]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs
3960f391407a386c5df580ab60b26925c3202882
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / mod.rs
1 pub mod on_unimplemented;
2 pub mod suggestions;
3
4 use super::{
5     EvaluationResult, FulfillmentContext, FulfillmentError, FulfillmentErrorCode,
6     MismatchedProjectionTypes, Obligation, ObligationCause, ObligationCauseCode,
7     OnUnimplementedDirective, OnUnimplementedNote, OutputTypeParameterMismatch, Overflow,
8     PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
9 };
10
11 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
12 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
13 use crate::infer::{self, InferCtxt, TyCtxtInferExt};
14 use rustc_data_structures::fx::FxHashMap;
15 use rustc_errors::{
16     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
17     MultiSpan, Style,
18 };
19 use rustc_hir as hir;
20 use rustc_hir::def_id::DefId;
21 use rustc_hir::intravisit::Visitor;
22 use rustc_hir::GenericParam;
23 use rustc_hir::Item;
24 use rustc_hir::Node;
25 use rustc_infer::infer::error_reporting::same_type_modulo_infer;
26 use rustc_infer::traits::TraitEngine;
27 use rustc_middle::traits::select::OverflowError;
28 use rustc_middle::ty::abstract_const::NotConstEvaluatable;
29 use rustc_middle::ty::error::ExpectedFound;
30 use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
31 use rustc_middle::ty::{
32     self, SubtypePredicate, ToPolyTraitRef, ToPredicate, TraitRef, Ty, TyCtxt, TypeFoldable,
33     TypeVisitable,
34 };
35 use rustc_span::symbol::{kw, sym};
36 use rustc_span::{ExpnKind, Span, DUMMY_SP};
37 use std::fmt;
38 use std::iter;
39 use std::ops::ControlFlow;
40
41 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
42 use crate::traits::query::normalize::AtExt as _;
43 use crate::traits::specialize::to_pretty_impl_header;
44 use on_unimplemented::InferCtxtExt as _;
45 use suggestions::InferCtxtExt as _;
46
47 pub use rustc_infer::traits::error_reporting::*;
48
49 // When outputting impl candidates, prefer showing those that are more similar.
50 //
51 // We also compare candidates after skipping lifetimes, which has a lower
52 // priority than exact matches.
53 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
54 pub enum CandidateSimilarity {
55     Exact { ignoring_lifetimes: bool },
56     Fuzzy { ignoring_lifetimes: bool },
57 }
58
59 #[derive(Debug, Clone, Copy)]
60 pub struct ImplCandidate<'tcx> {
61     pub trait_ref: ty::TraitRef<'tcx>,
62     pub similarity: CandidateSimilarity,
63 }
64
65 pub trait InferCtxtExt<'tcx> {
66     fn report_fulfillment_errors(
67         &self,
68         errors: &[FulfillmentError<'tcx>],
69         body_id: Option<hir::BodyId>,
70         fallback_has_occurred: bool,
71     ) -> ErrorGuaranteed;
72
73     fn report_overflow_error<T>(
74         &self,
75         obligation: &Obligation<'tcx, T>,
76         suggest_increasing_limit: bool,
77     ) -> !
78     where
79         T: fmt::Display + TypeFoldable<'tcx>;
80
81     fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
82
83     /// The `root_obligation` parameter should be the `root_obligation` field
84     /// from a `FulfillmentError`. If no `FulfillmentError` is available,
85     /// then it should be the same as `obligation`.
86     fn report_selection_error(
87         &self,
88         obligation: PredicateObligation<'tcx>,
89         root_obligation: &PredicateObligation<'tcx>,
90         error: &SelectionError<'tcx>,
91         fallback_has_occurred: bool,
92     );
93
94     /// Given some node representing a fn-like thing in the HIR map,
95     /// returns a span and `ArgKind` information that describes the
96     /// arguments it expects. This can be supplied to
97     /// `report_arg_count_mismatch`.
98     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Vec<ArgKind>)>;
99
100     /// Reports an error when the number of arguments needed by a
101     /// trait match doesn't match the number that the expression
102     /// provides.
103     fn report_arg_count_mismatch(
104         &self,
105         span: Span,
106         found_span: Option<Span>,
107         expected_args: Vec<ArgKind>,
108         found_args: Vec<ArgKind>,
109         is_closure: bool,
110     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
111
112     /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
113     /// in that order, and returns the generic type corresponding to the
114     /// argument of that trait (corresponding to the closure arguments).
115     fn type_implements_fn_trait(
116         &self,
117         param_env: ty::ParamEnv<'tcx>,
118         ty: ty::Binder<'tcx, Ty<'tcx>>,
119         constness: ty::BoundConstness,
120         polarity: ty::ImplPolarity,
121     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()>;
122 }
123
124 impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
125     fn report_fulfillment_errors(
126         &self,
127         errors: &[FulfillmentError<'tcx>],
128         body_id: Option<hir::BodyId>,
129         fallback_has_occurred: bool,
130     ) -> ErrorGuaranteed {
131         #[derive(Debug)]
132         struct ErrorDescriptor<'tcx> {
133             predicate: ty::Predicate<'tcx>,
134             index: Option<usize>, // None if this is an old error
135         }
136
137         let mut error_map: FxHashMap<_, Vec<_>> = self
138             .reported_trait_errors
139             .borrow()
140             .iter()
141             .map(|(&span, predicates)| {
142                 (
143                     span,
144                     predicates
145                         .iter()
146                         .map(|&predicate| ErrorDescriptor { predicate, index: None })
147                         .collect(),
148                 )
149             })
150             .collect();
151
152         for (index, error) in errors.iter().enumerate() {
153             // We want to ignore desugarings here: spans are equivalent even
154             // if one is the result of a desugaring and the other is not.
155             let mut span = error.obligation.cause.span;
156             let expn_data = span.ctxt().outer_expn_data();
157             if let ExpnKind::Desugaring(_) = expn_data.kind {
158                 span = expn_data.call_site;
159             }
160
161             error_map.entry(span).or_default().push(ErrorDescriptor {
162                 predicate: error.obligation.predicate,
163                 index: Some(index),
164             });
165
166             self.reported_trait_errors
167                 .borrow_mut()
168                 .entry(span)
169                 .or_default()
170                 .push(error.obligation.predicate);
171         }
172
173         // We do this in 2 passes because we want to display errors in order, though
174         // maybe it *is* better to sort errors by span or something.
175         let mut is_suppressed = vec![false; errors.len()];
176         for (_, error_set) in error_map.iter() {
177             // We want to suppress "duplicate" errors with the same span.
178             for error in error_set {
179                 if let Some(index) = error.index {
180                     // Suppress errors that are either:
181                     // 1) strictly implied by another error.
182                     // 2) implied by an error with a smaller index.
183                     for error2 in error_set {
184                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
185                             // Avoid errors being suppressed by already-suppressed
186                             // errors, to prevent all errors from being suppressed
187                             // at once.
188                             continue;
189                         }
190
191                         if self.error_implies(error2.predicate, error.predicate)
192                             && !(error2.index >= error.index
193                                 && self.error_implies(error.predicate, error2.predicate))
194                         {
195                             info!("skipping {:?} (implied by {:?})", error, error2);
196                             is_suppressed[index] = true;
197                             break;
198                         }
199                     }
200                 }
201             }
202         }
203
204         for (error, suppressed) in iter::zip(errors, is_suppressed) {
205             if !suppressed {
206                 self.report_fulfillment_error(error, body_id, fallback_has_occurred);
207             }
208         }
209
210         self.tcx.sess.delay_span_bug(DUMMY_SP, "expected fullfillment errors")
211     }
212
213     /// Reports that an overflow has occurred and halts compilation. We
214     /// halt compilation unconditionally because it is important that
215     /// overflows never be masked -- they basically represent computations
216     /// whose result could not be truly determined and thus we can't say
217     /// if the program type checks or not -- and they are unusual
218     /// occurrences in any case.
219     fn report_overflow_error<T>(
220         &self,
221         obligation: &Obligation<'tcx, T>,
222         suggest_increasing_limit: bool,
223     ) -> !
224     where
225         T: fmt::Display + TypeFoldable<'tcx>,
226     {
227         let predicate = self.resolve_vars_if_possible(obligation.predicate.clone());
228         let mut err = struct_span_err!(
229             self.tcx.sess,
230             obligation.cause.span,
231             E0275,
232             "overflow evaluating the requirement `{}`",
233             predicate
234         );
235
236         if suggest_increasing_limit {
237             self.suggest_new_overflow_limit(&mut err);
238         }
239
240         self.note_obligation_cause_code(
241             &mut err,
242             &obligation.predicate,
243             obligation.param_env,
244             obligation.cause.code(),
245             &mut vec![],
246             &mut Default::default(),
247         );
248
249         err.emit();
250         self.tcx.sess.abort_if_errors();
251         bug!();
252     }
253
254     /// Reports that a cycle was detected which led to overflow and halts
255     /// compilation. This is equivalent to `report_overflow_error` except
256     /// that we can give a more helpful error message (and, in particular,
257     /// we do not suggest increasing the overflow limit, which is not
258     /// going to help).
259     fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
260         let cycle = self.resolve_vars_if_possible(cycle.to_owned());
261         assert!(!cycle.is_empty());
262
263         debug!(?cycle, "report_overflow_error_cycle");
264
265         // The 'deepest' obligation is most likely to have a useful
266         // cause 'backtrace'
267         self.report_overflow_error(cycle.iter().max_by_key(|p| p.recursion_depth).unwrap(), false);
268     }
269
270     fn report_selection_error(
271         &self,
272         mut obligation: PredicateObligation<'tcx>,
273         root_obligation: &PredicateObligation<'tcx>,
274         error: &SelectionError<'tcx>,
275         fallback_has_occurred: bool,
276     ) {
277         self.set_tainted_by_errors();
278         let tcx = self.tcx;
279         let mut span = obligation.cause.span;
280
281         let mut err = match *error {
282             SelectionError::Ambiguous(ref impls) => {
283                 let mut err = self.tcx.sess.struct_span_err(
284                     obligation.cause.span,
285                     &format!("multiple applicable `impl`s for `{}`", obligation.predicate),
286                 );
287                 self.annotate_source_of_ambiguity(&mut err, impls, obligation.predicate);
288                 err.emit();
289                 return;
290             }
291             SelectionError::Unimplemented => {
292                 // If this obligation was generated as a result of well-formedness checking, see if we
293                 // can get a better error message by performing HIR-based well-formedness checking.
