctor.
2276                             // ```
2277                             debug!(parent_def_kind = ?self.tcx.def_kind(parent_did));
2278                             let is_raw_borrow_inside_fn_like_call =
2279                                 match self.tcx.def_kind(parent_did) {
2280                                     DefKind::Fn | DefKind::Ctor(..) => target_ty.is_unsafe_ptr(),
2281                                     _ => false,
2282                                 };
2283                             if let Some(typeck_results) = typeck_results {
2284                                 if (typeck_results.is_method_call(e) && is_region_borrow)
2285                                     || is_raw_borrow_inside_fn_like_call
2286                                 {
2287                                     err.span_help(
2288                                         parent_span,
2289                                         "consider moving this into a `let` \
2290                         binding to create a shorter lived borrow",
2291                                     );
2292                                 }
2293                             }
2294                         }
2295                     }
2296                 }
2297             }
2298             GeneratorInteriorOrUpvar::Upvar(upvar_span) => {
2299                 // `Some(ref_ty)` if `target_ty` is `&T` and `T` fails to impl `Sync`
2300                 let refers_to_non_sync = match target_ty.kind() {
2301                     ty::Ref(_, ref_ty, _) => match self.evaluate_obligation(&obligation) {
2302                         Ok(eval) if !eval.may_apply() => Some(ref_ty),
2303                         _ => None,
2304                     },
2305                     _ => None,
2306                 };
2307
2308                 let (span_label, span_note) = match refers_to_non_sync {
2309                     // if `target_ty` is `&T` and `T` fails to impl `Sync`,
2310                     // include suggestions to make `T: Sync` so that `&T: Send`
2311                     Some(ref_ty) => (
2312                         format!(
2313                             "has type `{}` which {}, because `{}` is not `Sync`",
2314                             target_ty, trait_explanation, ref_ty
2315                         ),
2316                         format!(
2317                             "captured value {} because `&` references cannot be sent unless their referent is `Sync`",
2318                             trait_explanation
2319                         ),
2320                     ),
2321                     None => (
2322                         format!("has type `{}` which {}", target_ty, trait_explanation),
2323                         format!("captured value {}", trait_explanation),
2324                     ),
2325                 };
2326
2327                 let mut span = MultiSpan::from_span(upvar_span);
2328                 span.push_span_label(upvar_span, span_label);
2329                 err.span_note(span, &span_note);
2330             }
2331         }
2332
2333         // Add a note for the item obligation that remains - normally a note pointing to the
2334         // bound that introduced the obligation (e.g. `T: Send`).
2335         debug!(?next_code);
2336         self.note_obligation_cause_code(
2337             err,
2338             &obligation.predicate,
2339             obligation.param_env,
2340             next_code.unwrap(),
2341             &mut Vec::new(),
2342             &mut Default::default(),
2343         );
2344     }
2345
2346     fn note_obligation_cause_code<T>(
2347         &self,
2348         err: &mut Diagnostic,
2349         predicate: &T,
2350         param_env: ty::ParamEnv<'tcx>,
2351         cause_code: &ObligationCauseCode<'tcx>,
2352         obligated_types: &mut Vec<Ty<'tcx>>,
2353         seen_requirements: &mut FxHashSet<DefId>,
2354     ) where
2355         T: fmt::Display,
2356     {
2357         let tcx = self.tcx;
2358         match *cause_code {
2359             ObligationCauseCode::ExprAssignable
2360             | ObligationCauseCode::MatchExpressionArm { .. }
2361             | ObligationCauseCode::Pattern { .. }
2362             | ObligationCauseCode::IfExpression { .. }
2363             | ObligationCauseCode::IfExpressionWithNoElse
2364             | ObligationCauseCode::MainFunctionType
2365             | ObligationCauseCode::StartFunctionType
2366             | ObligationCauseCode::IntrinsicType
2367             | ObligationCauseCode::MethodReceiver
2368             | ObligationCauseCode::ReturnNoExpression
2369             | ObligationCauseCode::UnifyReceiver(..)
2370             | ObligationCauseCode::OpaqueType
2371             | ObligationCauseCode::MiscObligation
2372             | ObligationCauseCode::WellFormed(..)
2373             | ObligationCauseCode::MatchImpl(..)
2374             | ObligationCauseCode::ReturnType
2375             | ObligationCauseCode::ReturnValue(_)
2376             | ObligationCauseCode::BlockTailExpression(_)
2377             | ObligationCauseCode::AwaitableExpr(_)
2378             | ObligationCauseCode::ForLoopIterator
2379             | ObligationCauseCode::QuestionMark
2380             | ObligationCauseCode::CheckAssociatedTypeBounds { .. }
2381             | ObligationCauseCode::LetElse
2382             | ObligationCauseCode::BinOp { .. }
2383             | ObligationCauseCode::AscribeUserTypeProvePredicate(..)
