]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs
drive-by: Fix path spans
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / mod.rs
1 mod ambiguity;
2 pub mod method_chain;
3 pub mod on_unimplemented;
4 pub mod suggestions;
5
6 use super::{
7     FulfillmentError, FulfillmentErrorCode, MismatchedProjectionTypes, Obligation, ObligationCause,
8     ObligationCauseCode, ObligationCtxt, OutputTypeParameterMismatch, Overflow,
9     PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
10 };
11 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
12 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
13 use crate::infer::{self, InferCtxt};
14 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
15 use crate::traits::query::normalize::QueryNormalizeExt as _;
16 use crate::traits::specialize::to_pretty_impl_header;
17 use crate::traits::NormalizeExt;
18 use on_unimplemented::OnUnimplementedNote;
19 use on_unimplemented::TypeErrCtxtExt as _;
20 use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
21 use rustc_errors::{
22     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
23     MultiSpan, Style,
24 };
25 use rustc_hir as hir;
26 use rustc_hir::def::Namespace;
27 use rustc_hir::def_id::DefId;
28 use rustc_hir::intravisit::Visitor;
29 use rustc_hir::GenericParam;
30 use rustc_hir::Item;
31 use rustc_hir::Node;
32 use rustc_infer::infer::error_reporting::TypeErrCtxt;
33 use rustc_infer::infer::{InferOk, TypeTrace};
34 use rustc_middle::traits::select::OverflowError;
35 use rustc_middle::ty::abstract_const::NotConstEvaluatable;
36 use rustc_middle::ty::error::ExpectedFound;
37 use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
38 use rustc_middle::ty::print::{FmtPrinter, Print};
39 use rustc_middle::ty::{
40     self, SubtypePredicate, ToPolyTraitRef, ToPredicate, TraitRef, Ty, TyCtxt, TypeFoldable,
41     TypeVisitable,
42 };
43 use rustc_session::Limit;
44 use rustc_span::def_id::LOCAL_CRATE;
45 use rustc_span::symbol::sym;
46 use rustc_span::{ExpnKind, Span, DUMMY_SP};
47 use std::fmt;
48 use std::iter;
49 use std::ops::ControlFlow;
50 use suggestions::TypeErrCtxtExt as _;
51
52 pub use rustc_infer::traits::error_reporting::*;
53
54 // When outputting impl candidates, prefer showing those that are more similar.
55 //
56 // We also compare candidates after skipping lifetimes, which has a lower
57 // priority than exact matches.
58 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
59 pub enum CandidateSimilarity {
60     Exact { ignoring_lifetimes: bool },
61     Fuzzy { ignoring_lifetimes: bool },
62 }
63
64 #[derive(Debug, Clone, Copy)]
65 pub struct ImplCandidate<'tcx> {
66     pub trait_ref: ty::TraitRef<'tcx>,
67     pub similarity: CandidateSimilarity,
68 }
69
70 pub trait InferCtxtExt<'tcx> {
71     /// Given some node representing a fn-like thing in the HIR map,
72     /// returns a span and `ArgKind` information that describes the
73     /// arguments it expects. This can be supplied to
74     /// `report_arg_count_mismatch`.
75     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)>;
76
77     /// Reports an error when the number of arguments needed by a
78     /// trait match doesn't match the number that the expression
79     /// provides.
80     fn report_arg_count_mismatch(
81         &self,
82         span: Span,
83         found_span: Option<Span>,
84         expected_args: Vec<ArgKind>,
85         found_args: Vec<ArgKind>,
86         is_closure: bool,
87         closure_pipe_span: Option<Span>,
88     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
89
90     /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
91     /// in that order, and returns the generic type corresponding to the
92     /// argument of that trait (corresponding to the closure arguments).
93     fn type_implements_fn_trait(
94         &self,
95         param_env: ty::ParamEnv<'tcx>,
96         ty: ty::Binder<'tcx, Ty<'tcx>>,
97         constness: ty::BoundConstness,
98         polarity: ty::ImplPolarity,
99     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()>;
100 }
101
102 pub trait TypeErrCtxtExt<'tcx> {
103     fn report_overflow_error<T>(
104         &self,
105         predicate: &T,
106         span: Span,
107         suggest_increasing_limit: bool,
108         mutate: impl FnOnce(&mut Diagnostic),
109     ) -> !
110     where
111         T: fmt::Display
112             + TypeFoldable<'tcx>
113             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
114         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug;
115
116     fn report_fulfillment_errors(
117         &self,
118         errors: &[FulfillmentError<'tcx>],
119         body_id: Option<hir::BodyId>,
120     ) -> ErrorGuaranteed;
121
122     fn report_overflow_obligation<T>(
123         &self,
124         obligation: &Obligation<'tcx, T>,
125         suggest_increasing_limit: bool,
126     ) -> !
127     where
128         T: ToPredicate<'tcx> + Clone;
129
130     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic);
131
132     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
133
134     /// The `root_obligation` parameter should be the `root_obligation` field
135     /// from a `FulfillmentError`. If no `FulfillmentError` is available,
136     /// then it should be the same as `obligation`.
137     fn report_selection_error(
138         &self,
139         obligation: PredicateObligation<'tcx>,
140         root_obligation: &PredicateObligation<'tcx>,
141         error: &SelectionError<'tcx>,
142     );
143 }
144
145 impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
146     /// Given some node representing a fn-like thing in the HIR map,
147     /// returns a span and `ArgKind` information that describes the
148     /// arguments it expects. This can be supplied to
149     /// `report_arg_count_mismatch`.
150     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)> {
151         let sm = self.tcx.sess.source_map();
152         let hir = self.tcx.hir();
153         Some(match node {
154             Node::Expr(&hir::Expr {
155                 kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, fn_arg_span, .. }),
156                 ..
157             }) => (
158                 fn_decl_span,
159                 fn_arg_span,
160                 hir.body(body)
161                     .params
162                     .iter()
163                     .map(|arg| {
164                         if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
165                             *arg.pat
166                         {
167                             Some(ArgKind::Tuple(
168                                 Some(span),
169                                 args.iter()
170                                     .map(|pat| {
171                                         sm.span_to_snippet(pat.span)
172                                             .ok()
173                                             .map(|snippet| (snippet, "_".to_owned()))
174                                     })
175                                     .collect::<Option<Vec<_>>>()?,
176                             ))
177                         } else {
178                             let name = sm.span_to_snippet(arg.pat.span).ok()?;
179                             Some(ArgKind::Arg(name, "_".to_owned()))
180                         }
181                     })
182                     .collect::<Option<Vec<ArgKind>>>()?,
183             ),
184             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(ref sig, ..), .. })
185             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
186             | Node::TraitItem(&hir::TraitItem {
187                 kind: hir::TraitItemKind::Fn(ref sig, _), ..
188             }) => (
189                 sig.span,
190                 None,
191                 sig.decl
192                     .inputs
193                     .iter()
194                     .map(|arg| match arg.kind {
195                         hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
196                             Some(arg.span),
197                             vec![("_".to_owned(), "_".to_owned()); tys.len()],
198                         ),
199                         _ => ArgKind::empty(),
200                     })
201                     .collect::<Vec<ArgKind>>(),
202             ),
203             Node::Ctor(ref variant_data) => {
204                 let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| hir.span(id));
205                 (span, None, vec![ArgKind::empty(); variant_data.fields().len()])
206             }
207             _ => panic!("non-FnLike node found: {:?}", node),
208         })
209     }
210
211     /// Reports an error when the number of arguments needed by a
212     /// trait match doesn't match the number that the expression
213     /// provides.
214     fn report_arg_count_mismatch(
215         &self,
216         span: Span,
217         found_span: Option<Span>,
218         expected_args: Vec<ArgKind>,
219         found_args: Vec<ArgKind>,
220         is_closure: bool,
221         closure_arg_span: Option<Span>,
222     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
223         let kind = if is_closure { "closure" } else { "function" };
224
225         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
226             let arg_length = arguments.len();
227             let distinct = matches!(other, &[ArgKind::Tuple(..)]);
228             match (arg_length, arguments.get(0)) {
229                 (1, Some(&ArgKind::Tuple(_, ref fields))) => {
230                     format!("a single {}-tuple as argument", fields.len())
231                 }
232                 _ => format!(
233                     "{} {}argument{}",
234                     arg_length,
235                     if distinct && arg_length > 1 { "distinct " } else { "" },
236                     pluralize!(arg_length)
237                 ),
238             }
239         };
240
241         let expected_str = args_str(&expected_args, &found_args);
242         let found_str = args_str(&found_args, &expected_args);
243
244         let mut err = struct_span_err!(
245             self.tcx.sess,
246             span,
247             E0593,
248             "{} is expected to take {}, but it takes {}",
249             kind,
250             expected_str,
251             found_str,
252         );
253
254         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
255
256         if let Some(found_span) = found_span {
257             err.span_label(found_span, format!("takes {}", found_str));
258
259             // Suggest to take and ignore the arguments with expected_args_length `_`s if
260             // found arguments is empty (assume the user just wants to ignore args in this case).
261             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
262             if found_args.is_empty() && is_closure {
263                 let underscores = vec!["_"; expected_args.len()].join(", ");
264                 err.span_suggestion_verbose(
265                     closure_arg_span.unwrap_or(found_span),
266                     &format!(
267                         "consider changing the closure to take and ignore the expected argument{}",
268                         pluralize!(expected_args.len())
269                     ),
270                     format!("|{}|", underscores),
271                     Applicability::MachineApplicable,
272                 );
273             }
274
275             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
276                 if fields.len() == expected_args.len() {
277                     let sugg = fields
278                         .iter()
279                         .map(|(name, _)| name.to_owned())
280                         .collect::<Vec<String>>()
281                         .join(", ");
282                     err.span_suggestion_verbose(
283                         found_span,
284                         "change the closure to take multiple arguments instead of a single tuple",
285                         format!("|{}|", sugg),
286                         Applicability::MachineApplicable,
287                     );
288                 }
289             }
290             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
291                 && fields.len() == found_args.len()
292                 && is_closure
293             {
294                 let sugg = format!(
295                     "|({}){}|",
296                     found_args
297                         .iter()
298                         .map(|arg| match arg {
299                             ArgKind::Arg(name, _) => name.to_owned(),
300                             _ => "_".to_owned(),
301                         })
302                         .collect::<Vec<String>>()
303                         .join(", "),
304                     // add type annotations if available
305                     if found_args.iter().any(|arg| match arg {
306                         ArgKind::Arg(_, ty) => ty != "_",
307                         _ => false,
308                     }) {
309                         format!(
310                             ": ({})",
311                             fields
312                                 .iter()
313                                 .map(|(_, ty)| ty.to_owned())
314                                 .collect::<Vec<String>>()
315                                 .join(", ")
316                         )
317                     } else {
318                         String::new()
319                     },
320                 );
321                 err.span_suggestion_verbose(
322                     found_span,
323                     "change the closure to accept a tuple instead of individual arguments",
324                     sugg,
325                     Applicability::MachineApplicable,
326                 );
327             }
328         }
329
330         err
331     }
332
333     fn type_implements_fn_trait(
334         &self,
335         param_env: ty::ParamEnv<'tcx>,
336         ty: ty::Binder<'tcx, Ty<'tcx>>,
337         constness: ty::BoundConstness,
338         polarity: ty::ImplPolarity,
339     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
340         self.commit_if_ok(|_| {
341             for trait_def_id in [
342                 self.tcx.lang_items().fn_trait(),
343                 self.tcx.lang_items().fn_mut_trait(),
344                 self.tcx.lang_items().fn_once_trait(),
345             ] {
346                 let Some(trait_def_id) = trait_def_id else { continue };
347                 // Make a fresh inference variable so we can determine what the substitutions
348                 // of the trait are.
