]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs
Rollup merge of #106499 - lyming2007:issue-105946-fix, r=estebank
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / mod.rs
1 mod ambiguity;
2 pub mod method_chain;
3 pub mod on_unimplemented;
4 pub mod suggestions;
5
6 use super::{
7     FulfillmentError, FulfillmentErrorCode, MismatchedProjectionTypes, Obligation, ObligationCause,
8     ObligationCauseCode, ObligationCtxt, OutputTypeParameterMismatch, Overflow,
9     PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
10 };
11 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
12 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
13 use crate::infer::{self, InferCtxt};
14 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
15 use crate::traits::query::normalize::QueryNormalizeExt as _;
16 use crate::traits::specialize::to_pretty_impl_header;
17 use crate::traits::NormalizeExt;
18 use on_unimplemented::OnUnimplementedNote;
19 use on_unimplemented::TypeErrCtxtExt as _;
20 use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
21 use rustc_errors::{
22     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
23     MultiSpan, Style,
24 };
25 use rustc_hir as hir;
26 use rustc_hir::def::Namespace;
27 use rustc_hir::def_id::DefId;
28 use rustc_hir::intravisit::Visitor;
29 use rustc_hir::GenericParam;
30 use rustc_hir::Item;
31 use rustc_hir::Node;
32 use rustc_infer::infer::error_reporting::TypeErrCtxt;
33 use rustc_infer::infer::{InferOk, TypeTrace};
34 use rustc_middle::traits::select::OverflowError;
35 use rustc_middle::ty::abstract_const::NotConstEvaluatable;
36 use rustc_middle::ty::error::{ExpectedFound, TypeError};
37 use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
38 use rustc_middle::ty::print::{with_forced_trimmed_paths, FmtPrinter, Print};
39 use rustc_middle::ty::{
40     self, SubtypePredicate, ToPolyTraitRef, ToPredicate, TraitRef, Ty, TyCtxt, TypeFoldable,
41     TypeVisitable,
42 };
43 use rustc_session::config::TraitSolver;
44 use rustc_session::Limit;
45 use rustc_span::def_id::LOCAL_CRATE;
46 use rustc_span::symbol::sym;
47 use rustc_span::{ExpnKind, Span, DUMMY_SP};
48 use std::fmt;
49 use std::iter;
50 use std::ops::ControlFlow;
51 use suggestions::TypeErrCtxtExt as _;
52
53 pub use rustc_infer::traits::error_reporting::*;
54
55 // When outputting impl candidates, prefer showing those that are more similar.
56 //
57 // We also compare candidates after skipping lifetimes, which has a lower
58 // priority than exact matches.
59 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
60 pub enum CandidateSimilarity {
61     Exact { ignoring_lifetimes: bool },
62     Fuzzy { ignoring_lifetimes: bool },
63 }
64
65 #[derive(Debug, Clone, Copy)]
66 pub struct ImplCandidate<'tcx> {
67     pub trait_ref: ty::TraitRef<'tcx>,
68     pub similarity: CandidateSimilarity,
69 }
70
71 pub trait InferCtxtExt<'tcx> {
72     /// Given some node representing a fn-like thing in the HIR map,
73     /// returns a span and `ArgKind` information that describes the
74     /// arguments it expects. This can be supplied to
75     /// `report_arg_count_mismatch`.
76     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)>;
77
78     /// Reports an error when the number of arguments needed by a
79     /// trait match doesn't match the number that the expression
80     /// provides.
81     fn report_arg_count_mismatch(
82         &self,
83         span: Span,
84         found_span: Option<Span>,
85         expected_args: Vec<ArgKind>,
86         found_args: Vec<ArgKind>,
87         is_closure: bool,
88         closure_pipe_span: Option<Span>,
89     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
90
91     /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
92     /// in that order, and returns the generic type corresponding to the
93     /// argument of that trait (corresponding to the closure arguments).
94     fn type_implements_fn_trait(
95         &self,
96         param_env: ty::ParamEnv<'tcx>,
97         ty: ty::Binder<'tcx, Ty<'tcx>>,
98         constness: ty::BoundConstness,
99         polarity: ty::ImplPolarity,
100     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()>;
101 }
102
103 pub trait TypeErrCtxtExt<'tcx> {
104     fn report_overflow_error<T>(
105         &self,
106         predicate: &T,
107         span: Span,
108         suggest_increasing_limit: bool,
109         mutate: impl FnOnce(&mut Diagnostic),
110     ) -> !
111     where
112         T: fmt::Display
113             + TypeFoldable<'tcx>
114             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
115         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug;
116
117     fn report_fulfillment_errors(
118         &self,
119         errors: &[FulfillmentError<'tcx>],
120         body_id: Option<hir::BodyId>,
121     ) -> ErrorGuaranteed;
122
123     fn report_overflow_obligation<T>(
124         &self,
125         obligation: &Obligation<'tcx, T>,
126         suggest_increasing_limit: bool,
127     ) -> !
128     where
129         T: ToPredicate<'tcx> + Clone;
130
131     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic);
132
133     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
134
135     /// The `root_obligation` parameter should be the `root_obligation` field
136     /// from a `FulfillmentError`. If no `FulfillmentError` is available,
137     /// then it should be the same as `obligation`.
138     fn report_selection_error(
139         &self,
140         obligation: PredicateObligation<'tcx>,
141         root_obligation: &PredicateObligation<'tcx>,
142         error: &SelectionError<'tcx>,
143     );
144 }
145
146 impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
147     /// Given some node representing a fn-like thing in the HIR map,
148     /// returns a span and `ArgKind` information that describes the
149     /// arguments it expects. This can be supplied to
150     /// `report_arg_count_mismatch`.
151     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)> {
152         let sm = self.tcx.sess.source_map();
153         let hir = self.tcx.hir();
154         Some(match node {
155             Node::Expr(&hir::Expr {
156                 kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, fn_arg_span, .. }),
157                 ..
158             }) => (
159                 fn_decl_span,
160                 fn_arg_span,
161                 hir.body(body)
162                     .params
163                     .iter()
164                     .map(|arg| {
165                         if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
166                             *arg.pat
167                         {
168                             Some(ArgKind::Tuple(
169                                 Some(span),
170                                 args.iter()
171                                     .map(|pat| {
172                                         sm.span_to_snippet(pat.span)
173                                             .ok()
174                                             .map(|snippet| (snippet, "_".to_owned()))
175                                     })
176                                     .collect::<Option<Vec<_>>>()?,
177                             ))
178                         } else {
179                             let name = sm.span_to_snippet(arg.pat.span).ok()?;
180                             Some(ArgKind::Arg(name, "_".to_owned()))
181                         }
182                     })
183                     .collect::<Option<Vec<ArgKind>>>()?,
184             ),
185             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(ref sig, ..), .. })
186             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
187             | Node::TraitItem(&hir::TraitItem {
188                 kind: hir::TraitItemKind::Fn(ref sig, _), ..
189             }) => (
190                 sig.span,
191                 None,
192                 sig.decl
193                     .inputs
194                     .iter()
195                     .map(|arg| match arg.kind {
196                         hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
197                             Some(arg.span),
198                             vec![("_".to_owned(), "_".to_owned()); tys.len()],
199                         ),
200                         _ => ArgKind::empty(),
201                     })
202                     .collect::<Vec<ArgKind>>(),
203             ),
204             Node::Ctor(ref variant_data) => {
205                 let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| hir.span(id));
206                 (span, None, vec![ArgKind::empty(); variant_data.fields().len()])
207             }
208             _ => panic!("non-FnLike node found: {:?}", node),
209         })
210     }
211
212     /// Reports an error when the number of arguments needed by a
213     /// trait match doesn't match the number that the expression
214     /// provides.
215     fn report_arg_count_mismatch(
216         &self,
217         span: Span,
218         found_span: Option<Span>,
219         expected_args: Vec<ArgKind>,
220         found_args: Vec<ArgKind>,
221         is_closure: bool,
222         closure_arg_span: Option<Span>,
223     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
224         let kind = if is_closure { "closure" } else { "function" };
225
226         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
227             let arg_length = arguments.len();
228             let distinct = matches!(other, &[ArgKind::Tuple(..)]);
229             match (arg_length, arguments.get(0)) {
230                 (1, Some(ArgKind::Tuple(_, fields))) => {
231                     format!("a single {}-tuple as argument", fields.len())
232                 }
233                 _ => format!(
234                     "{} {}argument{}",
235                     arg_length,
236                     if distinct && arg_length > 1 { "distinct " } else { "" },
237                     pluralize!(arg_length)
238                 ),
239             }
240         };
241
242         let expected_str = args_str(&expected_args, &found_args);
243         let found_str = args_str(&found_args, &expected_args);
244
245         let mut err = struct_span_err!(
246             self.tcx.sess,
247             span,
248             E0593,
249             "{} is expected to take {}, but it takes {}",
250             kind,
251             expected_str,
252             found_str,
253         );
254
255         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
256
257         if let Some(found_span) = found_span {
258             err.span_label(found_span, format!("takes {}", found_str));
259
260             // Suggest to take and ignore the arguments with expected_args_length `_`s if
261             // found arguments is empty (assume the user just wants to ignore args in this case).
262             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
263             if found_args.is_empty() && is_closure {
264                 let underscores = vec!["_"; expected_args.len()].join(", ");
265                 err.span_suggestion_verbose(
266                     closure_arg_span.unwrap_or(found_span),
267                     &format!(
268                         "consider changing the closure to take and ignore the expected argument{}",
269                         pluralize!(expected_args.len())
270                     ),
271                     format!("|{}|", underscores),
272                     Applicability::MachineApplicable,
273                 );
274             }
275
276             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
277                 if fields.len() == expected_args.len() {
278                     let sugg = fields
279                         .iter()
280                         .map(|(name, _)| name.to_owned())
281                         .collect::<Vec<String>>()
282                         .join(", ");
283                     err.span_suggestion_verbose(
284                         found_span,
285                         "change the closure to take multiple arguments instead of a single tuple",
286                         format!("|{}|", sugg),
287                         Applicability::MachineApplicable,
288                     );
289                 }
290             }
291             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
292                 && fields.len() == found_args.len()
293                 && is_closure
294             {
295                 let sugg = format!(
296                     "|({}){}|",
297                     found_args
298                         .iter()
299                         .map(|arg| match arg {
300                             ArgKind::Arg(name, _) => name.to_owned(),
301                             _ => "_".to_owned(),
302                         })
303                         .collect::<Vec<String>>()
304                         .join(", "),
305                     // add type annotations if available
306                     if found_args.iter().any(|arg| match arg {
307                         ArgKind::Arg(_, ty) => ty != "_",
308                         _ => false,
309                     }) {
310                         format!(
311                             ": ({})",
312                             fields
313                                 .iter()
314                                 .map(|(_, ty)| ty.to_owned())
315                                 .collect::<Vec<String>>()
316                                 .join(", ")
317                         )
318                     } else {
319                         String::new()
320                     },
321                 );
322                 err.span_suggestion_verbose(
323                     found_span,
324                     "change the closure to accept a tuple instead of individual arguments",
325                     sugg,
326                     Applicability::MachineApplicable,
327                 );
328             }
329         }
330
331         err
332     }
333
334     fn type_implements_fn_trait(
335         &self,
336         param_env: ty::ParamEnv<'tcx>,
337         ty: ty::Binder<'tcx, Ty<'tcx>>,
338         constness: ty::BoundConstness,
339         polarity: ty::ImplPolarity,
340     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
341         self.commit_if_ok(|_| {
342             for trait_def_id in [
343                 self.tcx.lang_items().fn_trait(),
344                 self.tcx.lang_items().fn_mut_trait(),
345                 self.tcx.lang_items().fn_once_trait(),
346             ] {
347                 let Some(trait_def_id) = trait_def_id else { continue };
348                 // Make a fresh inference variable so we can determine what the substitutions
349                 // of the trait are.