2384             | ObligationCauseCode::RustCall => {}
2385             ObligationCauseCode::SliceOrArrayElem => {
2386                 err.note("slice and array elements must have `Sized` type");
2387             }
2388             ObligationCauseCode::TupleElem => {
2389                 err.note("only the last element of a tuple may have a dynamically sized type");
2390             }
2391             ObligationCauseCode::ProjectionWf(data) => {
2392                 err.note(&format!("required so that the projection `{}` is well-formed", data,));
2393             }
2394             ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
2395                 err.note(&format!(
2396                     "required so that reference `{}` does not outlive its referent",
2397                     ref_ty,
2398                 ));
2399             }
2400             ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
2401                 err.note(&format!(
2402                     "required so that the lifetime bound of `{}` for `{}` is satisfied",
2403                     region, object_ty,
2404                 ));
2405             }
2406             ObligationCauseCode::ItemObligation(_)
2407             | ObligationCauseCode::ExprItemObligation(..) => {
2408                 // We hold the `DefId` of the item introducing the obligation, but displaying it
2409                 // doesn't add user usable information. It always point at an associated item.
2410             }
2411             ObligationCauseCode::BindingObligation(item_def_id, span)
2412             | ObligationCauseCode::ExprBindingObligation(item_def_id, span, ..) => {
2413                 let item_name = tcx.def_path_str(item_def_id);
2414                 let mut multispan = MultiSpan::from(span);
2415                 if let Some(ident) = tcx.opt_item_ident(item_def_id) {
2416                     let sm = tcx.sess.source_map();
2417                     let same_line =
2418                         match (sm.lookup_line(ident.span.hi()), sm.lookup_line(span.lo())) {
2419                             (Ok(l), Ok(r)) => l.line == r.line,
2420                             _ => true,
2421                         };
2422                     if !ident.span.is_dummy() && !ident.span.overlaps(span) && !same_line {
2423                         multispan.push_span_label(ident.span, "required by a bound in this");
2424                     }
2425                 }
2426                 let descr = format!("required by a bound in `{}`", item_name);
2427                 if !span.is_dummy() {
2428                     let msg = format!("required by this bound in `{}`", item_name);
2429                     multispan.push_span_label(span, msg);
2430                     err.span_note(multispan, &descr);
2431                 } else {
2432                     err.span_note(tcx.def_span(item_def_id), &descr);
2433                 }
2434             }
2435             ObligationCauseCode::ObjectCastObligation(concrete_ty, object_ty) => {
2436                 err.note(&format!(
2437                     "required for the cast from `{}` to the object type `{}`",
2438                     self.ty_to_string(concrete_ty),
2439                     self.ty_to_string(object_ty)
2440                 ));
2441             }
2442             ObligationCauseCode::Coercion { source: _, target } => {
2443                 err.note(&format!("required by cast to type `{}`", self.ty_to_string(target)));
2444             }
2445             ObligationCauseCode::RepeatElementCopy { is_const_fn } => {
2446                 err.note(
2447                     "the `Copy` trait is required because this value will be copied for each element of the array",
2448                 );
2449
2450                 if is_const_fn {
2451                     err.help(
2452                         "consider creating a new `const` item and initializing it with the result \
2453                         of the function call to be used in the repeat position, like \
2454                         `const VAL: Type = const_fn();` and `let x = [VAL; 42];`",
2455                     );
2456                 }
2457
2458                 if self.tcx.sess.is_nightly_build() && is_const_fn {
2459                     err.help(
2460                         "create an inline `const` block, see RFC #2920 \
2461                          <https://github.com/rust-lang/rfcs/pull/2920> for more information",
2462                     );
2463                 }
2464             }
2465             ObligationCauseCode::VariableType(hir_id) => {
2466                 let parent_node = self.tcx.hir().get_parent_node(hir_id);
2467                 match self.tcx.hir().find(parent_node) {
2468                     Some(Node::Local(hir::Local {
2469                         init: Some(hir::Expr { kind: hir::ExprKind::Index(_, _), span, .. }),
2470                         ..
2471                     })) => {
2472                         // When encountering an assignment of an unsized trait, like
2473                         // `let x = ""[..];`, provide a suggestion to borrow the initializer in
2474                         // order to use have a slice instead.