349                 let var = self.next_ty_var(TypeVariableOrigin {
350                     span: DUMMY_SP,
351                     kind: TypeVariableOriginKind::MiscVariable,
352                 });
353                 let trait_ref = self.tcx.mk_trait_ref(trait_def_id, [ty.skip_binder(), var]);
354                 let obligation = Obligation::new(
355                     self.tcx,
356                     ObligationCause::dummy(),
357                     param_env,
358                     ty.rebind(ty::TraitPredicate { trait_ref, constness, polarity }),
359                 );
360                 let ocx = ObligationCtxt::new_in_snapshot(self);
361                 ocx.register_obligation(obligation);
362                 if ocx.select_all_or_error().is_empty() {
363                     return Ok((
364                         self.tcx
365                             .fn_trait_kind_from_def_id(trait_def_id)
366                             .expect("expected to map DefId to ClosureKind"),
367                         ty.rebind(self.resolve_vars_if_possible(var)),
368                     ));
369                 }
370             }
371
372             Err(())
373         })
374     }
375 }
376 impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
377     fn report_fulfillment_errors(
378         &self,
379         errors: &[FulfillmentError<'tcx>],
380         body_id: Option<hir::BodyId>,
381     ) -> ErrorGuaranteed {
382         #[derive(Debug)]
383         struct ErrorDescriptor<'tcx> {
384             predicate: ty::Predicate<'tcx>,
385             index: Option<usize>, // None if this is an old error
386         }
387
388         let mut error_map: FxIndexMap<_, Vec<_>> = self
389             .reported_trait_errors
390             .borrow()
391             .iter()
392             .map(|(&span, predicates)| {
393                 (
394                     span,
395                     predicates
396                         .iter()
397                         .map(|&predicate| ErrorDescriptor { predicate, index: None })
398                         .collect(),
399                 )
400             })
401             .collect();
402
403         for (index, error) in errors.iter().enumerate() {
404             // We want to ignore desugarings here: spans are equivalent even
405             // if one is the result of a desugaring and the other is not.
406             let mut span = error.obligation.cause.span;
407             let expn_data = span.ctxt().outer_expn_data();
408             if let ExpnKind::Desugaring(_) = expn_data.kind {
409                 span = expn_data.call_site;
410             }
411
412             error_map.entry(span).or_default().push(ErrorDescriptor {
413                 predicate: error.obligation.predicate,
414                 index: Some(index),
415             });
416
417             self.reported_trait_errors
418                 .borrow_mut()
419                 .entry(span)
420                 .or_default()
421                 .push(error.obligation.predicate);
422         }
423
424         // We do this in 2 passes because we want to display errors in order, though
425         // maybe it *is* better to sort errors by span or something.
426         let mut is_suppressed = vec![false; errors.len()];
427         for (_, error_set) in error_map.iter() {
428             // We want to suppress "duplicate" errors with the same span.
429             for error in error_set {
430                 if let Some(index) = error.index {
431                     // Suppress errors that are either:
432                     // 1) strictly implied by another error.
433                     // 2) implied by an error with a smaller index.
434                     for error2 in error_set {
435                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
436                             // Avoid errors being suppressed by already-suppressed
437                             // errors, to prevent all errors from being suppressed
438                             // at once.
439                             continue;
440                         }
441
442                         if self.error_implies(error2.predicate, error.predicate)
443                             && !(error2.index >= error.index
444                                 && self.error_implies(error.predicate, error2.predicate))
445                         {
446                             info!("skipping {:?} (implied by {:?})", error, error2);
447                             is_suppressed[index] = true;
448                             break;
449                         }
450                     }
451                 }
452             }
453         }
454
455         for (error, suppressed) in iter::zip(errors, is_suppressed) {
456             if !suppressed {
457                 self.report_fulfillment_error(error, body_id);
458             }
459         }
460
461         self.tcx.sess.delay_span_bug(DUMMY_SP, "expected fullfillment errors")
462     }
463
464     /// Reports that an overflow has occurred and halts compilation. We
465     /// halt compilation unconditionally because it is important that
466     /// overflows never be masked -- they basically represent computations
467     /// whose result could not be truly determined and thus we can't say
468     /// if the program type checks or not -- and they are unusual
469     /// occurrences in any case.
470     fn report_overflow_error<T>(
471         &self,
472         predicate: &T,
473         span: Span,
474         suggest_increasing_limit: bool,
475         mutate: impl FnOnce(&mut Diagnostic),
476     ) -> !
477     where
478         T: fmt::Display
479             + TypeFoldable<'tcx>
480             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
481         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug,
482     {
483         let predicate = self.resolve_vars_if_possible(predicate.clone());
484         let mut pred_str = predicate.to_string();
485
486         if pred_str.len() > 50 {
487             // We don't need to save the type to a file, we will be talking about this type already
488             // in a separate note when we explain the obligation, so it will be available that way.
489             pred_str = predicate
490                 .print(FmtPrinter::new_with_limit(
491                     self.tcx,
492                     Namespace::TypeNS,
493                     rustc_session::Limit(6),
494                 ))
495                 .unwrap()
496                 .into_buffer();
497         }
498         let mut err = struct_span_err!(
499             self.tcx.sess,
500             span,
501             E0275,
502             "overflow evaluating the requirement `{}`",
503             pred_str,
504         );
505
506         if suggest_increasing_limit {
507             self.suggest_new_overflow_limit(&mut err);
508         }
509
510         mutate(&mut err);
511
512         err.emit();
513         self.tcx.sess.abort_if_errors();
514         bug!();
515     }
516
517     /// Reports that an overflow has occurred and halts compilation. We
518     /// halt compilation unconditionally because it is important that
519     /// overflows never be masked -- they basically represent computations
520     /// whose result could not be truly determined and thus we can't say
521     /// if the program type checks or not -- and they are unusual
522     /// occurrences in any case.
523     fn report_overflow_obligation<T>(
524         &self,
525         obligation: &Obligation<'tcx, T>,
526         suggest_increasing_limit: bool,
527     ) -> !
528     where
529         T: ToPredicate<'tcx> + Clone,
530     {
531         let predicate = obligation.predicate.clone().to_predicate(self.tcx);
532         let predicate = self.resolve_vars_if_possible(predicate);
533         self.report_overflow_error(
534             &predicate,
535             obligation.cause.span,
536             suggest_increasing_limit,
537             |err| {
538                 self.note_obligation_cause_code(
539                     err,
540                     predicate,
541                     obligation.param_env,
542                     obligation.cause.code(),
543                     &mut vec![],
544                     &mut Default::default(),
545                 );
546             },
547         );
548     }
549
550     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic) {
551         let suggested_limit = match self.tcx.recursion_limit() {
552             Limit(0) => Limit(2),
553             limit => limit * 2,
554         };
555         err.help(&format!(
556             "consider increasing the recursion limit by adding a \
557              `#![recursion_limit = \"{}\"]` attribute to your crate (`{}`)",
558             suggested_limit,
559             self.tcx.crate_name(LOCAL_CRATE),
560         ));
561     }
562
563     /// Reports that a cycle was detected which led to overflow and halts
564     /// compilation. This is equivalent to `report_overflow_obligation` except
565     /// that we can give a more helpful error message (and, in particular,
566     /// we do not suggest increasing the overflow limit, which is not
567     /// going to help).
568     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
569         let cycle = self.resolve_vars_if_possible(cycle.to_owned());
570         assert!(!cycle.is_empty());
571
572         debug!(?cycle, "report_overflow_error_cycle");
573
574         // The 'deepest' obligation is most likely to have a useful
575         // cause 'backtrace'
576         self.report_overflow_obligation(
577             cycle.iter().max_by_key(|p| p.recursion_depth).unwrap(),
578             false,
579         );
580     }
581
582     fn report_selection_error(
583         &self,
584         mut obligation: PredicateObligation<'tcx>,
585         root_obligation: &PredicateObligation<'tcx>,
586         error: &SelectionError<'tcx>,
587     ) {
588         let tcx = self.tcx;
589         let mut span = obligation.cause.span;
590         // FIXME: statically guarantee this by tainting after the diagnostic is emitted
591         self.set_tainted_by_errors(
592             tcx.sess.delay_span_bug(span, "`report_selection_error` did not emit an error"),
593         );
594
595         let mut err = match *error {
596             SelectionError::Unimplemented => {
597                 // If this obligation was generated as a result of well-formedness checking, see if we
598                 // can get a better error message by performing HIR-based well-formedness checking.
599                 if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
600                     root_obligation.cause.code().peel_derives()
601                     && !obligation.predicate.has_non_region_infer()
602                 {
603                     if let Some(cause) = self
604                         .tcx
605                         .diagnostic_hir_wf_check((tcx.erase_regions(obligation.predicate), *wf_loc))
606                     {
607                         obligation.cause = cause.clone();
608                         span = obligation.cause.span;
609                     }
610                 }
611                 if let ObligationCauseCode::CompareImplItemObligation {
612                     impl_item_def_id,
613                     trait_item_def_id,
614                     kind: _,
615                 } = *obligation.cause.code()
616                 {
617                     self.report_extra_impl_obligation(
618                         span,
619                         impl_item_def_id,
620                         trait_item_def_id,
621                         &format!("`{}`", obligation.predicate),
622                     )
623                     .emit();
624                     return;
625                 }
626
627                 let bound_predicate = obligation.predicate.kind();
628                 match bound_predicate.skip_binder() {
629                     ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
630                         let trait_predicate = bound_predicate.rebind(trait_predicate);
631                         let mut trait_predicate = self.resolve_vars_if_possible(trait_predicate);
632
633                         trait_predicate.remap_constness_diag(obligation.param_env);
634                         let predicate_is_const = ty::BoundConstness::ConstIfConst
635                             == trait_predicate.skip_binder().constness;
636
637                         if self.tcx.sess.has_errors().is_some()
638                             && trait_predicate.references_error()
639                         {
640                             return;
641                         }
642                         let trait_ref = trait_predicate.to_poly_trait_ref();
643                         let (post_message, pre_message, type_def) = self
644                             .get_parent_trait_ref(obligation.cause.code())
645                             .map(|(t, s)| {
646                                 (
647                                     format!(" in `{}`", t),
648                                     format!("within `{}`, ", t),
649                                     s.map(|s| (format!("within this `{}`", t), s)),
650                                 )
651                             })
652                             .unwrap_or_default();
653
654                         let OnUnimplementedNote {
655                             message,
656                             label,
657                             note,
658                             parent_label,
659                             append_const_msg,
660                         } = self.on_unimplemented_note(trait_ref, &obligation);
661                         let have_alt_message = message.is_some() || label.is_some();
662                         let is_try_conversion = self.is_try_conversion(span, trait_ref.def_id());
663                         let is_unsize =
664                             Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait();
665                         let (message, note, append_const_msg) = if is_try_conversion {
666                             (
667                                 Some(format!(
668                                     "`?` couldn't convert the error to `{}`",
669                                     trait_ref.skip_binder().self_ty(),
670                                 )),
671                                 Some(
672                                     "the question mark operation (`?`) implicitly performs a \
673                                      conversion on the error value using the `From` trait"
674                                         .to_owned(),
675                                 ),
676                                 Some(None),
677                             )
678                         } else {
679                             (message, note, append_const_msg)
680                         };
681
682                         let mut err = struct_span_err!(
683                             self.tcx.sess,
684                             span,
685                             E0277,
686                             "{}",
687                             message
688                                 .and_then(|cannot_do_this| {
689                                     match (predicate_is_const, append_const_msg) {
690                                         // do nothing if predicate is not const
691                                         (false, _) => Some(cannot_do_this),
692                                         // suggested using default post message
693                                         (true, Some(None)) => {
694                                             Some(format!("{cannot_do_this} in const contexts"))
695                                         }
696                                         // overridden post message
697                                         (true, Some(Some(post_message))) => {
698                                             Some(format!("{cannot_do_this}{post_message}"))
699                                         }
700                                         // fallback to generic message
701                                         (true, None) => None,
702                                     }
703                                 })
704                                 .unwrap_or_else(|| format!(
705                                     "the trait bound `{}` is not satisfied{}",
706                                     trait_predicate, post_message,
707                                 ))
708                         );
709
710                         if is_try_conversion && let Some(ret_span) = self.return_type_span(&obligation) {
711                             err.span_label(
712                                 ret_span,
713                                 &format!(
714                                     "expected `{}` because of this",
715                                     trait_ref.skip_binder().self_ty()
716                                 ),
717                             );
718                         }
719
720                         if Some(trait_ref.def_id()) == tcx.lang_items().tuple_trait() {
721                             match obligation.cause.code().peel_derives() {
722                                 ObligationCauseCode::RustCall => {
723                                     err.set_primary_message("functions with the \"rust-call\" ABI must take a single non-self tuple argument");
724                                 }
725                                 ObligationCauseCode::BindingObligation(def_id, _)
726                                 | ObligationCauseCode::ItemObligation(def_id)
727                                     if tcx.is_fn_trait(*def_id) =>
728                                 {
729                                     err.code(rustc_errors::error_code!(E0059));
730                                     err.set_primary_message(format!(
731                                         "type parameter to bare `{}` trait must be a tuple",
732                                         tcx.def_path_str(*def_id)
733                                     ));
734                                 }
735                                 _ => {}
736                             }
737                         }
738
739                         if Some(trait_ref.def_id()) == tcx.lang_items().drop_trait()
740                             && predicate_is_const
741                         {
742                             err.note("`~const Drop` was renamed to `~const Destruct`");
743                             err.note("See <https://github.com/rust-lang/rust/pull/94901> for more details");
744                         }
745
746                         let explanation = if let ObligationCauseCode::MainFunctionType =
747                             obligation.cause.code()
748                         {
749                             "consider using `()`, or a `Result`".to_owned()
750                         } else {
751                             let ty_desc = match trait_ref.skip_binder().self_ty().kind() {
752                                 ty::FnDef(_, _) => Some("fn item"),
753                                 ty::Closure(_, _) => Some("closure"),
754                                 _ => None,
755                             };
756
757                             match ty_desc {
758                                 Some(desc) => format!(
759                                     "{}the trait `{}` is not implemented for {} `{}`",
760                                     pre_message,
761                                     trait_predicate.print_modifiers_and_trait_path(),
762                                     desc,
763                                     trait_ref.skip_binder().self_ty(),
764                                 ),
765                                 None => format!(
766                                     "{}the trait `{}` is not implemented for `{}`",
767                                     pre_message,
768                                     trait_predicate.print_modifiers_and_trait_path(),
769                                     trait_ref.skip_binder().self_ty(),
770                                 ),
771                             }
772                         };
773
774                         if self.suggest_add_reference_to_arg(
775                             &obligation,
776                             &mut err,
777                             trait_predicate,
778                             have_alt_message,
779                         ) {
780                             self.note_obligation_cause(&mut err, &obligation);
781                             err.emit();
782                             return;
783                         }
784                         if let Some(ref s) = label {
785                             // If it has a custom `#[rustc_on_unimplemented]`
786                             // error message, let's display it as the label!
