]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs
Auto merge of #105160 - nnethercote:rm-Lit-token_lit, r=petrochenkov
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / mod.rs
1 mod ambiguity;
2 pub mod on_unimplemented;
3 pub mod suggestions;
4
5 use super::{
6     FulfillmentError, FulfillmentErrorCode, MismatchedProjectionTypes, Obligation, ObligationCause,
7     ObligationCauseCode, ObligationCtxt, OutputTypeParameterMismatch, Overflow,
8     PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
9 };
10 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
11 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
12 use crate::infer::{self, InferCtxt};
13 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
14 use crate::traits::query::normalize::QueryNormalizeExt as _;
15 use crate::traits::specialize::to_pretty_impl_header;
16 use crate::traits::NormalizeExt;
17 use on_unimplemented::OnUnimplementedNote;
18 use on_unimplemented::TypeErrCtxtExt as _;
19 use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
20 use rustc_errors::{
21     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
22     MultiSpan, Style,
23 };
24 use rustc_hir as hir;
25 use rustc_hir::def::Namespace;
26 use rustc_hir::def_id::DefId;
27 use rustc_hir::intravisit::Visitor;
28 use rustc_hir::GenericParam;
29 use rustc_hir::Item;
30 use rustc_hir::Node;
31 use rustc_infer::infer::error_reporting::TypeErrCtxt;
32 use rustc_infer::infer::{InferOk, TypeTrace};
33 use rustc_middle::traits::select::OverflowError;
34 use rustc_middle::ty::abstract_const::NotConstEvaluatable;
35 use rustc_middle::ty::error::ExpectedFound;
36 use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
37 use rustc_middle::ty::print::{FmtPrinter, Print};
38 use rustc_middle::ty::{
39     self, SubtypePredicate, ToPolyTraitRef, ToPredicate, TraitRef, Ty, TyCtxt, TypeFoldable,
40     TypeVisitable,
41 };
42 use rustc_session::Limit;
43 use rustc_span::def_id::LOCAL_CRATE;
44 use rustc_span::symbol::{kw, sym};
45 use rustc_span::{ExpnKind, Span, DUMMY_SP};
46 use std::fmt;
47 use std::iter;
48 use std::ops::ControlFlow;
49 use suggestions::TypeErrCtxtExt as _;
50
51 pub use rustc_infer::traits::error_reporting::*;
52
53 // When outputting impl candidates, prefer showing those that are more similar.
54 //
55 // We also compare candidates after skipping lifetimes, which has a lower
56 // priority than exact matches.
57 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
58 pub enum CandidateSimilarity {
59     Exact { ignoring_lifetimes: bool },
60     Fuzzy { ignoring_lifetimes: bool },
61 }
62
63 #[derive(Debug, Clone, Copy)]
64 pub struct ImplCandidate<'tcx> {
65     pub trait_ref: ty::TraitRef<'tcx>,
66     pub similarity: CandidateSimilarity,
67 }
68
69 pub trait InferCtxtExt<'tcx> {
70     /// Given some node representing a fn-like thing in the HIR map,
71     /// returns a span and `ArgKind` information that describes the
72     /// arguments it expects. This can be supplied to
73     /// `report_arg_count_mismatch`.
74     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)>;
75
76     /// Reports an error when the number of arguments needed by a
77     /// trait match doesn't match the number that the expression
78     /// provides.
79     fn report_arg_count_mismatch(
80         &self,
81         span: Span,
82         found_span: Option<Span>,
83         expected_args: Vec<ArgKind>,
84         found_args: Vec<ArgKind>,
85         is_closure: bool,
86         closure_pipe_span: Option<Span>,
87     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
88
89     /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
90     /// in that order, and returns the generic type corresponding to the
91     /// argument of that trait (corresponding to the closure arguments).
92     fn type_implements_fn_trait(
93         &self,
94         param_env: ty::ParamEnv<'tcx>,
95         ty: ty::Binder<'tcx, Ty<'tcx>>,
96         constness: ty::BoundConstness,
97         polarity: ty::ImplPolarity,
98     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()>;
99 }
100
101 pub trait TypeErrCtxtExt<'tcx> {
102     fn report_overflow_error<T>(
103         &self,
104         predicate: &T,
105         span: Span,
106         suggest_increasing_limit: bool,
107         mutate: impl FnOnce(&mut Diagnostic),
108     ) -> !
109     where
110         T: fmt::Display
111             + TypeFoldable<'tcx>
112             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
113         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug;
114
115     fn report_fulfillment_errors(
116         &self,
117         errors: &[FulfillmentError<'tcx>],
118         body_id: Option<hir::BodyId>,
119     ) -> ErrorGuaranteed;
120
121     fn report_overflow_obligation<T>(
122         &self,
123         obligation: &Obligation<'tcx, T>,
124         suggest_increasing_limit: bool,
125     ) -> !
126     where
127         T: ToPredicate<'tcx> + Clone;
128
129     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic);
130
131     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
132
133     /// The `root_obligation` parameter should be the `root_obligation` field
134     /// from a `FulfillmentError`. If no `FulfillmentError` is available,
135     /// then it should be the same as `obligation`.
136     fn report_selection_error(
137         &self,
138         obligation: PredicateObligation<'tcx>,
139         root_obligation: &PredicateObligation<'tcx>,
140         error: &SelectionError<'tcx>,
141     );
142 }
143
144 impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
145     /// Given some node representing a fn-like thing in the HIR map,
146     /// returns a span and `ArgKind` information that describes the
147     /// arguments it expects. This can be supplied to
148     /// `report_arg_count_mismatch`.
149     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)> {
150         let sm = self.tcx.sess.source_map();
151         let hir = self.tcx.hir();
152         Some(match node {
153             Node::Expr(&hir::Expr {
154                 kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, fn_arg_span, .. }),
155                 ..
156             }) => (
157                 fn_decl_span,
158                 fn_arg_span,
159                 hir.body(body)
160                     .params
161                     .iter()
162                     .map(|arg| {
163                         if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
164                             *arg.pat
165                         {
166                             Some(ArgKind::Tuple(
167                                 Some(span),
168                                 args.iter()
169                                     .map(|pat| {
170                                         sm.span_to_snippet(pat.span)
171                                             .ok()
172                                             .map(|snippet| (snippet, "_".to_owned()))
173                                     })
174                                     .collect::<Option<Vec<_>>>()?,
175                             ))
176                         } else {
177                             let name = sm.span_to_snippet(arg.pat.span).ok()?;
178                             Some(ArgKind::Arg(name, "_".to_owned()))
179                         }
180                     })
181                     .collect::<Option<Vec<ArgKind>>>()?,
182             ),
183             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(ref sig, ..), .. })
184             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
185             | Node::TraitItem(&hir::TraitItem {
186                 kind: hir::TraitItemKind::Fn(ref sig, _), ..
187             }) => (
188                 sig.span,
189                 None,
190                 sig.decl
191                     .inputs
192                     .iter()
193                     .map(|arg| match arg.kind {
194                         hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
195                             Some(arg.span),
196                             vec![("_".to_owned(), "_".to_owned()); tys.len()],
197                         ),
198                         _ => ArgKind::empty(),
199                     })
200                     .collect::<Vec<ArgKind>>(),
201             ),
202             Node::Ctor(ref variant_data) => {
203                 let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| hir.span(id));
204                 (span, None, vec![ArgKind::empty(); variant_data.fields().len()])
205             }
206             _ => panic!("non-FnLike node found: {:?}", node),
207         })
208     }
209
210     /// Reports an error when the number of arguments needed by a
211     /// trait match doesn't match the number that the expression
212     /// provides.
213     fn report_arg_count_mismatch(
214         &self,
215         span: Span,
216         found_span: Option<Span>,
217         expected_args: Vec<ArgKind>,
218         found_args: Vec<ArgKind>,
219         is_closure: bool,
220         closure_arg_span: Option<Span>,
221     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
222         let kind = if is_closure { "closure" } else { "function" };
223
224         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
225             let arg_length = arguments.len();
226             let distinct = matches!(other, &[ArgKind::Tuple(..)]);
227             match (arg_length, arguments.get(0)) {
228                 (1, Some(&ArgKind::Tuple(_, ref fields))) => {
229                     format!("a single {}-tuple as argument", fields.len())
230                 }
231                 _ => format!(
232                     "{} {}argument{}",
233                     arg_length,
234                     if distinct && arg_length > 1 { "distinct " } else { "" },
235                     pluralize!(arg_length)
236                 ),
237             }
238         };
239
240         let expected_str = args_str(&expected_args, &found_args);
241         let found_str = args_str(&found_args, &expected_args);
242
243         let mut err = struct_span_err!(
244             self.tcx.sess,
245             span,
246             E0593,
247             "{} is expected to take {}, but it takes {}",
248             kind,
249             expected_str,
250             found_str,
251         );
252
253         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
254
255         if let Some(found_span) = found_span {
256             err.span_label(found_span, format!("takes {}", found_str));
257
258             // Suggest to take and ignore the arguments with expected_args_length `_`s if
259             // found arguments is empty (assume the user just wants to ignore args in this case).
260             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
261             if found_args.is_empty() && is_closure {
262                 let underscores = vec!["_"; expected_args.len()].join(", ");
263                 err.span_suggestion_verbose(
264                     closure_arg_span.unwrap_or(found_span),
265                     &format!(
266                         "consider changing the closure to take and ignore the expected argument{}",
267                         pluralize!(expected_args.len())
268                     ),
269                     format!("|{}|", underscores),
270                     Applicability::MachineApplicable,
271                 );
272             }
273
274             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
275                 if fields.len() == expected_args.len() {
276                     let sugg = fields
277                         .iter()
278                         .map(|(name, _)| name.to_owned())
279                         .collect::<Vec<String>>()
280                         .join(", ");
281                     err.span_suggestion_verbose(
282                         found_span,
283                         "change the closure to take multiple arguments instead of a single tuple",
284                         format!("|{}|", sugg),
285                         Applicability::MachineApplicable,
286                     );
287                 }
288             }
289             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
290                 && fields.len() == found_args.len()
291                 && is_closure
292             {
293                 let sugg = format!(
294                     "|({}){}|",
295                     found_args
296                         .iter()
297                         .map(|arg| match arg {
298                             ArgKind::Arg(name, _) => name.to_owned(),
299                             _ => "_".to_owned(),
300                         })
301                         .collect::<Vec<String>>()
302                         .join(", "),
303                     // add type annotations if available
304                     if found_args.iter().any(|arg| match arg {
305                         ArgKind::Arg(_, ty) => ty != "_",
306                         _ => false,
307                     }) {
308                         format!(
309                             ": ({})",
310                             fields
311                                 .iter()
312                                 .map(|(_, ty)| ty.to_owned())
313                                 .collect::<Vec<String>>()
314                                 .join(", ")
315                         )
316                     } else {
317                         String::new()
318                     },
319                 );
320                 err.span_suggestion_verbose(
321                     found_span,
322                     "change the closure to accept a tuple instead of individual arguments",
323                     sugg,
324                     Applicability::MachineApplicable,
325                 );
326             }
327         }
328
329         err
330     }
331
332     fn type_implements_fn_trait(
333         &self,
334         param_env: ty::ParamEnv<'tcx>,
335         ty: ty::Binder<'tcx, Ty<'tcx>>,
336         constness: ty::BoundConstness,
337         polarity: ty::ImplPolarity,
338     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
339         self.commit_if_ok(|_| {
340             for trait_def_id in [
341                 self.tcx.lang_items().fn_trait(),
342                 self.tcx.lang_items().fn_mut_trait(),
343                 self.tcx.lang_items().fn_once_trait(),
344             ] {
345                 let Some(trait_def_id) = trait_def_id else { continue };
346                 // Make a fresh inference variable so we can determine what the substitutions
347                 // of the trait are.
348                 let var = self.next_ty_var(TypeVariableOrigin {
349                     span: DUMMY_SP,
350                     kind: TypeVariableOriginKind::MiscVariable,
351                 });
352                 let trait_ref = self.tcx.mk_trait_ref(trait_def_id, [ty.skip_binder(), var]);
353                 let obligation = Obligation::new(
354                     self.tcx,
355                     ObligationCause::dummy(),
356                     param_env,
357                     ty.rebind(ty::TraitPredicate { trait_ref, constness, polarity }),
358                 );
359                 let ocx = ObligationCtxt::new_in_snapshot(self);
360                 ocx.register_obligation(obligation);
361                 if ocx.select_all_or_error().is_empty() {
362                     return Ok((
363                         self.tcx
364                             .fn_trait_kind_from_def_id(trait_def_id)
365                             .expect("expected to map DefId to ClosureKind"),
366                         ty.rebind(self.resolve_vars_if_possible(var)),
367                     ));
368                 }
369             }
370
371             Err(())
372         })
373     }
374 }
375 impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
376     fn report_fulfillment_errors(
377         &self,
378         errors: &[FulfillmentError<'tcx>],
379         body_id: Option<hir::BodyId>,
380     ) -> ErrorGuaranteed {
381         #[derive(Debug)]
382         struct ErrorDescriptor<'tcx> {
383             predicate: ty::Predicate<'tcx>,
384             index: Option<usize>, // None if this is an old error
385         }
386
387         let mut error_map: FxIndexMap<_, Vec<_>> = self
388             .reported_trait_errors
389             .borrow()
390             .iter()
391             .map(|(&span, predicates)| {
392                 (
393                     span,
394                     predicates
395                         .iter()
396                         .map(|&predicate| ErrorDescriptor { predicate, index: None })
397                         .collect(),
398                 )
399             })
400             .collect();
401
402         for (index, error) in errors.iter().enumerate() {
403             // We want to ignore desugarings here: spans are equivalent even
404             // if one is the result of a desugaring and the other is not.