2475                         err.span_suggestion_verbose(
2476                             span.shrink_to_lo(),
2477                             "consider borrowing here",
2478                             "&",
2479                             Applicability::MachineApplicable,
2480                         );
2481                         err.note("all local variables must have a statically known size");
2482                     }
2483                     Some(Node::Param(param)) => {
2484                         err.span_suggestion_verbose(
2485                             param.ty_span.shrink_to_lo(),
2486                             "function arguments must have a statically known size, borrowed types \
2487                             always have a known size",
2488                             "&",
2489                             Applicability::MachineApplicable,
2490                         );
2491                     }
2492                     _ => {
2493                         err.note("all local variables must have a statically known size");
2494                     }
2495                 }
2496                 if !self.tcx.features().unsized_locals {
2497                     err.help("unsized locals are gated as an unstable feature");
2498                 }
2499             }
2500             ObligationCauseCode::SizedArgumentType(sp) => {
2501                 if let Some(span) = sp {
2502                     err.span_suggestion_verbose(
2503                         span.shrink_to_lo(),
2504                         "function arguments must have a statically known size, borrowed types \
2505                          always have a known size",
2506                         "&",
2507                         Applicability::MachineApplicable,
2508                     );
2509                 } else {
2510                     err.note("all function arguments must have a statically known size");
2511                 }
2512                 if tcx.sess.opts.unstable_features.is_nightly_build()
2513                     && !self.tcx.features().unsized_fn_params
2514                 {
2515                     err.help("unsized fn params are gated as an unstable feature");
2516                 }
2517             }
2518             ObligationCauseCode::SizedReturnType => {
2519                 err.note("the return type of a function must have a statically known size");
2520             }
2521             ObligationCauseCode::SizedYieldType => {
2522                 err.note("the yield type of a generator must have a statically known size");
2523             }
2524             ObligationCauseCode::SizedBoxType => {
2525                 err.note("the type of a box expression must have a statically known size");
2526             }
2527             ObligationCauseCode::AssignmentLhsSized => {
2528                 err.note("the left-hand-side of an assignment must have a statically known size");
2529             }
2530             ObligationCauseCode::TupleInitializerSized => {
2531                 err.note("tuples must have a statically known size to be initialized");
2532             }
2533             ObligationCauseCode::StructInitializerSized => {
2534                 err.note("structs must have a statically known size to be initialized");
2535             }
2536             ObligationCauseCode::FieldSized { adt_kind: ref item, last, span } => {
2537                 match *item {
2538                     AdtKind::Struct => {
2539                         if last {
2540                             err.note(
2541                                 "the last field of a packed struct may only have a \
2542                                 dynamically sized type if it does not need drop to be run",
2543                             );
2544                         } else {
2545                             err.note(
2546                                 "only the last field of a struct may have a dynamically sized type",
2547                             );
2548                         }
2549                     }
2550                     AdtKind::Union => {
2551                         err.note("no field of a union may have a dynamically sized type");
2552                     }
2553                     AdtKind::Enum => {
2554                         err.note("no field of an enum variant may have a dynamically sized type");
2555                     }
2556                 }
2557                 err.help("change the field's type to have a statically known size");
2558                 err.span_suggestion(
2559                     span.shrink_to_lo(),
2560                     "borrowed types always have a statically known size",
2561                     "&",
2562                     Applicability::MachineApplicable,
2563                 );
2564                 err.multipart_suggestion(
2565                     "the `Box` type always has a statically known size and allocates its contents \
2566                      in the heap",
2567                     vec![
2568                         (span.shrink_to_lo(), "Box<".to_string()),
2569                         (span.shrink_to_hi(), ">".to_string()),
2570                     ],
2571                     Applicability::MachineApplicable,
2572                 );
2573             }
2574             ObligationCauseCode::ConstSized => {
2575                 err.note("constant expressions must have a statically known size");
2576             }
2577             ObligationCauseCode::InlineAsmSized => {
2578                 err.note("all inline asm arguments must have a statically known size");
2579             }
2580             ObligationCauseCode::ConstPatternStructural => {
2581                 err.note("constants used for pattern-matching must derive `PartialEq` and `Eq`");
2582             }
2583             ObligationCauseCode::SharedStatic => {
2584                 err.note("shared static variables must have a type that implements `Sync`");
2585             }
2586             ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
2587                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2588                 let ty = parent_trait_ref.skip_binder().self_ty();
2589                 if parent_trait_ref.references_error() {
2590                     // NOTE(eddyb) this was `.cancel()`, but `err`
2591                     // is borrowed, so we can't fully defuse it.
2592                     err.downgrade_to_delayed_bug();
2593                     return;
2594                 }
2595
2596                 // If the obligation for a tuple is set directly by a Generator or Closure,
2597                 // then the tuple must be the one containing capture types.
2598                 let is_upvar_tys_infer_tuple = if !matches!(ty.kind(), ty::Tuple(..)) {
2599                     false
2600                 } else {
2601                     if let ObligationCauseCode::BuiltinDerivedObligation(data) = &*data.parent_code
2602                     {
2603                         let parent_trait_ref =
2604                             self.resolve_vars_if_possible(data.parent_trait_pred);
2605                         let nested_ty = parent_trait_ref.skip_binder().self_ty();
2606                         matches!(nested_ty.kind(), ty::Generator(..))
2607                             || matches!(nested_ty.kind(), ty::Closure(..))
2608                     } else {
2609                         false
2610                     }
2611                 };
2612
2613                 let identity_future = tcx.require_lang_item(LangItem::IdentityFuture, None);
2614
2615                 // Don't print the tuple of capture types
2616                 'print: {
2617                     if !is_upvar_tys_infer_tuple {
2618                         let msg = format!("required because it appears within the type `{}`", ty);
2619                         match ty.kind() {
2620                             ty::Adt(def, _) => match self.tcx.opt_item_ident(def.did()) {
2621                                 Some(ident) => err.span_note(ident.span, &msg),
2622                                 None => err.note(&msg),
2623                             },
2624                             ty::Opaque(def_id, _) => {
2625                                 // Avoid printing the future from `core::future::identity_future`, it's not helpful
2626                                 if tcx.parent(*def_id) == identity_future {
2627                                     break 'print;
2628                                 }
2629
2630                                 // If the previous type is `identity_future`, this is the future generated by the body of an async function.
2631                                 // Avoid printing it twice (it was already printed in the `ty::Generator` arm below).