294                 if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
295                     root_obligation.cause.code().peel_derives()
296                 {
297                     if let Some(cause) = self
298                         .tcx
299                         .diagnostic_hir_wf_check((tcx.erase_regions(obligation.predicate), *wf_loc))
300                     {
301                         obligation.cause = cause.clone();
302                         span = obligation.cause.span;
303                     }
304                 }
305                 if let ObligationCauseCode::CompareImplMethodObligation {
306                     impl_item_def_id,
307                     trait_item_def_id,
308                 }
309                 | ObligationCauseCode::CompareImplTypeObligation {
310                     impl_item_def_id,
311                     trait_item_def_id,
312                 } = *obligation.cause.code()
313                 {
314                     self.report_extra_impl_obligation(
315                         span,
316                         impl_item_def_id,
317                         trait_item_def_id,
318                         &format!("`{}`", obligation.predicate),
319                     )
320                     .emit();
321                     return;
322                 }
323
324                 let bound_predicate = obligation.predicate.kind();
325                 match bound_predicate.skip_binder() {
326                     ty::PredicateKind::Trait(trait_predicate) => {
327                         let trait_predicate = bound_predicate.rebind(trait_predicate);
328                         let mut trait_predicate = self.resolve_vars_if_possible(trait_predicate);
329
330                         trait_predicate.remap_constness_diag(obligation.param_env);
331                         let predicate_is_const = ty::BoundConstness::ConstIfConst
332                             == trait_predicate.skip_binder().constness;
333
334                         if self.tcx.sess.has_errors().is_some()
335                             && trait_predicate.references_error()
336                         {
337                             return;
338                         }
339                         let trait_ref = trait_predicate.to_poly_trait_ref();
340                         let (post_message, pre_message, type_def) = self
341                             .get_parent_trait_ref(obligation.cause.code())
342                             .map(|(t, s)| {
343                                 (
344                                     format!(" in `{}`", t),
345                                     format!("within `{}`, ", t),
346                                     s.map(|s| (format!("within this `{}`", t), s)),
347                                 )
348                             })
349                             .unwrap_or_default();
350
351                         let OnUnimplementedNote {
352                             message,
353                             label,
354                             note,
355                             enclosing_scope,
356                             append_const_msg,
357                         } = self.on_unimplemented_note(trait_ref, &obligation);
358                         let have_alt_message = message.is_some() || label.is_some();
359                         let is_try_conversion = self.is_try_conversion(span, trait_ref.def_id());
360                         let is_unsize =
361                             Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait();
362                         let (message, note, append_const_msg) = if is_try_conversion {
363                             (
364                                 Some(format!(
365                                     "`?` couldn't convert the error to `{}`",
366                                     trait_ref.skip_binder().self_ty(),
367                                 )),
368                                 Some(
369                                     "the question mark operation (`?`) implicitly performs a \
370                                      conversion on the error value using the `From` trait"
371                                         .to_owned(),
372                                 ),
373                                 Some(None),
374                             )
375                         } else {
376                             (message, note, append_const_msg)
377                         };
378
379                         let mut err = struct_span_err!(
380                             self.tcx.sess,
381                             span,
382                             E0277,
383                             "{}",
384                             message
385                                 .and_then(|cannot_do_this| {
386                                     match (predicate_is_const, append_const_msg) {
387                                         // do nothing if predicate is not const
388                                         (false, _) => Some(cannot_do_this),
389                                         // suggested using default post message
390                                         (true, Some(None)) => {
391                                             Some(format!("{cannot_do_this} in const contexts"))
392                                         }
393                                         // overridden post message
394                                         (true, Some(Some(post_message))) => {
395                                             Some(format!("{cannot_do_this}{post_message}"))
396                                         }
397                                         // fallback to generic message
398                                         (true, None) => None,
399                                     }
400                                 })
401                                 .unwrap_or_else(|| format!(
402                                     "the trait bound `{}` is not satisfied{}",
403                                     trait_predicate, post_message,
404                                 ))
405                         );
406
407                         if is_try_conversion {
408                             let none_error = self
409                                 .tcx
410                                 .get_diagnostic_item(sym::none_error)
411                                 .map(|def_id| tcx.type_of(def_id));
412                             let should_convert_option_to_result =
413                                 Some(trait_ref.skip_binder().substs.type_at(1)) == none_error;
414                             let should_convert_result_to_option =
415                                 Some(trait_ref.self_ty().skip_binder()) == none_error;
416                             if should_convert_option_to_result {
417                                 err.span_suggestion_verbose(
418                                     span.shrink_to_lo(),
419                                     "consider converting the `Option<T>` into a `Result<T, _>` \
420                                      using `Option::ok_or` or `Option::ok_or_else`",
421                                     ".ok_or_else(|| /* error value */)",
422                                     Applicability::HasPlaceholders,
423                                 );
424                             } else if should_convert_result_to_option {
425                                 err.span_suggestion_verbose(
426                                     span.shrink_to_lo(),
427                                     "consider converting the `Result<T, _>` into an `Option<T>` \
428                                      using `Result::ok`",
429                                     ".ok()",
430                                     Applicability::MachineApplicable,
431                                 );
432                             }
433                             if let Some(ret_span) = self.return_type_span(&obligation) {
434                                 err.span_label(
435                                     ret_span,
436                                     &format!(
437                                         "expected `{}` because of this",
438                                         trait_ref.skip_binder().self_ty()
439                                     ),
440                                 );
441                             }
442                         }
443
444                         if Some(trait_ref.def_id()) == tcx.lang_items().drop_trait()
445                             && predicate_is_const
446                         {
447                             err.note("`~const Drop` was renamed to `~const Destruct`");
448                             err.note("See <https://github.com/rust-lang/rust/pull/94901> for more details");
449                         }
450
451                         let explanation = if let ObligationCauseCode::MainFunctionType =
452                             obligation.cause.code()
453                         {
454                             "consider using `()`, or a `Result`".to_owned()
455                         } else {
456                             format!(
457                                 "{}the trait `{}` is not implemented for `{}`",
458                                 pre_message,
459                                 trait_predicate.print_modifiers_and_trait_path(),
460                                 trait_ref.skip_binder().self_ty(),
461                             )
462                         };
463
464                         if self.suggest_add_reference_to_arg(
465                             &obligation,
466                             &mut err,
467                             trait_predicate,
468                             have_alt_message,
469                         ) {
470                             self.note_obligation_cause(&mut err, &obligation);
471                             err.emit();
472                             return;
473                         }
474                         if let Some(ref s) = label {
475                             // If it has a custom `#[rustc_on_unimplemented]`
476                             // error message, let's display it as the label!
477                             err.span_label(span, s.as_str());
478                             if !matches!(trait_ref.skip_binder().self_ty().kind(), ty::Param(_)) {
479                                 // When the self type is a type param We don't need to "the trait
480                                 // `std::marker::Sized` is not implemented for `T`" as we will point
481                                 // at the type param with a label to suggest constraining it.
482                                 err.help(&explanation);
483                             }
484                         } else {
485                             err.span_label(span, explanation);
486                         }
487
488                         if let ObligationCauseCode::ObjectCastObligation(concrete_ty, obj_ty) = obligation.cause.code().peel_derives() &&
489                            Some(trait_ref.def_id()) == self.tcx.lang_items().sized_trait() {
490                             self.suggest_borrowing_for_object_cast(&mut err, &root_obligation, *concrete_ty, *obj_ty);
491                         }
492
493                         if trait_predicate.is_const_if_const() && obligation.param_env.is_const() {
494                             let non_const_predicate = trait_ref.without_const();
495                             let non_const_obligation = Obligation {
496                                 cause: obligation.cause.clone(),
497                                 param_env: obligation.param_env.without_const(),
498                                 predicate: non_const_predicate.to_predicate(tcx),
499                                 recursion_depth: obligation.recursion_depth,
500                             };
501                             if self.predicate_may_hold(&non_const_obligation) {
502                                 err.span_note(
503                                     span,
504                                     &format!(
505                                         "the trait `{}` is implemented for `{}`, \
506                                         but that implementation is not `const`",
507                                         non_const_predicate.print_modifiers_and_trait_path(),
508                                         trait_ref.skip_binder().self_ty(),
509                                     ),
510                                 );
511                             }
512                         }
513
514                         if let Some((msg, span)) = type_def {
515                             err.span_label(span, &msg);
516                         }
517                         if let Some(ref s) = note {
518                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
519                             err.note(s.as_str());
520                         }
521                         if let Some(ref s) = enclosing_scope {
522                             let body = tcx
523                                 .hir()
524                                 .opt_local_def_id(obligation.cause.body_id)
525                                 .unwrap_or_else(|| {
526                                     tcx.hir().body_owner_def_id(hir::BodyId {
527                                         hir_id: obligation.cause.body_id,
528                                     })
529                                 });
530
531                             let enclosing_scope_span =
532                                 tcx.hir().span_with_body(tcx.hir().local_def_id_to_hir_id(body));
533
534                             err.span_label(enclosing_scope_span, s.as_str());
535                         }
536
537                         self.suggest_floating_point_literal(&obligation, &mut err, &trait_ref);
538                         let mut suggested =
539                             self.suggest_dereferences(&obligation, &mut err, trait_predicate);
540                         suggested |= self.suggest_fn_call(&obligation, &mut err, trait_predicate);
541                         suggested |=
542                             self.suggest_remove_reference(&obligation, &mut err, trait_predicate);
543                         suggested |= self.suggest_semicolon_removal(
544                             &obligation,
545                             &mut err,
546                             span,
547                             trait_predicate,
548                         );
549                         self.note_version_mismatch(&mut err, &trait_ref);
550                         self.suggest_remove_await(&obligation, &mut err);
551                         self.suggest_derive(&obligation, &mut err, trait_predicate);
552
553                         if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
554                             self.suggest_await_before_try(
555                                 &mut err,
556                                 &obligation,
557                                 trait_predicate,
558                                 span,
559                             );
560                         }
561
562                         if self.suggest_impl_trait(&mut err, span, &obligation, trait_predicate) {
563                             err.emit();
564                             return;
565                         }
566
567                         if is_unsize {
568                             // If the obligation failed due to a missing implementation of the
569                             // `Unsize` trait, give a pointer to why that might be the case
570                             err.note(
571                                 "all implementations of `Unsize` are provided \
572                                 automatically by the compiler, see \
573                                 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
574                                 for more information",
575                             );
576                         }
577
578                         let is_fn_trait = [
579                             self.tcx.lang_items().fn_trait(),
580                             self.tcx.lang_items().fn_mut_trait(),
581                             self.tcx.lang_items().fn_once_trait(),
582                         ]
583                         .contains(&Some(trait_ref.def_id()));
584                         let is_target_feature_fn = if let ty::FnDef(def_id, _) =
585                             *trait_ref.skip_binder().self_ty().kind()
586                         {
587                             !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
588                         } else {
589                             false
590                         };
591                         if is_fn_trait && is_target_feature_fn {
592                             err.note(
593                                 "`#[target_feature]` functions do not implement the `Fn` traits",
594                             );
595                         }
596
597                         // Try to report a help message
598                         if is_fn_trait
599                             && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
600                                 obligation.param_env,
601                                 trait_ref.self_ty(),
602                                 trait_predicate.skip_binder().constness,
603                                 trait_predicate.skip_binder().polarity,
604                             )
605                         {
606                             // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
607                             // suggestion to add trait bounds for the type, since we only typically implement
608                             // these traits once.
609
610                             // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
611                             // to implement.
612                             let selected_kind =
613                                 ty::ClosureKind::from_def_id(self.tcx, trait_ref.def_id())
614                                     .expect("expected to map DefId to ClosureKind");
615                             if !implemented_kind.extends(selected_kind) {
616                                 err.note(
617                                     &format!(
618                                         "`{}` implements `{}`, but it must implement `{}`, which is more general",
619                                         trait_ref.skip_binder().self_ty(),
620                                         implemented_kind,
621                                         selected_kind
622                                     )
623                                 );
624                             }
625
626                             // Note any argument mismatches
627                             let given_ty = params.skip_binder();
628                             let expected_ty = trait_ref.skip_binder().substs.type_at(1);
629                             if let ty::Tuple(given) = given_ty.kind()
630                                 && let ty::Tuple(expected) = expected_ty.kind()
631                             {
632                                 if expected.len() != given.len() {
633                                     // Note number of types that were expected and given
634                                     err.note(
635                                         &format!(
636                                             "expected a closure taking {} argument{}, but one taking {} argument{} was given",
637                                             given.len(),
638                                             if given.len() == 1 { "" } else { "s" },
639                                             expected.len(),
640                                             if expected.len() == 1 { "" } else { "s" },
641                                         )
642                                     );
643                                 } else if !same_type_modulo_infer(given_ty, expected_ty) {
644                                     // Print type mismatch
645                                     let (expected_args, given_args) =
646                                         self.cmp(given_ty, expected_ty);
647                                     err.note_expected_found(
648                                         &"a closure with arguments",
649                                         expected_args,
650                                         &"a closure with arguments",
651                                         given_args,
652                                     );
653                                 }
654                             }
655                         } else if !trait_ref.has_infer_types_or_consts()
656                             && self.predicate_can_apply(obligation.param_env, trait_ref)
657                         {
658                             // If a where-clause may be useful, remind the
659                             // user that they can add it.
660                             //
661                             // don't display an on-unimplemented note, as
662                             // these notes will often be of the form
663                             //     "the type `T` can't be frobnicated"
664                             // which is somewhat confusing.