350                 let var = self.next_ty_var(TypeVariableOrigin {
351                     span: DUMMY_SP,
352                     kind: TypeVariableOriginKind::MiscVariable,
353                 });
354                 let trait_ref = self.tcx.mk_trait_ref(trait_def_id, [ty.skip_binder(), var]);
355                 let obligation = Obligation::new(
356                     self.tcx,
357                     ObligationCause::dummy(),
358                     param_env,
359                     ty.rebind(ty::TraitPredicate { trait_ref, constness, polarity }),
360                 );
361                 let ocx = ObligationCtxt::new_in_snapshot(self);
362                 ocx.register_obligation(obligation);
363                 if ocx.select_all_or_error().is_empty() {
364                     return Ok((
365                         self.tcx
366                             .fn_trait_kind_from_def_id(trait_def_id)
367                             .expect("expected to map DefId to ClosureKind"),
368                         ty.rebind(self.resolve_vars_if_possible(var)),
369                     ));
370                 }
371             }
372
373             Err(())
374         })
375     }
376 }
377 impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
378     fn report_fulfillment_errors(
379         &self,
380         errors: &[FulfillmentError<'tcx>],
381         body_id: Option<hir::BodyId>,
382     ) -> ErrorGuaranteed {
383         #[derive(Debug)]
384         struct ErrorDescriptor<'tcx> {
385             predicate: ty::Predicate<'tcx>,
386             index: Option<usize>, // None if this is an old error
387         }
388
389         let mut error_map: FxIndexMap<_, Vec<_>> = self
390             .reported_trait_errors
391             .borrow()
392             .iter()
393             .map(|(&span, predicates)| {
394                 (
395                     span,
396                     predicates
397                         .iter()
398                         .map(|&predicate| ErrorDescriptor { predicate, index: None })
399                         .collect(),
400                 )
401             })
402             .collect();
403
404         for (index, error) in errors.iter().enumerate() {
405             // We want to ignore desugarings here: spans are equivalent even
406             // if one is the result of a desugaring and the other is not.
407             let mut span = error.obligation.cause.span;
408             let expn_data = span.ctxt().outer_expn_data();
409             if let ExpnKind::Desugaring(_) = expn_data.kind {
410                 span = expn_data.call_site;
411             }
412
413             error_map.entry(span).or_default().push(ErrorDescriptor {
414                 predicate: error.obligation.predicate,
415                 index: Some(index),
416             });
417
418             self.reported_trait_errors
419                 .borrow_mut()
420                 .entry(span)
421                 .or_default()
422                 .push(error.obligation.predicate);
423         }
424
425         // We do this in 2 passes because we want to display errors in order, though
426         // maybe it *is* better to sort errors by span or something.
427         let mut is_suppressed = vec![false; errors.len()];
428         for (_, error_set) in error_map.iter() {
429             // We want to suppress "duplicate" errors with the same span.
430             for error in error_set {
431                 if let Some(index) = error.index {
432                     // Suppress errors that are either:
433                     // 1) strictly implied by another error.
434                     // 2) implied by an error with a smaller index.
435                     for error2 in error_set {
436                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
437                             // Avoid errors being suppressed by already-suppressed
438                             // errors, to prevent all errors from being suppressed
439                             // at once.
440                             continue;
441                         }
442
443                         if self.error_implies(error2.predicate, error.predicate)
444                             && !(error2.index >= error.index
445                                 && self.error_implies(error.predicate, error2.predicate))
446                         {
447                             info!("skipping {:?} (implied by {:?})", error, error2);
448                             is_suppressed[index] = true;
449                             break;
450                         }
451                     }
452                 }
453             }
454         }
455
456         for (error, suppressed) in iter::zip(errors, is_suppressed) {
457             if !suppressed {
458                 self.report_fulfillment_error(error, body_id);
459             }
460         }
461
462         self.tcx.sess.delay_span_bug(DUMMY_SP, "expected fullfillment errors")
463     }
464
465     /// Reports that an overflow has occurred and halts compilation. We
466     /// halt compilation unconditionally because it is important that
467     /// overflows never be masked -- they basically represent computations
468     /// whose result could not be truly determined and thus we can't say
469     /// if the program type checks or not -- and they are unusual
470     /// occurrences in any case.
471     fn report_overflow_error<T>(
472         &self,
473         predicate: &T,
474         span: Span,
475         suggest_increasing_limit: bool,
476         mutate: impl FnOnce(&mut Diagnostic),
477     ) -> !
478     where
479         T: fmt::Display
480             + TypeFoldable<'tcx>
481             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
482         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug,
483     {
484         let predicate = self.resolve_vars_if_possible(predicate.clone());
485         let mut pred_str = predicate.to_string();
486
487         if pred_str.len() > 50 {
488             // We don't need to save the type to a file, we will be talking about this type already
489             // in a separate note when we explain the obligation, so it will be available that way.
490             pred_str = predicate
491                 .print(FmtPrinter::new_with_limit(
492                     self.tcx,
493                     Namespace::TypeNS,
494                     rustc_session::Limit(6),
495                 ))
496                 .unwrap()
497                 .into_buffer();
498         }
499         let mut err = struct_span_err!(
500             self.tcx.sess,
501             span,
502             E0275,
503             "overflow evaluating the requirement `{}`",
504             pred_str,
505         );
506
507         if suggest_increasing_limit {
508             self.suggest_new_overflow_limit(&mut err);
509         }
510
511         mutate(&mut err);
512
513         err.emit();
514         self.tcx.sess.abort_if_errors();
515         bug!();
516     }
517
518     /// Reports that an overflow has occurred and halts compilation. We
519     /// halt compilation unconditionally because it is important that
520     /// overflows never be masked -- they basically represent computations
521     /// whose result could not be truly determined and thus we can't say
522     /// if the program type checks or not -- and they are unusual
523     /// occurrences in any case.
524     fn report_overflow_obligation<T>(
525         &self,
526         obligation: &Obligation<'tcx, T>,
527         suggest_increasing_limit: bool,
528     ) -> !
529     where
530         T: ToPredicate<'tcx> + Clone,
531     {
532         let predicate = obligation.predicate.clone().to_predicate(self.tcx);
533         let predicate = self.resolve_vars_if_possible(predicate);
534         self.report_overflow_error(
535             &predicate,
536             obligation.cause.span,
537             suggest_increasing_limit,
538             |err| {
539                 self.note_obligation_cause_code(
540                     err,
541                     predicate,
542                     obligation.param_env,
543                     obligation.cause.code(),
544                     &mut vec![],
545                     &mut Default::default(),
546                 );
547             },
548         );
549     }
550
551     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic) {
552         let suggested_limit = match self.tcx.recursion_limit() {
553             Limit(0) => Limit(2),
554             limit => limit * 2,
555         };
556         err.help(&format!(
557             "consider increasing the recursion limit by adding a \
558              `#![recursion_limit = \"{}\"]` attribute to your crate (`{}`)",
559             suggested_limit,
560             self.tcx.crate_name(LOCAL_CRATE),
561         ));
562     }
563
564     /// Reports that a cycle was detected which led to overflow and halts
565     /// compilation. This is equivalent to `report_overflow_obligation` except
566     /// that we can give a more helpful error message (and, in particular,
567     /// we do not suggest increasing the overflow limit, which is not
568     /// going to help).
569     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
570         let cycle = self.resolve_vars_if_possible(cycle.to_owned());
571         assert!(!cycle.is_empty());
572
573         debug!(?cycle, "report_overflow_error_cycle");
574
575         // The 'deepest' obligation is most likely to have a useful
576         // cause 'backtrace'
577         self.report_overflow_obligation(
578             cycle.iter().max_by_key(|p| p.recursion_depth).unwrap(),
579             false,
580         );
581     }
582
583     fn report_selection_error(
584         &self,
585         mut obligation: PredicateObligation<'tcx>,
586         root_obligation: &PredicateObligation<'tcx>,
587         error: &SelectionError<'tcx>,
588     ) {
589         let tcx = self.tcx;
590         let mut span = obligation.cause.span;
591         // FIXME: statically guarantee this by tainting after the diagnostic is emitted
592         self.set_tainted_by_errors(
593             tcx.sess.delay_span_bug(span, "`report_selection_error` did not emit an error"),
594         );
595
596         let mut err = match *error {
597             SelectionError::Unimplemented => {
598                 // If this obligation was generated as a result of well-formedness checking, see if we
599                 // can get a better error message by performing HIR-based well-formedness checking.
600                 if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
601                     root_obligation.cause.code().peel_derives()
602                     && !obligation.predicate.has_non_region_infer()
603                 {
604                     if let Some(cause) = self
605                         .tcx
606                         .diagnostic_hir_wf_check((tcx.erase_regions(obligation.predicate), *wf_loc))
607                     {
608                         obligation.cause = cause.clone();
609                         span = obligation.cause.span;
610                     }
611                 }
612                 if let ObligationCauseCode::CompareImplItemObligation {
613                     impl_item_def_id,
614                     trait_item_def_id,
615                     kind: _,
616                 } = *obligation.cause.code()
617                 {
618                     self.report_extra_impl_obligation(
619                         span,
620                         impl_item_def_id,
621                         trait_item_def_id,
622                         &format!("`{}`", obligation.predicate),
623                     )
624                     .emit();
625                     return;
626                 }
627
628                 let bound_predicate = obligation.predicate.kind();
629                 match bound_predicate.skip_binder() {
630                     ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
631                         let trait_predicate = bound_predicate.rebind(trait_predicate);
632                         let mut trait_predicate = self.resolve_vars_if_possible(trait_predicate);
633
634                         trait_predicate.remap_constness_diag(obligation.param_env);
635                         let predicate_is_const = ty::BoundConstness::ConstIfConst
636                             == trait_predicate.skip_binder().constness;
637
638                         if self.tcx.sess.has_errors().is_some()
639                             && trait_predicate.references_error()
640                         {
641                             return;
642                         }
643                         let trait_ref = trait_predicate.to_poly_trait_ref();
644                         let (post_message, pre_message, type_def) = self
645                             .get_parent_trait_ref(obligation.cause.code())
646                             .map(|(t, s)| {
647                                 (
648                                     format!(" in `{}`", t),
649                                     format!("within `{}`, ", t),
650                                     s.map(|s| (format!("within this `{}`", t), s)),
651                                 )
652                             })
653                             .unwrap_or_default();
654
655                         let OnUnimplementedNote {
656                             message,
657                             label,
658                             note,
659                             parent_label,
660                             append_const_msg,
661                         } = self.on_unimplemented_note(trait_ref, &obligation);
662                         let have_alt_message = message.is_some() || label.is_some();
663                         let is_try_conversion = self.is_try_conversion(span, trait_ref.def_id());
664                         let is_unsize =
665                             Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait();
666                         let (message, note, append_const_msg) = if is_try_conversion {
667                             (
668                                 Some(format!(
669                                     "`?` couldn't convert the error to `{}`",
670                                     trait_ref.skip_binder().self_ty(),
671                                 )),
672                                 Some(
673                                     "the question mark operation (`?`) implicitly performs a \
674                                      conversion on the error value using the `From` trait"
675                                         .to_owned(),
676                                 ),
677                                 Some(None),
678                             )
679                         } else {
680                             (message, note, append_const_msg)
681                         };
682
683                         let mut err = struct_span_err!(
684                             self.tcx.sess,
685                             span,
686                             E0277,
687                             "{}",
688                             message
689                                 .and_then(|cannot_do_this| {
690                                     match (predicate_is_const, append_const_msg) {
691                                         // do nothing if predicate is not const
692                                         (false, _) => Some(cannot_do_this),
693                                         // suggested using default post message
694                                         (true, Some(None)) => {
695                                             Some(format!("{cannot_do_this} in const contexts"))
696                                         }
697                                         // overridden post message
698                                         (true, Some(Some(post_message))) => {
699                                             Some(format!("{cannot_do_this}{post_message}"))
700                                         }
701                                         // fallback to generic message
702                                         (true, None) => None,
703                                     }
704                                 })
705                                 .unwrap_or_else(|| format!(
706                                     "the trait bound `{}` is not satisfied{}",
707                                     trait_predicate, post_message,
708                                 ))
709                         );
710
711                         if is_try_conversion && let Some(ret_span) = self.return_type_span(&obligation) {
712                             err.span_label(
713                                 ret_span,
714                                 &format!(
715                                     "expected `{}` because of this",
716                                     trait_ref.skip_binder().self_ty()
717                                 ),
718                             );
719                         }
720
721                         if Some(trait_ref.def_id()) == tcx.lang_items().tuple_trait() {
722                             match obligation.cause.code().peel_derives() {
723                                 ObligationCauseCode::RustCall => {
724                                     err.set_primary_message("functions with the \"rust-call\" ABI must take a single non-self tuple argument");
725                                 }
726                                 ObligationCauseCode::BindingObligation(def_id, _)
727                                 | ObligationCauseCode::ItemObligation(def_id)
728                                     if tcx.is_fn_trait(*def_id) =>
729                                 {
730                                     err.code(rustc_errors::error_code!(E0059));
731                                     err.set_primary_message(format!(
732                                         "type parameter to bare `{}` trait must be a tuple",
733                                         tcx.def_path_str(*def_id)
734                                     ));
735                                 }
736                                 _ => {}
737                             }
738                         }
739
740                         if Some(trait_ref.def_id()) == tcx.lang_items().drop_trait()
741                             && predicate_is_const
742                         {
743                             err.note("`~const Drop` was renamed to `~const Destruct`");
744                             err.note("See <https://github.com/rust-lang/rust/pull/94901> for more details");
745                         }
746
747                         let explanation = if let ObligationCauseCode::MainFunctionType =
748                             obligation.cause.code()
749                         {
750                             "consider using `()`, or a `Result`".to_owned()
751                         } else {
752                             let ty_desc = match trait_ref.skip_binder().self_ty().kind() {
753                                 ty::FnDef(_, _) => Some("fn item"),
754                                 ty::Closure(_, _) => Some("closure"),
755                                 _ => None,
756                             };
757
758                             match ty_desc {
759                                 Some(desc) => format!(
760                                     "{}the trait `{}` is not implemented for {} `{}`",
761                                     pre_message,
762                                     trait_predicate.print_modifiers_and_trait_path(),
763                                     desc,
764                                     trait_ref.skip_binder().self_ty(),
765                                 ),
766                                 None => format!(
767                                     "{}the trait `{}` is not implemented for `{}`",
768                                     pre_message,
769                                     trait_predicate.print_modifiers_and_trait_path(),
770                                     trait_ref.skip_binder().self_ty(),
771                                 ),
772                             }
773                         };
774
775                         if self.suggest_add_reference_to_arg(
776                             &obligation,
777                             &mut err,
778                             trait_predicate,
779                             have_alt_message,
780                         ) {
781                             self.note_obligation_cause(&mut err, &obligation);
782                             err.emit();
783                             return;
784                         }
785                         if let Some(ref s) = label {
786                             // If it has a custom `#[rustc_on_unimplemented]`
787                             // error message, let's display it as the label!