2632                                 let is_future = tcx.ty_is_opaque_future(ty);
2633                                 debug!(
2634                                     ?obligated_types,
2635                                     ?is_future,
2636                                     "note_obligation_cause_code: check for async fn"
2637                                 );
2638                                 if is_future
2639                                     && obligated_types.last().map_or(false, |ty| match ty.kind() {
2640                                         ty::Generator(last_def_id, ..) => {
2641                                             tcx.generator_is_async(*last_def_id)
2642                                         }
2643                                         _ => false,
2644                                     })
2645                                 {
2646                                     break 'print;
2647                                 }
2648                                 err.span_note(self.tcx.def_span(def_id), &msg)
2649                             }
2650                             ty::GeneratorWitness(bound_tys) => {
2651                                 use std::fmt::Write;
2652
2653                                 // FIXME: this is kind of an unusual format for rustc, can we make it more clear?
2654                                 // Maybe we should just remove this note altogether?
2655                                 // FIXME: only print types which don't meet the trait requirement
2656                                 let mut msg =
2657                                     "required because it captures the following types: ".to_owned();
2658                                 for ty in bound_tys.skip_binder() {
2659                                     write!(msg, "`{}`, ", ty).unwrap();
2660                                 }
2661                                 err.note(msg.trim_end_matches(", "))
2662                             }
2663                             ty::Generator(def_id, _, _) => {
2664                                 let sp = self.tcx.def_span(def_id);
2665
2666                                 // Special-case this to say "async block" instead of `[static generator]`.
2667                                 let kind = tcx.generator_kind(def_id).unwrap().descr();
2668                                 err.span_note(
2669                                     sp,
2670                                     &format!("required because it's used within this {}", kind),
2671                                 )
2672                             }
2673                             ty::Closure(def_id, _) => err.span_note(
2674                                 self.tcx.def_span(def_id),
2675                                 &format!("required because it's used within this closure"),
2676                             ),
2677                             _ => err.note(&msg),
2678                         };
2679                     }
2680                 }
2681
2682                 obligated_types.push(ty);
2683
2684                 let parent_predicate = parent_trait_ref;
2685                 if !self.is_recursive_obligation(obligated_types, &data.parent_code) {
2686                     // #74711: avoid a stack overflow
2687                     ensure_sufficient_stack(|| {
2688                         self.note_obligation_cause_code(
2689                             err,
2690                             &parent_predicate,
2691                             param_env,
2692                             &data.parent_code,
2693                             obligated_types,
2694                             seen_requirements,
2695                         )
2696                     });
2697                 } else {
2698                     ensure_sufficient_stack(|| {
2699                         self.note_obligation_cause_code(
2700                             err,
2701                             &parent_predicate,
2702                             param_env,
2703                             cause_code.peel_derives(),
2704                             obligated_types,
2705                             seen_requirements,
2706                         )
2707                     });
2708                 }
2709             }
2710             ObligationCauseCode::ImplDerivedObligation(ref data) => {
2711                 let mut parent_trait_pred =
2712                     self.resolve_vars_if_possible(data.derived.parent_trait_pred);
2713                 parent_trait_pred.remap_constness_diag(param_env);
2714                 let parent_def_id = parent_trait_pred.def_id();
2715                 let (self_ty, file) =
2716                     self.tcx.short_ty_string(parent_trait_pred.skip_binder().self_ty());
2717                 let msg = format!(
2718                     "required for `{self_ty}` to implement `{}`",
2719                     parent_trait_pred.print_modifiers_and_trait_path()
2720                 );
2721                 let mut is_auto_trait = false;
2722                 match self.tcx.hir().get_if_local(data.impl_def_id) {
2723                     Some(Node::Item(hir::Item {
2724                         kind: hir::ItemKind::Trait(is_auto, ..),
2725                         ident,
2726                         ..
2727                     })) => {
2728                         // FIXME: we should do something else so that it works even on crate foreign
2729                         // auto traits.
2730                         is_auto_trait = matches!(is_auto, hir::IsAuto::Yes);
2731                         err.span_note(ident.span, &msg)
2732                     }
2733                     Some(Node::Item(hir::Item {
2734                         kind: hir::ItemKind::Impl(hir::Impl { of_trait, self_ty, .. }),
2735                         ..
2736                     })) => {
2737                         let mut spans = Vec::with_capacity(2);
2738                         if let Some(trait_ref) = of_trait {
2739                             spans.push(trait_ref.path.span);
2740                         }
2741                         spans.push(self_ty.span);
2742                         err.span_note(spans, &msg)
2743                     }
2744                     _ => err.note(&msg),
2745                 };
2746
2747                 if let Some(file) = file {
2748                     err.note(&format!(
2749                         "the full type name has been written to '{}'",
2750                         file.display(),
2751                     ));
2752                 }
2753                 let mut parent_predicate = parent_trait_pred;
2754                 let mut data = &data.derived;
2755                 let mut count = 0;
2756                 seen_requirements.insert(parent_def_id);
2757                 if is_auto_trait {
2758                     // We don't want to point at the ADT saying "required because it appears within
2759                     // the type `X`", like we would otherwise do in test `supertrait-auto-trait.rs`.