665                             self.suggest_restricting_param_bound(
666                                 &mut err,
667                                 trait_predicate,
668                                 obligation.cause.body_id,
669                             );
670                         } else if !suggested {
671                             // Can't show anything else useful, try to find similar impls.
672                             let impl_candidates = self.find_similar_impl_candidates(trait_ref);
673                             if !self.report_similar_impl_candidates(
674                                 impl_candidates,
675                                 trait_ref,
676                                 obligation.cause.body_id,
677                                 &mut err,
678                             ) {
679                                 // This is *almost* equivalent to
680                                 // `obligation.cause.code().peel_derives()`, but it gives us the
681                                 // trait predicate for that corresponding root obligation. This
682                                 // lets us get a derived obligation from a type parameter, like
683                                 // when calling `string.strip_suffix(p)` where `p` is *not* an
684                                 // implementer of `Pattern<'_>`.
685                                 let mut code = obligation.cause.code();
686                                 let mut trait_pred = trait_predicate;
687                                 let mut peeled = false;
688                                 while let Some((parent_code, parent_trait_pred)) = code.parent() {
689                                     code = parent_code;
690                                     if let Some(parent_trait_pred) = parent_trait_pred {
691                                         trait_pred = parent_trait_pred;
692                                         peeled = true;
693                                     }
694                                 }
695                                 let def_id = trait_pred.def_id();
696                                 // Mention *all* the `impl`s for the *top most* obligation, the
697                                 // user might have meant to use one of them, if any found. We skip
698                                 // auto-traits or fundamental traits that might not be exactly what
699                                 // the user might expect to be presented with. Instead this is
700                                 // useful for less general traits.
701                                 if peeled
702                                     && !self.tcx.trait_is_auto(def_id)
703                                     && !self.tcx.lang_items().items().contains(&Some(def_id))
704                                 {
705                                     let trait_ref = trait_pred.to_poly_trait_ref();
706                                     let impl_candidates =
707                                         self.find_similar_impl_candidates(trait_ref);
708                                     self.report_similar_impl_candidates(
709                                         impl_candidates,
710                                         trait_ref,
711                                         obligation.cause.body_id,
712                                         &mut err,
713                                     );
714                                 }
715                             }
716                         }
717
718                         // Changing mutability doesn't make a difference to whether we have
719                         // an `Unsize` impl (Fixes ICE in #71036)
720                         if !is_unsize {
721                             self.suggest_change_mut(&obligation, &mut err, trait_predicate);
722                         }
723
724                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
725                         // implemented, and fallback has occurred, then it could be due to a
726                         // variable that used to fallback to `()` now falling back to `!`. Issue a
727                         // note informing about the change in behaviour.
728                         if trait_predicate.skip_binder().self_ty().is_never()
729                             && fallback_has_occurred
730                         {
731                             let predicate = trait_predicate.map_bound(|mut trait_pred| {
732                                 trait_pred.trait_ref.substs = self.tcx.mk_substs_trait(
733                                     self.tcx.mk_unit(),
734                                     &trait_pred.trait_ref.substs[1..],
735                                 );
736                                 trait_pred
737                             });
738                             let unit_obligation = obligation.with(predicate.to_predicate(tcx));
739                             if self.predicate_may_hold(&unit_obligation) {
740                                 err.note(
741                                     "this error might have been caused by changes to \
742                                     Rust's type-inference algorithm (see issue #48950 \
743                                     <https://github.com/rust-lang/rust/issues/48950> \
744                                     for more information)",
745                                 );
746                                 err.help("did you intend to use the type `()` here instead?");
747                             }
748                         }
749
750                         // Return early if the trait is Debug or Display and the invocation
751                         // originates within a standard library macro, because the output
752                         // is otherwise overwhelming and unhelpful (see #85844 for an
753                         // example).
754
755                         let in_std_macro =
756                             match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
757                                 Some(macro_def_id) => {
758                                     let crate_name = tcx.crate_name(macro_def_id.krate);
759                                     crate_name == sym::std || crate_name == sym::core
760                                 }
761                                 None => false,
762                             };
763
764                         if in_std_macro
765                             && matches!(
766                                 self.tcx.get_diagnostic_name(trait_ref.def_id()),
767                                 Some(sym::Debug | sym::Display)
768                             )
769                         {
770                             err.emit();
771                             return;
772                         }
773
774                         err
775                     }
776
777                     ty::PredicateKind::Subtype(predicate) => {
778                         // Errors for Subtype predicates show up as
779                         // `FulfillmentErrorCode::CodeSubtypeError`,
780                         // not selection error.
781                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
782                     }
783
784                     ty::PredicateKind::Coerce(predicate) => {
785                         // Errors for Coerce predicates show up as
786                         // `FulfillmentErrorCode::CodeSubtypeError`,
787                         // not selection error.
788                         span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
789                     }
790
791                     ty::PredicateKind::RegionOutlives(predicate) => {
792                         let predicate = bound_predicate.rebind(predicate);
793                         let predicate = self.resolve_vars_if_possible(predicate);
794                         let err = self
795                             .region_outlives_predicate(&obligation.cause, predicate)
796                             .err()
797                             .unwrap();
798                         struct_span_err!(
799                             self.tcx.sess,
800                             span,
801                             E0279,
802                             "the requirement `{}` is not satisfied (`{}`)",
803                             predicate,
804                             err,
805                         )
806                     }
807
808                     ty::PredicateKind::Projection(..) | ty::PredicateKind::TypeOutlives(..) => {
809                         let predicate = self.resolve_vars_if_possible(obligation.predicate);
810                         struct_span_err!(
811                             self.tcx.sess,
812                             span,
813                             E0280,
814                             "the requirement `{}` is not satisfied",
815                             predicate
816                         )
817                     }
818
819                     ty::PredicateKind::ObjectSafe(trait_def_id) => {
820                         let violations = self.tcx.object_safety_violations(trait_def_id);
821                         report_object_safety_error(self.tcx, span, trait_def_id, violations)
822                     }
823
824                     ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
825                         let found_kind = self.closure_kind(closure_substs).unwrap();
826                         let closure_span = self.tcx.def_span(closure_def_id);
827                         let mut err = struct_span_err!(
828                             self.tcx.sess,
829                             closure_span,
830                             E0525,
831                             "expected a closure that implements the `{}` trait, \
832                              but this closure only implements `{}`",
833                             kind,
834                             found_kind
835                         );
836
837                         err.span_label(
838                             closure_span,
839                             format!("this closure implements `{}`, not `{}`", found_kind, kind),
840                         );
841                         err.span_label(
842                             obligation.cause.span,
843                             format!("the requirement to implement `{}` derives from here", kind),
844                         );
845
846                         // Additional context information explaining why the closure only implements
847                         // a particular trait.
848                         if let Some(typeck_results) = self.in_progress_typeck_results {
849                             let hir_id = self
850                                 .tcx
851                                 .hir()
852                                 .local_def_id_to_hir_id(closure_def_id.expect_local());
853                             let typeck_results = typeck_results.borrow();
854                             match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
855                                 (ty::ClosureKind::FnOnce, Some((span, place))) => {
856                                     err.span_label(
857                                         *span,
858                                         format!(
859                                             "closure is `FnOnce` because it moves the \
860                                          variable `{}` out of its environment",
861                                             ty::place_to_string_for_capture(tcx, place)
862                                         ),
863                                     );
864                                 }
865                                 (ty::ClosureKind::FnMut, Some((span, place))) => {
866                                     err.span_label(
867                                         *span,
868                                         format!(
869                                             "closure is `FnMut` because it mutates the \
870                                          variable `{}` here",
871                                             ty::place_to_string_for_capture(tcx, place)
872                                         ),
873                                     );
874                                 }
875                                 _ => {}
876                             }
877                         }
878
879                         err.emit();
880                         return;
881                     }
882
883                     ty::PredicateKind::WellFormed(ty) => {
884                         if !self.tcx.sess.opts.unstable_opts.chalk {
885                             // WF predicates cannot themselves make
886                             // errors. They can only block due to
887                             // ambiguity; otherwise, they always
888                             // degenerate into other obligations
889                             // (which may fail).
890                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
891                         } else {
892                             // FIXME: we'll need a better message which takes into account
893                             // which bounds actually failed to hold.
894                             self.tcx.sess.struct_span_err(
895                                 span,
896                                 &format!("the type `{}` is not well-formed (chalk)", ty),
897                             )
898                         }
899                     }
900
901                     ty::PredicateKind::ConstEvaluatable(..) => {
902                         // Errors for `ConstEvaluatable` predicates show up as
903                         // `SelectionError::ConstEvalFailure`,
904                         // not `Unimplemented`.
905                         span_bug!(
906                             span,
907                             "const-evaluatable requirement gave wrong error: `{:?}`",
908                             obligation
909                         )
910                     }
911
912                     ty::PredicateKind::ConstEquate(..) => {
913                         // Errors for `ConstEquate` predicates show up as
914                         // `SelectionError::ConstEvalFailure`,
915                         // not `Unimplemented`.
916                         span_bug!(
917                             span,
918                             "const-equate requirement gave wrong error: `{:?}`",
919                             obligation
920                         )
921                     }
922
923                     ty::PredicateKind::TypeWellFormedFromEnv(..) => span_bug!(
924                         span,
925                         "TypeWellFormedFromEnv predicate should only exist in the environment"
926                     ),
927                 }
928             }
929
930             OutputTypeParameterMismatch(found_trait_ref, expected_trait_ref, _) => {
931                 let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
932                 let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
933
934                 if expected_trait_ref.self_ty().references_error() {
935                     return;
936                 }
937
938                 let Some(found_trait_ty) = found_trait_ref.self_ty().no_bound_vars() else {
939                     return;
940                 };
941
942                 let found_did = match *found_trait_ty.kind() {
943                     ty::Closure(did, _)
944                     | ty::Foreign(did)
945                     | ty::FnDef(did, _)
946                     | ty::Generator(did, ..) => Some(did),
947                     ty::Adt(def, _) => Some(def.did()),
948                     _ => None,
949                 };
950
951                 let found_span = found_did.and_then(|did| self.tcx.hir().span_if_local(did));
952
953                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
954                     // We check closures twice, with obligations flowing in different directions,
955                     // but we want to complain about them only once.
956                     return;
957                 }
958
959                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
960
961                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind() {
962                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
963                     _ => vec![ArgKind::empty()],
964                 };
965
966                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
967                 let expected = match expected_ty.kind() {
968                     ty::Tuple(ref tys) => {
969                         tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
970                     }
971                     _ => vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())],
972                 };
973
974                 if found.len() == expected.len() {
975                     self.report_closure_arg_mismatch(
976                         span,
977                         found_span,
978                         found_trait_ref,
979                         expected_trait_ref,
980                     )
981                 } else {
982                     let (closure_span, found) = found_did
983                         .and_then(|did| {
984                             let node = self.tcx.hir().get_if_local(did)?;
985                             let (found_span, found) = self.get_fn_like_arguments(node)?;
986                             Some((Some(found_span), found))
987                         })
988                         .unwrap_or((found_span, found));
989
990                     self.report_arg_count_mismatch(
991                         span,
992                         closure_span,
993                         expected,
994                         found,
995                         found_trait_ty.is_closure(),
996                     )
997                 }
998             }
999
1000             TraitNotObjectSafe(did) => {
1001                 let violations = self.tcx.object_safety_violations(did);
1002                 report_object_safety_error(self.tcx, span, did, violations)
1003             }
1004
1005             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
1006                 bug!(
1007                     "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
1008                 )
1009             }
1010             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
1011                 if !self.tcx.features().generic_const_exprs {
1012                     let mut err = self.tcx.sess.struct_span_err(
1013                         span,
1014                         "constant expression depends on a generic parameter",
1015                     );
1016                     // FIXME(const_generics): we should suggest to the user how they can resolve this
1017                     // issue. However, this is currently not actually possible
1018                     // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
1019                     //
1020                     // Note that with `feature(generic_const_exprs)` this case should not
1021                     // be reachable.