787                             err.span_label(span, s);
788                             if !matches!(trait_ref.skip_binder().self_ty().kind(), ty::Param(_)) {
789                                 // When the self type is a type param We don't need to "the trait
790                                 // `std::marker::Sized` is not implemented for `T`" as we will point
791                                 // at the type param with a label to suggest constraining it.
792                                 err.help(&explanation);
793                             }
794                         } else {
795                             err.span_label(span, explanation);
796                         }
797
798                         if let ObligationCauseCode::ObjectCastObligation(concrete_ty, obj_ty) = obligation.cause.code().peel_derives() &&
799                             Some(trait_ref.def_id()) == self.tcx.lang_items().sized_trait() {
800                             self.suggest_borrowing_for_object_cast(&mut err, &root_obligation, *concrete_ty, *obj_ty);
801                         }
802
803                         let mut unsatisfied_const = false;
804                         if trait_predicate.is_const_if_const() && obligation.param_env.is_const() {
805                             let non_const_predicate = trait_ref.without_const();
806                             let non_const_obligation = Obligation {
807                                 cause: obligation.cause.clone(),
808                                 param_env: obligation.param_env.without_const(),
809                                 predicate: non_const_predicate.to_predicate(tcx),
810                                 recursion_depth: obligation.recursion_depth,
811                             };
812                             if self.predicate_may_hold(&non_const_obligation) {
813                                 unsatisfied_const = true;
814                                 err.span_note(
815                                     span,
816                                     &format!(
817                                         "the trait `{}` is implemented for `{}`, \
818                                         but that implementation is not `const`",
819                                         non_const_predicate.print_modifiers_and_trait_path(),
820                                         trait_ref.skip_binder().self_ty(),
821                                     ),
822                                 );
823                             }
824                         }
825
826                         if let Some((msg, span)) = type_def {
827                             err.span_label(span, &msg);
828                         }
829                         if let Some(ref s) = note {
830                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
831                             err.note(s.as_str());
832                         }
833                         if let Some(ref s) = parent_label {
834                             let body = tcx
835                                 .hir()
836                                 .opt_local_def_id(obligation.cause.body_id)
837                                 .unwrap_or_else(|| {
838                                     tcx.hir().body_owner_def_id(hir::BodyId {
839                                         hir_id: obligation.cause.body_id,
840                                     })
841                                 });
842                             err.span_label(tcx.def_span(body), s);
843                         }
844
845                         self.suggest_floating_point_literal(&obligation, &mut err, &trait_ref);
846                         self.suggest_dereferencing_index(&obligation, &mut err, trait_predicate);
847                         let mut suggested =
848                             self.suggest_dereferences(&obligation, &mut err, trait_predicate);
849                         suggested |= self.suggest_fn_call(&obligation, &mut err, trait_predicate);
850                         suggested |=
851                             self.suggest_remove_reference(&obligation, &mut err, trait_predicate);
852                         suggested |= self.suggest_semicolon_removal(
853                             &obligation,
854                             &mut err,
855                             span,
856                             trait_predicate,
857                         );
858                         self.note_version_mismatch(&mut err, &trait_ref);
859                         self.suggest_remove_await(&obligation, &mut err);
860                         self.suggest_derive(&obligation, &mut err, trait_predicate);
861
862                         if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
863                             self.suggest_await_before_try(
864                                 &mut err,
865                                 &obligation,
866                                 trait_predicate,
867                                 span,
868                             );
869                         }
870
871                         if self.suggest_impl_trait(&mut err, span, &obligation, trait_predicate) {
872                             err.emit();
873                             return;
874                         }
875
876                         if is_unsize {
877                             // If the obligation failed due to a missing implementation of the
878                             // `Unsize` trait, give a pointer to why that might be the case
879                             err.note(
880                                 "all implementations of `Unsize` are provided \
881                                 automatically by the compiler, see \
882                                 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
883                                 for more information",
884                             );
885                         }
886
887                         let is_fn_trait = tcx.is_fn_trait(trait_ref.def_id());
888                         let is_target_feature_fn = if let ty::FnDef(def_id, _) =
889                             *trait_ref.skip_binder().self_ty().kind()
890                         {
891                             !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
892                         } else {
893                             false
894                         };
895                         if is_fn_trait && is_target_feature_fn {
896                             err.note(
897                                 "`#[target_feature]` functions do not implement the `Fn` traits",
898                             );
899                         }
900
901                         // Try to report a help message
902                         if is_fn_trait
903                             && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
904                             obligation.param_env,
905                             trait_ref.self_ty(),
906                             trait_predicate.skip_binder().constness,
907                             trait_predicate.skip_binder().polarity,
908                         )
909                         {
910                             // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
911                             // suggestion to add trait bounds for the type, since we only typically implement
912                             // these traits once.
913
914                             // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
915                             // to implement.
916                             let selected_kind =
917                                 self.tcx.fn_trait_kind_from_def_id(trait_ref.def_id())
918                                     .expect("expected to map DefId to ClosureKind");
919                             if !implemented_kind.extends(selected_kind) {
920                                 err.note(
921                                     &format!(
922                                         "`{}` implements `{}`, but it must implement `{}`, which is more general",
923                                         trait_ref.skip_binder().self_ty(),
924                                         implemented_kind,
925                                         selected_kind
926                                     )
927                                 );
928                             }
929
930                             // Note any argument mismatches
931                             let given_ty = params.skip_binder();
932                             let expected_ty = trait_ref.skip_binder().substs.type_at(1);
933                             if let ty::Tuple(given) = given_ty.kind()
934                                 && let ty::Tuple(expected) = expected_ty.kind()
935                             {
936                                 if expected.len() != given.len() {
937                                     // Note number of types that were expected and given
938                                     err.note(
939                                         &format!(
940                                             "expected a closure taking {} argument{}, but one taking {} argument{} was given",
941                                             given.len(),
942                                             pluralize!(given.len()),
943                                             expected.len(),
944                                             pluralize!(expected.len()),
945                                         )
946                                     );
947                                 } else if !self.same_type_modulo_infer(given_ty, expected_ty) {
948                                     // Print type mismatch
949                                     let (expected_args, given_args) =
950                                         self.cmp(given_ty, expected_ty);
951                                     err.note_expected_found(
952                                         &"a closure with arguments",
953                                         expected_args,
954                                         &"a closure with arguments",
955                                         given_args,
956                                     );
957                                 }
958                             }
959                         } else if !trait_ref.has_non_region_infer()
960                             && self.predicate_can_apply(obligation.param_env, trait_predicate)
961                         {
962                             // If a where-clause may be useful, remind the
963                             // user that they can add it.
964                             //
965                             // don't display an on-unimplemented note, as
966                             // these notes will often be of the form
967                             //     "the type `T` can't be frobnicated"
968                             // which is somewhat confusing.
969                             self.suggest_restricting_param_bound(
970                                 &mut err,
971                                 trait_predicate,
972                                 None,
973                                 obligation.cause.body_id,
974                             );
975                         } else if !suggested && !unsatisfied_const {
976                             // Can't show anything else useful, try to find similar impls.
977                             let impl_candidates = self.find_similar_impl_candidates(trait_predicate);
978                             if !self.report_similar_impl_candidates(
979                                 impl_candidates,
980                                 trait_ref,
981                                 obligation.cause.body_id,
982                                 &mut err,
983                                 true,
984                             ) {
985                                 // This is *almost* equivalent to
986                                 // `obligation.cause.code().peel_derives()`, but it gives us the
987                                 // trait predicate for that corresponding root obligation. This
988                                 // lets us get a derived obligation from a type parameter, like
989                                 // when calling `string.strip_suffix(p)` where `p` is *not* an
990                                 // implementer of `Pattern<'_>`.
991                                 let mut code = obligation.cause.code();
992                                 let mut trait_pred = trait_predicate;
993                                 let mut peeled = false;
994                                 while let Some((parent_code, parent_trait_pred)) = code.parent() {
995                                     code = parent_code;
996                                     if let Some(parent_trait_pred) = parent_trait_pred {
997                                         trait_pred = parent_trait_pred;
998                                         peeled = true;
999                                     }
1000                                 }
1001                                 let def_id = trait_pred.def_id();
1002                                 // Mention *all* the `impl`s for the *top most* obligation, the
1003                                 // user might have meant to use one of them, if any found. We skip
1004                                 // auto-traits or fundamental traits that might not be exactly what
1005                                 // the user might expect to be presented with. Instead this is
1006                                 // useful for less general traits.
1007                                 if peeled
1008                                     && !self.tcx.trait_is_auto(def_id)
1009                                     && !self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1010                                 {
1011                                     let trait_ref = trait_pred.to_poly_trait_ref();
1012                                     let impl_candidates =
1013                                         self.find_similar_impl_candidates(trait_pred);
1014                                     self.report_similar_impl_candidates(
1015                                         impl_candidates,
1016                                         trait_ref,
1017                                         obligation.cause.body_id,
1018                                         &mut err,
1019                                         true,
1020                                     );
1021                                 }
1022                             }
1023                         }
1024
1025                         // Changing mutability doesn't make a difference to whether we have
1026                         // an `Unsize` impl (Fixes ICE in #71036)
1027                         if !is_unsize {
1028                             self.suggest_change_mut(&obligation, &mut err, trait_predicate);
1029                         }
1030
1031                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
1032                         // implemented, and fallback has occurred, then it could be due to a
1033                         // variable that used to fallback to `()` now falling back to `!`. Issue a
1034                         // note informing about the change in behaviour.
1035                         if trait_predicate.skip_binder().self_ty().is_never()
1036                             && self.fallback_has_occurred
1037                         {
1038                             let predicate = trait_predicate.map_bound(|trait_pred| {
1039                                 trait_pred.with_self_type(self.tcx, self.tcx.mk_unit())
1040                             });
1041                             let unit_obligation = obligation.with(tcx, predicate);
1042                             if self.predicate_may_hold(&unit_obligation) {
1043                                 err.note(
1044                                     "this error might have been caused by changes to \
1045                                     Rust's type-inference algorithm (see issue #48950 \
1046                                     <https://github.com/rust-lang/rust/issues/48950> \
1047                                     for more information)",
1048                                 );
1049                                 err.help("did you intend to use the type `()` here instead?");
1050                             }
1051                         }
1052
1053                         // Return early if the trait is Debug or Display and the invocation
1054                         // originates within a standard library macro, because the output
1055                         // is otherwise overwhelming and unhelpful (see #85844 for an
1056                         // example).
1057
1058                         let in_std_macro =
1059                             match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
1060                                 Some(macro_def_id) => {
1061                                     let crate_name = tcx.crate_name(macro_def_id.krate);
1062                                     crate_name == sym::std || crate_name == sym::core
1063                                 }
1064                                 None => false,
1065                             };
1066
1067                         if in_std_macro
1068                             && matches!(
1069                                 self.tcx.get_diagnostic_name(trait_ref.def_id()),
1070                                 Some(sym::Debug | sym::Display)
1071                             )
1072                         {
1073                             err.emit();
1074                             return;
1075                         }
1076
1077                         err
1078                     }
1079
1080                     ty::PredicateKind::Subtype(predicate) => {
1081                         // Errors for Subtype predicates show up as
1082                         // `FulfillmentErrorCode::CodeSubtypeError`,
1083                         // not selection error.