405             let mut span = error.obligation.cause.span;
406             let expn_data = span.ctxt().outer_expn_data();
407             if let ExpnKind::Desugaring(_) = expn_data.kind {
408                 span = expn_data.call_site;
409             }
410
411             error_map.entry(span).or_default().push(ErrorDescriptor {
412                 predicate: error.obligation.predicate,
413                 index: Some(index),
414             });
415
416             self.reported_trait_errors
417                 .borrow_mut()
418                 .entry(span)
419                 .or_default()
420                 .push(error.obligation.predicate);
421         }
422
423         // We do this in 2 passes because we want to display errors in order, though
424         // maybe it *is* better to sort errors by span or something.
425         let mut is_suppressed = vec![false; errors.len()];
426         for (_, error_set) in error_map.iter() {
427             // We want to suppress "duplicate" errors with the same span.
428             for error in error_set {
429                 if let Some(index) = error.index {
430                     // Suppress errors that are either:
431                     // 1) strictly implied by another error.
432                     // 2) implied by an error with a smaller index.
433                     for error2 in error_set {
434                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
435                             // Avoid errors being suppressed by already-suppressed
436                             // errors, to prevent all errors from being suppressed
437                             // at once.
438                             continue;
439                         }
440
441                         if self.error_implies(error2.predicate, error.predicate)
442                             && !(error2.index >= error.index
443                                 && self.error_implies(error.predicate, error2.predicate))
444                         {
445                             info!("skipping {:?} (implied by {:?})", error, error2);
446                             is_suppressed[index] = true;
447                             break;
448                         }
449                     }
450                 }
451             }
452         }
453
454         for (error, suppressed) in iter::zip(errors, is_suppressed) {
455             if !suppressed {
456                 self.report_fulfillment_error(error, body_id);
457             }
458         }
459
460         self.tcx.sess.delay_span_bug(DUMMY_SP, "expected fullfillment errors")
461     }
462
463     /// Reports that an overflow has occurred and halts compilation. We
464     /// halt compilation unconditionally because it is important that
465     /// overflows never be masked -- they basically represent computations
466     /// whose result could not be truly determined and thus we can't say
467     /// if the program type checks or not -- and they are unusual
468     /// occurrences in any case.
469     fn report_overflow_error<T>(
470         &self,
471         predicate: &T,
472         span: Span,
473         suggest_increasing_limit: bool,
474         mutate: impl FnOnce(&mut Diagnostic),
475     ) -> !
476     where
477         T: fmt::Display
478             + TypeFoldable<'tcx>
479             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
480         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug,
481     {
482         let predicate = self.resolve_vars_if_possible(predicate.clone());
483         let mut pred_str = predicate.to_string();
484
485         if pred_str.len() > 50 {
486             // We don't need to save the type to a file, we will be talking about this type already
487             // in a separate note when we explain the obligation, so it will be available that way.
488             pred_str = predicate
489                 .print(FmtPrinter::new_with_limit(
490                     self.tcx,
491                     Namespace::TypeNS,
492                     rustc_session::Limit(6),
493                 ))
494                 .unwrap()
495                 .into_buffer();
496         }
497         let mut err = struct_span_err!(
498             self.tcx.sess,
499             span,
500             E0275,
501             "overflow evaluating the requirement `{}`",
502             pred_str,
503         );
504
505         if suggest_increasing_limit {
506             self.suggest_new_overflow_limit(&mut err);
507         }
508
509         mutate(&mut err);
510
511         err.emit();
512         self.tcx.sess.abort_if_errors();
513         bug!();
514     }
515
516     /// Reports that an overflow has occurred and halts compilation. We
517     /// halt compilation unconditionally because it is important that
518     /// overflows never be masked -- they basically represent computations
519     /// whose result could not be truly determined and thus we can't say
520     /// if the program type checks or not -- and they are unusual
521     /// occurrences in any case.
522     fn report_overflow_obligation<T>(
523         &self,
524         obligation: &Obligation<'tcx, T>,
525         suggest_increasing_limit: bool,
526     ) -> !
527     where
528         T: ToPredicate<'tcx> + Clone,
529     {
530         let predicate = obligation.predicate.clone().to_predicate(self.tcx);
531         let predicate = self.resolve_vars_if_possible(predicate);
532         self.report_overflow_error(
533             &predicate,
534             obligation.cause.span,
535             suggest_increasing_limit,
536             |err| {
537                 self.note_obligation_cause_code(
538                     err,
539                     &predicate,
540                     obligation.param_env,
541                     obligation.cause.code(),
542                     &mut vec![],
543                     &mut Default::default(),
544                 );
545             },
546         );
547     }
548
549     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic) {
550         let suggested_limit = match self.tcx.recursion_limit() {
551             Limit(0) => Limit(2),
552             limit => limit * 2,
553         };
554         err.help(&format!(
555             "consider increasing the recursion limit by adding a \
556              `#![recursion_limit = \"{}\"]` attribute to your crate (`{}`)",
557             suggested_limit,
558             self.tcx.crate_name(LOCAL_CRATE),
559         ));
560     }
561
562     /// Reports that a cycle was detected which led to overflow and halts
563     /// compilation. This is equivalent to `report_overflow_obligation` except
564     /// that we can give a more helpful error message (and, in particular,
565     /// we do not suggest increasing the overflow limit, which is not
566     /// going to help).
567     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
568         let cycle = self.resolve_vars_if_possible(cycle.to_owned());
569         assert!(!cycle.is_empty());
570
571         debug!(?cycle, "report_overflow_error_cycle");
572
573         // The 'deepest' obligation is most likely to have a useful
574         // cause 'backtrace'
575         self.report_overflow_obligation(
576             cycle.iter().max_by_key(|p| p.recursion_depth).unwrap(),
577             false,
578         );
579     }
580
581     fn report_selection_error(
582         &self,
583         mut obligation: PredicateObligation<'tcx>,
584         root_obligation: &PredicateObligation<'tcx>,
585         error: &SelectionError<'tcx>,
586     ) {
587         let tcx = self.tcx;
588         let mut span = obligation.cause.span;
589         // FIXME: statically guarantee this by tainting after the diagnostic is emitted
590         self.set_tainted_by_errors(
591             tcx.sess.delay_span_bug(span, "`report_selection_error` did not emit an error"),
592         );
593
594         let mut err = match *error {
595             SelectionError::Unimplemented => {
596                 // If this obligation was generated as a result of well-formedness checking, see if we
597                 // can get a better error message by performing HIR-based well-formedness checking.
598                 if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
599                     root_obligation.cause.code().peel_derives()
600                     && !obligation.predicate.has_non_region_infer()
601                 {
602                     if let Some(cause) = self
603                         .tcx
604                         .diagnostic_hir_wf_check((tcx.erase_regions(obligation.predicate), *wf_loc))
605                     {
606                         obligation.cause = cause.clone();
607                         span = obligation.cause.span;
608                     }
609                 }
610                 if let ObligationCauseCode::CompareImplItemObligation {
611                     impl_item_def_id,
612                     trait_item_def_id,
613                     kind: _,
614                 } = *obligation.cause.code()
615                 {
616                     self.report_extra_impl_obligation(
617                         span,
618                         impl_item_def_id,
619                         trait_item_def_id,
620                         &format!("`{}`", obligation.predicate),
621                     )
622                     .emit();
623                     return;
624                 }
625
626                 let bound_predicate = obligation.predicate.kind();
627                 match bound_predicate.skip_binder() {
628                     ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
629                         let trait_predicate = bound_predicate.rebind(trait_predicate);
630                         let mut trait_predicate = self.resolve_vars_if_possible(trait_predicate);
631
632                         trait_predicate.remap_constness_diag(obligation.param_env);
633                         let predicate_is_const = ty::BoundConstness::ConstIfConst
634                             == trait_predicate.skip_binder().constness;
635
636                         if self.tcx.sess.has_errors().is_some()
637                             && trait_predicate.references_error()
638                         {
639                             return;
640                         }
641                         let trait_ref = trait_predicate.to_poly_trait_ref();
642                         let (post_message, pre_message, type_def) = self
643                             .get_parent_trait_ref(obligation.cause.code())
644                             .map(|(t, s)| {
645                                 (
646                                     format!(" in `{}`", t),
647                                     format!("within `{}`, ", t),
648                                     s.map(|s| (format!("within this `{}`", t), s)),
649                                 )
650                             })
651                             .unwrap_or_default();
652
653                         let OnUnimplementedNote {
654                             message,
655                             label,
656                             note,
657                             parent_label,
658                             append_const_msg,
659                         } = self.on_unimplemented_note(trait_ref, &obligation);
660                         let have_alt_message = message.is_some() || label.is_some();
661                         let is_try_conversion = self.is_try_conversion(span, trait_ref.def_id());
662                         let is_unsize =
663                             Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait();
664                         let (message, note, append_const_msg) = if is_try_conversion {
665                             (
666                                 Some(format!(
667                                     "`?` couldn't convert the error to `{}`",
668                                     trait_ref.skip_binder().self_ty(),
669                                 )),
670                                 Some(
671                                     "the question mark operation (`?`) implicitly performs a \
672                                      conversion on the error value using the `From` trait"
673                                         .to_owned(),
674                                 ),
675                                 Some(None),
676                             )
677                         } else {
678                             (message, note, append_const_msg)
679                         };
680
681                         let mut err = struct_span_err!(
682                             self.tcx.sess,
683                             span,
684                             E0277,
685                             "{}",
686                             message
687                                 .and_then(|cannot_do_this| {
688                                     match (predicate_is_const, append_const_msg) {
689                                         // do nothing if predicate is not const
690                                         (false, _) => Some(cannot_do_this),
691                                         // suggested using default post message
692                                         (true, Some(None)) => {
693                                             Some(format!("{cannot_do_this} in const contexts"))
694                                         }
695                                         // overridden post message
696                                         (true, Some(Some(post_message))) => {
697                                             Some(format!("{cannot_do_this}{post_message}"))
698                                         }
699                                         // fallback to generic message
700                                         (true, None) => None,
701                                     }
702                                 })
703                                 .unwrap_or_else(|| format!(
704                                     "the trait bound `{}` is not satisfied{}",
705                                     trait_predicate, post_message,
706                                 ))
707                         );
708
709                         if is_try_conversion && let Some(ret_span) = self.return_type_span(&obligation) {
710                             err.span_label(
711                                 ret_span,
712                                 &format!(
713                                     "expected `{}` because of this",
714                                     trait_ref.skip_binder().self_ty()
715                                 ),
716                             );
717                         }
718
719                         if Some(trait_ref.def_id()) == tcx.lang_items().tuple_trait() {
720                             match obligation.cause.code().peel_derives() {
721                                 ObligationCauseCode::RustCall => {
722                                     err.set_primary_message("functions with the \"rust-call\" ABI must take a single non-self tuple argument");
723                                 }
724                                 ObligationCauseCode::BindingObligation(def_id, _)
725                                 | ObligationCauseCode::ItemObligation(def_id)
726                                     if tcx.is_fn_trait(*def_id) =>
727                                 {
728                                     err.code(rustc_errors::error_code!(E0059));
729                                     err.set_primary_message(format!(
730                                         "type parameter to bare `{}` trait must be a tuple",
731                                         tcx.def_path_str(*def_id)
732                                     ));
733                                 }
734                                 _ => {}
735                             }
736                         }
737
738                         if Some(trait_ref.def_id()) == tcx.lang_items().drop_trait()
739                             && predicate_is_const
740                         {
741                             err.note("`~const Drop` was renamed to `~const Destruct`");
742                             err.note("See <https://github.com/rust-lang/rust/pull/94901> for more details");
743                         }
744
745                         let explanation = if let ObligationCauseCode::MainFunctionType =
746                             obligation.cause.code()
747                         {
748                             "consider using `()`, or a `Result`".to_owned()
749                         } else {
750                             let ty_desc = match trait_ref.skip_binder().self_ty().kind() {
751                                 ty::FnDef(_, _) => Some("fn item"),
752                                 ty::Closure(_, _) => Some("closure"),
753                                 _ => None,
754                             };
755
756                             match ty_desc {
757                                 Some(desc) => format!(
758                                     "{}the trait `{}` is not implemented for {} `{}`",
759                                     pre_message,
760                                     trait_predicate.print_modifiers_and_trait_path(),
761                                     desc,
762                                     trait_ref.skip_binder().self_ty(),
763                                 ),
764                                 None => format!(
765                                     "{}the trait `{}` is not implemented for `{}`",
766                                     pre_message,
767                                     trait_predicate.print_modifiers_and_trait_path(),
768                                     trait_ref.skip_binder().self_ty(),
769                                 ),
770                             }
771                         };
772
773                         if self.suggest_add_reference_to_arg(
774                             &obligation,
775                             &mut err,
776                             trait_predicate,
777                             have_alt_message,
778                         ) {
779                             self.note_obligation_cause(&mut err, &obligation);
780                             err.emit();
781                             return;
782                         }
783                         if let Some(ref s) = label {
784                             // If it has a custom `#[rustc_on_unimplemented]`
785                             // error message, let's display it as the label!