788                             err.span_label(span, s);
789                             if !matches!(trait_ref.skip_binder().self_ty().kind(), ty::Param(_)) {
790                                 // When the self type is a type param We don't need to "the trait
791                                 // `std::marker::Sized` is not implemented for `T`" as we will point
792                                 // at the type param with a label to suggest constraining it.
793                                 err.help(&explanation);
794                             }
795                         } else {
796                             err.span_label(span, explanation);
797                         }
798
799                         if let ObligationCauseCode::ObjectCastObligation(concrete_ty, obj_ty) = obligation.cause.code().peel_derives() &&
800                             Some(trait_ref.def_id()) == self.tcx.lang_items().sized_trait() {
801                             self.suggest_borrowing_for_object_cast(&mut err, &root_obligation, *concrete_ty, *obj_ty);
802                         }
803
804                         let mut unsatisfied_const = false;
805                         if trait_predicate.is_const_if_const() && obligation.param_env.is_const() {
806                             let non_const_predicate = trait_ref.without_const();
807                             let non_const_obligation = Obligation {
808                                 cause: obligation.cause.clone(),
809                                 param_env: obligation.param_env.without_const(),
810                                 predicate: non_const_predicate.to_predicate(tcx),
811                                 recursion_depth: obligation.recursion_depth,
812                             };
813                             if self.predicate_may_hold(&non_const_obligation) {
814                                 unsatisfied_const = true;
815                                 err.span_note(
816                                     span,
817                                     &format!(
818                                         "the trait `{}` is implemented for `{}`, \
819                                         but that implementation is not `const`",
820                                         non_const_predicate.print_modifiers_and_trait_path(),
821                                         trait_ref.skip_binder().self_ty(),
822                                     ),
823                                 );
824                             }
825                         }
826
827                         if let Some((msg, span)) = type_def {
828                             err.span_label(span, &msg);
829                         }
830                         if let Some(ref s) = note {
831                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
832                             err.note(s.as_str());
833                         }
834                         if let Some(ref s) = parent_label {
835                             let body = tcx
836                                 .hir()
837                                 .opt_local_def_id(obligation.cause.body_id)
838                                 .unwrap_or_else(|| {
839                                     tcx.hir().body_owner_def_id(hir::BodyId {
840                                         hir_id: obligation.cause.body_id,
841                                     })
842                                 });
843                             err.span_label(tcx.def_span(body), s);
844                         }
845
846                         self.suggest_floating_point_literal(&obligation, &mut err, &trait_ref);
847                         self.suggest_dereferencing_index(&obligation, &mut err, trait_predicate);
848                         let mut suggested =
849                             self.suggest_dereferences(&obligation, &mut err, trait_predicate);
850                         suggested |= self.suggest_fn_call(&obligation, &mut err, trait_predicate);
851                         suggested |=
852                             self.suggest_remove_reference(&obligation, &mut err, trait_predicate);
853                         suggested |= self.suggest_semicolon_removal(
854                             &obligation,
855                             &mut err,
856                             span,
857                             trait_predicate,
858                         );
859                         self.note_version_mismatch(&mut err, &trait_ref);
860                         self.suggest_remove_await(&obligation, &mut err);
861                         self.suggest_derive(&obligation, &mut err, trait_predicate);
862
863                         if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
864                             self.suggest_await_before_try(
865                                 &mut err,
866                                 &obligation,
867                                 trait_predicate,
868                                 span,
869                             );
870                         }
871
872                         if self.suggest_impl_trait(&mut err, span, &obligation, trait_predicate) {
873                             err.emit();
874                             return;
875                         }
876
877                         if is_unsize {
878                             // If the obligation failed due to a missing implementation of the
879                             // `Unsize` trait, give a pointer to why that might be the case
880                             err.note(
881                                 "all implementations of `Unsize` are provided \
882                                 automatically by the compiler, see \
883                                 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
884                                 for more information",
885                             );
886                         }
887
888                         let is_fn_trait = tcx.is_fn_trait(trait_ref.def_id());
889                         let is_target_feature_fn = if let ty::FnDef(def_id, _) =
890                             *trait_ref.skip_binder().self_ty().kind()
891                         {
892                             !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
893                         } else {
894                             false
895                         };
896                         if is_fn_trait && is_target_feature_fn {
897                             err.note(
898                                 "`#[target_feature]` functions do not implement the `Fn` traits",
899                             );
900                         }
901
902                         // Try to report a help message
903                         if is_fn_trait
904                             && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
905                             obligation.param_env,
906                             trait_ref.self_ty(),
907                             trait_predicate.skip_binder().constness,
908                             trait_predicate.skip_binder().polarity,
909                         )
910                         {
911                             // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
912                             // suggestion to add trait bounds for the type, since we only typically implement
913                             // these traits once.
914
915                             // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
916                             // to implement.
917                             let selected_kind =
918                                 self.tcx.fn_trait_kind_from_def_id(trait_ref.def_id())
919                                     .expect("expected to map DefId to ClosureKind");
920                             if !implemented_kind.extends(selected_kind) {
921                                 err.note(
922                                     &format!(
923                                         "`{}` implements `{}`, but it must implement `{}`, which is more general",
924                                         trait_ref.skip_binder().self_ty(),
925                                         implemented_kind,
926                                         selected_kind
927                                     )
928                                 );
929                             }
930
931                             // Note any argument mismatches
932                             let given_ty = params.skip_binder();
933                             let expected_ty = trait_ref.skip_binder().substs.type_at(1);
934                             if let ty::Tuple(given) = given_ty.kind()
935                                 && let ty::Tuple(expected) = expected_ty.kind()
936                             {
937                                 if expected.len() != given.len() {
938                                     // Note number of types that were expected and given
939                                     err.note(
940                                         &format!(
941                                             "expected a closure taking {} argument{}, but one taking {} argument{} was given",
942                                             given.len(),
943                                             pluralize!(given.len()),
944                                             expected.len(),
945                                             pluralize!(expected.len()),
946                                         )
947                                     );
948                                 } else if !self.same_type_modulo_infer(given_ty, expected_ty) {
949                                     // Print type mismatch
950                                     let (expected_args, given_args) =
951                                         self.cmp(given_ty, expected_ty);
952                                     err.note_expected_found(
953                                         &"a closure with arguments",
954                                         expected_args,
955                                         &"a closure with arguments",
956                                         given_args,
957                                     );
958                                 }
959                             }
960                         } else if !trait_ref.has_non_region_infer()
961                             && self.predicate_can_apply(obligation.param_env, trait_predicate)
962                         {
963                             // If a where-clause may be useful, remind the
964                             // user that they can add it.
965                             //
966                             // don't display an on-unimplemented note, as
967                             // these notes will often be of the form
968                             //     "the type `T` can't be frobnicated"
969                             // which is somewhat confusing.
970                             self.suggest_restricting_param_bound(
971                                 &mut err,
972                                 trait_predicate,
973                                 None,
974                                 obligation.cause.body_id,
975                             );
976                         } else if !suggested && !unsatisfied_const {
977                             // Can't show anything else useful, try to find similar impls.
978                             let impl_candidates = self.find_similar_impl_candidates(trait_predicate);
979                             if !self.report_similar_impl_candidates(
980                                 impl_candidates,
981                                 trait_ref,
982                                 obligation.cause.body_id,
983                                 &mut err,
984                                 true,
985                             ) {
986                                 // This is *almost* equivalent to
987                                 // `obligation.cause.code().peel_derives()`, but it gives us the
988                                 // trait predicate for that corresponding root obligation. This
989                                 // lets us get a derived obligation from a type parameter, like
990                                 // when calling `string.strip_suffix(p)` where `p` is *not* an
991                                 // implementer of `Pattern<'_>`.
992                                 let mut code = obligation.cause.code();
993                                 let mut trait_pred = trait_predicate;
994                                 let mut peeled = false;
995                                 while let Some((parent_code, parent_trait_pred)) = code.parent() {
996                                     code = parent_code;
997                                     if let Some(parent_trait_pred) = parent_trait_pred {
998                                         trait_pred = parent_trait_pred;
999                                         peeled = true;
1000                                     }
1001                                 }
1002                                 let def_id = trait_pred.def_id();
1003                                 // Mention *all* the `impl`s for the *top most* obligation, the
1004                                 // user might have meant to use one of them, if any found. We skip
1005                                 // auto-traits or fundamental traits that might not be exactly what
1006                                 // the user might expect to be presented with. Instead this is
1007                                 // useful for less general traits.