2760                     while let ObligationCauseCode::BuiltinDerivedObligation(derived) =
2761                         &*data.parent_code
2762                     {
2763                         let child_trait_ref =
2764                             self.resolve_vars_if_possible(derived.parent_trait_pred);
2765                         let child_def_id = child_trait_ref.def_id();
2766                         if seen_requirements.insert(child_def_id) {
2767                             break;
2768                         }
2769                         data = derived;
2770                         parent_predicate = child_trait_ref.to_predicate(tcx);
2771                         parent_trait_pred = child_trait_ref;
2772                     }
2773                 }
2774                 while let ObligationCauseCode::ImplDerivedObligation(child) = &*data.parent_code {
2775                     // Skip redundant recursive obligation notes. See `ui/issue-20413.rs`.
2776                     let child_trait_pred =
2777                         self.resolve_vars_if_possible(child.derived.parent_trait_pred);
2778                     let child_def_id = child_trait_pred.def_id();
2779                     if seen_requirements.insert(child_def_id) {
2780                         break;
2781                     }
2782                     count += 1;
2783                     data = &child.derived;
2784                     parent_predicate = child_trait_pred.to_predicate(tcx);
2785                     parent_trait_pred = child_trait_pred;
2786                 }
2787                 if count > 0 {
2788                     err.note(&format!(
2789                         "{} redundant requirement{} hidden",
2790                         count,
2791                         pluralize!(count)
2792                     ));
2793                     let (self_ty, file) =
2794                         self.tcx.short_ty_string(parent_trait_pred.skip_binder().self_ty());
2795                     err.note(&format!(
2796                         "required for `{self_ty}` to implement `{}`",
2797                         parent_trait_pred.print_modifiers_and_trait_path()
2798                     ));
2799                     if let Some(file) = file {
2800                         err.note(&format!(
2801                             "the full type name has been written to '{}'",
2802                             file.display(),
2803                         ));
2804                     }
2805                 }
2806                 // #74711: avoid a stack overflow
2807                 ensure_sufficient_stack(|| {
2808                     self.note_obligation_cause_code(
2809                         err,
2810                         &parent_predicate,
2811                         param_env,
2812                         &data.parent_code,
2813                         obligated_types,
2814                         seen_requirements,
2815                     )
2816                 });
2817             }
2818             ObligationCauseCode::DerivedObligation(ref data) => {
2819                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2820                 let parent_predicate = parent_trait_ref;
2821                 // #74711: avoid a stack overflow
2822                 ensure_sufficient_stack(|| {
2823                     self.note_obligation_cause_code(
2824                         err,
2825                         &parent_predicate,
2826                         param_env,
2827                         &data.parent_code,
2828                         obligated_types,
2829                         seen_requirements,
2830                     )
2831                 });
2832             }
2833             ObligationCauseCode::FunctionArgumentObligation {
2834                 arg_hir_id,
2835                 call_hir_id,
2836                 ref parent_code,
2837             } => {
2838                 let hir = self.tcx.hir();
2839                 if let Some(Node::Expr(expr @ hir::Expr { kind: hir::ExprKind::Block(..), .. })) =
2840                     hir.find(arg_hir_id)
2841                 {
2842                     let parent_id = hir.get_parent_item(arg_hir_id);
2843                     let typeck_results: &TypeckResults<'tcx> = match &self.typeck_results {
2844                         Some(t) if t.hir_owner == parent_id => t,
2845                         _ => self.tcx.typeck(parent_id.def_id),
2846                     };
2847                     let expr = expr.peel_blocks();
2848                     let ty = typeck_results.expr_ty_adjusted_opt(expr).unwrap_or(tcx.ty_error());
2849                     let span = expr.span;
2850                     if Some(span) != err.span.primary_span() {
2851                         err.span_label(
2852                             span,
2853                             if ty.references_error() {
2854                                 String::new()
2855                             } else {
2856                                 format!("this tail expression is of type `{:?}`", ty)
2857                             },
2858                         );
2859                     }
2860                 }
2861                 if let Some(Node::Expr(hir::Expr {
2862                     kind:
2863                         hir::ExprKind::Call(hir::Expr { span, .. }, _)
2864                         | hir::ExprKind::MethodCall(
2865                             hir::PathSegment { ident: Ident { span, .. }, .. },
2866                             ..,
2867                         ),
2868                     ..