786                             err.span_label(span, s);
787                             if !matches!(trait_ref.skip_binder().self_ty().kind(), ty::Param(_)) {
788                                 // When the self type is a type param We don't need to "the trait
789                                 // `std::marker::Sized` is not implemented for `T`" as we will point
790                                 // at the type param with a label to suggest constraining it.
791                                 err.help(&explanation);
792                             }
793                         } else {
794                             err.span_label(span, explanation);
795                         }
796
797                         if let ObligationCauseCode::ObjectCastObligation(concrete_ty, obj_ty) = obligation.cause.code().peel_derives() &&
798                             Some(trait_ref.def_id()) == self.tcx.lang_items().sized_trait() {
799                             self.suggest_borrowing_for_object_cast(&mut err, &root_obligation, *concrete_ty, *obj_ty);
800                         }
801
802                         let mut unsatisfied_const = false;
803                         if trait_predicate.is_const_if_const() && obligation.param_env.is_const() {
804                             let non_const_predicate = trait_ref.without_const();
805                             let non_const_obligation = Obligation {
806                                 cause: obligation.cause.clone(),
807                                 param_env: obligation.param_env.without_const(),
808                                 predicate: non_const_predicate.to_predicate(tcx),
809                                 recursion_depth: obligation.recursion_depth,
810                             };
811                             if self.predicate_may_hold(&non_const_obligation) {
812                                 unsatisfied_const = true;
813                                 err.span_note(
814                                     span,
815                                     &format!(
816                                         "the trait `{}` is implemented for `{}`, \
817                                         but that implementation is not `const`",
818                                         non_const_predicate.print_modifiers_and_trait_path(),
819                                         trait_ref.skip_binder().self_ty(),
820                                     ),
821                                 );
822                             }
823                         }
824
825                         if let Some((msg, span)) = type_def {
826                             err.span_label(span, &msg);
827                         }
828                         if let Some(ref s) = note {
829                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
830                             err.note(s.as_str());
831                         }
832                         if let Some(ref s) = parent_label {
833                             let body = tcx
834                                 .hir()
835                                 .opt_local_def_id(obligation.cause.body_id)
836                                 .unwrap_or_else(|| {
837                                     tcx.hir().body_owner_def_id(hir::BodyId {
838                                         hir_id: obligation.cause.body_id,
839                                     })
840                                 });
841                             err.span_label(tcx.def_span(body), s);
842                         }
843
844                         self.suggest_floating_point_literal(&obligation, &mut err, &trait_ref);
845                         self.suggest_dereferencing_index(&obligation, &mut err, trait_predicate);
846                         let mut suggested =
847                             self.suggest_dereferences(&obligation, &mut err, trait_predicate);
848                         suggested |= self.suggest_fn_call(&obligation, &mut err, trait_predicate);
849                         suggested |=
850                             self.suggest_remove_reference(&obligation, &mut err, trait_predicate);
851                         suggested |= self.suggest_semicolon_removal(
852                             &obligation,
853                             &mut err,
854                             span,
855                             trait_predicate,
856                         );
857                         self.note_version_mismatch(&mut err, &trait_ref);
858                         self.suggest_remove_await(&obligation, &mut err);
859                         self.suggest_derive(&obligation, &mut err, trait_predicate);
860
861                         if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
862                             self.suggest_await_before_try(
863                                 &mut err,
864                                 &obligation,
865                                 trait_predicate,
866                                 span,
867                             );
868                         }
869
870                         if self.suggest_impl_trait(&mut err, span, &obligation, trait_predicate) {
871                             err.emit();
872                             return;
873                         }
874
875                         if is_unsize {
876                             // If the obligation failed due to a missing implementation of the
877                             // `Unsize` trait, give a pointer to why that might be the case
878                             err.note(
879                                 "all implementations of `Unsize` are provided \
880                                 automatically by the compiler, see \
881                                 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
882                                 for more information",
883                             );
884                         }
885
886                         let is_fn_trait = tcx.is_fn_trait(trait_ref.def_id());
887                         let is_target_feature_fn = if let ty::FnDef(def_id, _) =
888                             *trait_ref.skip_binder().self_ty().kind()
889                         {
890                             !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
891                         } else {
892                             false
893                         };
894                         if is_fn_trait && is_target_feature_fn {
895                             err.note(
896                                 "`#[target_feature]` functions do not implement the `Fn` traits",
897                             );
898                         }
899
900                         // Try to report a help message
901                         if is_fn_trait
902                             && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
903                             obligation.param_env,
904                             trait_ref.self_ty(),
905                             trait_predicate.skip_binder().constness,
906                             trait_predicate.skip_binder().polarity,
907                         )
908                         {
909                             // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
910                             // suggestion to add trait bounds for the type, since we only typically implement
911                             // these traits once.
912
913                             // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
914                             // to implement.
915                             let selected_kind =
916                                 self.tcx.fn_trait_kind_from_def_id(trait_ref.def_id())
917                                     .expect("expected to map DefId to ClosureKind");
918                             if !implemented_kind.extends(selected_kind) {
919                                 err.note(
920                                     &format!(
921                                         "`{}` implements `{}`, but it must implement `{}`, which is more general",
922                                         trait_ref.skip_binder().self_ty(),
923                                         implemented_kind,
924                                         selected_kind
925                                     )
926                                 );
927                             }
928
929                             // Note any argument mismatches
930                             let given_ty = params.skip_binder();
931                             let expected_ty = trait_ref.skip_binder().substs.type_at(1);
932                             if let ty::Tuple(given) = given_ty.kind()
933                                 && let ty::Tuple(expected) = expected_ty.kind()
934                             {
935                                 if expected.len() != given.len() {
936                                     // Note number of types that were expected and given
937                                     err.note(
938                                         &format!(
939                                             "expected a closure taking {} argument{}, but one taking {} argument{} was given",
940                                             given.len(),
941                                             pluralize!(given.len()),
942                                             expected.len(),
943                                             pluralize!(expected.len()),
944                                         )
945                                     );
946                                 } else if !self.same_type_modulo_infer(given_ty, expected_ty) {
947                                     // Print type mismatch
948                                     let (expected_args, given_args) =
949                                         self.cmp(given_ty, expected_ty);
950                                     err.note_expected_found(
951                                         &"a closure with arguments",
952                                         expected_args,
953                                         &"a closure with arguments",
954                                         given_args,
955                                     );
956                                 }
957                             }
958                         } else if !trait_ref.has_non_region_infer()
959                             && self.predicate_can_apply(obligation.param_env, trait_predicate)
960                         {
961                             // If a where-clause may be useful, remind the
962                             // user that they can add it.
963                             //
964                             // don't display an on-unimplemented note, as
965                             // these notes will often be of the form
966                             //     "the type `T` can't be frobnicated"
967                             // which is somewhat confusing.
968                             self.suggest_restricting_param_bound(
969                                 &mut err,
970                                 trait_predicate,
971                                 None,
972                                 obligation.cause.body_id,
973                             );
974                         } else if !suggested && !unsatisfied_const {
975                             // Can't show anything else useful, try to find similar impls.
976                             let impl_candidates = self.find_similar_impl_candidates(trait_predicate);
977                             if !self.report_similar_impl_candidates(
978                                 impl_candidates,
979                                 trait_ref,
980                                 obligation.cause.body_id,
981                                 &mut err,
982                             ) {
983                                 // This is *almost* equivalent to
984                                 // `obligation.cause.code().peel_derives()`, but it gives us the
985                                 // trait predicate for that corresponding root obligation. This
986                                 // lets us get a derived obligation from a type parameter, like
987                                 // when calling `string.strip_suffix(p)` where `p` is *not* an
988                                 // implementer of `Pattern<'_>`.
989                                 let mut code = obligation.cause.code();
990                                 let mut trait_pred = trait_predicate;
991                                 let mut peeled = false;
992                                 while let Some((parent_code, parent_trait_pred)) = code.parent() {
993                                     code = parent_code;
994                                     if let Some(parent_trait_pred) = parent_trait_pred {
995                                         trait_pred = parent_trait_pred;
996                                         peeled = true;
997                                     }
998                                 }
999                                 let def_id = trait_pred.def_id();
1000                                 // Mention *all* the `impl`s for the *top most* obligation, the
1001                                 // user might have meant to use one of them, if any found. We skip
1002                                 // auto-traits or fundamental traits that might not be exactly what
1003                                 // the user might expect to be presented with. Instead this is
1004                                 // useful for less general traits.
1005                                 if peeled
1006                                     && !self.tcx.trait_is_auto(def_id)
1007                                     && !self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1008                                 {
1009                                     let trait_ref = trait_pred.to_poly_trait_ref();
1010                                     let impl_candidates =
1011                                         self.find_similar_impl_candidates(trait_pred);
1012                                     self.report_similar_impl_candidates(
1013                                         impl_candidates,
1014                                         trait_ref,
1015                                         obligation.cause.body_id,
1016                                         &mut err,
1017                                     );
1018                                 }
1019                             }
1020                         }
1021
1022                         // Changing mutability doesn't make a difference to whether we have
1023                         // an `Unsize` impl (Fixes ICE in #71036)
1024                         if !is_unsize {
1025                             self.suggest_change_mut(&obligation, &mut err, trait_predicate);
1026                         }
1027
1028                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
1029                         // implemented, and fallback has occurred, then it could be due to a
1030                         // variable that used to fallback to `()` now falling back to `!`. Issue a
1031                         // note informing about the change in behaviour.
1032                         if trait_predicate.skip_binder().self_ty().is_never()
1033                             && self.fallback_has_occurred
1034                         {
1035                             let predicate = trait_predicate.map_bound(|trait_pred| {
1036                                 trait_pred.with_self_type(self.tcx, self.tcx.mk_unit())
1037                             });
1038                             let unit_obligation = obligation.with(tcx, predicate);
1039                             if self.predicate_may_hold(&unit_obligation) {
1040                                 err.note(
1041                                     "this error might have been caused by changes to \
1042                                     Rust's type-inference algorithm (see issue #48950 \
1043                                     <https://github.com/rust-lang/rust/issues/48950> \
1044                                     for more information)",
1045                                 );
1046                                 err.help("did you intend to use the type `()` here instead?");
1047                             }
1048                         }
1049
1050                         // Return early if the trait is Debug or Display and the invocation
1051                         // originates within a standard library macro, because the output
1052                         // is otherwise overwhelming and unhelpful (see #85844 for an
1053                         // example).
1054
1055                         let in_std_macro =
1056                             match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
1057                                 Some(macro_def_id) => {
1058                                     let crate_name = tcx.crate_name(macro_def_id.krate);
1059                                     crate_name == sym::std || crate_name == sym::core
1060                                 }
1061                                 None => false,
1062                             };
1063
1064                         if in_std_macro
1065                             && matches!(
1066                                 self.tcx.get_diagnostic_name(trait_ref.def_id()),
1067                                 Some(sym::Debug | sym::Display)
1068                             )
1069                         {
1070                             err.emit();
1071                             return;
1072                         }
1073
1074                         err
1075                     }
1076
1077                     ty::PredicateKind::Subtype(predicate) => {
1078                         // Errors for Subtype predicates show up as
1079                         // `FulfillmentErrorCode::CodeSubtypeError`,
1080                         // not selection error.
1081                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
1082                     }
1083
1084                     ty::PredicateKind::Coerce(predicate) => {
1085                         // Errors for Coerce predicates show up as
1086                         // `FulfillmentErrorCode::CodeSubtypeError`,
1087                         // not selection error.
1088                         span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
1089                     }
1090
1091                     ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..))
1092                     | ty::PredicateKind::Clause(ty::Clause::Projection(..))