1084                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
1085                     }
1086
1087                     ty::PredicateKind::Coerce(predicate) => {
1088                         // Errors for Coerce predicates show up as
1089                         // `FulfillmentErrorCode::CodeSubtypeError`,
1090                         // not selection error.
1091                         span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
1092                     }
1093
1094                     ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..))
1095                     | ty::PredicateKind::Clause(ty::Clause::Projection(..))
1096                     | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) => {
1097                         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1098                         struct_span_err!(
1099                             self.tcx.sess,
1100                             span,
1101                             E0280,
1102                             "the requirement `{}` is not satisfied",
1103                             predicate
1104                         )
1105                     }
1106
1107                     ty::PredicateKind::ObjectSafe(trait_def_id) => {
1108                         let violations = self.tcx.object_safety_violations(trait_def_id);
1109                         report_object_safety_error(self.tcx, span, trait_def_id, violations)
1110                     }
1111
1112                     ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
1113                         let found_kind = self.closure_kind(closure_substs).unwrap();
1114                         let closure_span = self.tcx.def_span(closure_def_id);
1115                         let mut err = struct_span_err!(
1116                             self.tcx.sess,
1117                             closure_span,
1118                             E0525,
1119                             "expected a closure that implements the `{}` trait, \
1120                              but this closure only implements `{}`",
1121                             kind,
1122                             found_kind
1123                         );
1124
1125                         err.span_label(
1126                             closure_span,
1127                             format!("this closure implements `{}`, not `{}`", found_kind, kind),
1128                         );
1129                         err.span_label(
1130                             obligation.cause.span,
1131                             format!("the requirement to implement `{}` derives from here", kind),
1132                         );
1133
1134                         // Additional context information explaining why the closure only implements
1135                         // a particular trait.
1136                         if let Some(typeck_results) = &self.typeck_results {
1137                             let hir_id = self
1138                                 .tcx
1139                                 .hir()
1140                                 .local_def_id_to_hir_id(closure_def_id.expect_local());
1141                             match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
1142                                 (ty::ClosureKind::FnOnce, Some((span, place))) => {
1143                                     err.span_label(
1144                                         *span,
1145                                         format!(
1146                                             "closure is `FnOnce` because it moves the \
1147                                          variable `{}` out of its environment",
1148                                             ty::place_to_string_for_capture(tcx, place)
1149                                         ),
1150                                     );
1151                                 }
1152                                 (ty::ClosureKind::FnMut, Some((span, place))) => {
1153                                     err.span_label(
1154                                         *span,
1155                                         format!(
1156                                             "closure is `FnMut` because it mutates the \
1157                                          variable `{}` here",
1158                                             ty::place_to_string_for_capture(tcx, place)
1159                                         ),
1160                                     );
1161                                 }
1162                                 _ => {}
1163                             }
1164                         }
1165
1166                         err
1167                     }
1168
1169                     ty::PredicateKind::WellFormed(ty) => {
1170                         if !self.tcx.sess.opts.unstable_opts.chalk {
1171                             // WF predicates cannot themselves make
1172                             // errors. They can only block due to
1173                             // ambiguity; otherwise, they always
1174                             // degenerate into other obligations
1175                             // (which may fail).
1176                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
1177                         } else {
1178                             // FIXME: we'll need a better message which takes into account
1179                             // which bounds actually failed to hold.
1180                             self.tcx.sess.struct_span_err(
1181                                 span,
1182                                 &format!("the type `{}` is not well-formed (chalk)", ty),
1183                             )
1184                         }
1185                     }
1186
1187                     ty::PredicateKind::ConstEvaluatable(..) => {
1188                         // Errors for `ConstEvaluatable` predicates show up as
1189                         // `SelectionError::ConstEvalFailure`,
1190                         // not `Unimplemented`.
1191                         span_bug!(
1192                             span,
1193                             "const-evaluatable requirement gave wrong error: `{:?}`",
1194                             obligation
1195                         )
1196                     }
1197
1198                     ty::PredicateKind::ConstEquate(..) => {
1199                         // Errors for `ConstEquate` predicates show up as
1200                         // `SelectionError::ConstEvalFailure`,
1201                         // not `Unimplemented`.
1202                         span_bug!(
1203                             span,
1204                             "const-equate requirement gave wrong error: `{:?}`",
1205                             obligation
1206                         )
1207                     }
1208
1209                     ty::PredicateKind::Ambiguous => span_bug!(span, "ambiguous"),
1210
1211                     ty::PredicateKind::TypeWellFormedFromEnv(..) => span_bug!(
1212                         span,
1213                         "TypeWellFormedFromEnv predicate should only exist in the environment"
1214                     ),
1215                 }
1216             }
1217
1218             OutputTypeParameterMismatch(found_trait_ref, expected_trait_ref, _) => {
1219                 let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
1220                 let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
1221
1222                 if expected_trait_ref.self_ty().references_error() {
1223                     return;
1224                 }
1225
1226                 let Some(found_trait_ty) = found_trait_ref.self_ty().no_bound_vars() else {
1227                     return;
1228                 };
1229
1230                 let found_did = match *found_trait_ty.kind() {
1231                     ty::Closure(did, _)
1232                     | ty::Foreign(did)
1233                     | ty::FnDef(did, _)
1234                     | ty::Generator(did, ..) => Some(did),
1235                     ty::Adt(def, _) => Some(def.did()),
1236                     _ => None,
1237                 };
1238
1239                 let found_node = found_did.and_then(|did| self.tcx.hir().get_if_local(did));
1240                 let found_span = found_did.and_then(|did| self.tcx.hir().span_if_local(did));
1241
1242                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
1243                     // We check closures twice, with obligations flowing in different directions,
1244                     // but we want to complain about them only once.
1245                     return;
1246                 }
1247
1248                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
1249
1250                 let mut not_tupled = false;
1251
1252                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind() {
1253                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
1254                     _ => {
1255                         not_tupled = true;
1256                         vec![ArgKind::empty()]
1257                     }
1258                 };
1259
1260                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
1261                 let expected = match expected_ty.kind() {
1262                     ty::Tuple(ref tys) => {
1263                         tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
1264                     }
1265                     _ => {
1266                         not_tupled = true;
1267                         vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())]
1268                     }
1269                 };
1270
1271                 // If this is a `Fn` family trait and either the expected or found
1272                 // is not tupled, then fall back to just a regular mismatch error.
1273                 // This shouldn't be common unless manually implementing one of the
1274                 // traits manually, but don't make it more confusing when it does
1275                 // happen.
1276                 if Some(expected_trait_ref.def_id()) != tcx.lang_items().gen_trait() && not_tupled {
1277                     self.report_and_explain_type_error(
1278                         TypeTrace::poly_trait_refs(
1279                             &obligation.cause,
1280                             true,
1281                             expected_trait_ref,
1282                             found_trait_ref,
1283                         ),
1284                         ty::error::TypeError::Mismatch,
1285                     )
1286                 } else if found.len() == expected.len() {
1287                     self.report_closure_arg_mismatch(
1288                         span,
1289                         found_span,
1290                         found_trait_ref,
1291                         expected_trait_ref,
1292                         obligation.cause.code(),
1293                         found_node,
1294                     )
1295                 } else {
1296                     let (closure_span, closure_arg_span, found) = found_did
1297                         .and_then(|did| {
1298                             let node = self.tcx.hir().get_if_local(did)?;
1299                             let (found_span, closure_arg_span, found) =
1300                                 self.get_fn_like_arguments(node)?;
1301                             Some((Some(found_span), closure_arg_span, found))
1302                         })
1303                         .unwrap_or((found_span, None, found));
1304
1305                     self.report_arg_count_mismatch(
1306                         span,
1307                         closure_span,
1308                         expected,
1309                         found,
1310                         found_trait_ty.is_closure(),
1311                         closure_arg_span,
1312                     )
1313                 }
1314             }
1315
1316             TraitNotObjectSafe(did) => {
1317                 let violations = self.tcx.object_safety_violations(did);
1318                 report_object_safety_error(self.tcx, span, did, violations)
1319             }
1320
1321             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
1322                 bug!(
1323                     "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
1324                 )
1325             }
1326             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
1327                 if !self.tcx.features().generic_const_exprs {
1328                     let mut err = self.tcx.sess.struct_span_err(
1329                         span,
1330                         "constant expression depends on a generic parameter",
1331                     );
1332                     // FIXME(const_generics): we should suggest to the user how they can resolve this
1333                     // issue. However, this is currently not actually possible
1334                     // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
1335                     //
1336                     // Note that with `feature(generic_const_exprs)` this case should not
1337                     // be reachable.
1338                     err.note("this may fail depending on what value the parameter takes");
1339                     err.emit();
1340                     return;
1341                 }
1342
1343                 match obligation.predicate.kind().skip_binder() {
1344                     ty::PredicateKind::ConstEvaluatable(ct) => {
1345                         let ty::ConstKind::Unevaluated(uv) = ct.kind() else {
1346                             bug!("const evaluatable failed for non-unevaluated const `{ct:?}`");
1347                         };
1348                         let mut err =
1349                             self.tcx.sess.struct_span_err(span, "unconstrained generic constant");
1350                         let const_span = self.tcx.def_span(uv.def.did);
1351                         match self.tcx.sess.source_map().span_to_snippet(const_span) {
1352                             Ok(snippet) => err.help(&format!(
1353                                 "try adding a `where` bound using this expression: `where [(); {}]:`",
1354                                 snippet
1355                             )),
1356                             _ => err.help("consider adding a `where` bound using this expression"),
1357                         };
1358                         err
1359                     }
1360                     _ => {
1361                         span_bug!(
1362                             span,
1363                             "unexpected non-ConstEvaluatable predicate, this should not be reachable"
1364                         )
1365                     }
1366                 }
1367             }
1368
1369             // Already reported in the query.
1370             SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(_)) => {
1371                 // FIXME(eddyb) remove this once `ErrorGuaranteed` becomes a proof token.
1372                 self.tcx.sess.delay_span_bug(span, "`ErrorGuaranteed` without an error");
1373                 return;
1374             }
1375             // Already reported.
1376             Overflow(OverflowError::Error(_)) => {
1377                 self.tcx.sess.delay_span_bug(span, "`OverflowError` has been reported");
1378                 return;
1379             }
1380             Overflow(_) => {
1381                 bug!("overflow should be handled before the `report_selection_error` path");
1382             }
1383             SelectionError::ErrorReporting => {
1384                 bug!("ErrorReporting Overflow should not reach `report_selection_err` call")
1385             }
1386         };
1387
1388         self.note_obligation_cause(&mut err, &obligation);
1389         self.point_at_returns_when_relevant(&mut err, &obligation);
1390
1391         err.emit();
1392     }
1393 }
1394
1395 trait InferCtxtPrivExt<'tcx> {
1396     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1397     // `error` occurring implies that `cond` occurs.
1398     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
1399
1400     fn report_fulfillment_error(
1401         &self,
1402         error: &FulfillmentError<'tcx>,
1403         body_id: Option<hir::BodyId>,
1404     );
1405
1406     fn report_projection_error(
1407         &self,
1408         obligation: &PredicateObligation<'tcx>,
1409         error: &MismatchedProjectionTypes<'tcx>,
1410     );
1411
1412     fn maybe_detailed_projection_msg(
1413         &self,
1414         pred: ty::ProjectionPredicate<'tcx>,
1415         normalized_ty: ty::Term<'tcx>,
1416         expected_ty: ty::Term<'tcx>,
1417     ) -> Option<String>;
1418
1419     fn fuzzy_match_tys(
1420         &self,
1421         a: Ty<'tcx>,
1422         b: Ty<'tcx>,
1423         ignoring_lifetimes: bool,
1424     ) -> Option<CandidateSimilarity>;
1425
1426     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
1427
1428     fn find_similar_impl_candidates(
1429         &self,
1430         trait_pred: ty::PolyTraitPredicate<'tcx>,
1431     ) -> Vec<ImplCandidate<'tcx>>;
1432
1433     fn report_similar_impl_candidates(
1434         &self,
1435         impl_candidates: Vec<ImplCandidate<'tcx>>,
1436         trait_ref: ty::PolyTraitRef<'tcx>,
1437         body_id: hir::HirId,
1438         err: &mut Diagnostic,
1439         other: bool,
1440     ) -> bool;
1441
1442     /// Gets the parent trait chain start
1443     fn get_parent_trait_ref(
1444         &self,
1445         code: &ObligationCauseCode<'tcx>,
1446     ) -> Option<(String, Option<Span>)>;
1447
1448     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1449     /// with the same path as `trait_ref`, a help message about
1450     /// a probable version mismatch is added to `err`
1451     fn note_version_mismatch(
1452         &self,
1453         err: &mut Diagnostic,
1454         trait_ref: &ty::PolyTraitRef<'tcx>,
1455     ) -> bool;
1456
1457     /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1458     /// `trait_ref`.