1022                     err.note("this may fail depending on what value the parameter takes");
1023                     err.emit();
1024                     return;
1025                 }
1026
1027                 match obligation.predicate.kind().skip_binder() {
1028                     ty::PredicateKind::ConstEvaluatable(uv) => {
1029                         let mut err =
1030                             self.tcx.sess.struct_span_err(span, "unconstrained generic constant");
1031                         let const_span = self.tcx.def_span(uv.def.did);
1032                         match self.tcx.sess.source_map().span_to_snippet(const_span) {
1033                             Ok(snippet) => err.help(&format!(
1034                                 "try adding a `where` bound using this expression: `where [(); {}]:`",
1035                                 snippet
1036                             )),
1037                             _ => err.help("consider adding a `where` bound using this expression"),
1038                         };
1039                         err
1040                     }
1041                     _ => {
1042                         span_bug!(
1043                             span,
1044                             "unexpected non-ConstEvaluatable predicate, this should not be reachable"
1045                         )
1046                     }
1047                 }
1048             }
1049
1050             // Already reported in the query.
1051             SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(_)) => {
1052                 // FIXME(eddyb) remove this once `ErrorGuaranteed` becomes a proof token.
1053                 self.tcx.sess.delay_span_bug(span, "`ErrorGuaranteed` without an error");
1054                 return;
1055             }
1056             // Already reported.
1057             Overflow(OverflowError::Error(_)) => {
1058                 self.tcx.sess.delay_span_bug(span, "`OverflowError` has been reported");
1059                 return;
1060             }
1061             Overflow(_) => {
1062                 bug!("overflow should be handled before the `report_selection_error` path");
1063             }
1064             SelectionError::ErrorReporting => {
1065                 bug!("ErrorReporting Overflow should not reach `report_selection_err` call")
1066             }
1067         };
1068
1069         self.note_obligation_cause(&mut err, &obligation);
1070         self.point_at_returns_when_relevant(&mut err, &obligation);
1071
1072         err.emit();
1073     }
1074
1075     /// Given some node representing a fn-like thing in the HIR map,
1076     /// returns a span and `ArgKind` information that describes the
1077     /// arguments it expects. This can be supplied to
1078     /// `report_arg_count_mismatch`.
1079     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Vec<ArgKind>)> {
1080         let sm = self.tcx.sess.source_map();
1081         let hir = self.tcx.hir();
1082         Some(match node {
1083             Node::Expr(&hir::Expr {
1084                 kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, .. }),
1085                 ..
1086             }) => (
1087                 fn_decl_span,
1088                 hir.body(body)
1089                     .params
1090                     .iter()
1091                     .map(|arg| {
1092                         if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
1093                             *arg.pat
1094                         {
1095                             Some(ArgKind::Tuple(
1096                                 Some(span),
1097                                 args.iter()
1098                                     .map(|pat| {
1099                                         sm.span_to_snippet(pat.span)
1100                                             .ok()
1101                                             .map(|snippet| (snippet, "_".to_owned()))
1102                                     })
1103                                     .collect::<Option<Vec<_>>>()?,
1104                             ))
1105                         } else {
1106                             let name = sm.span_to_snippet(arg.pat.span).ok()?;
1107                             Some(ArgKind::Arg(name, "_".to_owned()))
1108                         }
1109                     })
1110                     .collect::<Option<Vec<ArgKind>>>()?,
1111             ),
1112             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(ref sig, ..), .. })
1113             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
1114             | Node::TraitItem(&hir::TraitItem {
1115                 kind: hir::TraitItemKind::Fn(ref sig, _), ..
1116             }) => (
1117                 sig.span,
1118                 sig.decl
1119                     .inputs
1120                     .iter()
1121                     .map(|arg| match arg.kind {
1122                         hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
1123                             Some(arg.span),
1124                             vec![("_".to_owned(), "_".to_owned()); tys.len()],
1125                         ),
1126                         _ => ArgKind::empty(),
1127                     })
1128                     .collect::<Vec<ArgKind>>(),
1129             ),
1130             Node::Ctor(ref variant_data) => {
1131                 let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| hir.span(id));
1132                 (span, vec![ArgKind::empty(); variant_data.fields().len()])
1133             }
1134             _ => panic!("non-FnLike node found: {:?}", node),
1135         })
1136     }
1137
1138     /// Reports an error when the number of arguments needed by a
1139     /// trait match doesn't match the number that the expression
1140     /// provides.
1141     fn report_arg_count_mismatch(
1142         &self,
1143         span: Span,
1144         found_span: Option<Span>,
1145         expected_args: Vec<ArgKind>,
1146         found_args: Vec<ArgKind>,
1147         is_closure: bool,
1148     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
1149         let kind = if is_closure { "closure" } else { "function" };
1150
1151         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
1152             let arg_length = arguments.len();
1153             let distinct = matches!(other, &[ArgKind::Tuple(..)]);
1154             match (arg_length, arguments.get(0)) {
1155                 (1, Some(&ArgKind::Tuple(_, ref fields))) => {
1156                     format!("a single {}-tuple as argument", fields.len())
1157                 }
1158                 _ => format!(
1159                     "{} {}argument{}",
1160                     arg_length,
1161                     if distinct && arg_length > 1 { "distinct " } else { "" },
1162                     pluralize!(arg_length)
1163                 ),
1164             }
1165         };
1166
1167         let expected_str = args_str(&expected_args, &found_args);
1168         let found_str = args_str(&found_args, &expected_args);
1169
1170         let mut err = struct_span_err!(
1171             self.tcx.sess,
1172             span,
1173             E0593,
1174             "{} is expected to take {}, but it takes {}",
1175             kind,
1176             expected_str,
1177             found_str,
1178         );
1179
1180         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
1181
1182         if let Some(found_span) = found_span {
1183             err.span_label(found_span, format!("takes {}", found_str));
1184
1185             // move |_| { ... }
1186             // ^^^^^^^^-- def_span
1187             //
1188             // move |_| { ... }
1189             // ^^^^^-- prefix
1190             let prefix_span = self.tcx.sess.source_map().span_until_non_whitespace(found_span);
1191             // move |_| { ... }
1192             //      ^^^-- pipe_span
1193             let pipe_span =
1194                 if let Some(span) = found_span.trim_start(prefix_span) { span } else { found_span };
1195
1196             // Suggest to take and ignore the arguments with expected_args_length `_`s if
1197             // found arguments is empty (assume the user just wants to ignore args in this case).
1198             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
1199             if found_args.is_empty() && is_closure {
1200                 let underscores = vec!["_"; expected_args.len()].join(", ");
1201                 err.span_suggestion_verbose(
1202                     pipe_span,
1203                     &format!(
1204                         "consider changing the closure to take and ignore the expected argument{}",
1205                         pluralize!(expected_args.len())
1206                     ),
1207                     format!("|{}|", underscores),
1208                     Applicability::MachineApplicable,
1209                 );
1210             }
1211
1212             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
1213                 if fields.len() == expected_args.len() {
1214                     let sugg = fields
1215                         .iter()
1216                         .map(|(name, _)| name.to_owned())
1217                         .collect::<Vec<String>>()
1218                         .join(", ");
1219                     err.span_suggestion_verbose(
1220                         found_span,
1221                         "change the closure to take multiple arguments instead of a single tuple",
1222                         format!("|{}|", sugg),
1223                         Applicability::MachineApplicable,
1224                     );
1225                 }
1226             }
1227             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
1228                 && fields.len() == found_args.len()
1229                 && is_closure
1230             {
1231                 let sugg = format!(
1232                     "|({}){}|",
1233                     found_args
1234                         .iter()
1235                         .map(|arg| match arg {
1236                             ArgKind::Arg(name, _) => name.to_owned(),
1237                             _ => "_".to_owned(),
1238                         })
1239                         .collect::<Vec<String>>()
1240                         .join(", "),
1241                     // add type annotations if available
1242                     if found_args.iter().any(|arg| match arg {
1243                         ArgKind::Arg(_, ty) => ty != "_",
1244                         _ => false,
1245                     }) {
1246                         format!(
1247                             ": ({})",
1248                             fields
1249                                 .iter()
1250                                 .map(|(_, ty)| ty.to_owned())
1251                                 .collect::<Vec<String>>()
1252                                 .join(", ")
1253                         )
1254                     } else {
1255                         String::new()
1256                     },
1257                 );
1258                 err.span_suggestion_verbose(
1259                     found_span,
1260                     "change the closure to accept a tuple instead of individual arguments",
1261                     sugg,
1262                     Applicability::MachineApplicable,
1263                 );
1264             }
1265         }
1266
1267         err
1268     }
1269
1270     fn type_implements_fn_trait(
1271         &self,
1272         param_env: ty::ParamEnv<'tcx>,
1273         ty: ty::Binder<'tcx, Ty<'tcx>>,
1274         constness: ty::BoundConstness,
1275         polarity: ty::ImplPolarity,
1276     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
1277         self.commit_if_ok(|_| {
1278             for trait_def_id in [
1279                 self.tcx.lang_items().fn_trait(),
1280                 self.tcx.lang_items().fn_mut_trait(),
1281                 self.tcx.lang_items().fn_once_trait(),
1282             ] {
1283                 let Some(trait_def_id) = trait_def_id else { continue };
1284                 // Make a fresh inference variable so we can determine what the substitutions
1285                 // of the trait are.
1286                 let var = self.next_ty_var(TypeVariableOrigin {
1287                     span: DUMMY_SP,
1288                     kind: TypeVariableOriginKind::MiscVariable,
1289                 });
1290                 let substs = self.tcx.mk_substs_trait(ty.skip_binder(), &[var.into()]);
1291                 let obligation = Obligation::new(
1292                     ObligationCause::dummy(),
1293                     param_env,
1294                     ty.rebind(ty::TraitPredicate {
1295                         trait_ref: ty::TraitRef::new(trait_def_id, substs),
1296                         constness,
1297                         polarity,
1298                     })
1299                     .to_predicate(self.tcx),
1300                 );
1301                 let mut fulfill_cx = FulfillmentContext::new_in_snapshot();
1302                 fulfill_cx.register_predicate_obligation(self, obligation);
1303                 if fulfill_cx.select_all_or_error(self).is_empty() {
1304                     return Ok((
1305                         ty::ClosureKind::from_def_id(self.tcx, trait_def_id)
1306                             .expect("expected to map DefId to ClosureKind"),
1307                         ty.rebind(self.resolve_vars_if_possible(var)),
1308                     ));
1309                 }
1310             }
1311
1312             Err(())
1313         })
1314     }
1315 }
1316
1317 trait InferCtxtPrivExt<'hir, 'tcx> {
1318     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1319     // `error` occurring implies that `cond` occurs.
1320     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
1321
1322     fn report_fulfillment_error(
1323         &self,
1324         error: &FulfillmentError<'tcx>,
1325         body_id: Option<hir::BodyId>,
1326         fallback_has_occurred: bool,
1327     );
1328
1329     fn report_projection_error(
1330         &self,
1331         obligation: &PredicateObligation<'tcx>,
1332         error: &MismatchedProjectionTypes<'tcx>,
1333     );
1334
1335     fn fuzzy_match_tys(
1336         &self,
1337         a: Ty<'tcx>,
1338         b: Ty<'tcx>,
1339         ignoring_lifetimes: bool,
1340     ) -> Option<CandidateSimilarity>;
1341
1342     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
1343
1344     fn find_similar_impl_candidates(
1345         &self,
1346         trait_ref: ty::PolyTraitRef<'tcx>,
1347     ) -> Vec<ImplCandidate<'tcx>>;
1348
1349     fn report_similar_impl_candidates(
1350         &self,
1351         impl_candidates: Vec<ImplCandidate<'tcx>>,
1352         trait_ref: ty::PolyTraitRef<'tcx>,
1353         body_id: hir::HirId,
1354         err: &mut Diagnostic,
1355     ) -> bool;
1356
1357     /// Gets the parent trait chain start
1358     fn get_parent_trait_ref(
1359         &self,
1360         code: &ObligationCauseCode<'tcx>,
1361     ) -> Option<(String, Option<Span>)>;
1362
1363     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1364     /// with the same path as `trait_ref`, a help message about
1365     /// a probable version mismatch is added to `err`
1366     fn note_version_mismatch(
1367         &self,
1368         err: &mut Diagnostic,
1369         trait_ref: &ty::PolyTraitRef<'tcx>,
1370     ) -> bool;
1371
1372     /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1373     /// `trait_ref`.