1008                                 if peeled
1009                                     && !self.tcx.trait_is_auto(def_id)
1010                                     && !self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1011                                 {
1012                                     let trait_ref = trait_pred.to_poly_trait_ref();
1013                                     let impl_candidates =
1014                                         self.find_similar_impl_candidates(trait_pred);
1015                                     self.report_similar_impl_candidates(
1016                                         impl_candidates,
1017                                         trait_ref,
1018                                         obligation.cause.body_id,
1019                                         &mut err,
1020                                         true,
1021                                     );
1022                                 }
1023                             }
1024                         }
1025
1026                         // Changing mutability doesn't make a difference to whether we have
1027                         // an `Unsize` impl (Fixes ICE in #71036)
1028                         if !is_unsize {
1029                             self.suggest_change_mut(&obligation, &mut err, trait_predicate);
1030                         }
1031
1032                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
1033                         // implemented, and fallback has occurred, then it could be due to a
1034                         // variable that used to fallback to `()` now falling back to `!`. Issue a
1035                         // note informing about the change in behaviour.
1036                         if trait_predicate.skip_binder().self_ty().is_never()
1037                             && self.fallback_has_occurred
1038                         {
1039                             let predicate = trait_predicate.map_bound(|trait_pred| {
1040                                 trait_pred.with_self_ty(self.tcx, self.tcx.mk_unit())
1041                             });
1042                             let unit_obligation = obligation.with(tcx, predicate);
1043                             if self.predicate_may_hold(&unit_obligation) {
1044                                 err.note(
1045                                     "this error might have been caused by changes to \
1046                                     Rust's type-inference algorithm (see issue #48950 \
1047                                     <https://github.com/rust-lang/rust/issues/48950> \
1048                                     for more information)",
1049                                 );
1050                                 err.help("did you intend to use the type `()` here instead?");
1051                             }
1052                         }
1053
1054                         // Return early if the trait is Debug or Display and the invocation
1055                         // originates within a standard library macro, because the output
1056                         // is otherwise overwhelming and unhelpful (see #85844 for an
1057                         // example).
1058
1059                         let in_std_macro =
1060                             match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
1061                                 Some(macro_def_id) => {
1062                                     let crate_name = tcx.crate_name(macro_def_id.krate);
1063                                     crate_name == sym::std || crate_name == sym::core
1064                                 }
1065                                 None => false,
1066                             };
1067
1068                         if in_std_macro
1069                             && matches!(
1070                                 self.tcx.get_diagnostic_name(trait_ref.def_id()),
1071                                 Some(sym::Debug | sym::Display)
1072                             )
1073                         {
1074                             err.emit();
1075                             return;
1076                         }
1077
1078                         err
1079                     }
1080
1081                     ty::PredicateKind::Subtype(predicate) => {
1082                         // Errors for Subtype predicates show up as
1083                         // `FulfillmentErrorCode::CodeSubtypeError`,
1084                         // not selection error.
1085                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
1086                     }
1087
1088                     ty::PredicateKind::Coerce(predicate) => {
1089                         // Errors for Coerce predicates show up as
1090                         // `FulfillmentErrorCode::CodeSubtypeError`,
1091                         // not selection error.
1092                         span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
1093                     }
1094
1095                     ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..))
1096                     | ty::PredicateKind::Clause(ty::Clause::Projection(..))
1097                     | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) => {
1098                         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1099                         struct_span_err!(
1100                             self.tcx.sess,
1101                             span,
1102                             E0280,
1103                             "the requirement `{}` is not satisfied",
1104                             predicate
1105                         )
1106                     }
1107
1108                     ty::PredicateKind::ObjectSafe(trait_def_id) => {
1109                         let violations = self.tcx.object_safety_violations(trait_def_id);
1110                         report_object_safety_error(self.tcx, span, trait_def_id, violations)
1111                     }
1112
1113                     ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
1114                         let found_kind = self.closure_kind(closure_substs).unwrap();
1115                         let closure_span = self.tcx.def_span(closure_def_id);
1116                         let mut err = struct_span_err!(
1117                             self.tcx.sess,
1118                             closure_span,
1119                             E0525,
1120                             "expected a closure that implements the `{}` trait, \
1121                              but this closure only implements `{}`",
1122                             kind,
1123                             found_kind
1124                         );
1125
1126                         err.span_label(
1127                             closure_span,
1128                             format!("this closure implements `{}`, not `{}`", found_kind, kind),
1129                         );
1130                         err.span_label(
1131                             obligation.cause.span,
1132                             format!("the requirement to implement `{}` derives from here", kind),
1133                         );
1134
1135                         // Additional context information explaining why the closure only implements
1136                         // a particular trait.
1137                         if let Some(typeck_results) = &self.typeck_results {
1138                             let hir_id = self
1139                                 .tcx
1140                                 .hir()
1141                                 .local_def_id_to_hir_id(closure_def_id.expect_local());
1142                             match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
1143                                 (ty::ClosureKind::FnOnce, Some((span, place))) => {
1144                                     err.span_label(
1145                                         *span,
1146                                         format!(
1147                                             "closure is `FnOnce` because it moves the \
1148                                          variable `{}` out of its environment",
1149                                             ty::place_to_string_for_capture(tcx, place)
1150                                         ),
1151                                     );
1152                                 }
1153                                 (ty::ClosureKind::FnMut, Some((span, place))) => {
1154                                     err.span_label(
1155                                         *span,
1156                                         format!(
1157                                             "closure is `FnMut` because it mutates the \
1158                                          variable `{}` here",
1159                                             ty::place_to_string_for_capture(tcx, place)
1160                                         ),
1161                                     );
1162                                 }
1163                                 _ => {}
1164                             }
1165                         }
1166
1167                         err
1168                     }
1169
1170                     ty::PredicateKind::WellFormed(ty) => {
1171                         if self.tcx.sess.opts.unstable_opts.trait_solver != TraitSolver::Chalk {
1172                             // WF predicates cannot themselves make
1173                             // errors. They can only block due to
1174                             // ambiguity; otherwise, they always
1175                             // degenerate into other obligations
1176                             // (which may fail).
1177                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
1178                         } else {
1179                             // FIXME: we'll need a better message which takes into account
1180                             // which bounds actually failed to hold.
1181                             self.tcx.sess.struct_span_err(
1182                                 span,
1183                                 &format!("the type `{}` is not well-formed (chalk)", ty),
1184                             )
1185                         }
1186                     }
1187
1188                     ty::PredicateKind::ConstEvaluatable(..) => {
1189                         // Errors for `ConstEvaluatable` predicates show up as
1190                         // `SelectionError::ConstEvalFailure`,
1191                         // not `Unimplemented`.
1192                         span_bug!(
1193                             span,
1194                             "const-evaluatable requirement gave wrong error: `{:?}`",
1195                             obligation
1196                         )
1197                     }
1198
1199                     ty::PredicateKind::ConstEquate(..) => {
1200                         // Errors for `ConstEquate` predicates show up as
1201                         // `SelectionError::ConstEvalFailure`,
1202                         // not `Unimplemented`.
1203                         span_bug!(
1204                             span,
1205                             "const-equate requirement gave wrong error: `{:?}`",
1206                             obligation
1207                         )
1208                     }
1209
1210                     ty::PredicateKind::Ambiguous => span_bug!(span, "ambiguous"),
1211
1212                     ty::PredicateKind::TypeWellFormedFromEnv(..) => span_bug!(
1213                         span,
1214                         "TypeWellFormedFromEnv predicate should only exist in the environment"
1215                     ),
1216                 }
1217             }
1218
1219             OutputTypeParameterMismatch(
1220                 found_trait_ref,
1221                 expected_trait_ref,
1222                 terr @ TypeError::CyclicTy(_),
1223             ) => {
1224                 let self_ty = found_trait_ref.self_ty().skip_binder();
1225                 let (cause, terr) = if let ty::Closure(def_id, _) = self_ty.kind() {
1226                     (
1227                         ObligationCause::dummy_with_span(tcx.def_span(def_id)),
1228                         TypeError::CyclicTy(self_ty),
1229                     )
1230                 } else {
1231                     (obligation.cause.clone(), terr)
1232                 };
1233                 self.report_and_explain_type_error(
1234                     TypeTrace::poly_trait_refs(&cause, true, expected_trait_ref, found_trait_ref),
1235                     terr,
1236                 )
1237             }
1238             OutputTypeParameterMismatch(found_trait_ref, expected_trait_ref, _) => {
1239                 let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
1240                 let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
1241
1242                 if expected_trait_ref.self_ty().references_error() {
1243                     return;
1244                 }
1245
1246                 let Some(found_trait_ty) = found_trait_ref.self_ty().no_bound_vars() else {
1247                     return;
1248                 };
1249
1250                 let found_did = match *found_trait_ty.kind() {
1251                     ty::Closure(did, _)
1252                     | ty::Foreign(did)
1253                     | ty::FnDef(did, _)
1254                     | ty::Generator(did, ..) => Some(did),
1255                     ty::Adt(def, _) => Some(def.did()),
1256                     _ => None,
1257                 };
1258
1259                 let found_node = found_did.and_then(|did| self.tcx.hir().get_if_local(did));
1260                 let found_span = found_did.and_then(|did| self.tcx.hir().span_if_local(did));
1261
1262                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
1263                     // We check closures twice, with obligations flowing in different directions,
1264                     // but we want to complain about them only once.
1265                     return;
1266                 }
1267
1268                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
1269
1270                 let mut not_tupled = false;
1271
1272                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind() {
1273                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
1274                     _ => {
1275                         not_tupled = true;
1276                         vec![ArgKind::empty()]
1277                     }
1278                 };
1279
1280                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
1281                 let expected = match expected_ty.kind() {
1282                     ty::Tuple(ref tys) => {
1283                         tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
1284                     }
1285                     _ => {
1286                         not_tupled = true;
1287                         vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())]
1288                     }
1289                 };
1290
1291                 // If this is a `Fn` family trait and either the expected or found
1292                 // is not tupled, then fall back to just a regular mismatch error.
1293                 // This shouldn't be common unless manually implementing one of the
1294                 // traits manually, but don't make it more confusing when it does
1295                 // happen.
1296                 if Some(expected_trait_ref.def_id()) != tcx.lang_items().gen_trait() && not_tupled {
1297                     self.report_and_explain_type_error(
1298                         TypeTrace::poly_trait_refs(
1299                             &obligation.cause,
1300                             true,
1301                             expected_trait_ref,
1302                             found_trait_ref,
1303                         ),
1304                         ty::error::TypeError::Mismatch,
1305                     )
1306                 } else if found.len() == expected.len() {
1307                     self.report_closure_arg_mismatch(
1308                         span,
1309                         found_span,
1310                         found_trait_ref,
1311                         expected_trait_ref,
1312                         obligation.cause.code(),
1313                         found_node,
1314                     )
1315                 } else {
1316                     let (closure_span, closure_arg_span, found) = found_did
1317                         .and_then(|did| {
1318                             let node = self.tcx.hir().get_if_local(did)?;
1319                             let (found_span, closure_arg_span, found) =
1320                                 self.get_fn_like_arguments(node)?;
1321                             Some((Some(found_span), closure_arg_span, found))
1322                         })
1323                         .unwrap_or((found_span, None, found));
1324
1325                     self.report_arg_count_mismatch(
1326                         span,
1327                         closure_span,
1328                         expected,
1329                         found,
1330                         found_trait_ty.is_closure(),
1331                         closure_arg_span,
1332                     )
1333                 }
1334             }
1335
1336             TraitNotObjectSafe(did) => {
1337                 let violations = self.tcx.object_safety_violations(did);
1338                 report_object_safety_error(self.tcx, span, did, violations)
1339             }
1340
1341             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
1342                 bug!(
1343                     "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
1344                 )
1345             }
1346             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
1347                 if !self.tcx.features().generic_const_exprs {
1348                     let mut err = self.tcx.sess.struct_span_err(
1349                         span,
1350                         "constant expression depends on a generic parameter",
1351                     );
1352                     // FIXME(const_generics): we should suggest to the user how they can resolve this
1353                     // issue. However, this is currently not actually possible
1354                     // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
1355                     //
1356                     // Note that with `feature(generic_const_exprs)` this case should not
1357                     // be reachable.