1093                     | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) => {
1094                         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1095                         struct_span_err!(
1096                             self.tcx.sess,
1097                             span,
1098                             E0280,
1099                             "the requirement `{}` is not satisfied",
1100                             predicate
1101                         )
1102                     }
1103
1104                     ty::PredicateKind::ObjectSafe(trait_def_id) => {
1105                         let violations = self.tcx.object_safety_violations(trait_def_id);
1106                         report_object_safety_error(self.tcx, span, trait_def_id, violations)
1107                     }
1108
1109                     ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
1110                         let found_kind = self.closure_kind(closure_substs).unwrap();
1111                         let closure_span = self.tcx.def_span(closure_def_id);
1112                         let mut err = struct_span_err!(
1113                             self.tcx.sess,
1114                             closure_span,
1115                             E0525,
1116                             "expected a closure that implements the `{}` trait, \
1117                              but this closure only implements `{}`",
1118                             kind,
1119                             found_kind
1120                         );
1121
1122                         err.span_label(
1123                             closure_span,
1124                             format!("this closure implements `{}`, not `{}`", found_kind, kind),
1125                         );
1126                         err.span_label(
1127                             obligation.cause.span,
1128                             format!("the requirement to implement `{}` derives from here", kind),
1129                         );
1130
1131                         // Additional context information explaining why the closure only implements
1132                         // a particular trait.
1133                         if let Some(typeck_results) = &self.typeck_results {
1134                             let hir_id = self
1135                                 .tcx
1136                                 .hir()
1137                                 .local_def_id_to_hir_id(closure_def_id.expect_local());
1138                             match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
1139                                 (ty::ClosureKind::FnOnce, Some((span, place))) => {
1140                                     err.span_label(
1141                                         *span,
1142                                         format!(
1143                                             "closure is `FnOnce` because it moves the \
1144                                          variable `{}` out of its environment",
1145                                             ty::place_to_string_for_capture(tcx, place)
1146                                         ),
1147                                     );
1148                                 }
1149                                 (ty::ClosureKind::FnMut, Some((span, place))) => {
1150                                     err.span_label(
1151                                         *span,
1152                                         format!(
1153                                             "closure is `FnMut` because it mutates the \
1154                                          variable `{}` here",
1155                                             ty::place_to_string_for_capture(tcx, place)
1156                                         ),
1157                                     );
1158                                 }
1159                                 _ => {}
1160                             }
1161                         }
1162
1163                         err
1164                     }
1165
1166                     ty::PredicateKind::WellFormed(ty) => {
1167                         if !self.tcx.sess.opts.unstable_opts.chalk {
1168                             // WF predicates cannot themselves make
1169                             // errors. They can only block due to
1170                             // ambiguity; otherwise, they always
1171                             // degenerate into other obligations
1172                             // (which may fail).
1173                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
1174                         } else {
1175                             // FIXME: we'll need a better message which takes into account
1176                             // which bounds actually failed to hold.
1177                             self.tcx.sess.struct_span_err(
1178                                 span,
1179                                 &format!("the type `{}` is not well-formed (chalk)", ty),
1180                             )
1181                         }
1182                     }
1183
1184                     ty::PredicateKind::ConstEvaluatable(..) => {
1185                         // Errors for `ConstEvaluatable` predicates show up as
1186                         // `SelectionError::ConstEvalFailure`,
1187                         // not `Unimplemented`.
1188                         span_bug!(
1189                             span,
1190                             "const-evaluatable requirement gave wrong error: `{:?}`",
1191                             obligation
1192                         )
1193                     }
1194
1195                     ty::PredicateKind::ConstEquate(..) => {
1196                         // Errors for `ConstEquate` predicates show up as
1197                         // `SelectionError::ConstEvalFailure`,
1198                         // not `Unimplemented`.
1199                         span_bug!(
1200                             span,
1201                             "const-equate requirement gave wrong error: `{:?}`",
1202                             obligation
1203                         )
1204                     }
1205
1206                     ty::PredicateKind::Ambiguous => span_bug!(span, "ambiguous"),
1207
1208                     ty::PredicateKind::TypeWellFormedFromEnv(..) => span_bug!(
1209                         span,
1210                         "TypeWellFormedFromEnv predicate should only exist in the environment"
1211                     ),
1212                 }
1213             }
1214
1215             OutputTypeParameterMismatch(found_trait_ref, expected_trait_ref, _) => {
1216                 let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
1217                 let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
1218
1219                 if expected_trait_ref.self_ty().references_error() {
1220                     return;
1221                 }
1222
1223                 let Some(found_trait_ty) = found_trait_ref.self_ty().no_bound_vars() else {
1224                     return;
1225                 };
1226
1227                 let found_did = match *found_trait_ty.kind() {
1228                     ty::Closure(did, _)
1229                     | ty::Foreign(did)
1230                     | ty::FnDef(did, _)
1231                     | ty::Generator(did, ..) => Some(did),
1232                     ty::Adt(def, _) => Some(def.did()),
1233                     _ => None,
1234                 };
1235
1236                 let found_span = found_did.and_then(|did| self.tcx.hir().span_if_local(did));
1237
1238                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
1239                     // We check closures twice, with obligations flowing in different directions,
1240                     // but we want to complain about them only once.
1241                     return;
1242                 }
1243
1244                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
1245
1246                 let mut not_tupled = false;
1247
1248                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind() {
1249                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
1250                     _ => {
1251                         not_tupled = true;
1252                         vec![ArgKind::empty()]
1253                     }
1254                 };
1255
1256                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
1257                 let expected = match expected_ty.kind() {
1258                     ty::Tuple(ref tys) => {
1259                         tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
1260                     }
1261                     _ => {
1262                         not_tupled = true;
1263                         vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())]
1264                     }
1265                 };
1266
1267                 // If this is a `Fn` family trait and either the expected or found
1268                 // is not tupled, then fall back to just a regular mismatch error.
1269                 // This shouldn't be common unless manually implementing one of the
1270                 // traits manually, but don't make it more confusing when it does
1271                 // happen.
1272                 if Some(expected_trait_ref.def_id()) != tcx.lang_items().gen_trait() && not_tupled {
1273                     self.report_and_explain_type_error(
1274                         TypeTrace::poly_trait_refs(
1275                             &obligation.cause,
1276                             true,
1277                             expected_trait_ref,
1278                             found_trait_ref,
1279                         ),
1280                         ty::error::TypeError::Mismatch,
1281                     )
1282                 } else if found.len() == expected.len() {
1283                     self.report_closure_arg_mismatch(
1284                         span,
1285                         found_span,
1286                         found_trait_ref,
1287                         expected_trait_ref,
1288                         obligation.cause.code(),
1289                     )
1290                 } else {
1291                     let (closure_span, closure_arg_span, found) = found_did
1292                         .and_then(|did| {
1293                             let node = self.tcx.hir().get_if_local(did)?;
1294                             let (found_span, closure_arg_span, found) =
1295                                 self.get_fn_like_arguments(node)?;
1296                             Some((Some(found_span), closure_arg_span, found))
1297                         })
1298                         .unwrap_or((found_span, None, found));
1299
1300                     self.report_arg_count_mismatch(
1301                         span,
1302                         closure_span,
1303                         expected,
1304                         found,
1305                         found_trait_ty.is_closure(),
1306                         closure_arg_span,
1307                     )
1308                 }
1309             }
1310
1311             TraitNotObjectSafe(did) => {
1312                 let violations = self.tcx.object_safety_violations(did);
1313                 report_object_safety_error(self.tcx, span, did, violations)
1314             }
1315
1316             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
1317                 bug!(
1318                     "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
1319                 )
1320             }
1321             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
1322                 if !self.tcx.features().generic_const_exprs {
1323                     let mut err = self.tcx.sess.struct_span_err(
1324                         span,
1325                         "constant expression depends on a generic parameter",
1326                     );
1327                     // FIXME(const_generics): we should suggest to the user how they can resolve this
1328                     // issue. However, this is currently not actually possible
1329                     // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
1330                     //
1331                     // Note that with `feature(generic_const_exprs)` this case should not
1332                     // be reachable.
1333                     err.note("this may fail depending on what value the parameter takes");
1334                     err.emit();
1335                     return;
1336                 }
1337
1338                 match obligation.predicate.kind().skip_binder() {
1339                     ty::PredicateKind::ConstEvaluatable(ct) => {
1340                         let ty::ConstKind::Unevaluated(uv) = ct.kind() else {
1341                             bug!("const evaluatable failed for non-unevaluated const `{ct:?}`");
1342                         };
1343                         let mut err =
1344                             self.tcx.sess.struct_span_err(span, "unconstrained generic constant");
1345                         let const_span = self.tcx.def_span(uv.def.did);
1346                         match self.tcx.sess.source_map().span_to_snippet(const_span) {
1347                             Ok(snippet) => err.help(&format!(
1348                                 "try adding a `where` bound using this expression: `where [(); {}]:`",
1349                                 snippet
1350                             )),
1351                             _ => err.help("consider adding a `where` bound using this expression"),
1352                         };
1353                         err
1354                     }
1355                     _ => {
1356                         span_bug!(
1357                             span,
1358                             "unexpected non-ConstEvaluatable predicate, this should not be reachable"
1359                         )
1360                     }
1361                 }
1362             }
1363
1364             // Already reported in the query.
1365             SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(_)) => {
1366                 // FIXME(eddyb) remove this once `ErrorGuaranteed` becomes a proof token.
1367                 self.tcx.sess.delay_span_bug(span, "`ErrorGuaranteed` without an error");
1368                 return;
1369             }
1370             // Already reported.
1371             Overflow(OverflowError::Error(_)) => {
1372                 self.tcx.sess.delay_span_bug(span, "`OverflowError` has been reported");
1373                 return;
1374             }
1375             Overflow(_) => {
1376                 bug!("overflow should be handled before the `report_selection_error` path");
1377             }
1378             SelectionError::ErrorReporting => {
1379                 bug!("ErrorReporting Overflow should not reach `report_selection_err` call")
1380             }
1381         };
1382
1383         self.note_obligation_cause(&mut err, &obligation);
1384         self.point_at_returns_when_relevant(&mut err, &obligation);
1385
1386         err.emit();
1387     }
1388 }
1389
1390 trait InferCtxtPrivExt<'tcx> {
1391     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1392     // `error` occurring implies that `cond` occurs.
1393     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
1394
1395     fn report_fulfillment_error(
1396         &self,
1397         error: &FulfillmentError<'tcx>,
1398         body_id: Option<hir::BodyId>,
1399     );
1400
1401     fn report_projection_error(
1402         &self,
1403         obligation: &PredicateObligation<'tcx>,
1404         error: &MismatchedProjectionTypes<'tcx>,
1405     );
1406
1407     fn maybe_detailed_projection_msg(
1408         &self,
1409         pred: ty::ProjectionPredicate<'tcx>,
1410         normalized_ty: ty::Term<'tcx>,
1411         expected_ty: ty::Term<'tcx>,
1412     ) -> Option<String>;
1413
1414     fn fuzzy_match_tys(
1415         &self,
1416         a: Ty<'tcx>,
1417         b: Ty<'tcx>,
1418         ignoring_lifetimes: bool,
1419     ) -> Option<CandidateSimilarity>;
1420
1421     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
1422
1423     fn find_similar_impl_candidates(
1424         &self,
1425         trait_pred: ty::PolyTraitPredicate<'tcx>,
1426     ) -> Vec<ImplCandidate<'tcx>>;
1427
1428     fn report_similar_impl_candidates(
1429         &self,
1430         impl_candidates: Vec<ImplCandidate<'tcx>>,
1431         trait_ref: ty::PolyTraitRef<'tcx>,
1432         body_id: hir::HirId,
1433         err: &mut Diagnostic,
1434     ) -> bool;
1435
1436     /// Gets the parent trait chain start
1437     fn get_parent_trait_ref(
1438         &self,
1439         code: &ObligationCauseCode<'tcx>,
1440     ) -> Option<(String, Option<Span>)>;
1441
1442     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1443     /// with the same path as `trait_ref`, a help message about
1444     /// a probable version mismatch is added to `err`
1445     fn note_version_mismatch(
1446         &self,
1447         err: &mut Diagnostic,
1448         trait_ref: &ty::PolyTraitRef<'tcx>,
1449     ) -> bool;
1450
1451     /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1452     /// `trait_ref`.
1453     ///
1454     /// For this to work, `new_self_ty` must have no escaping bound variables.