1374     ///
1375     /// For this to work, `new_self_ty` must have no escaping bound variables.
1376     fn mk_trait_obligation_with_new_self_ty(
1377         &self,
1378         param_env: ty::ParamEnv<'tcx>,
1379         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
1380     ) -> PredicateObligation<'tcx>;
1381
1382     fn maybe_report_ambiguity(
1383         &self,
1384         obligation: &PredicateObligation<'tcx>,
1385         body_id: Option<hir::BodyId>,
1386     );
1387
1388     fn predicate_can_apply(
1389         &self,
1390         param_env: ty::ParamEnv<'tcx>,
1391         pred: ty::PolyTraitRef<'tcx>,
1392     ) -> bool;
1393
1394     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>);
1395
1396     fn suggest_unsized_bound_if_applicable(
1397         &self,
1398         err: &mut Diagnostic,
1399         obligation: &PredicateObligation<'tcx>,
1400     );
1401
1402     fn annotate_source_of_ambiguity(
1403         &self,
1404         err: &mut Diagnostic,
1405         impls: &[DefId],
1406         predicate: ty::Predicate<'tcx>,
1407     );
1408
1409     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'hir>);
1410
1411     fn maybe_indirection_for_unsized(
1412         &self,
1413         err: &mut Diagnostic,
1414         item: &'hir Item<'hir>,
1415         param: &'hir GenericParam<'hir>,
1416     ) -> bool;
1417
1418     fn is_recursive_obligation(
1419         &self,
1420         obligated_types: &mut Vec<Ty<'tcx>>,
1421         cause_code: &ObligationCauseCode<'tcx>,
1422     ) -> bool;
1423 }
1424
1425 impl<'a, 'tcx> InferCtxtPrivExt<'a, 'tcx> for InferCtxt<'a, 'tcx> {
1426     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1427     // `error` occurring implies that `cond` occurs.
1428     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1429         if cond == error {
1430             return true;
1431         }
1432
1433         // FIXME: It should be possible to deal with `ForAll` in a cleaner way.
1434         let bound_error = error.kind();
1435         let (cond, error) = match (cond.kind().skip_binder(), bound_error.skip_binder()) {
1436             (ty::PredicateKind::Trait(..), ty::PredicateKind::Trait(error)) => {
1437                 (cond, bound_error.rebind(error))
1438             }
1439             _ => {
1440                 // FIXME: make this work in other cases too.
1441                 return false;
1442             }
1443         };
1444
1445         for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1446             let bound_predicate = obligation.predicate.kind();
1447             if let ty::PredicateKind::Trait(implication) = bound_predicate.skip_binder() {
1448                 let error = error.to_poly_trait_ref();
1449                 let implication = bound_predicate.rebind(implication.trait_ref);
1450                 // FIXME: I'm just not taking associated types at all here.
1451                 // Eventually I'll need to implement param-env-aware
1452                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1453                 let param_env = ty::ParamEnv::empty();
1454                 if self.can_sub(param_env, error, implication).is_ok() {
1455                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1456                     return true;
1457                 }
1458             }
1459         }
1460
1461         false
1462     }
1463
1464     #[instrument(skip(self), level = "debug")]
1465     fn report_fulfillment_error(
1466         &self,
1467         error: &FulfillmentError<'tcx>,
1468         body_id: Option<hir::BodyId>,
1469         fallback_has_occurred: bool,
1470     ) {
1471         match error.code {
1472             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1473                 self.report_selection_error(
1474                     error.obligation.clone(),
1475                     &error.root_obligation,
1476                     selection_error,
1477                     fallback_has_occurred,
1478                 );
1479             }
1480             FulfillmentErrorCode::CodeProjectionError(ref e) => {
1481                 self.report_projection_error(&error.obligation, e);
1482             }
1483             FulfillmentErrorCode::CodeAmbiguity => {
1484                 self.maybe_report_ambiguity(&error.obligation, body_id);
1485             }
1486             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1487                 self.report_mismatched_types(
1488                     &error.obligation.cause,
1489                     expected_found.expected,
1490                     expected_found.found,
1491                     err.clone(),
1492                 )
1493                 .emit();
1494             }
1495             FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1496                 self.report_mismatched_consts(
1497                     &error.obligation.cause,
1498                     expected_found.expected,
1499                     expected_found.found,
1500                     err.clone(),
1501                 )
1502                 .emit();
1503             }
1504         }
1505     }
1506
1507     #[instrument(level = "debug", skip_all)]
1508     fn report_projection_error(
1509         &self,
1510         obligation: &PredicateObligation<'tcx>,
1511         error: &MismatchedProjectionTypes<'tcx>,
1512     ) {
1513         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1514
1515         if predicate.references_error() {
1516             return;
1517         }
1518
1519         self.probe(|_| {
1520             let err_buf;
1521             let mut err = &error.err;
1522             let mut values = None;
1523
1524             // try to find the mismatched types to report the error with.
1525             //
1526             // this can fail if the problem was higher-ranked, in which
1527             // cause I have no idea for a good error message.
1528             let bound_predicate = predicate.kind();
1529             if let ty::PredicateKind::Projection(data) = bound_predicate.skip_binder() {
1530                 let mut selcx = SelectionContext::new(self);
1531                 let data = self.replace_bound_vars_with_fresh_vars(
1532                     obligation.cause.span,
1533                     infer::LateBoundRegionConversionTime::HigherRankedType,
1534                     bound_predicate.rebind(data),
1535                 );
1536                 let mut obligations = vec![];
1537                 let normalized_ty = super::normalize_projection_type(
1538                     &mut selcx,
1539                     obligation.param_env,
1540                     data.projection_ty,
1541                     obligation.cause.clone(),
1542                     0,
1543                     &mut obligations,
1544                 );
1545
1546                 debug!(?obligation.cause, ?obligation.param_env);
1547
1548                 debug!(?normalized_ty, data.ty = ?data.term);
1549
1550                 let is_normalized_ty_expected = !matches!(
1551                     obligation.cause.code().peel_derives(),
1552                     ObligationCauseCode::ItemObligation(_)
1553                         | ObligationCauseCode::BindingObligation(_, _)
1554                         | ObligationCauseCode::ObjectCastObligation(..)
1555                         | ObligationCauseCode::OpaqueType
1556                 );
1557                 if let Err(error) = self.at(&obligation.cause, obligation.param_env).eq_exp(
1558                     is_normalized_ty_expected,
1559                     normalized_ty,
1560                     data.term,
1561                 ) {
1562                     values = Some(infer::ValuePairs::Terms(ExpectedFound::new(
1563                         is_normalized_ty_expected,
1564                         normalized_ty,
1565                         data.term,
1566                     )));
1567                     err_buf = error;
1568                     err = &err_buf;
1569                 }
1570             }
1571
1572             let mut diag = struct_span_err!(
1573                 self.tcx.sess,
1574                 obligation.cause.span,
1575                 E0271,
1576                 "type mismatch resolving `{}`",
1577                 predicate
1578             );
1579             let secondary_span = match predicate.kind().skip_binder() {
1580                 ty::PredicateKind::Projection(proj) => self
1581                     .tcx
1582                     .opt_associated_item(proj.projection_ty.item_def_id)
1583                     .and_then(|trait_assoc_item| {
1584                         self.tcx
1585                             .trait_of_item(proj.projection_ty.item_def_id)
1586                             .map(|id| (trait_assoc_item, id))
1587                     })
1588                     .and_then(|(trait_assoc_item, id)| {
1589                         let trait_assoc_ident = trait_assoc_item.ident(self.tcx);
1590                         self.tcx.find_map_relevant_impl(id, proj.projection_ty.self_ty(), |did| {
1591                             self.tcx
1592                                 .associated_items(did)
1593                                 .in_definition_order()
1594                                 .find(|assoc| assoc.ident(self.tcx) == trait_assoc_ident)
1595                         })
1596                     })
1597                     .and_then(|item| match self.tcx.hir().get_if_local(item.def_id) {
1598                         Some(
1599                             hir::Node::TraitItem(hir::TraitItem {
1600                                 kind: hir::TraitItemKind::Type(_, Some(ty)),
1601                                 ..
1602                             })
1603                             | hir::Node::ImplItem(hir::ImplItem {
1604                                 kind: hir::ImplItemKind::TyAlias(ty),
1605                                 ..
1606                             }),
1607                         ) => Some((ty.span, format!("type mismatch resolving `{}`", predicate))),
1608                         _ => None,
1609                     }),
1610                 _ => None,
1611             };
1612             self.note_type_err(
1613                 &mut diag,
1614                 &obligation.cause,
1615                 secondary_span,
1616                 values,
1617                 err,
1618                 true,
1619                 false,
1620             );
1621             self.note_obligation_cause(&mut diag, obligation);
1622             diag.emit();
1623         });
1624     }
1625
1626     fn fuzzy_match_tys(
1627         &self,
1628         mut a: Ty<'tcx>,
1629         mut b: Ty<'tcx>,
1630         ignoring_lifetimes: bool,
1631     ) -> Option<CandidateSimilarity> {
1632         /// returns the fuzzy category of a given type, or None
1633         /// if the type can be equated to any type.
1634         fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1635             match t.kind() {
1636                 ty::Bool => Some(0),
1637                 ty::Char => Some(1),
1638                 ty::Str => Some(2),
1639                 ty::Adt(def, _) if tcx.is_diagnostic_item(sym::String, def.did()) => Some(2),
1640                 ty::Int(..)
1641                 | ty::Uint(..)
1642                 | ty::Float(..)
1643                 | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1644                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1645                 ty::Array(..) | ty::Slice(..) => Some(6),
1646                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1647                 ty::Dynamic(..) => Some(8),
1648                 ty::Closure(..) => Some(9),
1649                 ty::Tuple(..) => Some(10),
1650                 ty::Param(..) => Some(11),
1651                 ty::Projection(..) => Some(12),
1652                 ty::Opaque(..) => Some(13),
1653                 ty::Never => Some(14),
1654                 ty::Adt(..) => Some(15),
1655                 ty::Generator(..) => Some(16),
1656                 ty::Foreign(..) => Some(17),
1657                 ty::GeneratorWitness(..) => Some(18),
1658                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1659             }
1660         }
1661
1662         let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1663             loop {
1664                 match t.kind() {
1665                     ty::Ref(_, inner, _) | ty::RawPtr(ty::TypeAndMut { ty: inner, .. }) => {
1666                         t = *inner
1667                     }
1668                     _ => break t,
1669                 }
1670             }
1671         };
1672
1673         if !ignoring_lifetimes {
1674             a = strip_references(a);
1675             b = strip_references(b);
1676         }
1677
1678         let cat_a = type_category(self.tcx, a)?;
1679         let cat_b = type_category(self.tcx, b)?;
1680         if a == b {
1681             Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1682         } else if cat_a == cat_b {
1683             match (a.kind(), b.kind()) {
1684                 (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1685                 (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1686                 // Matching on references results in a lot of unhelpful
1687                 // suggestions, so let's just not do that for now.
1688                 //
1689                 // We still upgrade successful matches to `ignoring_lifetimes: true`
1690                 // to prioritize that impl.