1459     ///
1460     /// For this to work, `new_self_ty` must have no escaping bound variables.
1461     fn mk_trait_obligation_with_new_self_ty(
1462         &self,
1463         param_env: ty::ParamEnv<'tcx>,
1464         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
1465     ) -> PredicateObligation<'tcx>;
1466
1467     fn maybe_report_ambiguity(
1468         &self,
1469         obligation: &PredicateObligation<'tcx>,
1470         body_id: Option<hir::BodyId>,
1471     );
1472
1473     fn predicate_can_apply(
1474         &self,
1475         param_env: ty::ParamEnv<'tcx>,
1476         pred: ty::PolyTraitPredicate<'tcx>,
1477     ) -> bool;
1478
1479     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>);
1480
1481     fn suggest_unsized_bound_if_applicable(
1482         &self,
1483         err: &mut Diagnostic,
1484         obligation: &PredicateObligation<'tcx>,
1485     );
1486
1487     fn annotate_source_of_ambiguity(
1488         &self,
1489         err: &mut Diagnostic,
1490         impls: &[DefId],
1491         predicate: ty::Predicate<'tcx>,
1492     );
1493
1494     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>);
1495
1496     fn maybe_indirection_for_unsized(
1497         &self,
1498         err: &mut Diagnostic,
1499         item: &'tcx Item<'tcx>,
1500         param: &'tcx GenericParam<'tcx>,
1501     ) -> bool;
1502
1503     fn is_recursive_obligation(
1504         &self,
1505         obligated_types: &mut Vec<Ty<'tcx>>,
1506         cause_code: &ObligationCauseCode<'tcx>,
1507     ) -> bool;
1508 }
1509
1510 impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
1511     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1512     // `error` occurring implies that `cond` occurs.
1513     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1514         if cond == error {
1515             return true;
1516         }
1517
1518         // FIXME: It should be possible to deal with `ForAll` in a cleaner way.
1519         let bound_error = error.kind();
1520         let (cond, error) = match (cond.kind().skip_binder(), bound_error.skip_binder()) {
1521             (
1522                 ty::PredicateKind::Clause(ty::Clause::Trait(..)),
1523                 ty::PredicateKind::Clause(ty::Clause::Trait(error)),
1524             ) => (cond, bound_error.rebind(error)),
1525             _ => {
1526                 // FIXME: make this work in other cases too.
1527                 return false;
1528             }
1529         };
1530
1531         for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1532             let bound_predicate = obligation.predicate.kind();
1533             if let ty::PredicateKind::Clause(ty::Clause::Trait(implication)) =
1534                 bound_predicate.skip_binder()
1535             {
1536                 let error = error.to_poly_trait_ref();
1537                 let implication = bound_predicate.rebind(implication.trait_ref);
1538                 // FIXME: I'm just not taking associated types at all here.
1539                 // Eventually I'll need to implement param-env-aware
1540                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1541                 let param_env = ty::ParamEnv::empty();
1542                 if self.can_sub(param_env, error, implication).is_ok() {
1543                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1544                     return true;
1545                 }
1546             }
1547         }
1548
1549         false
1550     }
1551
1552     #[instrument(skip(self), level = "debug")]
1553     fn report_fulfillment_error(
1554         &self,
1555         error: &FulfillmentError<'tcx>,
1556         body_id: Option<hir::BodyId>,
1557     ) {
1558         match error.code {
1559             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1560                 self.report_selection_error(
1561                     error.obligation.clone(),
1562                     &error.root_obligation,
1563                     selection_error,
1564                 );
1565             }
1566             FulfillmentErrorCode::CodeProjectionError(ref e) => {
1567                 self.report_projection_error(&error.obligation, e);
1568             }
1569             FulfillmentErrorCode::CodeAmbiguity => {
1570                 self.maybe_report_ambiguity(&error.obligation, body_id);
1571             }
1572             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1573                 self.report_mismatched_types(
1574                     &error.obligation.cause,
1575                     expected_found.expected,
1576                     expected_found.found,
1577                     err.clone(),
1578                 )
1579                 .emit();
1580             }
1581             FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1582                 let mut diag = self.report_mismatched_consts(
1583                     &error.obligation.cause,
1584                     expected_found.expected,
1585                     expected_found.found,
1586                     err.clone(),
1587                 );
1588                 let code = error.obligation.cause.code().peel_derives().peel_match_impls();
1589                 if let ObligationCauseCode::BindingObligation(..)
1590                 | ObligationCauseCode::ItemObligation(..)
1591                 | ObligationCauseCode::ExprBindingObligation(..)
1592                 | ObligationCauseCode::ExprItemObligation(..) = code
1593                 {
1594                     self.note_obligation_cause_code(
1595                         &mut diag,
1596                         error.obligation.predicate,
1597                         error.obligation.param_env,
1598                         code,
1599                         &mut vec![],
1600                         &mut Default::default(),
1601                     );
1602                 }
1603                 diag.emit();
1604             }
1605             FulfillmentErrorCode::CodeCycle(ref cycle) => {
1606                 self.report_overflow_obligation_cycle(cycle);
1607             }
1608         }
1609     }
1610
1611     #[instrument(level = "debug", skip_all)]
1612     fn report_projection_error(
1613         &self,
1614         obligation: &PredicateObligation<'tcx>,
1615         error: &MismatchedProjectionTypes<'tcx>,
1616     ) {
1617         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1618
1619         if predicate.references_error() {
1620             return;
1621         }
1622
1623         self.probe(|_| {
1624             let ocx = ObligationCtxt::new_in_snapshot(self);
1625
1626             // try to find the mismatched types to report the error with.
1627             //
1628             // this can fail if the problem was higher-ranked, in which
1629             // cause I have no idea for a good error message.
1630             let bound_predicate = predicate.kind();
1631             let (values, err) = if let ty::PredicateKind::Clause(ty::Clause::Projection(data)) =
1632                 bound_predicate.skip_binder()
1633             {
1634                 let data = self.replace_bound_vars_with_fresh_vars(
1635                     obligation.cause.span,
1636                     infer::LateBoundRegionConversionTime::HigherRankedType,
1637                     bound_predicate.rebind(data),
1638                 );
1639                 let normalized_ty = ocx.normalize(
1640                     &obligation.cause,
1641                     obligation.param_env,
1642                     self.tcx.mk_projection(data.projection_ty.def_id, data.projection_ty.substs),
1643                 );
1644
1645                 debug!(?obligation.cause, ?obligation.param_env);
1646
1647                 debug!(?normalized_ty, data.ty = ?data.term);
1648
1649                 let is_normalized_ty_expected = !matches!(
1650                     obligation.cause.code().peel_derives(),
1651                     ObligationCauseCode::ItemObligation(_)
1652                         | ObligationCauseCode::BindingObligation(_, _)
1653                         | ObligationCauseCode::ExprItemObligation(..)
1654                         | ObligationCauseCode::ExprBindingObligation(..)
1655                         | ObligationCauseCode::ObjectCastObligation(..)
1656                         | ObligationCauseCode::OpaqueType
1657                 );
1658                 let expected_ty = data.term.ty().unwrap_or_else(|| self.tcx.ty_error());
1659
1660                 // constrain inference variables a bit more to nested obligations from normalize so
1661                 // we can have more helpful errors.
1662                 ocx.select_where_possible();
1663
1664                 if let Err(new_err) = ocx.eq_exp(
1665                     &obligation.cause,
1666                     obligation.param_env,
1667                     is_normalized_ty_expected,
1668                     normalized_ty,
1669                     expected_ty,
1670                 ) {
1671                     (Some((data, is_normalized_ty_expected, normalized_ty, expected_ty)), new_err)
1672                 } else {
1673                     (None, error.err)
1674                 }
1675             } else {
1676                 (None, error.err)
1677             };
1678
1679             let msg = values
1680                 .and_then(|(predicate, _, normalized_ty, expected_ty)| {
1681                     self.maybe_detailed_projection_msg(
1682                         predicate,
1683                         normalized_ty.into(),
1684                         expected_ty.into(),
1685                     )
1686                 })
1687                 .unwrap_or_else(|| format!("type mismatch resolving `{}`", predicate));
1688             let mut diag = struct_span_err!(self.tcx.sess, obligation.cause.span, E0271, "{msg}");
1689
1690             let secondary_span = match predicate.kind().skip_binder() {
1691                 ty::PredicateKind::Clause(ty::Clause::Projection(proj)) => self
1692                     .tcx
1693                     .opt_associated_item(proj.projection_ty.def_id)
1694                     .and_then(|trait_assoc_item| {
1695                         self.tcx
1696                             .trait_of_item(proj.projection_ty.def_id)
1697                             .map(|id| (trait_assoc_item, id))
1698                     })
1699                     .and_then(|(trait_assoc_item, id)| {
1700                         let trait_assoc_ident = trait_assoc_item.ident(self.tcx);
1701                         self.tcx.find_map_relevant_impl(id, proj.projection_ty.self_ty(), |did| {
1702                             self.tcx
1703                                 .associated_items(did)
1704                                 .in_definition_order()
1705                                 .find(|assoc| assoc.ident(self.tcx) == trait_assoc_ident)
1706                         })
1707                     })
1708                     .and_then(|item| match self.tcx.hir().get_if_local(item.def_id) {
1709                         Some(
1710                             hir::Node::TraitItem(hir::TraitItem {
1711                                 kind: hir::TraitItemKind::Type(_, Some(ty)),
1712                                 ..
1713                             })
1714                             | hir::Node::ImplItem(hir::ImplItem {
1715                                 kind: hir::ImplItemKind::Type(ty),
1716                                 ..
1717                             }),
1718                         ) => Some((ty.span, format!("type mismatch resolving `{}`", predicate))),
1719                         _ => None,
1720                     }),
1721                 _ => None,
1722             };
1723             self.note_type_err(
1724                 &mut diag,
1725                 &obligation.cause,
1726                 secondary_span,
1727                 values.map(|(_, is_normalized_ty_expected, normalized_ty, expected_ty)| {
1728                     infer::ValuePairs::Terms(ExpectedFound::new(
1729                         is_normalized_ty_expected,
1730                         normalized_ty.into(),
1731                         expected_ty.into(),
1732                     ))
1733                 }),
1734                 err,
1735                 true,
1736                 false,
1737             );
1738             self.note_obligation_cause(&mut diag, obligation);
1739             diag.emit();
1740         });
1741     }
1742
1743     fn maybe_detailed_projection_msg(
1744         &self,
1745         pred: ty::ProjectionPredicate<'tcx>,
1746         normalized_ty: ty::Term<'tcx>,
1747         expected_ty: ty::Term<'tcx>,
1748     ) -> Option<String> {
1749         let trait_def_id = pred.projection_ty.trait_def_id(self.tcx);
1750         let self_ty = pred.projection_ty.self_ty();
1751
1752         if Some(pred.projection_ty.def_id) == self.tcx.lang_items().fn_once_output() {
1753             Some(format!(
1754                 "expected `{self_ty}` to be a {fn_kind} that returns `{expected_ty}`, but it returns `{normalized_ty}`",
1755                 fn_kind = self_ty.prefix_string(self.tcx)
1756             ))
1757         } else if Some(trait_def_id) == self.tcx.lang_items().future_trait() {
1758             Some(format!(
1759                 "expected `{self_ty}` to be a future that resolves to `{expected_ty}`, but it resolves to `{normalized_ty}`"
1760             ))
1761         } else if Some(trait_def_id) == self.tcx.get_diagnostic_item(sym::Iterator) {
1762             Some(format!(
1763                 "expected `{self_ty}` to be an iterator that yields `{expected_ty}`, but it yields `{normalized_ty}`"
1764             ))
1765         } else {
1766             None
1767         }
1768     }
1769
1770     fn fuzzy_match_tys(
1771         &self,
1772         mut a: Ty<'tcx>,
1773         mut b: Ty<'tcx>,
1774         ignoring_lifetimes: bool,
1775     ) -> Option<CandidateSimilarity> {
1776         /// returns the fuzzy category of a given type, or None
1777         /// if the type can be equated to any type.
1778         fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1779             match t.kind() {
1780                 ty::Bool => Some(0),
1781                 ty::Char => Some(1),
1782                 ty::Str => Some(2),
1783                 ty::Adt(def, _) if Some(def.did()) == tcx.lang_items().string() => Some(2),
1784                 ty::Int(..)
1785                 | ty::Uint(..)
1786                 | ty::Float(..)