1455     fn mk_trait_obligation_with_new_self_ty(
1456         &self,
1457         param_env: ty::ParamEnv<'tcx>,
1458         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
1459     ) -> PredicateObligation<'tcx>;
1460
1461     fn maybe_report_ambiguity(
1462         &self,
1463         obligation: &PredicateObligation<'tcx>,
1464         body_id: Option<hir::BodyId>,
1465     );
1466
1467     fn predicate_can_apply(
1468         &self,
1469         param_env: ty::ParamEnv<'tcx>,
1470         pred: ty::PolyTraitPredicate<'tcx>,
1471     ) -> bool;
1472
1473     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>);
1474
1475     fn suggest_unsized_bound_if_applicable(
1476         &self,
1477         err: &mut Diagnostic,
1478         obligation: &PredicateObligation<'tcx>,
1479     );
1480
1481     fn annotate_source_of_ambiguity(
1482         &self,
1483         err: &mut Diagnostic,
1484         impls: &[DefId],
1485         predicate: ty::Predicate<'tcx>,
1486     );
1487
1488     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>);
1489
1490     fn maybe_indirection_for_unsized(
1491         &self,
1492         err: &mut Diagnostic,
1493         item: &'tcx Item<'tcx>,
1494         param: &'tcx GenericParam<'tcx>,
1495     ) -> bool;
1496
1497     fn is_recursive_obligation(
1498         &self,
1499         obligated_types: &mut Vec<Ty<'tcx>>,
1500         cause_code: &ObligationCauseCode<'tcx>,
1501     ) -> bool;
1502 }
1503
1504 impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
1505     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1506     // `error` occurring implies that `cond` occurs.
1507     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1508         if cond == error {
1509             return true;
1510         }
1511
1512         // FIXME: It should be possible to deal with `ForAll` in a cleaner way.
1513         let bound_error = error.kind();
1514         let (cond, error) = match (cond.kind().skip_binder(), bound_error.skip_binder()) {
1515             (
1516                 ty::PredicateKind::Clause(ty::Clause::Trait(..)),
1517                 ty::PredicateKind::Clause(ty::Clause::Trait(error)),
1518             ) => (cond, bound_error.rebind(error)),
1519             _ => {
1520                 // FIXME: make this work in other cases too.
1521                 return false;
1522             }
1523         };
1524
1525         for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1526             let bound_predicate = obligation.predicate.kind();
1527             if let ty::PredicateKind::Clause(ty::Clause::Trait(implication)) =
1528                 bound_predicate.skip_binder()
1529             {
1530                 let error = error.to_poly_trait_ref();
1531                 let implication = bound_predicate.rebind(implication.trait_ref);
1532                 // FIXME: I'm just not taking associated types at all here.
1533                 // Eventually I'll need to implement param-env-aware
1534                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1535                 let param_env = ty::ParamEnv::empty();
1536                 if self.can_sub(param_env, error, implication).is_ok() {
1537                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1538                     return true;
1539                 }
1540             }
1541         }
1542
1543         false
1544     }
1545
1546     #[instrument(skip(self), level = "debug")]
1547     fn report_fulfillment_error(
1548         &self,
1549         error: &FulfillmentError<'tcx>,
1550         body_id: Option<hir::BodyId>,
1551     ) {
1552         match error.code {
1553             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1554                 self.report_selection_error(
1555                     error.obligation.clone(),
1556                     &error.root_obligation,
1557                     selection_error,
1558                 );
1559             }
1560             FulfillmentErrorCode::CodeProjectionError(ref e) => {
1561                 self.report_projection_error(&error.obligation, e);
1562             }
1563             FulfillmentErrorCode::CodeAmbiguity => {
1564                 self.maybe_report_ambiguity(&error.obligation, body_id);
1565             }
1566             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1567                 self.report_mismatched_types(
1568                     &error.obligation.cause,
1569                     expected_found.expected,
1570                     expected_found.found,
1571                     err.clone(),
1572                 )
1573                 .emit();
1574             }
1575             FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1576                 let mut diag = self.report_mismatched_consts(
1577                     &error.obligation.cause,
1578                     expected_found.expected,
1579                     expected_found.found,
1580                     err.clone(),
1581                 );
1582                 let code = error.obligation.cause.code().peel_derives().peel_match_impls();
1583                 if let ObligationCauseCode::BindingObligation(..)
1584                 | ObligationCauseCode::ItemObligation(..)
1585                 | ObligationCauseCode::ExprBindingObligation(..)
1586                 | ObligationCauseCode::ExprItemObligation(..) = code
1587                 {
1588                     self.note_obligation_cause_code(
1589                         &mut diag,
1590                         &error.obligation.predicate,
1591                         error.obligation.param_env,
1592                         code,
1593                         &mut vec![],
1594                         &mut Default::default(),
1595                     );
1596                 }
1597                 diag.emit();
1598             }
1599             FulfillmentErrorCode::CodeCycle(ref cycle) => {
1600                 self.report_overflow_obligation_cycle(cycle);
1601             }
1602         }
1603     }
1604
1605     #[instrument(level = "debug", skip_all)]
1606     fn report_projection_error(
1607         &self,
1608         obligation: &PredicateObligation<'tcx>,
1609         error: &MismatchedProjectionTypes<'tcx>,
1610     ) {
1611         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1612
1613         if predicate.references_error() {
1614             return;
1615         }
1616
1617         self.probe(|_| {
1618             let ocx = ObligationCtxt::new_in_snapshot(self);
1619
1620             // try to find the mismatched types to report the error with.
1621             //
1622             // this can fail if the problem was higher-ranked, in which
1623             // cause I have no idea for a good error message.
1624             let bound_predicate = predicate.kind();
1625             let (values, err) = if let ty::PredicateKind::Clause(ty::Clause::Projection(data)) =
1626                 bound_predicate.skip_binder()
1627             {
1628                 let data = self.replace_bound_vars_with_fresh_vars(
1629                     obligation.cause.span,
1630                     infer::LateBoundRegionConversionTime::HigherRankedType,
1631                     bound_predicate.rebind(data),
1632                 );
1633                 let normalized_ty = ocx.normalize(
1634                     &obligation.cause,
1635                     obligation.param_env,
1636                     self.tcx
1637                         .mk_projection(data.projection_ty.item_def_id, data.projection_ty.substs),
1638                 );
1639
1640                 debug!(?obligation.cause, ?obligation.param_env);
1641
1642                 debug!(?normalized_ty, data.ty = ?data.term);
1643
1644                 let is_normalized_ty_expected = !matches!(
1645                     obligation.cause.code().peel_derives(),
1646                     ObligationCauseCode::ItemObligation(_)
1647                         | ObligationCauseCode::BindingObligation(_, _)
1648                         | ObligationCauseCode::ExprItemObligation(..)
1649                         | ObligationCauseCode::ExprBindingObligation(..)
1650                         | ObligationCauseCode::ObjectCastObligation(..)
1651                         | ObligationCauseCode::OpaqueType
1652                 );
1653                 let expected_ty = data.term.ty().unwrap_or_else(|| self.tcx.ty_error());
1654
1655                 // constrain inference variables a bit more to nested obligations from normalize so
1656                 // we can have more helpful errors.
1657                 ocx.select_where_possible();
1658
1659                 if let Err(new_err) = ocx.eq_exp(
1660                     &obligation.cause,
1661                     obligation.param_env,
1662                     is_normalized_ty_expected,
1663                     normalized_ty,
1664                     expected_ty,
1665                 ) {
1666                     (Some((data, is_normalized_ty_expected, normalized_ty, expected_ty)), new_err)
1667                 } else {
1668                     (None, error.err)
1669                 }
1670             } else {
1671                 (None, error.err)
1672             };
1673
1674             let msg = values
1675                 .and_then(|(predicate, _, normalized_ty, expected_ty)| {
1676                     self.maybe_detailed_projection_msg(
1677                         predicate,
1678                         normalized_ty.into(),
1679                         expected_ty.into(),
1680                     )
1681                 })
1682                 .unwrap_or_else(|| format!("type mismatch resolving `{}`", predicate));
1683             let mut diag = struct_span_err!(self.tcx.sess, obligation.cause.span, E0271, "{msg}");
1684
1685             let secondary_span = match predicate.kind().skip_binder() {
1686                 ty::PredicateKind::Clause(ty::Clause::Projection(proj)) => self
1687                     .tcx
1688                     .opt_associated_item(proj.projection_ty.item_def_id)
1689                     .and_then(|trait_assoc_item| {
1690                         self.tcx
1691                             .trait_of_item(proj.projection_ty.item_def_id)
1692                             .map(|id| (trait_assoc_item, id))
1693                     })
1694                     .and_then(|(trait_assoc_item, id)| {
1695                         let trait_assoc_ident = trait_assoc_item.ident(self.tcx);
1696                         self.tcx.find_map_relevant_impl(id, proj.projection_ty.self_ty(), |did| {
1697                             self.tcx
1698                                 .associated_items(did)
1699                                 .in_definition_order()
1700                                 .find(|assoc| assoc.ident(self.tcx) == trait_assoc_ident)
1701                         })
1702                     })
1703                     .and_then(|item| match self.tcx.hir().get_if_local(item.def_id) {
1704                         Some(
1705                             hir::Node::TraitItem(hir::TraitItem {
1706                                 kind: hir::TraitItemKind::Type(_, Some(ty)),
1707                                 ..
1708                             })
1709                             | hir::Node::ImplItem(hir::ImplItem {
1710                                 kind: hir::ImplItemKind::Type(ty),
1711                                 ..
1712                             }),
1713                         ) => Some((ty.span, format!("type mismatch resolving `{}`", predicate))),
1714                         _ => None,
1715                     }),
1716                 _ => None,
1717             };
1718             self.note_type_err(
1719                 &mut diag,
1720                 &obligation.cause,
1721                 secondary_span,
1722                 values.map(|(_, is_normalized_ty_expected, normalized_ty, expected_ty)| {
1723                     infer::ValuePairs::Terms(ExpectedFound::new(
1724                         is_normalized_ty_expected,
1725                         normalized_ty.into(),
1726                         expected_ty.into(),
1727                     ))
1728                 }),
1729                 err,
1730                 true,
1731                 false,
1732             );
1733             self.note_obligation_cause(&mut diag, obligation);
1734             diag.emit();
1735         });
1736     }
1737
1738     fn maybe_detailed_projection_msg(
1739         &self,
1740         pred: ty::ProjectionPredicate<'tcx>,
1741         normalized_ty: ty::Term<'tcx>,
1742         expected_ty: ty::Term<'tcx>,
1743     ) -> Option<String> {
1744         let trait_def_id = pred.projection_ty.trait_def_id(self.tcx);
1745         let self_ty = pred.projection_ty.self_ty();
1746
1747         if Some(pred.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output() {
1748             Some(format!(
1749                 "expected `{self_ty}` to be a {fn_kind} that returns `{expected_ty}`, but it returns `{normalized_ty}`",
1750                 fn_kind = self_ty.prefix_string(self.tcx)
1751             ))
1752         } else if Some(trait_def_id) == self.tcx.lang_items().future_trait() {
1753             Some(format!(
1754                 "expected `{self_ty}` to be a future that resolves to `{expected_ty}`, but it resolves to `{normalized_ty}`"
1755             ))
1756         } else if Some(trait_def_id) == self.tcx.get_diagnostic_item(sym::Iterator) {
1757             Some(format!(
1758                 "expected `{self_ty}` to be an iterator that yields `{expected_ty}`, but it yields `{normalized_ty}`"
1759             ))
1760         } else {
1761             None
1762         }
1763     }
1764
1765     fn fuzzy_match_tys(
1766         &self,
1767         mut a: Ty<'tcx>,
1768         mut b: Ty<'tcx>,
1769         ignoring_lifetimes: bool,
1770     ) -> Option<CandidateSimilarity> {
1771         /// returns the fuzzy category of a given type, or None
1772         /// if the type can be equated to any type.
1773         fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1774             match t.kind() {
1775                 ty::Bool => Some(0),
1776                 ty::Char => Some(1),
1777                 ty::Str => Some(2),
1778                 ty::Adt(def, _) if Some(def.did()) == tcx.lang_items().string() => Some(2),
1779                 ty::Int(..)
1780                 | ty::Uint(..)
1781                 | ty::Float(..)
1782                 | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1783                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1784                 ty::Array(..) | ty::Slice(..) => Some(6),
1785                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1786                 ty::Dynamic(..) => Some(8),
1787                 ty::Closure(..) => Some(9),
1788                 ty::Tuple(..) => Some(10),
1789                 ty::Param(..) => Some(11),
1790                 ty::Projection(..) => Some(12),
1791                 ty::Opaque(..) => Some(13),
1792                 ty::Never => Some(14),
1793                 ty::Adt(..) => Some(15),
1794                 ty::Generator(..) => Some(16),
1795                 ty::Foreign(..) => Some(17),
1796                 ty::GeneratorWitness(..) => Some(18),
1797                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1798             }
1799         }
1800
1801         let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1802             loop {
1803                 match t.kind() {
1804                     ty::Ref(_, inner, _) | ty::RawPtr(ty::TypeAndMut { ty: inner, .. }) => {
1805                         t = *inner
1806                     }
1807                     _ => break t,
1808                 }
1809             }
1810         };
1811
1812         if !ignoring_lifetimes {
1813             a = strip_references(a);
1814             b = strip_references(b);
1815         }
1816
1817         let cat_a = type_category(self.tcx, a)?;
1818         let cat_b = type_category(self.tcx, b)?;
1819         if a == b {
1820             Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1821         } else if cat_a == cat_b {
1822             match (a.kind(), b.kind()) {
1823                 (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1824                 (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1825                 // Matching on references results in a lot of unhelpful
1826                 // suggestions, so let's just not do that for now.