1691                 (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1692                     self.fuzzy_match_tys(a, b, true).is_some()
1693                 }
1694                 _ => true,
1695             }
1696             .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1697         } else if ignoring_lifetimes {
1698             None
1699         } else {
1700             self.fuzzy_match_tys(a, b, true)
1701         }
1702     }
1703
1704     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1705         self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1706             hir::GeneratorKind::Gen => "a generator",
1707             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1708             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1709             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1710         })
1711     }
1712
1713     fn find_similar_impl_candidates(
1714         &self,
1715         trait_ref: ty::PolyTraitRef<'tcx>,
1716     ) -> Vec<ImplCandidate<'tcx>> {
1717         self.tcx
1718             .all_impls(trait_ref.def_id())
1719             .filter_map(|def_id| {
1720                 if self.tcx.impl_polarity(def_id) == ty::ImplPolarity::Negative {
1721                     return None;
1722                 }
1723
1724                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1725
1726                 self.fuzzy_match_tys(trait_ref.skip_binder().self_ty(), imp.self_ty(), false)
1727                     .map(|similarity| ImplCandidate { trait_ref: imp, similarity })
1728             })
1729             .collect()
1730     }
1731
1732     fn report_similar_impl_candidates(
1733         &self,
1734         impl_candidates: Vec<ImplCandidate<'tcx>>,
1735         trait_ref: ty::PolyTraitRef<'tcx>,
1736         body_id: hir::HirId,
1737         err: &mut Diagnostic,
1738     ) -> bool {
1739         let report = |mut candidates: Vec<TraitRef<'tcx>>, err: &mut Diagnostic| {
1740             candidates.sort();
1741             candidates.dedup();
1742             let len = candidates.len();
1743             if candidates.len() == 0 {
1744                 return false;
1745             }
1746             if candidates.len() == 1 {
1747                 err.highlighted_help(vec![
1748                     (
1749                         format!("the trait `{}` ", candidates[0].print_only_trait_path()),
1750                         Style::NoStyle,
1751                     ),
1752                     ("is".to_string(), Style::Highlight),
1753                     (" implemented for `".to_string(), Style::NoStyle),
1754                     (candidates[0].self_ty().to_string(), Style::Highlight),
1755                     ("`".to_string(), Style::NoStyle),
1756                 ]);
1757                 return true;
1758             }
1759             let trait_ref = TraitRef::identity(self.tcx, candidates[0].def_id);
1760             // Check if the trait is the same in all cases. If so, we'll only show the type.
1761             let mut traits: Vec<_> =
1762                 candidates.iter().map(|c| c.print_only_trait_path().to_string()).collect();
1763             traits.sort();
1764             traits.dedup();
1765
1766             let mut candidates: Vec<String> = candidates
1767                 .into_iter()
1768                 .map(|c| {
1769                     if traits.len() == 1 {
1770                         format!("\n  {}", c.self_ty())
1771                     } else {
1772                         format!("\n  {}", c)
1773                     }
1774                 })
1775                 .collect();
1776
1777             candidates.sort();
1778             candidates.dedup();
1779             let end = if candidates.len() <= 9 { candidates.len() } else { 8 };
1780             err.help(&format!(
1781                 "the following other types implement trait `{}`:{}{}",
1782                 trait_ref.print_only_trait_path(),
1783                 candidates[..end].join(""),
1784                 if len > 9 { format!("\nand {} others", len - 8) } else { String::new() }
1785             ));
1786             true
1787         };
1788
1789         let def_id = trait_ref.def_id();
1790         if impl_candidates.is_empty() {
1791             if self.tcx.trait_is_auto(def_id)
1792                 || self.tcx.lang_items().items().contains(&Some(def_id))
1793                 || self.tcx.get_diagnostic_name(def_id).is_some()
1794             {
1795                 // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
1796                 return false;
1797             }
1798             let normalized_impl_candidates: Vec<_> = self
1799                 .tcx
1800                 .all_impls(def_id)
1801                 // Ignore automatically derived impls and `!Trait` impls.
1802                 .filter(|&def_id| {
1803                     self.tcx.impl_polarity(def_id) != ty::ImplPolarity::Negative
1804                         || self.tcx.is_builtin_derive(def_id)
1805                 })
1806                 .filter_map(|def_id| self.tcx.impl_trait_ref(def_id))
1807                 .filter(|trait_ref| {
1808                     let self_ty = trait_ref.self_ty();
1809                     // Avoid mentioning type parameters.
1810                     if let ty::Param(_) = self_ty.kind() {
1811                         false
1812                     }
1813                     // Avoid mentioning types that are private to another crate
1814                     else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
1815                         // FIXME(compiler-errors): This could be generalized, both to
1816                         // be more granular, and probably look past other `#[fundamental]`
1817                         // types, too.
1818                         self.tcx
1819                             .visibility(def.did())
1820                             .is_accessible_from(body_id.owner.to_def_id(), self.tcx)
1821                     } else {
1822                         true
1823                     }
1824                 })
1825                 .collect();
1826             return report(normalized_impl_candidates, err);
1827         }
1828
1829         let normalize = |candidate| {
1830             self.tcx.infer_ctxt().enter(|ref infcx| {
1831                 let normalized = infcx
1832                     .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
1833                     .normalize(candidate)
1834                     .ok();
1835                 match normalized {
1836                     Some(normalized) => normalized.value,
1837                     None => candidate,
1838                 }
1839             })
1840         };
1841
1842         // Sort impl candidates so that ordering is consistent for UI tests.
1843         // because the ordering of `impl_candidates` may not be deterministic:
1844         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
1845         //
1846         // Prefer more similar candidates first, then sort lexicographically
1847         // by their normalized string representation.
1848         let mut normalized_impl_candidates_and_similarities = impl_candidates
1849             .into_iter()
1850             .map(|ImplCandidate { trait_ref, similarity }| {
1851                 let normalized = normalize(trait_ref);
1852                 (similarity, normalized)
1853             })
1854             .collect::<Vec<_>>();
1855         normalized_impl_candidates_and_similarities.sort();
1856         normalized_impl_candidates_and_similarities.dedup();
1857
1858         let normalized_impl_candidates = normalized_impl_candidates_and_similarities
1859             .into_iter()
1860             .map(|(_, normalized)| normalized)
1861             .collect::<Vec<_>>();
1862
1863         report(normalized_impl_candidates, err)
1864     }
1865
1866     /// Gets the parent trait chain start
1867     fn get_parent_trait_ref(
1868         &self,
1869         code: &ObligationCauseCode<'tcx>,
1870     ) -> Option<(String, Option<Span>)> {
1871         match code {
1872             ObligationCauseCode::BuiltinDerivedObligation(data) => {
1873                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
1874                 match self.get_parent_trait_ref(&data.parent_code) {
1875                     Some(t) => Some(t),
1876                     None => {
1877                         let ty = parent_trait_ref.skip_binder().self_ty();
1878                         let span = TyCategory::from_ty(self.tcx, ty)
1879                             .map(|(_, def_id)| self.tcx.def_span(def_id));
1880                         Some((ty.to_string(), span))
1881                     }
1882                 }
1883             }
1884             ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
1885                 self.get_parent_trait_ref(&parent_code)
1886             }
1887             _ => None,
1888         }
1889     }
1890
1891     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1892     /// with the same path as `trait_ref`, a help message about
1893     /// a probable version mismatch is added to `err`
1894     fn note_version_mismatch(
1895         &self,
1896         err: &mut Diagnostic,
1897         trait_ref: &ty::PolyTraitRef<'tcx>,
1898     ) -> bool {
1899         let get_trait_impl = |trait_def_id| {
1900             self.tcx.find_map_relevant_impl(trait_def_id, trait_ref.skip_binder().self_ty(), Some)
1901         };
1902         let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
1903         let traits_with_same_path: std::collections::BTreeSet<_> = self
1904             .tcx
1905             .all_traits()
1906             .filter(|trait_def_id| *trait_def_id != trait_ref.def_id())
1907             .filter(|trait_def_id| self.tcx.def_path_str(*trait_def_id) == required_trait_path)
1908             .collect();
1909         let mut suggested = false;
1910         for trait_with_same_path in traits_with_same_path {
1911             if let Some(impl_def_id) = get_trait_impl(trait_with_same_path) {
1912                 let impl_span = self.tcx.def_span(impl_def_id);
1913                 err.span_help(impl_span, "trait impl with same name found");
1914                 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
1915                 let crate_msg = format!(
1916                     "perhaps two different versions of crate `{}` are being used?",
1917                     trait_crate
1918                 );
1919                 err.note(&crate_msg);
1920                 suggested = true;
1921             }
1922         }
1923         suggested
1924     }
1925
1926     fn mk_trait_obligation_with_new_self_ty(
1927         &self,
1928         param_env: ty::ParamEnv<'tcx>,
1929         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
1930     ) -> PredicateObligation<'tcx> {
1931         let trait_pred = trait_ref_and_ty.map_bound_ref(|(tr, new_self_ty)| ty::TraitPredicate {
1932             trait_ref: ty::TraitRef {
1933                 substs: self.tcx.mk_substs_trait(*new_self_ty, &tr.trait_ref.substs[1..]),
1934                 ..tr.trait_ref
1935             },
1936             ..*tr
1937         });
1938
1939         Obligation::new(ObligationCause::dummy(), param_env, trait_pred.to_predicate(self.tcx))
1940     }
1941
1942     #[instrument(skip(self), level = "debug")]
1943     fn maybe_report_ambiguity(
1944         &self,
1945         obligation: &PredicateObligation<'tcx>,
1946         body_id: Option<hir::BodyId>,
1947     ) {
1948         // Unable to successfully determine, probably means
1949         // insufficient type information, but could mean
1950         // ambiguous impls. The latter *ought* to be a
1951         // coherence violation, so we don't report it here.
1952
1953         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1954         let span = obligation.cause.span;
1955
1956         debug!(?predicate, obligation.cause.code = tracing::field::debug(&obligation.cause.code()));
1957
1958         // Ambiguity errors are often caused as fallout from earlier errors.
1959         // We ignore them if this `infcx` is tainted in some cases below.
1960
1961         let bound_predicate = predicate.kind();
1962         let mut err = match bound_predicate.skip_binder() {
1963             ty::PredicateKind::Trait(data) => {
1964                 let trait_ref = bound_predicate.rebind(data.trait_ref);
1965                 debug!(?trait_ref);
1966
1967                 if predicate.references_error() {
1968                     return;
1969                 }
1970
1971                 // This is kind of a hack: it frequently happens that some earlier
1972                 // error prevents types from being fully inferred, and then we get
1973                 // a bunch of uninteresting errors saying something like "<generic
1974                 // #0> doesn't implement Sized".  It may even be true that we
1975                 // could just skip over all checks where the self-ty is an
1976                 // inference variable, but I was afraid that there might be an
1977                 // inference variable created, registered as an obligation, and
1978                 // then never forced by writeback, and hence by skipping here we'd
1979                 // be ignoring the fact that we don't KNOW the type works
1980                 // out. Though even that would probably be harmless, given that
1981                 // we're only talking about builtin traits, which are known to be
1982                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
1983                 // avoid inundating the user with unnecessary errors, but we now
1984                 // check upstream for type errors and don't add the obligations to
1985                 // begin with in those cases.
1986                 if self.tcx.lang_items().sized_trait() == Some(trait_ref.def_id()) {
1987                     if !self.is_tainted_by_errors() {
1988                         self.emit_inference_failure_err(
1989                             body_id,
1990                             span,
1991                             trait_ref.self_ty().skip_binder().into(),
1992                             ErrorCode::E0282,
1993                             false,
1994                         )
1995                         .emit();
1996                     }
1997                     return;
1998                 }
1999
2000                 // Typically, this ambiguity should only happen if
2001                 // there are unresolved type inference variables
2002                 // (otherwise it would suggest a coherence
2003                 // failure). But given #21974 that is not necessarily
2004                 // the case -- we can have multiple where clauses that
2005                 // are only distinguished by a region, which results
2006                 // in an ambiguity even when all types are fully
2007                 // known, since we don't dispatch based on region
2008                 // relationships.
2009
2010                 // Pick the first substitution that still contains inference variables as the one
2011                 // we're going to emit an error for. If there are none (see above), fall back to
2012                 // a more general error.