1358                     err.note("this may fail depending on what value the parameter takes");
1359                     err.emit();
1360                     return;
1361                 }
1362
1363                 match obligation.predicate.kind().skip_binder() {
1364                     ty::PredicateKind::ConstEvaluatable(ct) => {
1365                         let ty::ConstKind::Unevaluated(uv) = ct.kind() else {
1366                             bug!("const evaluatable failed for non-unevaluated const `{ct:?}`");
1367                         };
1368                         let mut err =
1369                             self.tcx.sess.struct_span_err(span, "unconstrained generic constant");
1370                         let const_span = self.tcx.def_span(uv.def.did);
1371                         match self.tcx.sess.source_map().span_to_snippet(const_span) {
1372                             Ok(snippet) => err.help(&format!(
1373                                 "try adding a `where` bound using this expression: `where [(); {}]:`",
1374                                 snippet
1375                             )),
1376                             _ => err.help("consider adding a `where` bound using this expression"),
1377                         };
1378                         err
1379                     }
1380                     _ => {
1381                         span_bug!(
1382                             span,
1383                             "unexpected non-ConstEvaluatable predicate, this should not be reachable"
1384                         )
1385                     }
1386                 }
1387             }
1388
1389             // Already reported in the query.
1390             SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(_)) => {
1391                 // FIXME(eddyb) remove this once `ErrorGuaranteed` becomes a proof token.
1392                 self.tcx.sess.delay_span_bug(span, "`ErrorGuaranteed` without an error");
1393                 return;
1394             }
1395             // Already reported.
1396             Overflow(OverflowError::Error(_)) => {
1397                 self.tcx.sess.delay_span_bug(span, "`OverflowError` has been reported");
1398                 return;
1399             }
1400             Overflow(_) => {
1401                 bug!("overflow should be handled before the `report_selection_error` path");
1402             }
1403             SelectionError::ErrorReporting => {
1404                 bug!("ErrorReporting Overflow should not reach `report_selection_err` call")
1405             }
1406         };
1407
1408         self.note_obligation_cause(&mut err, &obligation);
1409         self.point_at_returns_when_relevant(&mut err, &obligation);
1410         err.emit();
1411     }
1412 }
1413
1414 trait InferCtxtPrivExt<'tcx> {
1415     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1416     // `error` occurring implies that `cond` occurs.
1417     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
1418
1419     fn report_fulfillment_error(
1420         &self,
1421         error: &FulfillmentError<'tcx>,
1422         body_id: Option<hir::BodyId>,
1423     );
1424
1425     fn report_projection_error(
1426         &self,
1427         obligation: &PredicateObligation<'tcx>,
1428         error: &MismatchedProjectionTypes<'tcx>,
1429     );
1430
1431     fn maybe_detailed_projection_msg(
1432         &self,
1433         pred: ty::ProjectionPredicate<'tcx>,
1434         normalized_ty: ty::Term<'tcx>,
1435         expected_ty: ty::Term<'tcx>,
1436     ) -> Option<String>;
1437
1438     fn fuzzy_match_tys(
1439         &self,
1440         a: Ty<'tcx>,
1441         b: Ty<'tcx>,
1442         ignoring_lifetimes: bool,
1443     ) -> Option<CandidateSimilarity>;
1444
1445     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
1446
1447     fn find_similar_impl_candidates(
1448         &self,
1449         trait_pred: ty::PolyTraitPredicate<'tcx>,
1450     ) -> Vec<ImplCandidate<'tcx>>;
1451
1452     fn report_similar_impl_candidates(
1453         &self,
1454         impl_candidates: Vec<ImplCandidate<'tcx>>,
1455         trait_ref: ty::PolyTraitRef<'tcx>,
1456         body_id: hir::HirId,
1457         err: &mut Diagnostic,
1458         other: bool,
1459     ) -> bool;
1460
1461     /// Gets the parent trait chain start
1462     fn get_parent_trait_ref(
1463         &self,
1464         code: &ObligationCauseCode<'tcx>,
1465     ) -> Option<(String, Option<Span>)>;
1466
1467     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1468     /// with the same path as `trait_ref`, a help message about
1469     /// a probable version mismatch is added to `err`
1470     fn note_version_mismatch(
1471         &self,
1472         err: &mut Diagnostic,
1473         trait_ref: &ty::PolyTraitRef<'tcx>,
1474     ) -> bool;
1475
1476     /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1477     /// `trait_ref`.
1478     ///
1479     /// For this to work, `new_self_ty` must have no escaping bound variables.
1480     fn mk_trait_obligation_with_new_self_ty(
1481         &self,
1482         param_env: ty::ParamEnv<'tcx>,
1483         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
1484     ) -> PredicateObligation<'tcx>;
1485
1486     fn maybe_report_ambiguity(
1487         &self,
1488         obligation: &PredicateObligation<'tcx>,
1489         body_id: Option<hir::BodyId>,
1490     );
1491
1492     fn predicate_can_apply(
1493         &self,
1494         param_env: ty::ParamEnv<'tcx>,
1495         pred: ty::PolyTraitPredicate<'tcx>,
1496     ) -> bool;
1497
1498     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>);
1499
1500     fn suggest_unsized_bound_if_applicable(
1501         &self,
1502         err: &mut Diagnostic,
1503         obligation: &PredicateObligation<'tcx>,
1504     );
1505
1506     fn annotate_source_of_ambiguity(
1507         &self,
1508         err: &mut Diagnostic,
1509         impls: &[ambiguity::Ambiguity],
1510         predicate: ty::Predicate<'tcx>,
1511     );
1512
1513     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>);
1514
1515     fn maybe_indirection_for_unsized(
1516         &self,
1517         err: &mut Diagnostic,
1518         item: &'tcx Item<'tcx>,
1519         param: &'tcx GenericParam<'tcx>,
1520     ) -> bool;
1521
1522     fn is_recursive_obligation(
1523         &self,
1524         obligated_types: &mut Vec<Ty<'tcx>>,
1525         cause_code: &ObligationCauseCode<'tcx>,
1526     ) -> bool;
1527 }
1528
1529 impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
1530     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1531     // `error` occurring implies that `cond` occurs.
1532     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1533         if cond == error {
1534             return true;
1535         }
1536
1537         // FIXME: It should be possible to deal with `ForAll` in a cleaner way.
1538         let bound_error = error.kind();
1539         let (cond, error) = match (cond.kind().skip_binder(), bound_error.skip_binder()) {
1540             (
1541                 ty::PredicateKind::Clause(ty::Clause::Trait(..)),
1542                 ty::PredicateKind::Clause(ty::Clause::Trait(error)),
1543             ) => (cond, bound_error.rebind(error)),
1544             _ => {
1545                 // FIXME: make this work in other cases too.
1546                 return false;
1547             }
1548         };
1549
1550         for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1551             let bound_predicate = obligation.predicate.kind();
1552             if let ty::PredicateKind::Clause(ty::Clause::Trait(implication)) =
1553                 bound_predicate.skip_binder()
1554             {
1555                 let error = error.to_poly_trait_ref();
1556                 let implication = bound_predicate.rebind(implication.trait_ref);
1557                 // FIXME: I'm just not taking associated types at all here.
1558                 // Eventually I'll need to implement param-env-aware
1559                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1560                 let param_env = ty::ParamEnv::empty();
1561                 if self.can_sub(param_env, error, implication).is_ok() {
1562                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1563                     return true;
1564                 }
1565             }
1566         }
1567
1568         false
1569     }
1570
1571     #[instrument(skip(self), level = "debug")]
1572     fn report_fulfillment_error(
1573         &self,
1574         error: &FulfillmentError<'tcx>,
1575         body_id: Option<hir::BodyId>,
1576     ) {
1577         match error.code {
1578             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1579                 self.report_selection_error(
1580                     error.obligation.clone(),
1581                     &error.root_obligation,
1582                     selection_error,
1583                 );
1584             }
1585             FulfillmentErrorCode::CodeProjectionError(ref e) => {
1586                 self.report_projection_error(&error.obligation, e);
1587             }
1588             FulfillmentErrorCode::CodeAmbiguity => {
1589                 self.maybe_report_ambiguity(&error.obligation, body_id);
1590             }
1591             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1592                 self.report_mismatched_types(
1593                     &error.obligation.cause,
1594                     expected_found.expected,
1595                     expected_found.found,
1596                     *err,
1597                 )
1598                 .emit();
1599             }
1600             FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1601                 let mut diag = self.report_mismatched_consts(
1602                     &error.obligation.cause,
1603                     expected_found.expected,
1604                     expected_found.found,
1605                     *err,
1606                 );
1607                 let code = error.obligation.cause.code().peel_derives().peel_match_impls();
1608                 if let ObligationCauseCode::BindingObligation(..)
1609                 | ObligationCauseCode::ItemObligation(..)
1610                 | ObligationCauseCode::ExprBindingObligation(..)
1611                 | ObligationCauseCode::ExprItemObligation(..) = code
1612                 {
1613                     self.note_obligation_cause_code(
1614                         &mut diag,
1615                         error.obligation.predicate,
1616                         error.obligation.param_env,
1617                         code,
1618                         &mut vec![],
1619                         &mut Default::default(),
1620                     );
1621                 }
1622                 diag.emit();
1623             }
1624             FulfillmentErrorCode::CodeCycle(ref cycle) => {
1625                 self.report_overflow_obligation_cycle(cycle);
1626             }
1627         }
1628     }
1629
1630     #[instrument(level = "debug", skip_all)]
1631     fn report_projection_error(
1632         &self,
1633         obligation: &PredicateObligation<'tcx>,
1634         error: &MismatchedProjectionTypes<'tcx>,
1635     ) {
1636         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1637
1638         if predicate.references_error() {
1639             return;
1640         }
1641
1642         self.probe(|_| {
1643             let ocx = ObligationCtxt::new_in_snapshot(self);
1644
1645             // try to find the mismatched types to report the error with.
1646             //
1647             // this can fail if the problem was higher-ranked, in which
1648             // cause I have no idea for a good error message.
1649             let bound_predicate = predicate.kind();
1650             let (values, err) = if let ty::PredicateKind::Clause(ty::Clause::Projection(data)) =
1651                 bound_predicate.skip_binder()
1652             {
1653                 let data = self.replace_bound_vars_with_fresh_vars(
1654                     obligation.cause.span,
1655                     infer::LateBoundRegionConversionTime::HigherRankedType,
1656                     bound_predicate.rebind(data),
1657                 );
1658                 let unnormalized_term = match data.term.unpack() {
1659                     ty::TermKind::Ty(_) => self
1660                         .tcx
1661                         .mk_projection(data.projection_ty.def_id, data.projection_ty.substs)
1662                         .into(),
1663                     ty::TermKind::Const(ct) => self
1664                         .tcx
1665                         .mk_const(
1666                             ty::UnevaluatedConst {
1667                                 def: ty::WithOptConstParam::unknown(data.projection_ty.def_id),
1668                                 substs: data.projection_ty.substs,
1669                             },
1670                             ct.ty(),
1671                         )
1672                         .into(),
1673                 };
1674                 let normalized_term =
1675                     ocx.normalize(&obligation.cause, obligation.param_env, unnormalized_term);
1676
1677                 debug!(?obligation.cause, ?obligation.param_env);
1678
1679                 debug!(?normalized_term, data.ty = ?data.term);
1680
1681                 let is_normalized_term_expected = !matches!(
1682                     obligation.cause.code().peel_derives(),
1683                     ObligationCauseCode::ItemObligation(_)
1684                         | ObligationCauseCode::BindingObligation(_, _)
1685                         | ObligationCauseCode::ExprItemObligation(..)
1686                         | ObligationCauseCode::ExprBindingObligation(..)
1687                         | ObligationCauseCode::ObjectCastObligation(..)
1688                         | ObligationCauseCode::OpaqueType
1689                 );
1690
1691                 // constrain inference variables a bit more to nested obligations from normalize so
1692                 // we can have more helpful errors.