2869                 })) = hir.find(call_hir_id)
2870                 {
2871                     if Some(*span) != err.span.primary_span() {
2872                         err.span_label(*span, "required by a bound introduced by this call");
2873                     }
2874                 }
2875                 ensure_sufficient_stack(|| {
2876                     self.note_obligation_cause_code(
2877                         err,
2878                         predicate,
2879                         param_env,
2880                         &parent_code,
2881                         obligated_types,
2882                         seen_requirements,
2883                     )
2884                 });
2885             }
2886             ObligationCauseCode::CompareImplItemObligation { trait_item_def_id, kind, .. } => {
2887                 let item_name = self.tcx.item_name(trait_item_def_id);
2888                 let msg = format!(
2889                     "the requirement `{}` appears on the `impl`'s {kind} `{}` but not on the \
2890                      corresponding trait's {kind}",
2891                     predicate, item_name,
2892                 );
2893                 let sp = self
2894                     .tcx
2895                     .opt_item_ident(trait_item_def_id)
2896                     .map(|i| i.span)
2897                     .unwrap_or_else(|| self.tcx.def_span(trait_item_def_id));
2898                 let mut assoc_span: MultiSpan = sp.into();
2899                 assoc_span.push_span_label(
2900                     sp,
2901                     format!("this trait's {kind} doesn't have the requirement `{}`", predicate),
2902                 );
2903                 if let Some(ident) = self
2904                     .tcx
2905                     .opt_associated_item(trait_item_def_id)
2906                     .and_then(|i| self.tcx.opt_item_ident(i.container_id(self.tcx)))
2907                 {
2908                     assoc_span.push_span_label(ident.span, "in this trait");
2909                 }
2910                 err.span_note(assoc_span, &msg);
2911             }
2912             ObligationCauseCode::TrivialBound => {
2913                 err.help("see issue #48214");
2914                 if tcx.sess.opts.unstable_features.is_nightly_build() {
2915                     err.help("add `#![feature(trivial_bounds)]` to the crate attributes to enable");
2916                 }
2917             }
2918             ObligationCauseCode::OpaqueReturnType(expr_info) => {
2919                 if let Some((expr_ty, expr_span)) = expr_info {
2920                     let expr_ty = self.resolve_vars_if_possible(expr_ty);
2921                     err.span_label(
2922                         expr_span,
2923                         format!("return type was inferred to be `{expr_ty}` here"),
2924                     );
2925                 }
2926             }
2927         }
2928     }
2929
2930     #[instrument(
2931         level = "debug", skip(self, err), fields(trait_pred.self_ty = ?trait_pred.self_ty())
2932     )]
2933     fn suggest_await_before_try(
2934         &self,
2935         err: &mut Diagnostic,
2936         obligation: &PredicateObligation<'tcx>,
2937         trait_pred: ty::PolyTraitPredicate<'tcx>,
2938         span: Span,
2939     ) {
2940         let body_hir_id = obligation.cause.body_id;
2941         let item_id = self.tcx.hir().get_parent_node(body_hir_id);
2942
2943         if let Some(body_id) =
2944             self.tcx.hir().maybe_body_owned_by(self.tcx.hir().local_def_id(item_id))
2945         {
2946             let body = self.tcx.hir().body(body_id);
2947             if let Some(hir::GeneratorKind::Async(_)) = body.generator_kind {
2948                 let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
2949
2950                 let self_ty = self.resolve_vars_if_possible(trait_pred.self_ty());
2951                 let impls_future = self.type_implements_trait(
2952                     future_trait,
2953                     [self.tcx.erase_late_bound_regions(self_ty)],
2954                     obligation.param_env,
2955                 );
2956                 if !impls_future.must_apply_modulo_regions() {
2957                     return;
2958                 }
2959
2960                 let item_def_id = self.tcx.associated_item_def_ids(future_trait)[0];
2961                 // `<T as Future>::Output`
2962                 let projection_ty = trait_pred.map_bound(|trait_pred| {
2963                     self.tcx.mk_projection(
2964                         item_def_id,
2965                         // Future::Output has no substs
2966                         self.tcx.mk_substs_trait(trait_pred.self_ty(), []),
2967                     )
2968                 });
2969                 let InferOk { value: projection_ty, .. } = self
2970                     .partially_normalize_associated_types_in(
2971                         obligation.cause.clone(),
2972                         obligation.param_env,
2973                         projection_ty,
2974                     );
2975
2976                 debug!(
2977                     normalized_projection_type = ?self.resolve_vars_if_possible(projection_ty)
2978                 );
2979                 let try_obligation = self.mk_trait_obligation_with_new_self_ty(
2980                     obligation.param_env,
2981                     trait_pred.map_bound(|trait_pred| (trait_pred, projection_ty.skip_binder())),
2982                 );
2983                 debug!(try_trait_obligation = ?try_obligation);
2984                 if self.predicate_may_hold(&try_obligation)
2985                     && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span)
2986                     && snippet.ends_with('?')
2987                 {
2988                     err.span_suggestion_verbose(
2989                         span.with_hi(span.hi() - BytePos(1)).shrink_to_hi(),
2990                         "consider `await`ing on the `Future`",
2991                         ".await",
2992                         Applicability::MaybeIncorrect,
2993                     );
2994                 }
2995             }
2996         }
2997     }
2998
2999     fn suggest_floating_point_literal(
3000         &self,
3001         obligation: &PredicateObligation<'tcx>,
3002         err: &mut Diagnostic,
3003         trait_ref: &ty::PolyTraitRef<'tcx>,
3004     ) {
3005         let rhs_span = match obligation.cause.code() {
3006             ObligationCauseCode::BinOp { rhs_span: Some(span), is_lit, .. } if *is_lit => span,
3007             _ => return,
3008         };
3009         if let ty::Float(_) = trait_ref.skip_binder().self_ty().kind()
3010             && let ty::Infer(InferTy::IntVar(_)) = trait_ref.skip_binder().substs.type_at(1).kind()
3011         {
3012             err.span_suggestion_verbose(
3013                 rhs_span.shrink_to_hi(),
3014                 "consider using a floating-point literal by writing it with `.0`",
3015                 ".0",
3016                 Applicability::MaybeIncorrect,
3017             );
3018         }
3019     }
3020
3021     fn suggest_derive(
3022         &self,
3023         obligation: &PredicateObligation<'tcx>,
3024         err: &mut Diagnostic,
3025         trait_pred: ty::PolyTraitPredicate<'tcx>,
3026     ) {
3027         let Some(diagnostic_name) = self.tcx.get_diagnostic_name(trait_pred.def_id()) else {
3028             return;
3029         };
3030         let (adt, substs) = match trait_pred.skip_binder().self_ty().kind() {
3031             ty::Adt(adt, substs) if adt.did().is_local() => (adt, substs),
3032             _ => return,
3033         };
3034         let can_derive = {
3035             let is_derivable_trait = match diagnostic_name {
3036                 sym::Default => !adt.is_enum(),
3037                 sym::PartialEq | sym::PartialOrd => {
3038                     let rhs_ty = trait_pred.skip_binder().trait_ref.substs.type_at(1);
3039                     trait_pred.skip_binder().self_ty() == rhs_ty
3040                 }
3041                 sym::Eq | sym::Ord | sym::Clone | sym::Copy | sym::Hash | sym::Debug => true,
3042                 _ => false,
3043             };
3044             is_derivable_trait &&
3045                 // Ensure all fields impl the trait.