2013                 let subst = data.trait_ref.substs.iter().find(|s| s.has_infer_types_or_consts());
2014
2015                 let mut err = if let Some(subst) = subst {
2016                     self.emit_inference_failure_err(body_id, span, subst, ErrorCode::E0283, true)
2017                 } else {
2018                     struct_span_err!(
2019                         self.tcx.sess,
2020                         span,
2021                         E0283,
2022                         "type annotations needed: cannot satisfy `{}`",
2023                         predicate,
2024                     )
2025                 };
2026
2027                 let obligation = Obligation::new(
2028                     obligation.cause.clone(),
2029                     obligation.param_env,
2030                     trait_ref.to_poly_trait_predicate(),
2031                 );
2032                 let mut selcx = SelectionContext::with_query_mode(
2033                     &self,
2034                     crate::traits::TraitQueryMode::Standard,
2035                 );
2036                 match selcx.select_from_obligation(&obligation) {
2037                     Err(SelectionError::Ambiguous(impls)) if impls.len() > 1 => {
2038                         self.annotate_source_of_ambiguity(&mut err, &impls, predicate);
2039                     }
2040                     _ => {
2041                         if self.is_tainted_by_errors() {
2042                             err.cancel();
2043                             return;
2044                         }
2045                         err.note(&format!("cannot satisfy `{}`", predicate));
2046                     }
2047                 }
2048
2049                 if let ObligationCauseCode::ItemObligation(def_id) = *obligation.cause.code() {
2050                     self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
2051                 } else if let (
2052                     Ok(ref snippet),
2053                     &ObligationCauseCode::BindingObligation(def_id, _),
2054                 ) =
2055                     (self.tcx.sess.source_map().span_to_snippet(span), obligation.cause.code())
2056                 {
2057                     let generics = self.tcx.generics_of(def_id);
2058                     if generics.params.iter().any(|p| p.name != kw::SelfUpper)
2059                         && !snippet.ends_with('>')
2060                         && !generics.has_impl_trait()
2061                         && !self.tcx.fn_trait_kind_from_lang_item(def_id).is_some()
2062                     {
2063                         // FIXME: To avoid spurious suggestions in functions where type arguments
2064                         // where already supplied, we check the snippet to make sure it doesn't
2065                         // end with a turbofish. Ideally we would have access to a `PathSegment`
2066                         // instead. Otherwise we would produce the following output:
2067                         //
2068                         // error[E0283]: type annotations needed
2069                         //   --> $DIR/issue-54954.rs:3:24
2070                         //    |
2071                         // LL | const ARR_LEN: usize = Tt::const_val::<[i8; 123]>();
2072                         //    |                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
2073                         //    |                        |
2074                         //    |                        cannot infer type
2075                         //    |                        help: consider specifying the type argument
2076                         //    |                        in the function call:
2077                         //    |                        `Tt::const_val::<[i8; 123]>::<T>`
2078                         // ...
2079                         // LL |     const fn const_val<T: Sized>() -> usize {
2080                         //    |                        - required by this bound in `Tt::const_val`
2081                         //    |
2082                         //    = note: cannot satisfy `_: Tt`
2083
2084                         // Clear any more general suggestions in favor of our specific one
2085                         err.clear_suggestions();
2086
2087                         err.span_suggestion_verbose(
2088                             span.shrink_to_hi(),
2089                             &format!(
2090                                 "consider specifying the type argument{} in the function call",
2091                                 pluralize!(generics.params.len()),
2092                             ),
2093                             format!(
2094                                 "::<{}>",
2095                                 generics
2096                                     .params
2097                                     .iter()
2098                                     .map(|p| p.name.to_string())
2099                                     .collect::<Vec<String>>()
2100                                     .join(", ")
2101                             ),
2102                             Applicability::HasPlaceholders,
2103                         );
2104                     }
2105                 }
2106                 err
2107             }
2108
2109             ty::PredicateKind::WellFormed(arg) => {
2110                 // Same hacky approach as above to avoid deluging user
2111                 // with error messages.
2112                 if arg.references_error()
2113                     || self.tcx.sess.has_errors().is_some()
2114                     || self.is_tainted_by_errors()
2115                 {
2116                     return;
2117                 }
2118
2119                 self.emit_inference_failure_err(body_id, span, arg, ErrorCode::E0282, false)
2120             }
2121
2122             ty::PredicateKind::Subtype(data) => {
2123                 if data.references_error()
2124                     || self.tcx.sess.has_errors().is_some()
2125                     || self.is_tainted_by_errors()
2126                 {
2127                     // no need to overload user in such cases
2128                     return;
2129                 }
2130                 let SubtypePredicate { a_is_expected: _, a, b } = data;
2131                 // both must be type variables, or the other would've been instantiated
2132                 assert!(a.is_ty_var() && b.is_ty_var());
2133                 self.emit_inference_failure_err(body_id, span, a.into(), ErrorCode::E0282, true)
2134             }
2135             ty::PredicateKind::Projection(data) => {
2136                 if predicate.references_error() || self.is_tainted_by_errors() {
2137                     return;
2138                 }
2139                 let subst = data
2140                     .projection_ty
2141                     .substs
2142                     .iter()
2143                     .chain(Some(data.term.into_arg()))
2144                     .find(|g| g.has_infer_types_or_consts());
2145                 if let Some(subst) = subst {
2146                     let mut err = self.emit_inference_failure_err(
2147                         body_id,
2148                         span,
2149                         subst,
2150                         ErrorCode::E0284,
2151                         true,
2152                     );
2153                     err.note(&format!("cannot satisfy `{}`", predicate));
2154                     err
2155                 } else {
2156                     // If we can't find a substitution, just print a generic error
2157                     let mut err = struct_span_err!(
2158                         self.tcx.sess,
2159                         span,
2160                         E0284,
2161                         "type annotations needed: cannot satisfy `{}`",
2162                         predicate,
2163                     );
2164                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2165                     err
2166                 }
2167             }
2168
2169             ty::PredicateKind::ConstEvaluatable(data) => {
2170                 if predicate.references_error() || self.is_tainted_by_errors() {
2171                     return;
2172                 }
2173                 let subst = data.substs.iter().find(|g| g.has_infer_types_or_consts());
2174                 if let Some(subst) = subst {
2175                     let err = self.emit_inference_failure_err(
2176                         body_id,
2177                         span,
2178                         subst,
2179                         ErrorCode::E0284,
2180                         true,
2181                     );
2182                     err
2183                 } else {
2184                     // If we can't find a substitution, just print a generic error
2185                     let mut err = struct_span_err!(
2186                         self.tcx.sess,
2187                         span,
2188                         E0284,
2189                         "type annotations needed: cannot satisfy `{}`",
2190                         predicate,
2191                     );
2192                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2193                     err
2194                 }
2195             }
2196             _ => {
2197                 if self.tcx.sess.has_errors().is_some() || self.is_tainted_by_errors() {
2198                     return;
2199                 }
2200                 let mut err = struct_span_err!(
2201                     self.tcx.sess,
2202                     span,
2203                     E0284,
2204                     "type annotations needed: cannot satisfy `{}`",
2205                     predicate,
2206                 );
2207                 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2208                 err
2209             }
2210         };
2211         self.note_obligation_cause(&mut err, obligation);
2212         err.emit();
2213     }
2214
2215     fn annotate_source_of_ambiguity(
2216         &self,
2217         err: &mut Diagnostic,
2218         impls: &[DefId],
2219         predicate: ty::Predicate<'tcx>,
2220     ) {
2221         let mut spans = vec![];
2222         let mut crates = vec![];
2223         let mut post = vec![];
2224         for def_id in impls {
2225             match self.tcx.span_of_impl(*def_id) {
2226                 Ok(span) => spans.push(span),
2227                 Err(name) => {
2228                     crates.push(name);
2229                     if let Some(header) = to_pretty_impl_header(self.tcx, *def_id) {
2230                         post.push(header);
2231                     }
2232                 }
2233             }
2234         }
2235         let msg = format!("multiple `impl`s satisfying `{}` found", predicate);
2236         let mut crate_names: Vec<_> = crates.iter().map(|n| format!("`{}`", n)).collect();
2237         crate_names.sort();
2238         crate_names.dedup();
2239         post.sort();
2240         post.dedup();
2241
2242         if self.is_tainted_by_errors()
2243             && (crate_names.len() == 1
2244                 && spans.len() == 0
2245                 && ["`core`", "`alloc`", "`std`"].contains(&crate_names[0].as_str())
2246                 || predicate.visit_with(&mut HasNumericInferVisitor).is_break())
2247         {
2248             // Avoid complaining about other inference issues for expressions like
2249             // `42 >> 1`, where the types are still `{integer}`, but we want to
2250             // Do we need `trait_ref.skip_binder().self_ty().is_numeric() &&` too?
2251             // NOTE(eddyb) this was `.cancel()`, but `err`
2252             // is borrowed, so we can't fully defuse it.
2253             err.downgrade_to_delayed_bug();
2254             return;
2255         }
2256         let post = if post.len() > 4 {
2257             format!(
2258                 ":\n{}\nand {} more",
2259                 post.iter().map(|p| format!("- {}", p)).take(4).collect::<Vec<_>>().join("\n"),
2260                 post.len() - 4,
2261             )
2262         } else if post.len() > 1 || (post.len() == 1 && post[0].contains('\n')) {
2263             format!(":\n{}", post.iter().map(|p| format!("- {}", p)).collect::<Vec<_>>().join("\n"),)
2264         } else if post.len() == 1 {
2265             format!(": `{}`", post[0])
2266         } else {
2267             String::new()
2268         };
2269
2270         match (spans.len(), crates.len(), crate_names.len()) {
2271             (0, 0, 0) => {
2272                 err.note(&format!("cannot satisfy `{}`", predicate));
2273             }
2274             (0, _, 1) => {
2275                 err.note(&format!("{} in the `{}` crate{}", msg, crates[0], post,));
2276             }
2277             (0, _, _) => {
2278                 err.note(&format!(
2279                     "{} in the following crates: {}{}",
2280                     msg,
2281                     crate_names.join(", "),
2282                     post,
2283                 ));
2284             }
2285             (_, 0, 0) => {
2286                 let span: MultiSpan = spans.into();
2287                 err.span_note(span, &msg);
2288             }
2289             (_, 1, 1) => {
2290                 let span: MultiSpan = spans.into();
2291                 err.span_note(span, &msg);
2292                 err.note(
2293                     &format!("and another `impl` found in the `{}` crate{}", crates[0], post,),
2294                 );
2295             }
2296             _ => {
2297                 let span: MultiSpan = spans.into();
2298                 err.span_note(span, &msg);
2299                 err.note(&format!(
2300                     "and more `impl`s found in the following crates: {}{}",
2301                     crate_names.join(", "),
2302                     post,
2303                 ));
2304             }
2305         }
2306     }
2307
2308     /// Returns `true` if the trait predicate may apply for *some* assignment
2309     /// to the type parameters.
2310     fn predicate_can_apply(
2311         &self,
2312         param_env: ty::ParamEnv<'tcx>,
2313         pred: ty::PolyTraitRef<'tcx>,
2314     ) -> bool {
2315         struct ParamToVarFolder<'a, 'tcx> {
2316             infcx: &'a InferCtxt<'a, 'tcx>,
2317             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2318         }
2319
2320         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
2321             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
2322                 self.infcx.tcx
2323             }
2324
2325             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2326                 if let ty::Param(ty::ParamTy { name, .. }) = *ty.kind() {
2327                     let infcx = self.infcx;
2328                     *self.var_map.entry(ty).or_insert_with(|| {
2329                         infcx.next_ty_var(TypeVariableOrigin {
2330                             kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
2331                             span: DUMMY_SP,
2332                         })
2333                     })
2334                 } else {
2335                     ty.super_fold_with(self)
2336                 }
2337             }
2338         }
2339
2340         self.probe(|_| {
2341             let mut selcx = SelectionContext::new(self);
2342
2343             let cleaned_pred =
2344                 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2345
2346             let cleaned_pred = super::project::normalize(
2347                 &mut selcx,
2348                 param_env,
2349                 ObligationCause::dummy(),
2350                 cleaned_pred,
2351             )
2352             .value;
2353
2354             let obligation = Obligation::new(
2355                 ObligationCause::dummy(),
2356                 param_env,
2357                 cleaned_pred.without_const().to_predicate(selcx.tcx()),
2358             );
2359
2360             self.predicate_may_hold(&obligation)
2361         })
2362     }
2363
2364     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>) {
2365         // First, attempt to add note to this error with an async-await-specific
2366         // message, and fall back to regular note otherwise.