1827                 //
1828                 // We still upgrade successful matches to `ignoring_lifetimes: true`
1829                 // to prioritize that impl.
1830                 (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1831                     self.fuzzy_match_tys(a, b, true).is_some()
1832                 }
1833                 _ => true,
1834             }
1835             .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1836         } else if ignoring_lifetimes {
1837             None
1838         } else {
1839             self.fuzzy_match_tys(a, b, true)
1840         }
1841     }
1842
1843     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1844         self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1845             hir::GeneratorKind::Gen => "a generator",
1846             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1847             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1848             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1849         })
1850     }
1851
1852     fn find_similar_impl_candidates(
1853         &self,
1854         trait_pred: ty::PolyTraitPredicate<'tcx>,
1855     ) -> Vec<ImplCandidate<'tcx>> {
1856         let mut candidates: Vec<_> = self
1857             .tcx
1858             .all_impls(trait_pred.def_id())
1859             .filter_map(|def_id| {
1860                 if self.tcx.impl_polarity(def_id) == ty::ImplPolarity::Negative
1861                     || !trait_pred
1862                         .skip_binder()
1863                         .is_constness_satisfied_by(self.tcx.constness(def_id))
1864                 {
1865                     return None;
1866                 }
1867
1868                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1869
1870                 self.fuzzy_match_tys(trait_pred.skip_binder().self_ty(), imp.self_ty(), false)
1871                     .map(|similarity| ImplCandidate { trait_ref: imp, similarity })
1872             })
1873             .collect();
1874         if candidates.iter().any(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. })) {
1875             // If any of the candidates is a perfect match, we don't want to show all of them.
1876             // This is particularly relevant for the case of numeric types (as they all have the
1877             // same cathegory).
1878             candidates.retain(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. }));
1879         }
1880         candidates
1881     }
1882
1883     fn report_similar_impl_candidates(
1884         &self,
1885         impl_candidates: Vec<ImplCandidate<'tcx>>,
1886         trait_ref: ty::PolyTraitRef<'tcx>,
1887         body_id: hir::HirId,
1888         err: &mut Diagnostic,
1889     ) -> bool {
1890         let report = |mut candidates: Vec<TraitRef<'tcx>>, err: &mut Diagnostic| {
1891             candidates.sort();
1892             candidates.dedup();
1893             let len = candidates.len();
1894             if candidates.len() == 0 {
1895                 return false;
1896             }
1897             if candidates.len() == 1 {
1898                 let ty_desc = match candidates[0].self_ty().kind() {
1899                     ty::FnPtr(_) => Some("fn pointer"),
1900                     _ => None,
1901                 };
1902                 let the_desc = match ty_desc {
1903                     Some(desc) => format!(" implemented for {} `", desc),
1904                     None => " implemented for `".to_string(),
1905                 };
1906                 err.highlighted_help(vec![
1907                     (
1908                         format!("the trait `{}` ", candidates[0].print_only_trait_path()),
1909                         Style::NoStyle,
1910                     ),
1911                     ("is".to_string(), Style::Highlight),
1912                     (the_desc, Style::NoStyle),
1913                     (candidates[0].self_ty().to_string(), Style::Highlight),
1914                     ("`".to_string(), Style::NoStyle),
1915                 ]);
1916                 return true;
1917             }
1918             let trait_ref = TraitRef::identity(self.tcx, candidates[0].def_id);
1919             // Check if the trait is the same in all cases. If so, we'll only show the type.
1920             let mut traits: Vec<_> =
1921                 candidates.iter().map(|c| c.print_only_trait_path().to_string()).collect();
1922             traits.sort();
1923             traits.dedup();
1924
1925             let mut candidates: Vec<String> = candidates
1926                 .into_iter()
1927                 .map(|c| {
1928                     if traits.len() == 1 {
1929                         format!("\n  {}", c.self_ty())
1930                     } else {
1931                         format!("\n  {}", c)
1932                     }
1933                 })
1934                 .collect();
1935
1936             candidates.sort();
1937             candidates.dedup();
1938             let end = if candidates.len() <= 9 { candidates.len() } else { 8 };
1939             err.help(&format!(
1940                 "the following other types implement trait `{}`:{}{}",
1941                 trait_ref.print_only_trait_path(),
1942                 candidates[..end].join(""),
1943                 if len > 9 { format!("\nand {} others", len - 8) } else { String::new() }
1944             ));
1945             true
1946         };
1947
1948         let def_id = trait_ref.def_id();
1949         if impl_candidates.is_empty() {
1950             if self.tcx.trait_is_auto(def_id)
1951                 || self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1952                 || self.tcx.get_diagnostic_name(def_id).is_some()
1953             {
1954                 // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
1955                 return false;
1956             }
1957             let normalized_impl_candidates: Vec<_> = self
1958                 .tcx
1959                 .all_impls(def_id)
1960                 // Ignore automatically derived impls and `!Trait` impls.
1961                 .filter(|&def_id| {
1962                     self.tcx.impl_polarity(def_id) != ty::ImplPolarity::Negative
1963                         || self.tcx.is_builtin_derive(def_id)
1964                 })
1965                 .filter_map(|def_id| self.tcx.impl_trait_ref(def_id))
1966                 .filter(|trait_ref| {
1967                     let self_ty = trait_ref.self_ty();
1968                     // Avoid mentioning type parameters.
1969                     if let ty::Param(_) = self_ty.kind() {
1970                         false
1971                     }
1972                     // Avoid mentioning types that are private to another crate
1973                     else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
1974                         // FIXME(compiler-errors): This could be generalized, both to
1975                         // be more granular, and probably look past other `#[fundamental]`
1976                         // types, too.
1977                         self.tcx
1978                             .visibility(def.did())
1979                             .is_accessible_from(body_id.owner.def_id, self.tcx)
1980                     } else {
1981                         true
1982                     }
1983                 })
1984                 .collect();
1985             return report(normalized_impl_candidates, err);
1986         }
1987
1988         // Sort impl candidates so that ordering is consistent for UI tests.
1989         // because the ordering of `impl_candidates` may not be deterministic:
1990         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
1991         //
1992         // Prefer more similar candidates first, then sort lexicographically
1993         // by their normalized string representation.
1994         let mut normalized_impl_candidates_and_similarities = impl_candidates
1995             .into_iter()
1996             .map(|ImplCandidate { trait_ref, similarity }| {
1997                 // FIXME(compiler-errors): This should be using `NormalizeExt::normalize`
1998                 let normalized = self
1999                     .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
2000                     .query_normalize(trait_ref)
2001                     .map_or(trait_ref, |normalized| normalized.value);
2002                 (similarity, normalized)
2003             })
2004             .collect::<Vec<_>>();
2005         normalized_impl_candidates_and_similarities.sort();
2006         normalized_impl_candidates_and_similarities.dedup();
2007
2008         let normalized_impl_candidates = normalized_impl_candidates_and_similarities
2009             .into_iter()
2010             .map(|(_, normalized)| normalized)
2011             .collect::<Vec<_>>();
2012
2013         report(normalized_impl_candidates, err)
2014     }
2015
2016     /// Gets the parent trait chain start
2017     fn get_parent_trait_ref(
2018         &self,
2019         code: &ObligationCauseCode<'tcx>,
2020     ) -> Option<(String, Option<Span>)> {
2021         match code {
2022             ObligationCauseCode::BuiltinDerivedObligation(data) => {
2023                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2024                 match self.get_parent_trait_ref(&data.parent_code) {
2025                     Some(t) => Some(t),
2026                     None => {
2027                         let ty = parent_trait_ref.skip_binder().self_ty();
2028                         let span = TyCategory::from_ty(self.tcx, ty)
2029                             .map(|(_, def_id)| self.tcx.def_span(def_id));
2030                         Some((ty.to_string(), span))
2031                     }
2032                 }
2033             }
2034             ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
2035                 self.get_parent_trait_ref(&parent_code)
2036             }
2037             _ => None,
2038         }
2039     }
2040
2041     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
2042     /// with the same path as `trait_ref`, a help message about
2043     /// a probable version mismatch is added to `err`
2044     fn note_version_mismatch(
2045         &self,
2046         err: &mut Diagnostic,
2047         trait_ref: &ty::PolyTraitRef<'tcx>,
2048     ) -> bool {
2049         let get_trait_impl = |trait_def_id| {
2050             self.tcx.find_map_relevant_impl(trait_def_id, trait_ref.skip_binder().self_ty(), Some)
2051         };
2052         let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
2053         let traits_with_same_path: std::collections::BTreeSet<_> = self
2054             .tcx
2055             .all_traits()
2056             .filter(|trait_def_id| *trait_def_id != trait_ref.def_id())
2057             .filter(|trait_def_id| self.tcx.def_path_str(*trait_def_id) == required_trait_path)
2058             .collect();
2059         let mut suggested = false;
2060         for trait_with_same_path in traits_with_same_path {
2061             if let Some(impl_def_id) = get_trait_impl(trait_with_same_path) {
2062                 let impl_span = self.tcx.def_span(impl_def_id);
2063                 err.span_help(impl_span, "trait impl with same name found");
2064                 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
2065                 let crate_msg = format!(
2066                     "perhaps two different versions of crate `{}` are being used?",
2067                     trait_crate
2068                 );
2069                 err.note(&crate_msg);
2070                 suggested = true;
2071             }
2072         }
2073         suggested
2074     }
2075
2076     fn mk_trait_obligation_with_new_self_ty(
2077         &self,
2078         param_env: ty::ParamEnv<'tcx>,
2079         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
2080     ) -> PredicateObligation<'tcx> {
2081         let trait_pred = trait_ref_and_ty
2082             .map_bound(|(tr, new_self_ty)| tr.with_self_type(self.tcx, new_self_ty));
2083
2084         Obligation::new(self.tcx, ObligationCause::dummy(), param_env, trait_pred)
2085     }
2086
2087     #[instrument(skip(self), level = "debug")]
2088     fn maybe_report_ambiguity(
2089         &self,
2090         obligation: &PredicateObligation<'tcx>,
2091         body_id: Option<hir::BodyId>,
2092     ) {
2093         // Unable to successfully determine, probably means
2094         // insufficient type information, but could mean
2095         // ambiguous impls. The latter *ought* to be a
2096         // coherence violation, so we don't report it here.
2097
2098         let predicate = self.resolve_vars_if_possible(obligation.predicate);
2099         let span = obligation.cause.span;
2100
2101         debug!(?predicate, obligation.cause.code = ?obligation.cause.code());
2102
2103         // Ambiguity errors are often caused as fallout from earlier errors.
2104         // We ignore them if this `infcx` is tainted in some cases below.
2105
2106         let bound_predicate = predicate.kind();
2107         let mut err = match bound_predicate.skip_binder() {
2108             ty::PredicateKind::Clause(ty::Clause::Trait(data)) => {
2109                 let trait_ref = bound_predicate.rebind(data.trait_ref);
2110                 debug!(?trait_ref);
2111
2112                 if predicate.references_error() {
2113                     return;
2114                 }
2115
2116                 // This is kind of a hack: it frequently happens that some earlier
2117                 // error prevents types from being fully inferred, and then we get
2118                 // a bunch of uninteresting errors saying something like "<generic
2119                 // #0> doesn't implement Sized".  It may even be true that we
2120                 // could just skip over all checks where the self-ty is an
2121                 // inference variable, but I was afraid that there might be an
2122                 // inference variable created, registered as an obligation, and
2123                 // then never forced by writeback, and hence by skipping here we'd
2124                 // be ignoring the fact that we don't KNOW the type works
2125                 // out. Though even that would probably be harmless, given that
2126                 // we're only talking about builtin traits, which are known to be
2127                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
2128                 // avoid inundating the user with unnecessary errors, but we now
2129                 // check upstream for type errors and don't add the obligations to
2130                 // begin with in those cases.
2131                 if self.tcx.lang_items().sized_trait() == Some(trait_ref.def_id()) {
2132                     if let None = self.tainted_by_errors() {
2133                         self.emit_inference_failure_err(
2134                             body_id,
2135                             span,
2136                             trait_ref.self_ty().skip_binder().into(),
2137                             ErrorCode::E0282,
2138                             false,
2139                         )
2140                         .emit();
2141                     }
2142                     return;
2143                 }
2144
2145                 // Typically, this ambiguity should only happen if
2146                 // there are unresolved type inference variables
2147                 // (otherwise it would suggest a coherence
2148                 // failure). But given #21974 that is not necessarily
2149                 // the case -- we can have multiple where clauses that
2150                 // are only distinguished by a region, which results
2151                 // in an ambiguity even when all types are fully
2152                 // known, since we don't dispatch based on region
2153                 // relationships.