1693                 ocx.select_where_possible();
1694
1695                 if let Err(new_err) = ocx.eq_exp(
1696                     &obligation.cause,
1697                     obligation.param_env,
1698                     is_normalized_term_expected,
1699                     normalized_term,
1700                     data.term,
1701                 ) {
1702                     (Some((data, is_normalized_term_expected, normalized_term, data.term)), new_err)
1703                 } else {
1704                     (None, error.err)
1705                 }
1706             } else {
1707                 (None, error.err)
1708             };
1709
1710             let msg = values
1711                 .and_then(|(predicate, _, normalized_term, expected_term)| {
1712                     self.maybe_detailed_projection_msg(predicate, normalized_term, expected_term)
1713                 })
1714                 .unwrap_or_else(|| format!("type mismatch resolving `{}`", predicate));
1715             let mut diag = struct_span_err!(self.tcx.sess, obligation.cause.span, E0271, "{msg}");
1716
1717             let secondary_span = match predicate.kind().skip_binder() {
1718                 ty::PredicateKind::Clause(ty::Clause::Projection(proj)) => self
1719                     .tcx
1720                     .opt_associated_item(proj.projection_ty.def_id)
1721                     .and_then(|trait_assoc_item| {
1722                         self.tcx
1723                             .trait_of_item(proj.projection_ty.def_id)
1724                             .map(|id| (trait_assoc_item, id))
1725                     })
1726                     .and_then(|(trait_assoc_item, id)| {
1727                         let trait_assoc_ident = trait_assoc_item.ident(self.tcx);
1728                         self.tcx.find_map_relevant_impl(id, proj.projection_ty.self_ty(), |did| {
1729                             self.tcx
1730                                 .associated_items(did)
1731                                 .in_definition_order()
1732                                 .find(|assoc| assoc.ident(self.tcx) == trait_assoc_ident)
1733                         })
1734                     })
1735                     .and_then(|item| match self.tcx.hir().get_if_local(item.def_id) {
1736                         Some(
1737                             hir::Node::TraitItem(hir::TraitItem {
1738                                 kind: hir::TraitItemKind::Type(_, Some(ty)),
1739                                 ..
1740                             })
1741                             | hir::Node::ImplItem(hir::ImplItem {
1742                                 kind: hir::ImplItemKind::Type(ty),
1743                                 ..
1744                             }),
1745                         ) => Some((ty.span, format!("type mismatch resolving `{}`", predicate))),
1746                         _ => None,
1747                     }),
1748                 _ => None,
1749             };
1750             self.note_type_err(
1751                 &mut diag,
1752                 &obligation.cause,
1753                 secondary_span,
1754                 values.map(|(_, is_normalized_ty_expected, normalized_ty, expected_ty)| {
1755                     infer::ValuePairs::Terms(ExpectedFound::new(
1756                         is_normalized_ty_expected,
1757                         normalized_ty,
1758                         expected_ty,
1759                     ))
1760                 }),
1761                 err,
1762                 true,
1763                 false,
1764             );
1765             self.note_obligation_cause(&mut diag, obligation);
1766             diag.emit();
1767         });
1768     }
1769
1770     fn maybe_detailed_projection_msg(
1771         &self,
1772         pred: ty::ProjectionPredicate<'tcx>,
1773         normalized_ty: ty::Term<'tcx>,
1774         expected_ty: ty::Term<'tcx>,
1775     ) -> Option<String> {
1776         let trait_def_id = pred.projection_ty.trait_def_id(self.tcx);
1777         let self_ty = pred.projection_ty.self_ty();
1778
1779         with_forced_trimmed_paths! {
1780             if Some(pred.projection_ty.def_id) == self.tcx.lang_items().fn_once_output() {
1781                 Some(format!(
1782                     "expected `{self_ty}` to be a {fn_kind} that returns `{expected_ty}`, but it \
1783                      returns `{normalized_ty}`",
1784                     fn_kind = self_ty.prefix_string(self.tcx)
1785                 ))
1786             } else if Some(trait_def_id) == self.tcx.lang_items().future_trait() {
1787                 Some(format!(
1788                     "expected `{self_ty}` to be a future that resolves to `{expected_ty}`, but it \
1789                      resolves to `{normalized_ty}`"
1790                 ))
1791             } else if Some(trait_def_id) == self.tcx.get_diagnostic_item(sym::Iterator) {
1792                 Some(format!(
1793                     "expected `{self_ty}` to be an iterator that yields `{expected_ty}`, but it \
1794                      yields `{normalized_ty}`"
1795                 ))
1796             } else {
1797                 None
1798             }
1799         }
1800     }
1801
1802     fn fuzzy_match_tys(
1803         &self,
1804         mut a: Ty<'tcx>,
1805         mut b: Ty<'tcx>,
1806         ignoring_lifetimes: bool,
1807     ) -> Option<CandidateSimilarity> {
1808         /// returns the fuzzy category of a given type, or None
1809         /// if the type can be equated to any type.
1810         fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1811             match t.kind() {
1812                 ty::Bool => Some(0),
1813                 ty::Char => Some(1),
1814                 ty::Str => Some(2),
1815                 ty::Adt(def, _) if Some(def.did()) == tcx.lang_items().string() => Some(2),
1816                 ty::Int(..)
1817                 | ty::Uint(..)
1818                 | ty::Float(..)
1819                 | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1820                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1821                 ty::Array(..) | ty::Slice(..) => Some(6),
1822                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1823                 ty::Dynamic(..) => Some(8),
1824                 ty::Closure(..) => Some(9),
1825                 ty::Tuple(..) => Some(10),
1826                 ty::Param(..) => Some(11),
1827                 ty::Alias(ty::Projection, ..) => Some(12),
1828                 ty::Alias(ty::Opaque, ..) => Some(13),
1829                 ty::Never => Some(14),
1830                 ty::Adt(..) => Some(15),
1831                 ty::Generator(..) => Some(16),
1832                 ty::Foreign(..) => Some(17),
1833                 ty::GeneratorWitness(..) => Some(18),
1834                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1835             }
1836         }
1837
1838         let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1839             loop {
1840                 match t.kind() {
1841                     ty::Ref(_, inner, _) | ty::RawPtr(ty::TypeAndMut { ty: inner, .. }) => {
1842                         t = *inner
1843                     }
1844                     _ => break t,
1845                 }
1846             }
1847         };
1848
1849         if !ignoring_lifetimes {
1850             a = strip_references(a);
1851             b = strip_references(b);
1852         }
1853
1854         let cat_a = type_category(self.tcx, a)?;
1855         let cat_b = type_category(self.tcx, b)?;
1856         if a == b {
1857             Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1858         } else if cat_a == cat_b {
1859             match (a.kind(), b.kind()) {
1860                 (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1861                 (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1862                 // Matching on references results in a lot of unhelpful
1863                 // suggestions, so let's just not do that for now.
1864                 //
1865                 // We still upgrade successful matches to `ignoring_lifetimes: true`
1866                 // to prioritize that impl.
1867                 (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1868                     self.fuzzy_match_tys(a, b, true).is_some()
1869                 }
1870                 _ => true,
1871             }
1872             .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1873         } else if ignoring_lifetimes {
1874             None
1875         } else {
1876             self.fuzzy_match_tys(a, b, true)
1877         }
1878     }
1879
1880     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1881         self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1882             hir::GeneratorKind::Gen => "a generator",
1883             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1884             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1885             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1886         })
1887     }
1888
1889     fn find_similar_impl_candidates(
1890         &self,
1891         trait_pred: ty::PolyTraitPredicate<'tcx>,
1892     ) -> Vec<ImplCandidate<'tcx>> {
1893         let mut candidates: Vec<_> = self
1894             .tcx
1895             .all_impls(trait_pred.def_id())
1896             .filter_map(|def_id| {
1897                 if self.tcx.impl_polarity(def_id) == ty::ImplPolarity::Negative
1898                     || !trait_pred
1899                         .skip_binder()
1900                         .is_constness_satisfied_by(self.tcx.constness(def_id))
1901                 {
1902                     return None;
1903                 }
1904
1905                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1906
1907                 self.fuzzy_match_tys(trait_pred.skip_binder().self_ty(), imp.self_ty(), false)
1908                     .map(|similarity| ImplCandidate { trait_ref: imp, similarity })
1909             })
1910             .collect();
1911         if candidates.iter().any(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. })) {
1912             // If any of the candidates is a perfect match, we don't want to show all of them.
1913             // This is particularly relevant for the case of numeric types (as they all have the
1914             // same cathegory).
1915             candidates.retain(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. }));
1916         }
1917         candidates
1918     }
1919
1920     fn report_similar_impl_candidates(
1921         &self,
1922         impl_candidates: Vec<ImplCandidate<'tcx>>,
1923         trait_ref: ty::PolyTraitRef<'tcx>,
1924         body_id: hir::HirId,
1925         err: &mut Diagnostic,
1926         other: bool,
1927     ) -> bool {
1928         let other = if other { "other " } else { "" };
1929         let report = |mut candidates: Vec<TraitRef<'tcx>>, err: &mut Diagnostic| {
1930             candidates.sort();
1931             candidates.dedup();
1932             let len = candidates.len();
1933             if candidates.len() == 0 {
1934                 return false;
1935             }
1936             if candidates.len() == 1 {
1937                 let ty_desc = match candidates[0].self_ty().kind() {
1938                     ty::FnPtr(_) => Some("fn pointer"),
1939                     _ => None,
1940                 };
1941                 let the_desc = match ty_desc {
1942                     Some(desc) => format!(" implemented for {} `", desc),
1943                     None => " implemented for `".to_string(),
1944                 };
1945                 err.highlighted_help(vec![
1946                     (
1947                         format!("the trait `{}` ", candidates[0].print_only_trait_path()),
1948                         Style::NoStyle,
1949                     ),
1950                     ("is".to_string(), Style::Highlight),
1951                     (the_desc, Style::NoStyle),
1952                     (candidates[0].self_ty().to_string(), Style::Highlight),
1953                     ("`".to_string(), Style::NoStyle),
1954                 ]);
1955                 return true;
1956             }
1957             let trait_ref = TraitRef::identity(self.tcx, candidates[0].def_id);
1958             // Check if the trait is the same in all cases. If so, we'll only show the type.
1959             let mut traits: Vec<_> =
1960                 candidates.iter().map(|c| c.print_only_trait_path().to_string()).collect();
1961             traits.sort();
1962             traits.dedup();
1963
1964             let mut candidates: Vec<String> = candidates
1965                 .into_iter()
1966                 .map(|c| {
1967                     if traits.len() == 1 {
1968                         format!("\n  {}", c.self_ty())
1969                     } else {
1970                         format!("\n  {}", c)
1971                     }
1972                 })
1973                 .collect();
1974
1975             candidates.sort();
1976             candidates.dedup();
1977             let end = if candidates.len() <= 9 { candidates.len() } else { 8 };
1978             err.help(&format!(
1979                 "the following {other}types implement trait `{}`:{}{}",
1980                 trait_ref.print_only_trait_path(),
1981                 candidates[..end].join(""),
1982                 if len > 9 { format!("\nand {} others", len - 8) } else { String::new() }
1983             ));
1984             true
1985         };
1986
1987         let def_id = trait_ref.def_id();
1988         if impl_candidates.is_empty() {
1989             if self.tcx.trait_is_auto(def_id)
1990                 || self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1991                 || self.tcx.get_diagnostic_name(def_id).is_some()
1992             {
1993                 // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
1994                 return false;
1995             }
1996             let normalized_impl_candidates: Vec<_> = self
1997                 .tcx
1998                 .all_impls(def_id)
1999                 // Ignore automatically derived impls and `!Trait` impls.
2000                 .filter(|&def_id| {
2001                     self.tcx.impl_polarity(def_id) != ty::ImplPolarity::Negative
2002                         || self.tcx.is_builtin_derive(def_id)
2003                 })
2004                 .filter_map(|def_id| self.tcx.impl_trait_ref(def_id))
2005                 .filter(|trait_ref| {
2006                     let self_ty = trait_ref.self_ty();
2007                     // Avoid mentioning type parameters.