1787                 | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1788                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1789                 ty::Array(..) | ty::Slice(..) => Some(6),
1790                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1791                 ty::Dynamic(..) => Some(8),
1792                 ty::Closure(..) => Some(9),
1793                 ty::Tuple(..) => Some(10),
1794                 ty::Param(..) => Some(11),
1795                 ty::Alias(ty::Projection, ..) => Some(12),
1796                 ty::Alias(ty::Opaque, ..) => Some(13),
1797                 ty::Never => Some(14),
1798                 ty::Adt(..) => Some(15),
1799                 ty::Generator(..) => Some(16),
1800                 ty::Foreign(..) => Some(17),
1801                 ty::GeneratorWitness(..) => Some(18),
1802                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1803             }
1804         }
1805
1806         let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1807             loop {
1808                 match t.kind() {
1809                     ty::Ref(_, inner, _) | ty::RawPtr(ty::TypeAndMut { ty: inner, .. }) => {
1810                         t = *inner
1811                     }
1812                     _ => break t,
1813                 }
1814             }
1815         };
1816
1817         if !ignoring_lifetimes {
1818             a = strip_references(a);
1819             b = strip_references(b);
1820         }
1821
1822         let cat_a = type_category(self.tcx, a)?;
1823         let cat_b = type_category(self.tcx, b)?;
1824         if a == b {
1825             Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1826         } else if cat_a == cat_b {
1827             match (a.kind(), b.kind()) {
1828                 (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1829                 (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1830                 // Matching on references results in a lot of unhelpful
1831                 // suggestions, so let's just not do that for now.
1832                 //
1833                 // We still upgrade successful matches to `ignoring_lifetimes: true`
1834                 // to prioritize that impl.
1835                 (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1836                     self.fuzzy_match_tys(a, b, true).is_some()
1837                 }
1838                 _ => true,
1839             }
1840             .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1841         } else if ignoring_lifetimes {
1842             None
1843         } else {
1844             self.fuzzy_match_tys(a, b, true)
1845         }
1846     }
1847
1848     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1849         self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1850             hir::GeneratorKind::Gen => "a generator",
1851             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1852             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1853             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1854         })
1855     }
1856
1857     fn find_similar_impl_candidates(
1858         &self,
1859         trait_pred: ty::PolyTraitPredicate<'tcx>,
1860     ) -> Vec<ImplCandidate<'tcx>> {
1861         let mut candidates: Vec<_> = self
1862             .tcx
1863             .all_impls(trait_pred.def_id())
1864             .filter_map(|def_id| {
1865                 if self.tcx.impl_polarity(def_id) == ty::ImplPolarity::Negative
1866                     || !trait_pred
1867                         .skip_binder()
1868                         .is_constness_satisfied_by(self.tcx.constness(def_id))
1869                 {
1870                     return None;
1871                 }
1872
1873                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1874
1875                 self.fuzzy_match_tys(trait_pred.skip_binder().self_ty(), imp.self_ty(), false)
1876                     .map(|similarity| ImplCandidate { trait_ref: imp, similarity })
1877             })
1878             .collect();
1879         if candidates.iter().any(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. })) {
1880             // If any of the candidates is a perfect match, we don't want to show all of them.
1881             // This is particularly relevant for the case of numeric types (as they all have the
1882             // same cathegory).
1883             candidates.retain(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. }));
1884         }
1885         candidates
1886     }
1887
1888     fn report_similar_impl_candidates(
1889         &self,
1890         impl_candidates: Vec<ImplCandidate<'tcx>>,
1891         trait_ref: ty::PolyTraitRef<'tcx>,
1892         body_id: hir::HirId,
1893         err: &mut Diagnostic,
1894         other: bool,
1895     ) -> bool {
1896         let other = if other { "other " } else { "" };
1897         let report = |mut candidates: Vec<TraitRef<'tcx>>, err: &mut Diagnostic| {
1898             candidates.sort();
1899             candidates.dedup();
1900             let len = candidates.len();
1901             if candidates.len() == 0 {
1902                 return false;
1903             }
1904             if candidates.len() == 1 {
1905                 let ty_desc = match candidates[0].self_ty().kind() {
1906                     ty::FnPtr(_) => Some("fn pointer"),
1907                     _ => None,
1908                 };
1909                 let the_desc = match ty_desc {
1910                     Some(desc) => format!(" implemented for {} `", desc),
1911                     None => " implemented for `".to_string(),
1912                 };
1913                 err.highlighted_help(vec![
1914                     (
1915                         format!("the trait `{}` ", candidates[0].print_only_trait_path()),
1916                         Style::NoStyle,
1917                     ),
1918                     ("is".to_string(), Style::Highlight),
1919                     (the_desc, Style::NoStyle),
1920                     (candidates[0].self_ty().to_string(), Style::Highlight),
1921                     ("`".to_string(), Style::NoStyle),
1922                 ]);
1923                 return true;
1924             }
1925             let trait_ref = TraitRef::identity(self.tcx, candidates[0].def_id);
1926             // Check if the trait is the same in all cases. If so, we'll only show the type.
1927             let mut traits: Vec<_> =
1928                 candidates.iter().map(|c| c.print_only_trait_path().to_string()).collect();
1929             traits.sort();
1930             traits.dedup();
1931
1932             let mut candidates: Vec<String> = candidates
1933                 .into_iter()
1934                 .map(|c| {
1935                     if traits.len() == 1 {
1936                         format!("\n  {}", c.self_ty())
1937                     } else {
1938                         format!("\n  {}", c)
1939                     }
1940                 })
1941                 .collect();
1942
1943             candidates.sort();
1944             candidates.dedup();
1945             let end = if candidates.len() <= 9 { candidates.len() } else { 8 };
1946             err.help(&format!(
1947                 "the following {other}types implement trait `{}`:{}{}",
1948                 trait_ref.print_only_trait_path(),
1949                 candidates[..end].join(""),
1950                 if len > 9 { format!("\nand {} others", len - 8) } else { String::new() }
1951             ));
1952             true
1953         };
1954
1955         let def_id = trait_ref.def_id();
1956         if impl_candidates.is_empty() {
1957             if self.tcx.trait_is_auto(def_id)
1958                 || self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1959                 || self.tcx.get_diagnostic_name(def_id).is_some()
1960             {
1961                 // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
1962                 return false;
1963             }
1964             let normalized_impl_candidates: Vec<_> = self
1965                 .tcx
1966                 .all_impls(def_id)
1967                 // Ignore automatically derived impls and `!Trait` impls.
1968                 .filter(|&def_id| {
1969                     self.tcx.impl_polarity(def_id) != ty::ImplPolarity::Negative
1970                         || self.tcx.is_builtin_derive(def_id)
1971                 })
1972                 .filter_map(|def_id| self.tcx.impl_trait_ref(def_id))
1973                 .filter(|trait_ref| {
1974                     let self_ty = trait_ref.self_ty();
1975                     // Avoid mentioning type parameters.
1976                     if let ty::Param(_) = self_ty.kind() {
1977                         false
1978                     }
1979                     // Avoid mentioning types that are private to another crate
1980                     else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
1981                         // FIXME(compiler-errors): This could be generalized, both to
1982                         // be more granular, and probably look past other `#[fundamental]`
1983                         // types, too.
1984                         self.tcx
1985                             .visibility(def.did())
1986                             .is_accessible_from(body_id.owner.def_id, self.tcx)
1987                     } else {
1988                         true
1989                     }
1990                 })
1991                 .collect();
1992             return report(normalized_impl_candidates, err);
1993         }
1994
1995         // Sort impl candidates so that ordering is consistent for UI tests.
1996         // because the ordering of `impl_candidates` may not be deterministic:
1997         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
1998         //
1999         // Prefer more similar candidates first, then sort lexicographically
2000         // by their normalized string representation.
2001         let mut normalized_impl_candidates_and_similarities = impl_candidates
2002             .into_iter()
2003             .map(|ImplCandidate { trait_ref, similarity }| {
2004                 // FIXME(compiler-errors): This should be using `NormalizeExt::normalize`
2005                 let normalized = self
2006                     .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
2007                     .query_normalize(trait_ref)
2008                     .map_or(trait_ref, |normalized| normalized.value);
2009                 (similarity, normalized)
2010             })
2011             .collect::<Vec<_>>();
2012         normalized_impl_candidates_and_similarities.sort();
2013         normalized_impl_candidates_and_similarities.dedup();
2014
2015         let normalized_impl_candidates = normalized_impl_candidates_and_similarities
2016             .into_iter()
2017             .map(|(_, normalized)| normalized)
2018             .collect::<Vec<_>>();
2019
2020         report(normalized_impl_candidates, err)
2021     }
2022
2023     /// Gets the parent trait chain start
2024     fn get_parent_trait_ref(
2025         &self,
2026         code: &ObligationCauseCode<'tcx>,
2027     ) -> Option<(String, Option<Span>)> {
2028         match code {
2029             ObligationCauseCode::BuiltinDerivedObligation(data) => {
2030                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2031                 match self.get_parent_trait_ref(&data.parent_code) {
2032                     Some(t) => Some(t),
2033                     None => {
2034                         let ty = parent_trait_ref.skip_binder().self_ty();
2035                         let span = TyCategory::from_ty(self.tcx, ty)
2036                             .map(|(_, def_id)| self.tcx.def_span(def_id));
2037                         Some((ty.to_string(), span))
2038                     }
2039                 }
2040             }
2041             ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
2042                 self.get_parent_trait_ref(&parent_code)
2043             }
2044             _ => None,
2045         }
2046     }
2047
2048     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
2049     /// with the same path as `trait_ref`, a help message about
2050     /// a probable version mismatch is added to `err`
2051     fn note_version_mismatch(
2052         &self,
2053         err: &mut Diagnostic,
2054         trait_ref: &ty::PolyTraitRef<'tcx>,
2055     ) -> bool {
2056         let get_trait_impl = |trait_def_id| {
2057             self.tcx.find_map_relevant_impl(trait_def_id, trait_ref.skip_binder().self_ty(), Some)
2058         };
2059         let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
2060         let traits_with_same_path: std::collections::BTreeSet<_> = self
2061             .tcx
2062             .all_traits()
2063             .filter(|trait_def_id| *trait_def_id != trait_ref.def_id())
2064             .filter(|trait_def_id| self.tcx.def_path_str(*trait_def_id) == required_trait_path)
2065             .collect();
2066         let mut suggested = false;
2067         for trait_with_same_path in traits_with_same_path {
2068             if let Some(impl_def_id) = get_trait_impl(trait_with_same_path) {
2069                 let impl_span = self.tcx.def_span(impl_def_id);
2070                 err.span_help(impl_span, "trait impl with same name found");
2071                 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
2072                 let crate_msg = format!(
2073                     "perhaps two different versions of crate `{}` are being used?",
2074                     trait_crate
2075                 );
2076                 err.note(&crate_msg);
2077                 suggested = true;
2078             }
2079         }
2080         suggested
2081     }
2082
2083     fn mk_trait_obligation_with_new_self_ty(
2084         &self,
2085         param_env: ty::ParamEnv<'tcx>,
2086         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
2087     ) -> PredicateObligation<'tcx> {
2088         let trait_pred = trait_ref_and_ty
2089             .map_bound(|(tr, new_self_ty)| tr.with_self_type(self.tcx, new_self_ty));
2090
2091         Obligation::new(self.tcx, ObligationCause::dummy(), param_env, trait_pred)
2092     }
2093
2094     #[instrument(skip(self), level = "debug")]
2095     fn maybe_report_ambiguity(
2096         &self,
2097         obligation: &PredicateObligation<'tcx>,
2098         body_id: Option<hir::BodyId>,
2099     ) {
2100         // Unable to successfully determine, probably means
2101         // insufficient type information, but could mean
2102         // ambiguous impls. The latter *ought* to be a
2103         // coherence violation, so we don't report it here.
2104
2105         let predicate = self.resolve_vars_if_possible(obligation.predicate);
2106         let span = obligation.cause.span;
2107
2108         debug!(?predicate, obligation.cause.code = ?obligation.cause.code());
2109
2110         // Ambiguity errors are often caused as fallout from earlier errors.
2111         // We ignore them if this `infcx` is tainted in some cases below.
2112
2113         let bound_predicate = predicate.kind();
2114         let mut err = match bound_predicate.skip_binder() {
2115             ty::PredicateKind::Clause(ty::Clause::Trait(data)) => {
2116                 let trait_ref = bound_predicate.rebind(data.trait_ref);
2117                 debug!(?trait_ref);
2118
2119                 if predicate.references_error() {
2120                     return;
2121                 }
2122
2123                 // This is kind of a hack: it frequently happens that some earlier
2124                 // error prevents types from being fully inferred, and then we get
2125                 // a bunch of uninteresting errors saying something like "<generic
2126                 // #0> doesn't implement Sized".  It may even be true that we
2127                 // could just skip over all checks where the self-ty is an
2128                 // inference variable, but I was afraid that there might be an
2129                 // inference variable created, registered as an obligation, and
2130                 // then never forced by writeback, and hence by skipping here we'd
2131                 // be ignoring the fact that we don't KNOW the type works
2132                 // out. Though even that would probably be harmless, given that
2133                 // we're only talking about builtin traits, which are known to be
2134                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
2135                 // avoid inundating the user with unnecessary errors, but we now
2136                 // check upstream for type errors and don't add the obligations to
2137                 // begin with in those cases.