3046                 adt.all_fields().all(|field| {
3047                     let field_ty = field.ty(self.tcx, substs);
3048                     let trait_substs = match diagnostic_name {
3049                         sym::PartialEq | sym::PartialOrd => {
3050                             Some(field_ty)
3051                         }
3052                         _ => None,
3053                     };
3054                     let trait_pred = trait_pred.map_bound_ref(|tr| ty::TraitPredicate {
3055                         trait_ref: self.tcx.mk_trait_ref(
3056                             trait_pred.def_id(),
3057                             [field_ty].into_iter().chain(trait_substs),
3058                         ),
3059                         ..*tr
3060                     });
3061                     let field_obl = Obligation::new(
3062                         self.tcx,
3063                         obligation.cause.clone(),
3064                         obligation.param_env,
3065                         trait_pred,
3066                     );
3067                     self.predicate_must_hold_modulo_regions(&field_obl)
3068                 })
3069         };
3070         if can_derive {
3071             err.span_suggestion_verbose(
3072                 self.tcx.def_span(adt.did()).shrink_to_lo(),
3073                 &format!(
3074                     "consider annotating `{}` with `#[derive({})]`",
3075                     trait_pred.skip_binder().self_ty(),
3076                     diagnostic_name,
3077                 ),
3078                 format!("#[derive({})]\n", diagnostic_name),
3079                 Applicability::MaybeIncorrect,
3080             );
3081         }
3082     }
3083
3084     fn suggest_dereferencing_index(
3085         &self,
3086         obligation: &PredicateObligation<'tcx>,
3087         err: &mut Diagnostic,
3088         trait_pred: ty::PolyTraitPredicate<'tcx>,
3089     ) {
3090         if let ObligationCauseCode::ImplDerivedObligation(_) = obligation.cause.code()
3091             && self.tcx.is_diagnostic_item(sym::SliceIndex, trait_pred.skip_binder().trait_ref.def_id)
3092             && let ty::Slice(_) = trait_pred.skip_binder().trait_ref.substs.type_at(1).kind()
3093             && let ty::Ref(_, inner_ty, _) = trait_pred.skip_binder().self_ty().kind()
3094             && let ty::Uint(ty::UintTy::Usize) = inner_ty.kind()
3095         {
3096             err.span_suggestion_verbose(
3097                 obligation.cause.span.shrink_to_lo(),
3098             "dereference this index",
3099             '*',
3100                 Applicability::MachineApplicable,
3101             );
3102         }
3103     }
3104 }
3105
3106 /// Collect all the returned expressions within the input expression.
3107 /// Used to point at the return spans when we want to suggest some change to them.
3108 #[derive(Default)]
3109 pub struct ReturnsVisitor<'v> {
3110     pub returns: Vec<&'v hir::Expr<'v>>,
3111     in_block_tail: bool,
3112 }
3113
3114 impl<'v> Visitor<'v> for ReturnsVisitor<'v> {
3115     fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
3116         // Visit every expression to detect `return` paths, either through the function's tail
3117         // expression or `return` statements. We walk all nodes to find `return` statements, but
3118         // we only care about tail expressions when `in_block_tail` is `true`, which means that
3119         // they're in the return path of the function body.
3120         match ex.kind {
3121             hir::ExprKind::Ret(Some(ex)) => {
3122                 self.returns.push(ex);
3123             }
3124             hir::ExprKind::Block(block, _) if self.in_block_tail => {
3125                 self.in_block_tail = false;
3126                 for stmt in block.stmts {
3127                     hir::intravisit::walk_stmt(self, stmt);
3128                 }
3129                 self.in_block_tail = true;
3130                 if let Some(expr) = block.expr {
3131                     self.visit_expr(expr);
3132                 }
3133             }
3134             hir::ExprKind::If(_, then, else_opt) if self.in_block_tail => {
3135                 self.visit_expr(then);
3136                 if let Some(el) = else_opt {
3137                     self.visit_expr(el);
3138                 }
3139             }
3140             hir::ExprKind::Match(_, arms, _) if self.in_block_tail => {
3141                 for arm in arms {
3142                     self.visit_expr(arm.body);
3143                 }
3144             }
3145             // We need to walk to find `return`s in the entire body.