2154
2155                 // Pick the first substitution that still contains inference variables as the one
2156                 // we're going to emit an error for. If there are none (see above), fall back to
2157                 // a more general error.
2158                 let subst = data.trait_ref.substs.iter().find(|s| s.has_non_region_infer());
2159
2160                 let mut err = if let Some(subst) = subst {
2161                     self.emit_inference_failure_err(body_id, span, subst, ErrorCode::E0283, true)
2162                 } else {
2163                     struct_span_err!(
2164                         self.tcx.sess,
2165                         span,
2166                         E0283,
2167                         "type annotations needed: cannot satisfy `{}`",
2168                         predicate,
2169                     )
2170                 };
2171
2172                 let obligation = obligation.with(self.tcx, trait_ref);
2173                 let mut selcx = SelectionContext::new(&self);
2174                 match selcx.select_from_obligation(&obligation) {
2175                     Ok(None) => {
2176                         let impls = ambiguity::recompute_applicable_impls(self.infcx, &obligation);
2177                         let has_non_region_infer =
2178                             trait_ref.skip_binder().substs.types().any(|t| !t.is_ty_infer());
2179                         // It doesn't make sense to talk about applicable impls if there are more
2180                         // than a handful of them.
2181                         if impls.len() > 1 && impls.len() < 5 && has_non_region_infer {
2182                             self.annotate_source_of_ambiguity(&mut err, &impls, predicate);
2183                         } else {
2184                             if self.tainted_by_errors().is_some() {
2185                                 err.cancel();
2186                                 return;
2187                             }
2188                             err.note(&format!("cannot satisfy `{}`", predicate));
2189                         }
2190                     }
2191                     _ => {
2192                         if self.tainted_by_errors().is_some() {
2193                             err.cancel();
2194                             return;
2195                         }
2196                         err.note(&format!("cannot satisfy `{}`", predicate));
2197                     }
2198                 }
2199
2200                 if let ObligationCauseCode::ItemObligation(def_id) | ObligationCauseCode::ExprItemObligation(def_id, ..) = *obligation.cause.code() {
2201                     self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
2202                 } else if let Ok(snippet) = &self.tcx.sess.source_map().span_to_snippet(span)
2203                     && let ObligationCauseCode::BindingObligation(def_id, _) | ObligationCauseCode::ExprBindingObligation(def_id, ..)
2204                         = *obligation.cause.code()
2205                 {
2206                     let generics = self.tcx.generics_of(def_id);
2207                     if generics.params.iter().any(|p| p.name != kw::SelfUpper)
2208                         && !snippet.ends_with('>')
2209                         && !generics.has_impl_trait()
2210                         && !self.tcx.is_fn_trait(def_id)
2211                     {
2212                         // FIXME: To avoid spurious suggestions in functions where type arguments
2213                         // where already supplied, we check the snippet to make sure it doesn't
2214                         // end with a turbofish. Ideally we would have access to a `PathSegment`
2215                         // instead. Otherwise we would produce the following output:
2216                         //
2217                         // error[E0283]: type annotations needed
2218                         //   --> $DIR/issue-54954.rs:3:24
2219                         //    |
2220                         // LL | const ARR_LEN: usize = Tt::const_val::<[i8; 123]>();
2221                         //    |                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
2222                         //    |                        |
2223                         //    |                        cannot infer type
2224                         //    |                        help: consider specifying the type argument
2225                         //    |                        in the function call:
2226                         //    |                        `Tt::const_val::<[i8; 123]>::<T>`
2227                         // ...
2228                         // LL |     const fn const_val<T: Sized>() -> usize {
2229                         //    |                        - required by this bound in `Tt::const_val`
2230                         //    |
2231                         //    = note: cannot satisfy `_: Tt`
2232
2233                         // Clear any more general suggestions in favor of our specific one
2234                         err.clear_suggestions();
2235
2236                         err.span_suggestion_verbose(
2237                             span.shrink_to_hi(),
2238                             &format!(
2239                                 "consider specifying the type argument{} in the function call",
2240                                 pluralize!(generics.params.len()),
2241                             ),
2242                             format!(
2243                                 "::<{}>",
2244                                 generics
2245                                     .params
2246                                     .iter()
2247                                     .map(|p| p.name.to_string())
2248                                     .collect::<Vec<String>>()
2249                                     .join(", ")
2250                             ),
2251                             Applicability::HasPlaceholders,
2252                         );
2253                     }
2254                 }
2255
2256                 if let (Some(body_id), Some(ty::subst::GenericArgKind::Type(_))) =
2257                     (body_id, subst.map(|subst| subst.unpack()))
2258                 {
2259                     struct FindExprBySpan<'hir> {
2260                         span: Span,
2261                         result: Option<&'hir hir::Expr<'hir>>,
2262                     }
2263
2264                     impl<'v> hir::intravisit::Visitor<'v> for FindExprBySpan<'v> {
2265                         fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
2266                             if self.span == ex.span {
2267                                 self.result = Some(ex);
2268                             } else {
2269                                 hir::intravisit::walk_expr(self, ex);
2270                             }
2271                         }
2272                     }
2273
2274                     let mut expr_finder = FindExprBySpan { span, result: None };
2275
2276                     expr_finder.visit_expr(&self.tcx.hir().body(body_id).value);
2277
2278                     if let Some(hir::Expr {
2279                         kind: hir::ExprKind::Path(hir::QPath::Resolved(None, path)), .. }
2280                     ) = expr_finder.result
2281                         && let [
2282                             ..,
2283                             trait_path_segment @ hir::PathSegment {
2284                                 res: rustc_hir::def::Res::Def(rustc_hir::def::DefKind::Trait, trait_id),
2285                                 ..
2286                             },
2287                             hir::PathSegment {
2288                                 ident: assoc_item_name,
2289                                 res: rustc_hir::def::Res::Def(_, item_id),
2290                                 ..
2291                             }
2292                         ] = path.segments
2293                         && data.trait_ref.def_id == *trait_id
2294                         && self.tcx.trait_of_item(*item_id) == Some(*trait_id)
2295                         && let None = self.tainted_by_errors()
2296                     {
2297                         let (verb, noun) = match self.tcx.associated_item(item_id).kind {
2298                             ty::AssocKind::Const => ("refer to the", "constant"),
2299                             ty::AssocKind::Fn => ("call", "function"),
2300                             ty::AssocKind::Type => ("refer to the", "type"), // this is already covered by E0223, but this single match arm doesn't hurt here
2301                         };
2302
2303                         // Replace the more general E0283 with a more specific error
2304                         err.cancel();
2305                         err = self.tcx.sess.struct_span_err_with_code(
2306                             span,
2307                             &format!(
2308                                 "cannot {verb} associated {noun} on trait without specifying the corresponding `impl` type",
2309                              ),
2310                             rustc_errors::error_code!(E0790),
2311                         );
2312
2313                         if let Some(local_def_id) = data.trait_ref.def_id.as_local()
2314                             && let Some(hir::Node::Item(hir::Item { ident: trait_name, kind: hir::ItemKind::Trait(_, _, _, _, trait_item_refs), .. })) = self.tcx.hir().find_by_def_id(local_def_id)
2315                             && let Some(method_ref) = trait_item_refs.iter().find(|item_ref| item_ref.ident == *assoc_item_name) {
2316                             err.span_label(method_ref.span, format!("`{}::{}` defined here", trait_name, assoc_item_name));
2317                         }
2318
2319                         err.span_label(span, format!("cannot {verb} associated {noun} of trait"));
2320
2321                         let trait_impls = self.tcx.trait_impls_of(data.trait_ref.def_id);
2322
2323                         if trait_impls.blanket_impls().is_empty()
2324                             && let Some((impl_ty, _)) = trait_impls.non_blanket_impls().iter().next()
2325                             && let Some(impl_def_id) = impl_ty.def() {
2326                             let message = if trait_impls.non_blanket_impls().len() == 1 {
2327                                 "use the fully-qualified path to the only available implementation".to_string()
2328                             } else {
2329                                 format!(
2330                                     "use a fully-qualified path to a specific available implementation ({} found)",
2331                                     trait_impls.non_blanket_impls().len()
2332                                 )
2333                             };
2334                             let mut suggestions = vec![(
2335                                 trait_path_segment.ident.span.shrink_to_lo(),
2336                                 format!("<{} as ", self.tcx.type_of(impl_def_id))
2337                             )];
2338                             if let Some(generic_arg) = trait_path_segment.args {
2339                                 let between_span = trait_path_segment.ident.span.between(generic_arg.span_ext);
2340                                 // get rid of :: between Trait and <type>
2341                                 // must be '::' between them, otherwise the parser won't accept the code
2342                                 suggestions.push((between_span, "".to_string(),));
2343                                 suggestions.push((generic_arg.span_ext.shrink_to_hi(), format!(">")));
2344                             } else {
2345                                 suggestions.push((trait_path_segment.ident.span.shrink_to_hi(), format!(">")));
2346                             }
2347                             err.multipart_suggestion(
2348                                 message,
2349                                 suggestions,
2350                                 Applicability::MaybeIncorrect
2351                             );
2352                         }
2353                     }
2354                 };
2355
2356                 err
2357             }
2358
2359             ty::PredicateKind::WellFormed(arg) => {
2360                 // Same hacky approach as above to avoid deluging user
2361                 // with error messages.
2362                 if arg.references_error()
2363                     || self.tcx.sess.has_errors().is_some()
2364                     || self.tainted_by_errors().is_some()
2365                 {
2366                     return;
2367                 }
2368
2369                 self.emit_inference_failure_err(body_id, span, arg, ErrorCode::E0282, false)
2370             }
2371
2372             ty::PredicateKind::Subtype(data) => {
2373                 if data.references_error()
2374                     || self.tcx.sess.has_errors().is_some()
2375                     || self.tainted_by_errors().is_some()
2376                 {
2377                     // no need to overload user in such cases
2378                     return;
2379                 }
2380                 let SubtypePredicate { a_is_expected: _, a, b } = data;
2381                 // both must be type variables, or the other would've been instantiated
2382                 assert!(a.is_ty_var() && b.is_ty_var());
2383                 self.emit_inference_failure_err(body_id, span, a.into(), ErrorCode::E0282, true)
2384             }
2385             ty::PredicateKind::Clause(ty::Clause::Projection(data)) => {
2386                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2387                     return;
2388                 }
2389                 let subst = data
2390                     .projection_ty
2391                     .substs
2392                     .iter()
2393                     .chain(Some(data.term.into_arg()))
2394                     .find(|g| g.has_non_region_infer());
2395                 if let Some(subst) = subst {
2396                     let mut err = self.emit_inference_failure_err(
2397                         body_id,
2398                         span,
2399                         subst,
2400                         ErrorCode::E0284,
2401                         true,
2402                     );
2403                     err.note(&format!("cannot satisfy `{}`", predicate));
2404                     err
2405                 } else {
2406                     // If we can't find a substitution, just print a generic error
2407                     let mut err = struct_span_err!(
2408                         self.tcx.sess,
2409                         span,
2410                         E0284,
2411                         "type annotations needed: cannot satisfy `{}`",
2412                         predicate,
2413                     );
2414                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2415                     err
2416                 }
2417             }
2418
2419             ty::PredicateKind::ConstEvaluatable(data) => {
2420                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2421                     return;
2422                 }
2423                 let subst = data.walk().find(|g| g.is_non_region_infer());
2424                 if let Some(subst) = subst {
2425                     let err = self.emit_inference_failure_err(
2426                         body_id,
2427                         span,
2428                         subst,
2429                         ErrorCode::E0284,
2430                         true,
2431                     );
2432                     err
2433                 } else {
2434                     // If we can't find a substitution, just print a generic error
2435                     let mut err = struct_span_err!(
2436                         self.tcx.sess,
2437                         span,
2438                         E0284,
2439                         "type annotations needed: cannot satisfy `{}`",
2440                         predicate,
2441                     );
2442                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2443                     err
2444                 }
2445             }
2446             _ => {
2447                 if self.tcx.sess.has_errors().is_some() || self.tainted_by_errors().is_some() {
2448                     return;
2449                 }
2450                 let mut err = struct_span_err!(
2451                     self.tcx.sess,
2452                     span,
2453                     E0284,
2454                     "type annotations needed: cannot satisfy `{}`",
2455                     predicate,
2456                 );
2457                 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2458                 err
2459             }
2460         };
2461         self.note_obligation_cause(&mut err, obligation);
2462         err.emit();
2463     }
2464
2465     fn annotate_source_of_ambiguity(
2466         &self,
2467         err: &mut Diagnostic,
2468         impls: &[DefId],
2469         predicate: ty::Predicate<'tcx>,
2470     ) {
2471         let mut spans = vec![];
2472         let mut crates = vec![];
2473         let mut post = vec![];
2474         for def_id in impls {
2475             match self.tcx.span_of_impl(*def_id) {
2476                 Ok(span) => spans.push(span),
2477                 Err(name) => {
2478                     crates.push(name);
2479                     if let Some(header) = to_pretty_impl_header(self.tcx, *def_id) {
2480                         post.push(header);
2481                     }
2482                 }
2483             }
2484         }
2485         let mut crate_names: Vec<_> = crates.iter().map(|n| format!("`{}`", n)).collect();
2486         crate_names.sort();
2487         crate_names.dedup();
2488         post.sort();
2489         post.dedup();
2490
2491         if self.tainted_by_errors().is_some()
2492             && (crate_names.len() == 1
2493                 && spans.len() == 0
2494                 && ["`core`", "`alloc`", "`std`"].contains(&crate_names[0].as_str())
2495                 || predicate.visit_with(&mut HasNumericInferVisitor).is_break())
2496         {
2497             // Avoid complaining about other inference issues for expressions like
2498             // `42 >> 1`, where the types are still `{integer}`, but we want to
2499             // Do we need `trait_ref.skip_binder().self_ty().is_numeric() &&` too?