2367         if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2368             self.note_obligation_cause_code(
2369                 err,
2370                 &obligation.predicate,
2371                 obligation.param_env,
2372                 obligation.cause.code(),
2373                 &mut vec![],
2374                 &mut Default::default(),
2375             );
2376             self.suggest_unsized_bound_if_applicable(err, obligation);
2377         }
2378     }
2379
2380     #[instrument(level = "debug", skip_all)]
2381     fn suggest_unsized_bound_if_applicable(
2382         &self,
2383         err: &mut Diagnostic,
2384         obligation: &PredicateObligation<'tcx>,
2385     ) {
2386         let (
2387             ty::PredicateKind::Trait(pred),
2388             &ObligationCauseCode::BindingObligation(item_def_id, span),
2389         ) = (
2390             obligation.predicate.kind().skip_binder(),
2391             obligation.cause.code().peel_derives(),
2392         )  else {
2393             return;
2394         };
2395         debug!(?pred, ?item_def_id, ?span);
2396
2397         let (Some(node), true) = (
2398             self.tcx.hir().get_if_local(item_def_id),
2399             Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
2400         ) else {
2401             return;
2402         };
2403         self.maybe_suggest_unsized_generics(err, span, node);
2404     }
2405
2406     #[instrument(level = "debug", skip_all)]
2407     fn maybe_suggest_unsized_generics<'hir>(
2408         &self,
2409         err: &mut Diagnostic,
2410         span: Span,
2411         node: Node<'hir>,
2412     ) {
2413         let Some(generics) = node.generics() else {
2414             return;
2415         };
2416         let sized_trait = self.tcx.lang_items().sized_trait();
2417         debug!(?generics.params);
2418         debug!(?generics.predicates);
2419         let Some(param) = generics.params.iter().find(|param| param.span == span) else {
2420             return;
2421         };
2422         let param_def_id = self.tcx.hir().local_def_id(param.hir_id);
2423         // Check that none of the explicit trait bounds is `Sized`. Assume that an explicit
2424         // `Sized` bound is there intentionally and we don't need to suggest relaxing it.
2425         let explicitly_sized = generics
2426             .bounds_for_param(param_def_id)
2427             .flat_map(|bp| bp.bounds)
2428             .any(|bound| bound.trait_ref().and_then(|tr| tr.trait_def_id()) == sized_trait);
2429         if explicitly_sized {
2430             return;
2431         }
2432         debug!(?param);
2433         match node {
2434             hir::Node::Item(
2435                 item @ hir::Item {
2436                     // Only suggest indirection for uses of type parameters in ADTs.
2437                     kind:
2438                         hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..),
2439                     ..
2440                 },
2441             ) => {
2442                 if self.maybe_indirection_for_unsized(err, item, param) {
2443                     return;
2444                 }
2445             }
2446             _ => {}
2447         };
2448         // Didn't add an indirection suggestion, so add a general suggestion to relax `Sized`.
2449         let (span, separator) = if let Some(s) = generics.bounds_span_for_suggestions(param_def_id)
2450         {
2451             (s, " +")
2452         } else {
2453             (span.shrink_to_hi(), ":")
2454         };
2455         err.span_suggestion_verbose(
2456             span,
2457             "consider relaxing the implicit `Sized` restriction",
2458             format!("{} ?Sized", separator),
2459             Applicability::MachineApplicable,
2460         );
2461     }
2462
2463     fn maybe_indirection_for_unsized<'hir>(
2464         &self,
2465         err: &mut Diagnostic,
2466         item: &'hir Item<'hir>,
2467         param: &'hir GenericParam<'hir>,
2468     ) -> bool {
2469         // Suggesting `T: ?Sized` is only valid in an ADT if `T` is only used in a
2470         // borrow. `struct S<'a, T: ?Sized>(&'a T);` is valid, `struct S<T: ?Sized>(T);`
2471         // is not. Look for invalid "bare" parameter uses, and suggest using indirection.
2472         let mut visitor =
2473             FindTypeParam { param: param.name.ident().name, invalid_spans: vec![], nested: false };
2474         visitor.visit_item(item);
2475         if visitor.invalid_spans.is_empty() {
2476             return false;
2477         }
2478         let mut multispan: MultiSpan = param.span.into();
2479         multispan.push_span_label(
2480             param.span,
2481             format!("this could be changed to `{}: ?Sized`...", param.name.ident()),
2482         );
2483         for sp in visitor.invalid_spans {
2484             multispan.push_span_label(
2485                 sp,
2486                 format!("...if indirection were used here: `Box<{}>`", param.name.ident()),
2487             );
2488         }
2489         err.span_help(
2490             multispan,
2491             &format!(
2492                 "you could relax the implicit `Sized` bound on `{T}` if it were \
2493                 used through indirection like `&{T}` or `Box<{T}>`",
2494                 T = param.name.ident(),
2495             ),
2496         );
2497         true
2498     }
2499
2500     fn is_recursive_obligation(
2501         &self,
2502         obligated_types: &mut Vec<Ty<'tcx>>,
2503         cause_code: &ObligationCauseCode<'tcx>,
2504     ) -> bool {
2505         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
2506             let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2507             let self_ty = parent_trait_ref.skip_binder().self_ty();
2508             if obligated_types.iter().any(|ot| ot == &self_ty) {
2509                 return true;
2510             }
2511             if let ty::Adt(def, substs) = self_ty.kind()
2512                 && let [arg] = &substs[..]
2513                 && let ty::subst::GenericArgKind::Type(ty) = arg.unpack()
2514                 && let ty::Adt(inner_def, _) = ty.kind()
2515                 && inner_def == def
2516             {
2517                 return true;
2518             }
2519         }
2520         false
2521     }
2522 }
2523
2524 /// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
2525 /// `param: ?Sized` would be a valid constraint.
2526 struct FindTypeParam {
2527     param: rustc_span::Symbol,
2528     invalid_spans: Vec<Span>,
2529     nested: bool,
2530 }
2531
2532 impl<'v> Visitor<'v> for FindTypeParam {
2533     fn visit_where_predicate(&mut self, _: &'v hir::WherePredicate<'v>) {
2534         // Skip where-clauses, to avoid suggesting indirection for type parameters found there.
2535     }
2536
2537     fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2538         // We collect the spans of all uses of the "bare" type param, like in `field: T` or
2539         // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
2540         // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
2541         // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
2542         // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
2543         // in that case should make what happened clear enough.
2544         match ty.kind {
2545             hir::TyKind::Ptr(_) | hir::TyKind::Rptr(..) | hir::TyKind::TraitObject(..) => {}
2546             hir::TyKind::Path(hir::QPath::Resolved(None, path))
2547                 if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
2548             {
2549                 if !self.nested {
2550                     debug!(?ty, "FindTypeParam::visit_ty");
2551                     self.invalid_spans.push(ty.span);
2552                 }
2553             }
2554             hir::TyKind::Path(_) => {
2555                 let prev = self.nested;
2556                 self.nested = true;
2557                 hir::intravisit::walk_ty(self, ty);
2558                 self.nested = prev;
2559             }
2560             _ => {
2561                 hir::intravisit::walk_ty(self, ty);
2562             }
2563         }
2564     }
2565 }
2566
2567 pub fn recursive_type_with_infinite_size_error<'tcx>(
2568     tcx: TyCtxt<'tcx>,
2569     type_def_id: DefId,
2570     spans: Vec<(Span, Option<hir::HirId>)>,
2571 ) {
2572     assert!(type_def_id.is_local());
2573     let span = tcx.def_span(type_def_id);
2574     let path = tcx.def_path_str(type_def_id);
2575     let mut err =
2576         struct_span_err!(tcx.sess, span, E0072, "recursive type `{}` has infinite size", path);
2577     err.span_label(span, "recursive type has infinite size");
2578     for &(span, _) in &spans {
2579         err.span_label(span, "recursive without indirection");
2580     }
2581     let msg = format!(
2582         "insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `{}` representable",
2583         path,
2584     );
2585     if spans.len() <= 4 {
2586         // FIXME(compiler-errors): This suggestion might be erroneous if Box is shadowed
2587         err.multipart_suggestion(
2588             &msg,
2589             spans
2590                 .into_iter()
2591                 .flat_map(|(span, field_id)| {
2592                     if let Some(generic_span) = get_option_generic_from_field_id(tcx, field_id) {
2593                         // If we match an `Option` and can grab the span of the Option's generic, then
2594                         // suggest boxing the generic arg for a non-null niche optimization.
2595                         vec![
2596                             (generic_span.shrink_to_lo(), "Box<".to_string()),
2597                             (generic_span.shrink_to_hi(), ">".to_string()),
2598                         ]
2599                     } else {
2600                         vec![
2601                             (span.shrink_to_lo(), "Box<".to_string()),
2602                             (span.shrink_to_hi(), ">".to_string()),
2603                         ]
2604                     }
2605                 })
2606                 .collect(),
2607             Applicability::HasPlaceholders,
2608         );
2609     } else {
2610         err.help(&msg);
2611     }
2612     err.emit();
2613 }
2614
2615 /// Extract the span for the generic type `T` of `Option<T>` in a field definition
2616 fn get_option_generic_from_field_id(tcx: TyCtxt<'_>, field_id: Option<hir::HirId>) -> Option<Span> {
2617     let node = tcx.hir().find(field_id?);
2618
2619     // Expect a field from our field_id
2620     let Some(hir::Node::Field(field_def)) = node
2621         else { bug!("Expected HirId corresponding to FieldDef, found: {:?}", node) };
2622
2623     // Match a type that is a simple QPath with no Self
2624     let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = &field_def.ty.kind
2625         else { return None };
2626
2627     // Check if the path we're checking resolves to Option
2628     let hir::def::Res::Def(_, did) = path.res
2629         else { return None };
2630
2631     // Bail if this path doesn't describe `::core::option::Option`
2632     if !tcx.is_diagnostic_item(sym::Option, did) {
2633         return None;
2634     }
2635
2636     // Match a single generic arg in the 0th path segment
2637     let generic_arg = path.segments.last()?.args?.args.get(0)?;
2638
2639     // Take the span out of the type, if it's a type
2640     if let hir::GenericArg::Type(generic_ty) = generic_arg { Some(generic_ty.span) } else { None }
2641 }
2642
2643 /// Summarizes information
2644 #[derive(Clone)]
2645 pub enum ArgKind {
2646     /// An argument of non-tuple type. Parameters are (name, ty)
2647     Arg(String, String),
2648
2649     /// An argument of tuple type. For a "found" argument, the span is
2650     /// the location in the source of the pattern. For an "expected"
2651     /// argument, it will be None. The vector is a list of (name, ty)
2652     /// strings for the components of the tuple.
2653     Tuple(Option<Span>, Vec<(String, String)>),
2654 }
2655
2656 impl ArgKind {
2657     fn empty() -> ArgKind {
2658         ArgKind::Arg("_".to_owned(), "_".to_owned())
2659     }
2660
2661     /// Creates an `ArgKind` from the expected type of an
2662     /// argument. It has no name (`_`) and an optional source span.
2663     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
2664         match t.kind() {
2665             ty::Tuple(tys) => ArgKind::Tuple(
2666                 span,
2667                 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
2668             ),
2669             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
2670         }
2671     }
2672 }
2673
2674 struct HasNumericInferVisitor;
2675
2676 impl<'tcx> ty::TypeVisitor<'tcx> for HasNumericInferVisitor {
2677     type BreakTy = ();
2678
2679     fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
2680         if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
2681             ControlFlow::Break(())
2682         } else {
2683             ControlFlow::CONTINUE
2684         }
2685     }
2686 }