2138                 if self.tcx.lang_items().sized_trait() == Some(trait_ref.def_id()) {
2139                     if let None = self.tainted_by_errors() {
2140                         self.emit_inference_failure_err(
2141                             body_id,
2142                             span,
2143                             trait_ref.self_ty().skip_binder().into(),
2144                             ErrorCode::E0282,
2145                             false,
2146                         )
2147                         .emit();
2148                     }
2149                     return;
2150                 }
2151
2152                 // Typically, this ambiguity should only happen if
2153                 // there are unresolved type inference variables
2154                 // (otherwise it would suggest a coherence
2155                 // failure). But given #21974 that is not necessarily
2156                 // the case -- we can have multiple where clauses that
2157                 // are only distinguished by a region, which results
2158                 // in an ambiguity even when all types are fully
2159                 // known, since we don't dispatch based on region
2160                 // relationships.
2161
2162                 // Pick the first substitution that still contains inference variables as the one
2163                 // we're going to emit an error for. If there are none (see above), fall back to
2164                 // a more general error.
2165                 let subst = data.trait_ref.substs.iter().find(|s| s.has_non_region_infer());
2166
2167                 let mut err = if let Some(subst) = subst {
2168                     self.emit_inference_failure_err(body_id, span, subst, ErrorCode::E0283, true)
2169                 } else {
2170                     struct_span_err!(
2171                         self.tcx.sess,
2172                         span,
2173                         E0283,
2174                         "type annotations needed: cannot satisfy `{}`",
2175                         predicate,
2176                     )
2177                 };
2178
2179                 let obligation = obligation.with(self.tcx, trait_ref);
2180                 let mut selcx = SelectionContext::new(&self);
2181                 match selcx.select_from_obligation(&obligation) {
2182                     Ok(None) => {
2183                         let impls = ambiguity::recompute_applicable_impls(self.infcx, &obligation);
2184                         let has_non_region_infer =
2185                             trait_ref.skip_binder().substs.types().any(|t| !t.is_ty_infer());
2186                         // It doesn't make sense to talk about applicable impls if there are more
2187                         // than a handful of them.
2188                         if impls.len() > 1 && impls.len() < 10 && has_non_region_infer {
2189                             self.annotate_source_of_ambiguity(&mut err, &impls, predicate);
2190                         } else {
2191                             if self.tainted_by_errors().is_some() {
2192                                 err.cancel();
2193                                 return;
2194                             }
2195                             err.note(&format!("cannot satisfy `{}`", predicate));
2196                             let impl_candidates = self.find_similar_impl_candidates(
2197                                 predicate.to_opt_poly_trait_pred().unwrap(),
2198                             );
2199                             if impl_candidates.len() < 10 {
2200                                 self.report_similar_impl_candidates(
2201                                     impl_candidates,
2202                                     trait_ref,
2203                                     body_id.map(|id| id.hir_id).unwrap_or(obligation.cause.body_id),
2204                                     &mut err,
2205                                     false,
2206                                 );
2207                             }
2208                         }
2209                     }
2210                     _ => {
2211                         if self.tainted_by_errors().is_some() {
2212                             err.cancel();
2213                             return;
2214                         }
2215                         err.note(&format!("cannot satisfy `{}`", predicate));
2216                     }
2217                 }
2218
2219                 if let ObligationCauseCode::ItemObligation(def_id)
2220                 | ObligationCauseCode::ExprItemObligation(def_id, ..) = *obligation.cause.code()
2221                 {
2222                     self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
2223                 }
2224
2225                 if let (Some(body_id), Some(ty::subst::GenericArgKind::Type(_))) =
2226                     (body_id, subst.map(|subst| subst.unpack()))
2227                 {
2228                     struct FindExprBySpan<'hir> {
2229                         span: Span,
2230                         result: Option<&'hir hir::Expr<'hir>>,
2231                     }
2232
2233                     impl<'v> hir::intravisit::Visitor<'v> for FindExprBySpan<'v> {
2234                         fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
2235                             if self.span == ex.span {
2236                                 self.result = Some(ex);
2237                             } else {
2238                                 hir::intravisit::walk_expr(self, ex);
2239                             }
2240                         }
2241                     }
2242
2243                     let mut expr_finder = FindExprBySpan { span, result: None };
2244
2245                     expr_finder.visit_expr(&self.tcx.hir().body(body_id).value);
2246
2247                     if let Some(hir::Expr {
2248                         kind: hir::ExprKind::Path(hir::QPath::Resolved(None, path)), .. }
2249                     ) = expr_finder.result
2250                         && let [
2251                             ..,
2252                             trait_path_segment @ hir::PathSegment {
2253                                 res: rustc_hir::def::Res::Def(rustc_hir::def::DefKind::Trait, trait_id),
2254                                 ..
2255                             },
2256                             hir::PathSegment {
2257                                 ident: assoc_item_name,
2258                                 res: rustc_hir::def::Res::Def(_, item_id),
2259                                 ..
2260                             }
2261                         ] = path.segments
2262                         && data.trait_ref.def_id == *trait_id
2263                         && self.tcx.trait_of_item(*item_id) == Some(*trait_id)
2264                         && let None = self.tainted_by_errors()
2265                     {
2266                         let (verb, noun) = match self.tcx.associated_item(item_id).kind {
2267                             ty::AssocKind::Const => ("refer to the", "constant"),
2268                             ty::AssocKind::Fn => ("call", "function"),
2269                             ty::AssocKind::Type => ("refer to the", "type"), // this is already covered by E0223, but this single match arm doesn't hurt here
2270                         };
2271
2272                         // Replace the more general E0283 with a more specific error
2273                         err.cancel();
2274                         err = self.tcx.sess.struct_span_err_with_code(
2275                             span,
2276                             &format!(
2277                                 "cannot {verb} associated {noun} on trait without specifying the corresponding `impl` type",
2278                              ),
2279                             rustc_errors::error_code!(E0790),
2280                         );
2281
2282                         if let Some(local_def_id) = data.trait_ref.def_id.as_local()
2283                             && let Some(hir::Node::Item(hir::Item { ident: trait_name, kind: hir::ItemKind::Trait(_, _, _, _, trait_item_refs), .. })) = self.tcx.hir().find_by_def_id(local_def_id)
2284                             && let Some(method_ref) = trait_item_refs.iter().find(|item_ref| item_ref.ident == *assoc_item_name) {
2285                             err.span_label(method_ref.span, format!("`{}::{}` defined here", trait_name, assoc_item_name));
2286                         }
2287
2288                         err.span_label(span, format!("cannot {verb} associated {noun} of trait"));
2289
2290                         let trait_impls = self.tcx.trait_impls_of(data.trait_ref.def_id);
2291
2292                         if trait_impls.blanket_impls().is_empty()
2293                             && let Some(impl_def_id) = trait_impls.non_blanket_impls().values().flatten().next()
2294                         {
2295                             let non_blanket_impl_count = trait_impls.non_blanket_impls().values().flatten().count();
2296                             let message = if non_blanket_impl_count == 1 {
2297                                 "use the fully-qualified path to the only available implementation".to_string()
2298                             } else {
2299                                 format!(
2300                                     "use a fully-qualified path to a specific available implementation ({} found)",
2301                                     non_blanket_impl_count
2302                                 )
2303                             };
2304                             let mut suggestions = vec![(
2305                                 path.span.shrink_to_lo(),
2306                                 format!("<{} as ", self.tcx.type_of(impl_def_id))
2307                             )];
2308                             if let Some(generic_arg) = trait_path_segment.args {
2309                                 let between_span = trait_path_segment.ident.span.between(generic_arg.span_ext);
2310                                 // get rid of :: between Trait and <type>
2311                                 // must be '::' between them, otherwise the parser won't accept the code
2312                                 suggestions.push((between_span, "".to_string(),));
2313                                 suggestions.push((generic_arg.span_ext.shrink_to_hi(), format!(">")));
2314                             } else {
2315                                 suggestions.push((trait_path_segment.ident.span.shrink_to_hi(), format!(">")));
2316                             }
2317                             err.multipart_suggestion(
2318                                 message,
2319                                 suggestions,
2320                                 Applicability::MaybeIncorrect
2321                             );
2322                         }
2323                     }
2324                 };
2325
2326                 err
2327             }
2328
2329             ty::PredicateKind::WellFormed(arg) => {
2330                 // Same hacky approach as above to avoid deluging user
2331                 // with error messages.
2332                 if arg.references_error()
2333                     || self.tcx.sess.has_errors().is_some()
2334                     || self.tainted_by_errors().is_some()
2335                 {
2336                     return;
2337                 }
2338
2339                 self.emit_inference_failure_err(body_id, span, arg, ErrorCode::E0282, false)
2340             }
2341
2342             ty::PredicateKind::Subtype(data) => {
2343                 if data.references_error()
2344                     || self.tcx.sess.has_errors().is_some()
2345                     || self.tainted_by_errors().is_some()
2346                 {
2347                     // no need to overload user in such cases
2348                     return;
2349                 }
2350                 let SubtypePredicate { a_is_expected: _, a, b } = data;
2351                 // both must be type variables, or the other would've been instantiated
2352                 assert!(a.is_ty_var() && b.is_ty_var());
2353                 self.emit_inference_failure_err(body_id, span, a.into(), ErrorCode::E0282, true)
2354             }
2355             ty::PredicateKind::Clause(ty::Clause::Projection(data)) => {
2356                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2357                     return;
2358                 }
2359                 let subst = data
2360                     .projection_ty
2361                     .substs
2362                     .iter()
2363                     .chain(Some(data.term.into_arg()))
2364                     .find(|g| g.has_non_region_infer());
2365                 if let Some(subst) = subst {
2366                     let mut err = self.emit_inference_failure_err(
2367                         body_id,
2368                         span,
2369                         subst,
2370                         ErrorCode::E0284,
2371                         true,
2372                     );
2373                     err.note(&format!("cannot satisfy `{}`", predicate));
2374                     err
2375                 } else {
2376                     // If we can't find a substitution, just print a generic error
2377                     let mut err = struct_span_err!(
2378                         self.tcx.sess,
2379                         span,
2380                         E0284,
2381                         "type annotations needed: cannot satisfy `{}`",
2382                         predicate,
2383                     );
2384                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2385                     err
2386                 }
2387             }
2388
2389             ty::PredicateKind::ConstEvaluatable(data) => {
2390                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2391                     return;
2392                 }
2393                 let subst = data.walk().find(|g| g.is_non_region_infer());
2394                 if let Some(subst) = subst {
2395                     let err = self.emit_inference_failure_err(
2396                         body_id,
2397                         span,
2398                         subst,
2399                         ErrorCode::E0284,
2400                         true,
2401                     );
2402                     err
2403                 } else {
2404                     // If we can't find a substitution, just print a generic error
2405                     let mut err = struct_span_err!(
2406                         self.tcx.sess,
2407                         span,
2408                         E0284,
2409                         "type annotations needed: cannot satisfy `{}`",
2410                         predicate,
2411                     );
2412                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2413                     err
2414                 }
2415             }
2416             _ => {
2417                 if self.tcx.sess.has_errors().is_some() || self.tainted_by_errors().is_some() {
2418                     return;
2419                 }
2420                 let mut err = struct_span_err!(
2421                     self.tcx.sess,
2422                     span,
2423                     E0284,
2424                     "type annotations needed: cannot satisfy `{}`",
2425                     predicate,
2426                 );
2427                 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2428                 err
2429             }
2430         };
2431         self.note_obligation_cause(&mut err, obligation);
2432         err.emit();
2433     }
2434
2435     fn annotate_source_of_ambiguity(
2436         &self,
2437         err: &mut Diagnostic,
2438         impls: &[DefId],
2439         predicate: ty::Predicate<'tcx>,
2440     ) {
2441         let mut spans = vec![];
2442         let mut crates = vec![];
2443         let mut post = vec![];
2444         for def_id in impls {
2445             match self.tcx.span_of_impl(*def_id) {
2446                 Ok(span) => spans.push(span),
2447                 Err(name) => {
2448                     crates.push(name);
2449                     if let Some(header) = to_pretty_impl_header(self.tcx, *def_id) {
2450                         post.push(header);
2451                     }
2452                 }
2453             }
2454         }
2455         let mut crate_names: Vec<_> = crates.iter().map(|n| format!("`{}`", n)).collect();
2456         crate_names.sort();
2457         crate_names.dedup();
2458         post.sort();
2459         post.dedup();
2460
2461         if self.tainted_by_errors().is_some()
2462             && (crate_names.len() == 1
2463                 && spans.len() == 0
2464                 && ["`core`", "`alloc`", "`std`"].contains(&crate_names[0].as_str())
2465                 || predicate.visit_with(&mut HasNumericInferVisitor).is_break())
2466         {
2467             // Avoid complaining about other inference issues for expressions like
2468             // `42 >> 1`, where the types are still `{integer}`, but we want to
2469             // Do we need `trait_ref.skip_binder().self_ty().is_numeric() &&` too?