2500             // NOTE(eddyb) this was `.cancel()`, but `err`
2501             // is borrowed, so we can't fully defuse it.
2502             err.downgrade_to_delayed_bug();
2503             return;
2504         }
2505
2506         let msg = format!("multiple `impl`s satisfying `{}` found", predicate);
2507         let post = if post.len() > 1 || (post.len() == 1 && post[0].contains('\n')) {
2508             format!(":\n{}", post.iter().map(|p| format!("- {}", p)).collect::<Vec<_>>().join("\n"),)
2509         } else if post.len() == 1 {
2510             format!(": `{}`", post[0])
2511         } else {
2512             String::new()
2513         };
2514
2515         match (spans.len(), crates.len(), crate_names.len()) {
2516             (0, 0, 0) => {
2517                 err.note(&format!("cannot satisfy `{}`", predicate));
2518             }
2519             (0, _, 1) => {
2520                 err.note(&format!("{} in the `{}` crate{}", msg, crates[0], post,));
2521             }
2522             (0, _, _) => {
2523                 err.note(&format!(
2524                     "{} in the following crates: {}{}",
2525                     msg,
2526                     crate_names.join(", "),
2527                     post,
2528                 ));
2529             }
2530             (_, 0, 0) => {
2531                 let span: MultiSpan = spans.into();
2532                 err.span_note(span, &msg);
2533             }
2534             (_, 1, 1) => {
2535                 let span: MultiSpan = spans.into();
2536                 err.span_note(span, &msg);
2537                 err.note(
2538                     &format!("and another `impl` found in the `{}` crate{}", crates[0], post,),
2539                 );
2540             }
2541             _ => {
2542                 let span: MultiSpan = spans.into();
2543                 err.span_note(span, &msg);
2544                 err.note(&format!(
2545                     "and more `impl`s found in the following crates: {}{}",
2546                     crate_names.join(", "),
2547                     post,
2548                 ));
2549             }
2550         }
2551     }
2552
2553     /// Returns `true` if the trait predicate may apply for *some* assignment
2554     /// to the type parameters.
2555     fn predicate_can_apply(
2556         &self,
2557         param_env: ty::ParamEnv<'tcx>,
2558         pred: ty::PolyTraitPredicate<'tcx>,
2559     ) -> bool {
2560         struct ParamToVarFolder<'a, 'tcx> {
2561             infcx: &'a InferCtxt<'tcx>,
2562             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2563         }
2564
2565         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
2566             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
2567                 self.infcx.tcx
2568             }
2569
2570             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2571                 if let ty::Param(ty::ParamTy { name, .. }) = *ty.kind() {
2572                     let infcx = self.infcx;
2573                     *self.var_map.entry(ty).or_insert_with(|| {
2574                         infcx.next_ty_var(TypeVariableOrigin {
2575                             kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
2576                             span: DUMMY_SP,
2577                         })
2578                     })
2579                 } else {
2580                     ty.super_fold_with(self)
2581                 }
2582             }
2583         }
2584
2585         self.probe(|_| {
2586             let cleaned_pred =
2587                 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2588
2589             let InferOk { value: cleaned_pred, .. } =
2590                 self.infcx.at(&ObligationCause::dummy(), param_env).normalize(cleaned_pred);
2591
2592             let obligation =
2593                 Obligation::new(self.tcx, ObligationCause::dummy(), param_env, cleaned_pred);
2594
2595             self.predicate_may_hold(&obligation)
2596         })
2597     }
2598
2599     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>) {
2600         // First, attempt to add note to this error with an async-await-specific
2601         // message, and fall back to regular note otherwise.
2602         if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2603             self.note_obligation_cause_code(
2604                 err,
2605                 &obligation.predicate,
2606                 obligation.param_env,
2607                 obligation.cause.code(),
2608                 &mut vec![],
2609                 &mut Default::default(),
2610             );
2611             self.suggest_unsized_bound_if_applicable(err, obligation);
2612         }
2613     }
2614
2615     #[instrument(level = "debug", skip_all)]
2616     fn suggest_unsized_bound_if_applicable(
2617         &self,
2618         err: &mut Diagnostic,
2619         obligation: &PredicateObligation<'tcx>,
2620     ) {
2621         let ty::PredicateKind::Clause(ty::Clause::Trait(pred)) = obligation.predicate.kind().skip_binder() else { return; };
2622         let (ObligationCauseCode::BindingObligation(item_def_id, span)
2623         | ObligationCauseCode::ExprBindingObligation(item_def_id, span, ..))
2624             = *obligation.cause.code().peel_derives() else { return; };
2625         debug!(?pred, ?item_def_id, ?span);
2626
2627         let (Some(node), true) = (
2628             self.tcx.hir().get_if_local(item_def_id),
2629             Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
2630         ) else {
2631             return;
2632         };
2633         self.maybe_suggest_unsized_generics(err, span, node);
2634     }
2635
2636     #[instrument(level = "debug", skip_all)]
2637     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>) {
2638         let Some(generics) = node.generics() else {
2639             return;
2640         };
2641         let sized_trait = self.tcx.lang_items().sized_trait();
2642         debug!(?generics.params);
2643         debug!(?generics.predicates);
2644         let Some(param) = generics.params.iter().find(|param| param.span == span) else {
2645             return;
2646         };
2647         // Check that none of the explicit trait bounds is `Sized`. Assume that an explicit
2648         // `Sized` bound is there intentionally and we don't need to suggest relaxing it.
2649         let explicitly_sized = generics
2650             .bounds_for_param(param.def_id)
2651             .flat_map(|bp| bp.bounds)
2652             .any(|bound| bound.trait_ref().and_then(|tr| tr.trait_def_id()) == sized_trait);
2653         if explicitly_sized {
2654             return;
2655         }
2656         debug!(?param);
2657         match node {
2658             hir::Node::Item(
2659                 item @ hir::Item {
2660                     // Only suggest indirection for uses of type parameters in ADTs.
2661                     kind:
2662                         hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..),
2663                     ..
2664                 },
2665             ) => {
2666                 if self.maybe_indirection_for_unsized(err, item, param) {
2667                     return;
2668                 }
2669             }
2670             _ => {}
2671         };
2672         // Didn't add an indirection suggestion, so add a general suggestion to relax `Sized`.
2673         let (span, separator) = if let Some(s) = generics.bounds_span_for_suggestions(param.def_id)
2674         {
2675             (s, " +")
2676         } else {
2677             (span.shrink_to_hi(), ":")
2678         };
2679         err.span_suggestion_verbose(
2680             span,
2681             "consider relaxing the implicit `Sized` restriction",
2682             format!("{} ?Sized", separator),
2683             Applicability::MachineApplicable,
2684         );
2685     }
2686
2687     fn maybe_indirection_for_unsized(
2688         &self,
2689         err: &mut Diagnostic,
2690         item: &Item<'tcx>,
2691         param: &GenericParam<'tcx>,
2692     ) -> bool {
2693         // Suggesting `T: ?Sized` is only valid in an ADT if `T` is only used in a
2694         // borrow. `struct S<'a, T: ?Sized>(&'a T);` is valid, `struct S<T: ?Sized>(T);`
2695         // is not. Look for invalid "bare" parameter uses, and suggest using indirection.
2696         let mut visitor =
2697             FindTypeParam { param: param.name.ident().name, invalid_spans: vec![], nested: false };
2698         visitor.visit_item(item);
2699         if visitor.invalid_spans.is_empty() {
2700             return false;
2701         }
2702         let mut multispan: MultiSpan = param.span.into();
2703         multispan.push_span_label(
2704             param.span,
2705             format!("this could be changed to `{}: ?Sized`...", param.name.ident()),
2706         );
2707         for sp in visitor.invalid_spans {
2708             multispan.push_span_label(
2709                 sp,
2710                 format!("...if indirection were used here: `Box<{}>`", param.name.ident()),
2711             );
2712         }
2713         err.span_help(
2714             multispan,
2715             &format!(
2716                 "you could relax the implicit `Sized` bound on `{T}` if it were \
2717                 used through indirection like `&{T}` or `Box<{T}>`",
2718                 T = param.name.ident(),
2719             ),
2720         );
2721         true
2722     }
2723
2724     fn is_recursive_obligation(
2725         &self,
2726         obligated_types: &mut Vec<Ty<'tcx>>,
2727         cause_code: &ObligationCauseCode<'tcx>,
2728     ) -> bool {
2729         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
2730             let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2731             let self_ty = parent_trait_ref.skip_binder().self_ty();
2732             if obligated_types.iter().any(|ot| ot == &self_ty) {
2733                 return true;
2734             }
2735             if let ty::Adt(def, substs) = self_ty.kind()
2736                 && let [arg] = &substs[..]
2737                 && let ty::subst::GenericArgKind::Type(ty) = arg.unpack()
2738                 && let ty::Adt(inner_def, _) = ty.kind()
2739                 && inner_def == def
2740             {
2741                 return true;
2742             }
2743         }
2744         false
2745     }
2746 }
2747
2748 /// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
2749 /// `param: ?Sized` would be a valid constraint.
2750 struct FindTypeParam {
2751     param: rustc_span::Symbol,
2752     invalid_spans: Vec<Span>,
2753     nested: bool,
2754 }
2755
2756 impl<'v> Visitor<'v> for FindTypeParam {
2757     fn visit_where_predicate(&mut self, _: &'v hir::WherePredicate<'v>) {
2758         // Skip where-clauses, to avoid suggesting indirection for type parameters found there.
2759     }
2760
2761     fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2762         // We collect the spans of all uses of the "bare" type param, like in `field: T` or
2763         // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
2764         // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
2765         // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
2766         // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
2767         // in that case should make what happened clear enough.
2768         match ty.kind {
2769             hir::TyKind::Ptr(_) | hir::TyKind::Rptr(..) | hir::TyKind::TraitObject(..) => {}
2770             hir::TyKind::Path(hir::QPath::Resolved(None, path))
2771                 if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
2772             {
2773                 if !self.nested {
2774                     debug!(?ty, "FindTypeParam::visit_ty");
2775                     self.invalid_spans.push(ty.span);
2776                 }
2777             }
2778             hir::TyKind::Path(_) => {
2779                 let prev = self.nested;
2780                 self.nested = true;
2781                 hir::intravisit::walk_ty(self, ty);
2782                 self.nested = prev;
2783             }
2784             _ => {
2785                 hir::intravisit::walk_ty(self, ty);
2786             }
2787         }
2788     }
2789 }
2790
2791 /// Summarizes information
2792 #[derive(Clone)]
2793 pub enum ArgKind {
2794     /// An argument of non-tuple type. Parameters are (name, ty)
2795     Arg(String, String),
2796
2797     /// An argument of tuple type. For a "found" argument, the span is
2798     /// the location in the source of the pattern. For an "expected"
2799     /// argument, it will be None. The vector is a list of (name, ty)
2800     /// strings for the components of the tuple.
2801     Tuple(Option<Span>, Vec<(String, String)>),
2802 }
2803
2804 impl ArgKind {
2805     fn empty() -> ArgKind {
2806         ArgKind::Arg("_".to_owned(), "_".to_owned())
2807     }
2808
2809     /// Creates an `ArgKind` from the expected type of an
2810     /// argument. It has no name (`_`) and an optional source span.
2811     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
2812         match t.kind() {
2813             ty::Tuple(tys) => ArgKind::Tuple(
2814                 span,
2815                 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
2816             ),
2817             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
2818         }
2819     }
2820 }
2821
2822 struct HasNumericInferVisitor;
2823
2824 impl<'tcx> ty::TypeVisitor<'tcx> for HasNumericInferVisitor {
2825     type BreakTy = ();
2826
2827     fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
2828         if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
2829             ControlFlow::Break(())
2830         } else {
2831             ControlFlow::CONTINUE
2832         }
2833     }
2834 }
2835
2836 pub enum DefIdOrName {
2837     DefId(DefId),
2838     Name(&'static str),
2839 }