2008                     if let ty::Param(_) = self_ty.kind() {
2009                         false
2010                     }
2011                     // Avoid mentioning types that are private to another crate
2012                     else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
2013                         // FIXME(compiler-errors): This could be generalized, both to
2014                         // be more granular, and probably look past other `#[fundamental]`
2015                         // types, too.
2016                         self.tcx
2017                             .visibility(def.did())
2018                             .is_accessible_from(body_id.owner.def_id, self.tcx)
2019                     } else {
2020                         true
2021                     }
2022                 })
2023                 .collect();
2024             return report(normalized_impl_candidates, err);
2025         }
2026
2027         // Sort impl candidates so that ordering is consistent for UI tests.
2028         // because the ordering of `impl_candidates` may not be deterministic:
2029         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
2030         //
2031         // Prefer more similar candidates first, then sort lexicographically
2032         // by their normalized string representation.
2033         let mut normalized_impl_candidates_and_similarities = impl_candidates
2034             .into_iter()
2035             .map(|ImplCandidate { trait_ref, similarity }| {
2036                 // FIXME(compiler-errors): This should be using `NormalizeExt::normalize`
2037                 let normalized = self
2038                     .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
2039                     .query_normalize(trait_ref)
2040                     .map_or(trait_ref, |normalized| normalized.value);
2041                 (similarity, normalized)
2042             })
2043             .collect::<Vec<_>>();
2044         normalized_impl_candidates_and_similarities.sort();
2045         normalized_impl_candidates_and_similarities.dedup();
2046
2047         let normalized_impl_candidates = normalized_impl_candidates_and_similarities
2048             .into_iter()
2049             .map(|(_, normalized)| normalized)
2050             .collect::<Vec<_>>();
2051
2052         report(normalized_impl_candidates, err)
2053     }
2054
2055     /// Gets the parent trait chain start
2056     fn get_parent_trait_ref(
2057         &self,
2058         code: &ObligationCauseCode<'tcx>,
2059     ) -> Option<(String, Option<Span>)> {
2060         match code {
2061             ObligationCauseCode::BuiltinDerivedObligation(data) => {
2062                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2063                 match self.get_parent_trait_ref(&data.parent_code) {
2064                     Some(t) => Some(t),
2065                     None => {
2066                         let ty = parent_trait_ref.skip_binder().self_ty();
2067                         let span = TyCategory::from_ty(self.tcx, ty)
2068                             .map(|(_, def_id)| self.tcx.def_span(def_id));
2069                         Some((ty.to_string(), span))
2070                     }
2071                 }
2072             }
2073             ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
2074                 self.get_parent_trait_ref(&parent_code)
2075             }
2076             _ => None,
2077         }
2078     }
2079
2080     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
2081     /// with the same path as `trait_ref`, a help message about
2082     /// a probable version mismatch is added to `err`
2083     fn note_version_mismatch(
2084         &self,
2085         err: &mut Diagnostic,
2086         trait_ref: &ty::PolyTraitRef<'tcx>,
2087     ) -> bool {
2088         let get_trait_impl = |trait_def_id| {
2089             self.tcx.find_map_relevant_impl(trait_def_id, trait_ref.skip_binder().self_ty(), Some)
2090         };
2091         let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
2092         let traits_with_same_path: std::collections::BTreeSet<_> = self
2093             .tcx
2094             .all_traits()
2095             .filter(|trait_def_id| *trait_def_id != trait_ref.def_id())
2096             .filter(|trait_def_id| self.tcx.def_path_str(*trait_def_id) == required_trait_path)
2097             .collect();
2098         let mut suggested = false;
2099         for trait_with_same_path in traits_with_same_path {
2100             if let Some(impl_def_id) = get_trait_impl(trait_with_same_path) {
2101                 let impl_span = self.tcx.def_span(impl_def_id);
2102                 err.span_help(impl_span, "trait impl with same name found");
2103                 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
2104                 let crate_msg = format!(
2105                     "perhaps two different versions of crate `{}` are being used?",
2106                     trait_crate
2107                 );
2108                 err.note(&crate_msg);
2109                 suggested = true;
2110             }
2111         }
2112         suggested
2113     }
2114
2115     fn mk_trait_obligation_with_new_self_ty(
2116         &self,
2117         param_env: ty::ParamEnv<'tcx>,
2118         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
2119     ) -> PredicateObligation<'tcx> {
2120         let trait_pred =
2121             trait_ref_and_ty.map_bound(|(tr, new_self_ty)| tr.with_self_ty(self.tcx, new_self_ty));
2122
2123         Obligation::new(self.tcx, ObligationCause::dummy(), param_env, trait_pred)
2124     }
2125
2126     #[instrument(skip(self), level = "debug")]
2127     fn maybe_report_ambiguity(
2128         &self,
2129         obligation: &PredicateObligation<'tcx>,
2130         body_id: Option<hir::BodyId>,
2131     ) {
2132         // Unable to successfully determine, probably means
2133         // insufficient type information, but could mean
2134         // ambiguous impls. The latter *ought* to be a
2135         // coherence violation, so we don't report it here.
2136
2137         let predicate = self.resolve_vars_if_possible(obligation.predicate);
2138         let span = obligation.cause.span;
2139
2140         debug!(?predicate, obligation.cause.code = ?obligation.cause.code());
2141
2142         // Ambiguity errors are often caused as fallout from earlier errors.
2143         // We ignore them if this `infcx` is tainted in some cases below.
2144
2145         let bound_predicate = predicate.kind();
2146         let mut err = match bound_predicate.skip_binder() {
2147             ty::PredicateKind::Clause(ty::Clause::Trait(data)) => {
2148                 let trait_ref = bound_predicate.rebind(data.trait_ref);
2149                 debug!(?trait_ref);
2150
2151                 if predicate.references_error() {
2152                     return;
2153                 }
2154
2155                 // This is kind of a hack: it frequently happens that some earlier
2156                 // error prevents types from being fully inferred, and then we get
2157                 // a bunch of uninteresting errors saying something like "<generic
2158                 // #0> doesn't implement Sized".  It may even be true that we
2159                 // could just skip over all checks where the self-ty is an
2160                 // inference variable, but I was afraid that there might be an
2161                 // inference variable created, registered as an obligation, and
2162                 // then never forced by writeback, and hence by skipping here we'd
2163                 // be ignoring the fact that we don't KNOW the type works
2164                 // out. Though even that would probably be harmless, given that
2165                 // we're only talking about builtin traits, which are known to be
2166                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
2167                 // avoid inundating the user with unnecessary errors, but we now
2168                 // check upstream for type errors and don't add the obligations to
2169                 // begin with in those cases.
2170                 if self.tcx.lang_items().sized_trait() == Some(trait_ref.def_id()) {
2171                     if let None = self.tainted_by_errors() {
2172                         self.emit_inference_failure_err(
2173                             body_id,
2174                             span,
2175                             trait_ref.self_ty().skip_binder().into(),
2176                             ErrorCode::E0282,
2177                             false,
2178                         )
2179                         .emit();
2180                     }
2181                     return;
2182                 }
2183
2184                 // Typically, this ambiguity should only happen if
2185                 // there are unresolved type inference variables
2186                 // (otherwise it would suggest a coherence
2187                 // failure). But given #21974 that is not necessarily
2188                 // the case -- we can have multiple where clauses that
2189                 // are only distinguished by a region, which results
2190                 // in an ambiguity even when all types are fully
2191                 // known, since we don't dispatch based on region
2192                 // relationships.
2193
2194                 // Pick the first substitution that still contains inference variables as the one
2195                 // we're going to emit an error for. If there are none (see above), fall back to
2196                 // a more general error.
2197                 let subst = data.trait_ref.substs.iter().find(|s| s.has_non_region_infer());
2198
2199                 let mut err = if let Some(subst) = subst {
2200                     self.emit_inference_failure_err(body_id, span, subst, ErrorCode::E0283, true)
2201                 } else {
2202                     struct_span_err!(
2203                         self.tcx.sess,
2204                         span,
2205                         E0283,
2206                         "type annotations needed: cannot satisfy `{}`",
2207                         predicate,
2208                     )
2209                 };
2210
2211                 let obligation = obligation.with(self.tcx, trait_ref);
2212                 let mut selcx = SelectionContext::new(&self);
2213                 match selcx.select_from_obligation(&obligation) {
2214                     Ok(None) => {
2215                         let ambiguities =
2216                             ambiguity::recompute_applicable_impls(self.infcx, &obligation);
2217                         let has_non_region_infer =
2218                             trait_ref.skip_binder().substs.types().any(|t| !t.is_ty_infer());
2219                         // It doesn't make sense to talk about applicable impls if there are more
2220                         // than a handful of them.
2221                         if ambiguities.len() > 1 && ambiguities.len() < 10 && has_non_region_infer {
2222                             if self.tainted_by_errors().is_some() && subst.is_none() {
2223                                 // If `subst.is_none()`, then this is probably two param-env
2224                                 // candidates or impl candidates that are equal modulo lifetimes.
2225                                 // Therefore, if we've already emitted an error, just skip this
2226                                 // one, since it's not particularly actionable.
2227                                 err.cancel();
2228                                 return;
2229                             }
2230                             self.annotate_source_of_ambiguity(&mut err, &ambiguities, predicate);
2231                         } else {
2232                             if self.tainted_by_errors().is_some() {
2233                                 err.cancel();
2234                                 return;
2235                             }
2236                             err.note(&format!("cannot satisfy `{}`", predicate));
2237                             let impl_candidates = self.find_similar_impl_candidates(
2238                                 predicate.to_opt_poly_trait_pred().unwrap(),
2239                             );
2240                             if impl_candidates.len() < 10 {
2241                                 self.report_similar_impl_candidates(
2242                                     impl_candidates,
2243                                     trait_ref,
2244                                     body_id.map(|id| id.hir_id).unwrap_or(obligation.cause.body_id),
2245                                     &mut err,
2246                                     false,
2247                                 );
2248                             }
2249                         }
2250                     }
2251                     _ => {
2252                         if self.tainted_by_errors().is_some() {
2253                             err.cancel();
2254                             return;
2255                         }
2256                         err.note(&format!("cannot satisfy `{}`", predicate));
2257                     }
2258                 }
2259
2260                 if let ObligationCauseCode::ItemObligation(def_id)
2261                 | ObligationCauseCode::ExprItemObligation(def_id, ..) = *obligation.cause.code()
2262                 {
2263                     self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
2264                 }
2265
2266                 if let (Some(body_id), Some(ty::subst::GenericArgKind::Type(_))) =
2267                     (body_id, subst.map(|subst| subst.unpack()))
2268                 {
2269                     struct FindExprBySpan<'hir> {
2270                         span: Span,
2271                         result: Option<&'hir hir::Expr<'hir>>,
2272                     }
2273
2274                     impl<'v> hir::intravisit::Visitor<'v> for FindExprBySpan<'v> {
2275                         fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
2276                             if self.span == ex.span {
2277                                 self.result = Some(ex);
2278                             } else {
2279                                 hir::intravisit::walk_expr(self, ex);
2280                             }
2281                         }
2282                     }
2283
2284                     let mut expr_finder = FindExprBySpan { span, result: None };
2285
2286                     expr_finder.visit_expr(&self.tcx.hir().body(body_id).value);
2287
2288                     if let Some(hir::Expr {
2289                         kind: hir::ExprKind::Path(hir::QPath::Resolved(None, path)), .. }
2290                     ) = expr_finder.result
2291                         && let [
2292                             ..,
2293                             trait_path_segment @ hir::PathSegment {
2294                                 res: rustc_hir::def::Res::Def(rustc_hir::def::DefKind::Trait, trait_id),
2295                                 ..
2296                             },
2297                             hir::PathSegment {
2298                                 ident: assoc_item_name,
2299                                 res: rustc_hir::def::Res::Def(_, item_id),
2300                                 ..