2470             // NOTE(eddyb) this was `.cancel()`, but `err`
2471             // is borrowed, so we can't fully defuse it.
2472             err.downgrade_to_delayed_bug();
2473             return;
2474         }
2475
2476         let msg = format!("multiple `impl`s satisfying `{}` found", predicate);
2477         let post = if post.len() > 1 || (post.len() == 1 && post[0].contains('\n')) {
2478             format!(":\n{}", post.iter().map(|p| format!("- {}", p)).collect::<Vec<_>>().join("\n"),)
2479         } else if post.len() == 1 {
2480             format!(": `{}`", post[0])
2481         } else {
2482             String::new()
2483         };
2484
2485         match (spans.len(), crates.len(), crate_names.len()) {
2486             (0, 0, 0) => {
2487                 err.note(&format!("cannot satisfy `{}`", predicate));
2488             }
2489             (0, _, 1) => {
2490                 err.note(&format!("{} in the `{}` crate{}", msg, crates[0], post,));
2491             }
2492             (0, _, _) => {
2493                 err.note(&format!(
2494                     "{} in the following crates: {}{}",
2495                     msg,
2496                     crate_names.join(", "),
2497                     post,
2498                 ));
2499             }
2500             (_, 0, 0) => {
2501                 let span: MultiSpan = spans.into();
2502                 err.span_note(span, &msg);
2503             }
2504             (_, 1, 1) => {
2505                 let span: MultiSpan = spans.into();
2506                 err.span_note(span, &msg);
2507                 err.note(
2508                     &format!("and another `impl` found in the `{}` crate{}", crates[0], post,),
2509                 );
2510             }
2511             _ => {
2512                 let span: MultiSpan = spans.into();
2513                 err.span_note(span, &msg);
2514                 err.note(&format!(
2515                     "and more `impl`s found in the following crates: {}{}",
2516                     crate_names.join(", "),
2517                     post,
2518                 ));
2519             }
2520         }
2521     }
2522
2523     /// Returns `true` if the trait predicate may apply for *some* assignment
2524     /// to the type parameters.
2525     fn predicate_can_apply(
2526         &self,
2527         param_env: ty::ParamEnv<'tcx>,
2528         pred: ty::PolyTraitPredicate<'tcx>,
2529     ) -> bool {
2530         struct ParamToVarFolder<'a, 'tcx> {
2531             infcx: &'a InferCtxt<'tcx>,
2532             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2533         }
2534
2535         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
2536             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
2537                 self.infcx.tcx
2538             }
2539
2540             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2541                 if let ty::Param(ty::ParamTy { name, .. }) = *ty.kind() {
2542                     let infcx = self.infcx;
2543                     *self.var_map.entry(ty).or_insert_with(|| {
2544                         infcx.next_ty_var(TypeVariableOrigin {
2545                             kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
2546                             span: DUMMY_SP,
2547                         })
2548                     })
2549                 } else {
2550                     ty.super_fold_with(self)
2551                 }
2552             }
2553         }
2554
2555         self.probe(|_| {
2556             let cleaned_pred =
2557                 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2558
2559             let InferOk { value: cleaned_pred, .. } =
2560                 self.infcx.at(&ObligationCause::dummy(), param_env).normalize(cleaned_pred);
2561
2562             let obligation =
2563                 Obligation::new(self.tcx, ObligationCause::dummy(), param_env, cleaned_pred);
2564
2565             self.predicate_may_hold(&obligation)
2566         })
2567     }
2568
2569     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>) {
2570         // First, attempt to add note to this error with an async-await-specific
2571         // message, and fall back to regular note otherwise.
2572         if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2573             self.note_obligation_cause_code(
2574                 err,
2575                 obligation.predicate,
2576                 obligation.param_env,
2577                 obligation.cause.code(),
2578                 &mut vec![],
2579                 &mut Default::default(),
2580             );
2581             self.suggest_unsized_bound_if_applicable(err, obligation);
2582         }
2583     }
2584
2585     #[instrument(level = "debug", skip_all)]
2586     fn suggest_unsized_bound_if_applicable(
2587         &self,
2588         err: &mut Diagnostic,
2589         obligation: &PredicateObligation<'tcx>,
2590     ) {
2591         let ty::PredicateKind::Clause(ty::Clause::Trait(pred)) = obligation.predicate.kind().skip_binder() else { return; };
2592         let (ObligationCauseCode::BindingObligation(item_def_id, span)
2593         | ObligationCauseCode::ExprBindingObligation(item_def_id, span, ..))
2594             = *obligation.cause.code().peel_derives() else { return; };
2595         debug!(?pred, ?item_def_id, ?span);
2596
2597         let (Some(node), true) = (
2598             self.tcx.hir().get_if_local(item_def_id),
2599             Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
2600         ) else {
2601             return;
2602         };
2603         self.maybe_suggest_unsized_generics(err, span, node);
2604     }
2605
2606     #[instrument(level = "debug", skip_all)]
2607     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>) {
2608         let Some(generics) = node.generics() else {
2609             return;
2610         };
2611         let sized_trait = self.tcx.lang_items().sized_trait();
2612         debug!(?generics.params);
2613         debug!(?generics.predicates);
2614         let Some(param) = generics.params.iter().find(|param| param.span == span) else {
2615             return;
2616         };
2617         // Check that none of the explicit trait bounds is `Sized`. Assume that an explicit
2618         // `Sized` bound is there intentionally and we don't need to suggest relaxing it.
2619         let explicitly_sized = generics
2620             .bounds_for_param(param.def_id)
2621             .flat_map(|bp| bp.bounds)
2622             .any(|bound| bound.trait_ref().and_then(|tr| tr.trait_def_id()) == sized_trait);
2623         if explicitly_sized {
2624             return;
2625         }
2626         debug!(?param);
2627         match node {
2628             hir::Node::Item(
2629                 item @ hir::Item {
2630                     // Only suggest indirection for uses of type parameters in ADTs.
2631                     kind:
2632                         hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..),
2633                     ..
2634                 },
2635             ) => {
2636                 if self.maybe_indirection_for_unsized(err, item, param) {
2637                     return;
2638                 }
2639             }
2640             _ => {}
2641         };
2642         // Didn't add an indirection suggestion, so add a general suggestion to relax `Sized`.
2643         let (span, separator) = if let Some(s) = generics.bounds_span_for_suggestions(param.def_id)
2644         {
2645             (s, " +")
2646         } else {
2647             (span.shrink_to_hi(), ":")
2648         };
2649         err.span_suggestion_verbose(
2650             span,
2651             "consider relaxing the implicit `Sized` restriction",
2652             format!("{} ?Sized", separator),
2653             Applicability::MachineApplicable,
2654         );
2655     }
2656
2657     fn maybe_indirection_for_unsized(
2658         &self,
2659         err: &mut Diagnostic,
2660         item: &Item<'tcx>,
2661         param: &GenericParam<'tcx>,
2662     ) -> bool {
2663         // Suggesting `T: ?Sized` is only valid in an ADT if `T` is only used in a
2664         // borrow. `struct S<'a, T: ?Sized>(&'a T);` is valid, `struct S<T: ?Sized>(T);`
2665         // is not. Look for invalid "bare" parameter uses, and suggest using indirection.
2666         let mut visitor =
2667             FindTypeParam { param: param.name.ident().name, invalid_spans: vec![], nested: false };
2668         visitor.visit_item(item);
2669         if visitor.invalid_spans.is_empty() {
2670             return false;
2671         }
2672         let mut multispan: MultiSpan = param.span.into();
2673         multispan.push_span_label(
2674             param.span,
2675             format!("this could be changed to `{}: ?Sized`...", param.name.ident()),
2676         );
2677         for sp in visitor.invalid_spans {
2678             multispan.push_span_label(
2679                 sp,
2680                 format!("...if indirection were used here: `Box<{}>`", param.name.ident()),
2681             );
2682         }
2683         err.span_help(
2684             multispan,
2685             &format!(
2686                 "you could relax the implicit `Sized` bound on `{T}` if it were \
2687                 used through indirection like `&{T}` or `Box<{T}>`",
2688                 T = param.name.ident(),
2689             ),
2690         );
2691         true
2692     }
2693
2694     fn is_recursive_obligation(
2695         &self,
2696         obligated_types: &mut Vec<Ty<'tcx>>,
2697         cause_code: &ObligationCauseCode<'tcx>,
2698     ) -> bool {
2699         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
2700             let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2701             let self_ty = parent_trait_ref.skip_binder().self_ty();
2702             if obligated_types.iter().any(|ot| ot == &self_ty) {
2703                 return true;
2704             }
2705             if let ty::Adt(def, substs) = self_ty.kind()
2706                 && let [arg] = &substs[..]
2707                 && let ty::subst::GenericArgKind::Type(ty) = arg.unpack()
2708                 && let ty::Adt(inner_def, _) = ty.kind()
2709                 && inner_def == def
2710             {
2711                 return true;
2712             }
2713         }
2714         false
2715     }
2716 }
2717
2718 /// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
2719 /// `param: ?Sized` would be a valid constraint.
2720 struct FindTypeParam {
2721     param: rustc_span::Symbol,
2722     invalid_spans: Vec<Span>,
2723     nested: bool,
2724 }
2725
2726 impl<'v> Visitor<'v> for FindTypeParam {
2727     fn visit_where_predicate(&mut self, _: &'v hir::WherePredicate<'v>) {
2728         // Skip where-clauses, to avoid suggesting indirection for type parameters found there.
2729     }
2730
2731     fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2732         // We collect the spans of all uses of the "bare" type param, like in `field: T` or
2733         // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
2734         // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
2735         // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
2736         // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
2737         // in that case should make what happened clear enough.
2738         match ty.kind {
2739             hir::TyKind::Ptr(_) | hir::TyKind::Rptr(..) | hir::TyKind::TraitObject(..) => {}
2740             hir::TyKind::Path(hir::QPath::Resolved(None, path))
2741                 if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
2742             {
2743                 if !self.nested {
2744                     debug!(?ty, "FindTypeParam::visit_ty");
2745                     self.invalid_spans.push(ty.span);
2746                 }
2747             }
2748             hir::TyKind::Path(_) => {
2749                 let prev = self.nested;
2750                 self.nested = true;
2751                 hir::intravisit::walk_ty(self, ty);
2752                 self.nested = prev;
2753             }
2754             _ => {
2755                 hir::intravisit::walk_ty(self, ty);
2756             }
2757         }
2758     }
2759 }
2760
2761 /// Summarizes information
2762 #[derive(Clone)]
2763 pub enum ArgKind {
2764     /// An argument of non-tuple type. Parameters are (name, ty)
2765     Arg(String, String),
2766
2767     /// An argument of tuple type. For a "found" argument, the span is
2768     /// the location in the source of the pattern. For an "expected"
2769     /// argument, it will be None. The vector is a list of (name, ty)
2770     /// strings for the components of the tuple.
2771     Tuple(Option<Span>, Vec<(String, String)>),
2772 }
2773
2774 impl ArgKind {
2775     fn empty() -> ArgKind {
2776         ArgKind::Arg("_".to_owned(), "_".to_owned())
2777     }
2778
2779     /// Creates an `ArgKind` from the expected type of an
2780     /// argument. It has no name (`_`) and an optional source span.
2781     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
2782         match t.kind() {
2783             ty::Tuple(tys) => ArgKind::Tuple(
2784                 span,
2785                 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
2786             ),
2787             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
2788         }
2789     }
2790 }
2791
2792 struct HasNumericInferVisitor;
2793
2794 impl<'tcx> ty::TypeVisitor<'tcx> for HasNumericInferVisitor {
2795     type BreakTy = ();
2796
2797     fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
2798         if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
2799             ControlFlow::Break(())
2800         } else {
2801             ControlFlow::CONTINUE
2802         }
2803     }
2804 }
2805
2806 pub enum DefIdOrName {
2807     DefId(DefId),
2808     Name(&'static str),
2809 }