3146             _ if !self.in_block_tail => hir::intravisit::walk_expr(self, ex),
3147             _ => self.returns.push(ex),
3148         }
3149     }
3150
3151     fn visit_body(&mut self, body: &'v hir::Body<'v>) {
3152         assert!(!self.in_block_tail);
3153         if body.generator_kind().is_none() {
3154             if let hir::ExprKind::Block(block, None) = body.value.kind {
3155                 if block.expr.is_some() {
3156                     self.in_block_tail = true;
3157                 }
3158             }
3159         }
3160         hir::intravisit::walk_body(self, body);
3161     }
3162 }
3163
3164 /// Collect all the awaited expressions within the input expression.
3165 #[derive(Default)]
3166 struct AwaitsVisitor {
3167     awaits: Vec<hir::HirId>,
3168 }
3169
3170 impl<'v> Visitor<'v> for AwaitsVisitor {
3171     fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
3172         if let hir::ExprKind::Yield(_, hir::YieldSource::Await { expr: Some(id) }) = ex.kind {
3173             self.awaits.push(id)
3174         }
3175         hir::intravisit::walk_expr(self, ex)
3176     }
3177 }
3178
3179 pub trait NextTypeParamName {
3180     fn next_type_param_name(&self, name: Option<&str>) -> String;
3181 }
3182
3183 impl NextTypeParamName for &[hir::GenericParam<'_>] {
3184     fn next_type_param_name(&self, name: Option<&str>) -> String {
3185         // This is the list of possible parameter names that we might suggest.
3186         let name = name.and_then(|n| n.chars().next()).map(|c| c.to_string().to_uppercase());
3187         let name = name.as_deref();
3188         let possible_names = [name.unwrap_or("T"), "T", "U", "V", "X", "Y", "Z", "A", "B", "C"];
3189         let used_names = self
3190             .iter()
3191             .filter_map(|p| match p.name {
3192                 hir::ParamName::Plain(ident) => Some(ident.name),
3193                 _ => None,
3194             })
3195             .collect::<Vec<_>>();
3196
3197         possible_names
3198             .iter()
3199             .find(|n| !used_names.contains(&Symbol::intern(n)))
3200             .unwrap_or(&"ParamName")
3201             .to_string()
3202     }
3203 }
3204
3205 fn suggest_trait_object_return_type_alternatives(
3206     err: &mut Diagnostic,
3207     ret_ty: Span,
3208     trait_obj: &str,
3209     is_object_safe: bool,
3210 ) {
3211     err.span_suggestion(
3212         ret_ty,
3213         "use some type `T` that is `T: Sized` as the return type if all return paths have the \
3214             same type",
3215         "T",
3216         Applicability::MaybeIncorrect,
3217     );
3218     err.span_suggestion(
3219         ret_ty,
3220         &format!(
3221             "use `impl {}` as the return type if all return paths have the same type but you \
3222                 want to expose only the trait in the signature",
3223             trait_obj,
3224         ),
3225         format!("impl {}", trait_obj),
3226         Applicability::MaybeIncorrect,
3227     );
3228     if is_object_safe {
3229         err.multipart_suggestion(
3230             &format!(
3231                 "use a boxed trait object if all return paths implement trait `{}`",
3232                 trait_obj,
3233             ),
3234             vec![
3235                 (ret_ty.shrink_to_lo(), "Box<".to_string()),
3236                 (ret_ty.shrink_to_hi(), ">".to_string()),
3237             ],
3238             Applicability::MaybeIncorrect,
3239         );
3240     }
3241 }
3242
3243 /// Collect the spans that we see the generic param `param_did`
3244 struct ReplaceImplTraitVisitor<'a> {
3245     ty_spans: &'a mut Vec<Span>,
3246     param_did: DefId,
3247 }
3248
3249 impl<'a, 'hir> hir::intravisit::Visitor<'hir> for ReplaceImplTraitVisitor<'a> {
3250     fn visit_ty(&mut self, t: &'hir hir::Ty<'hir>) {
3251         if let hir::TyKind::Path(hir::QPath::Resolved(
3252             None,
3253             hir::Path { res: hir::def::Res::Def(_, segment_did), .. },
3254         )) = t.kind
3255         {
3256             if self.param_did == *segment_did {
3257                 // `fn foo(t: impl Trait)`
3258                 //            ^^^^^^^^^^ get this to suggest `T` instead
3259
3260                 // There might be more than one `impl Trait`.
3261                 self.ty_spans.push(t.span);
3262                 return;
3263             }
3264         }
3265
3266         hir::intravisit::walk_ty(self, t);
3267     }
3268 }
3269
3270 // Replace `param` with `replace_ty`
3271 struct ReplaceImplTraitFolder<'tcx> {
3272     tcx: TyCtxt<'tcx>,
3273     param: &'tcx ty::GenericParamDef,
3274     replace_ty: Ty<'tcx>,
3275 }
3276
3277 impl<'tcx> TypeFolder<'tcx> for ReplaceImplTraitFolder<'tcx> {
3278     fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
3279         if let ty::Param(ty::ParamTy { index, .. }) = t.kind() {
3280             if self.param.index == *index {
3281                 return self.replace_ty;
3282             }
3283         }
3284         t.super_fold_with(self)
3285     }
3286
3287     fn tcx(&self) -> TyCtxt<'tcx> {
3288         self.tcx
3289     }
3290 }