2301                             }
2302                         ] = path.segments
2303                         && data.trait_ref.def_id == *trait_id
2304                         && self.tcx.trait_of_item(*item_id) == Some(*trait_id)
2305                         && let None = self.tainted_by_errors()
2306                     {
2307                         let (verb, noun) = match self.tcx.associated_item(item_id).kind {
2308                             ty::AssocKind::Const => ("refer to the", "constant"),
2309                             ty::AssocKind::Fn => ("call", "function"),
2310                             ty::AssocKind::Type => ("refer to the", "type"), // this is already covered by E0223, but this single match arm doesn't hurt here
2311                         };
2312
2313                         // Replace the more general E0283 with a more specific error
2314                         err.cancel();
2315                         err = self.tcx.sess.struct_span_err_with_code(
2316                             span,
2317                             &format!(
2318                                 "cannot {verb} associated {noun} on trait without specifying the corresponding `impl` type",
2319                              ),
2320                             rustc_errors::error_code!(E0790),
2321                         );
2322
2323                         if let Some(local_def_id) = data.trait_ref.def_id.as_local()
2324                             && let Some(hir::Node::Item(hir::Item { ident: trait_name, kind: hir::ItemKind::Trait(_, _, _, _, trait_item_refs), .. })) = self.tcx.hir().find_by_def_id(local_def_id)
2325                             && let Some(method_ref) = trait_item_refs.iter().find(|item_ref| item_ref.ident == *assoc_item_name) {
2326                             err.span_label(method_ref.span, format!("`{}::{}` defined here", trait_name, assoc_item_name));
2327                         }
2328
2329                         err.span_label(span, format!("cannot {verb} associated {noun} of trait"));
2330
2331                         let trait_impls = self.tcx.trait_impls_of(data.trait_ref.def_id);
2332
2333                         if trait_impls.blanket_impls().is_empty()
2334                             && let Some(impl_def_id) = trait_impls.non_blanket_impls().values().flatten().next()
2335                         {
2336                             let non_blanket_impl_count = trait_impls.non_blanket_impls().values().flatten().count();
2337                             let message = if non_blanket_impl_count == 1 {
2338                                 "use the fully-qualified path to the only available implementation".to_string()
2339                             } else {
2340                                 format!(
2341                                     "use a fully-qualified path to a specific available implementation ({} found)",
2342                                     non_blanket_impl_count
2343                                 )
2344                             };
2345                             let mut suggestions = vec![(
2346                                 path.span.shrink_to_lo(),
2347                                 format!("<{} as ", self.tcx.type_of(impl_def_id))
2348                             )];
2349                             if let Some(generic_arg) = trait_path_segment.args {
2350                                 let between_span = trait_path_segment.ident.span.between(generic_arg.span_ext);
2351                                 // get rid of :: between Trait and <type>
2352                                 // must be '::' between them, otherwise the parser won't accept the code
2353                                 suggestions.push((between_span, "".to_string(),));
2354                                 suggestions.push((generic_arg.span_ext.shrink_to_hi(), ">".to_string()));
2355                             } else {
2356                                 suggestions.push((trait_path_segment.ident.span.shrink_to_hi(), ">".to_string()));
2357                             }
2358                             err.multipart_suggestion(
2359                                 message,
2360                                 suggestions,
2361                                 Applicability::MaybeIncorrect
2362                             );
2363                         }
2364                     }
2365                 };
2366
2367                 err
2368             }
2369
2370             ty::PredicateKind::WellFormed(arg) => {
2371                 // Same hacky approach as above to avoid deluging user
2372                 // with error messages.
2373                 if arg.references_error()
2374                     || self.tcx.sess.has_errors().is_some()
2375                     || self.tainted_by_errors().is_some()
2376                 {
2377                     return;
2378                 }
2379
2380                 self.emit_inference_failure_err(body_id, span, arg, ErrorCode::E0282, false)
2381             }
2382
2383             ty::PredicateKind::Subtype(data) => {
2384                 if data.references_error()
2385                     || self.tcx.sess.has_errors().is_some()
2386                     || self.tainted_by_errors().is_some()
2387                 {
2388                     // no need to overload user in such cases
2389                     return;
2390                 }
2391                 let SubtypePredicate { a_is_expected: _, a, b } = data;
2392                 // both must be type variables, or the other would've been instantiated
2393                 assert!(a.is_ty_var() && b.is_ty_var());
2394                 self.emit_inference_failure_err(body_id, span, a.into(), ErrorCode::E0282, true)
2395             }
2396             ty::PredicateKind::Clause(ty::Clause::Projection(data)) => {
2397                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2398                     return;
2399                 }
2400                 let subst = data
2401                     .projection_ty
2402                     .substs
2403                     .iter()
2404                     .chain(Some(data.term.into_arg()))
2405                     .find(|g| g.has_non_region_infer());
2406                 if let Some(subst) = subst {
2407                     let mut err = self.emit_inference_failure_err(
2408                         body_id,
2409                         span,
2410                         subst,
2411                         ErrorCode::E0284,
2412                         true,
2413                     );
2414                     err.note(&format!("cannot satisfy `{}`", predicate));
2415                     err
2416                 } else {
2417                     // If we can't find a substitution, just print a generic error
2418                     let mut err = struct_span_err!(
2419                         self.tcx.sess,
2420                         span,
2421                         E0284,
2422                         "type annotations needed: cannot satisfy `{}`",
2423                         predicate,
2424                     );
2425                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2426                     err
2427                 }
2428             }
2429
2430             ty::PredicateKind::ConstEvaluatable(data) => {
2431                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2432                     return;
2433                 }
2434                 let subst = data.walk().find(|g| g.is_non_region_infer());
2435                 if let Some(subst) = subst {
2436                     let err = self.emit_inference_failure_err(
2437                         body_id,
2438                         span,
2439                         subst,
2440                         ErrorCode::E0284,
2441                         true,
2442                     );
2443                     err
2444                 } else {
2445                     // If we can't find a substitution, just print a generic error
2446                     let mut err = struct_span_err!(
2447                         self.tcx.sess,
2448                         span,
2449                         E0284,
2450                         "type annotations needed: cannot satisfy `{}`",
2451                         predicate,
2452                     );
2453                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2454                     err
2455                 }
2456             }
2457             _ => {
2458                 if self.tcx.sess.has_errors().is_some() || self.tainted_by_errors().is_some() {
2459                     return;
2460                 }
2461                 let mut err = struct_span_err!(
2462                     self.tcx.sess,
2463                     span,
2464                     E0284,
2465                     "type annotations needed: cannot satisfy `{}`",
2466                     predicate,
2467                 );
2468                 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2469                 err
2470             }
2471         };
2472         self.note_obligation_cause(&mut err, obligation);
2473         err.emit();
2474     }
2475
2476     fn annotate_source_of_ambiguity(
2477         &self,
2478         err: &mut Diagnostic,
2479         ambiguities: &[ambiguity::Ambiguity],
2480         predicate: ty::Predicate<'tcx>,
2481     ) {
2482         let mut spans = vec![];
2483         let mut crates = vec![];
2484         let mut post = vec![];
2485         let mut has_param_env = false;
2486         for ambiguity in ambiguities {
2487             match ambiguity {
2488                 ambiguity::Ambiguity::DefId(impl_def_id) => {
2489                     match self.tcx.span_of_impl(*impl_def_id) {
2490                         Ok(span) => spans.push(span),
2491                         Err(name) => {
2492                             crates.push(name);
2493                             if let Some(header) = to_pretty_impl_header(self.tcx, *impl_def_id) {
2494                                 post.push(header);
2495                             }
2496                         }
2497                     }
2498                 }
2499                 ambiguity::Ambiguity::ParamEnv(span) => {
2500                     has_param_env = true;
2501                     spans.push(*span);
2502                 }
2503             }
2504         }
2505         let mut crate_names: Vec<_> = crates.iter().map(|n| format!("`{}`", n)).collect();
2506         crate_names.sort();
2507         crate_names.dedup();
2508         post.sort();
2509         post.dedup();
2510
2511         if self.tainted_by_errors().is_some()
2512             && (crate_names.len() == 1
2513                 && spans.len() == 0
2514                 && ["`core`", "`alloc`", "`std`"].contains(&crate_names[0].as_str())
2515                 || predicate.visit_with(&mut HasNumericInferVisitor).is_break())
2516         {
2517             // Avoid complaining about other inference issues for expressions like
2518             // `42 >> 1`, where the types are still `{integer}`, but we want to
2519             // Do we need `trait_ref.skip_binder().self_ty().is_numeric() &&` too?
2520             // NOTE(eddyb) this was `.cancel()`, but `err`
2521             // is borrowed, so we can't fully defuse it.
2522             err.downgrade_to_delayed_bug();
2523             return;
2524         }
2525
2526         let msg = format!(
2527             "multiple `impl`s{} satisfying `{}` found",
2528             if has_param_env { " or `where` clauses" } else { "" },
2529             predicate
2530         );
2531         let post = if post.len() > 1 || (post.len() == 1 && post[0].contains('\n')) {
2532             format!(":\n{}", post.iter().map(|p| format!("- {}", p)).collect::<Vec<_>>().join("\n"),)
2533         } else if post.len() == 1 {
2534             format!(": `{}`", post[0])
2535         } else {
2536             String::new()
2537         };
2538
2539         match (spans.len(), crates.len(), crate_names.len()) {
2540             (0, 0, 0) => {
2541                 err.note(&format!("cannot satisfy `{}`", predicate));
2542             }
2543             (0, _, 1) => {
2544                 err.note(&format!("{} in the `{}` crate{}", msg, crates[0], post,));
2545             }
2546             (0, _, _) => {
2547                 err.note(&format!(
2548                     "{} in the following crates: {}{}",
2549                     msg,
2550                     crate_names.join(", "),
2551                     post,
2552                 ));
2553             }
2554             (_, 0, 0) => {
2555                 let span: MultiSpan = spans.into();
2556                 err.span_note(span, &msg);
2557             }
2558             (_, 1, 1) => {
2559                 let span: MultiSpan = spans.into();
2560                 err.span_note(span, &msg);
2561                 err.note(
2562                     &format!("and another `impl` found in the `{}` crate{}", crates[0], post,),
2563                 );
2564             }
2565             _ => {
2566                 let span: MultiSpan = spans.into();
2567                 err.span_note(span, &msg);
2568                 err.note(&format!(
2569                     "and more `impl`s found in the following crates: {}{}",
2570                     crate_names.join(", "),
2571                     post,
2572                 ));
2573             }
2574         }
2575     }
2576
2577     /// Returns `true` if the trait predicate may apply for *some* assignment
2578     /// to the type parameters.
2579     fn predicate_can_apply(
2580         &self,
2581         param_env: ty::ParamEnv<'tcx>,
2582         pred: ty::PolyTraitPredicate<'tcx>,
2583     ) -> bool {
2584         struct ParamToVarFolder<'a, 'tcx> {
2585             infcx: &'a InferCtxt<'tcx>,
2586             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2587         }
2588
2589         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
2590             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
2591                 self.infcx.tcx
2592             }
2593
2594             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2595                 if let ty::Param(ty::ParamTy { name, .. }) = *ty.kind() {
2596                     let infcx = self.infcx;
2597                     *self.var_map.entry(ty).or_insert_with(|| {
2598                         infcx.next_ty_var(TypeVariableOrigin {
2599                             kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
2600                             span: DUMMY_SP,
2601                         })
2602                     })
2603                 } else {
2604                     ty.super_fold_with(self)
2605                 }
2606             }
2607         }
2608
2609         self.probe(|_| {
2610             let cleaned_pred =
2611                 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2612
2613             let InferOk { value: cleaned_pred, .. } =
2614                 self.infcx.at(&ObligationCause::dummy(), param_env).normalize(cleaned_pred);
2615
2616             let obligation =
2617                 Obligation::new(self.tcx, ObligationCause::dummy(), param_env, cleaned_pred);
2618
2619             self.predicate_may_hold(&obligation)
2620         })
2621     }
2622
2623     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>) {
2624         // First, attempt to add note to this error with an async-await-specific
2625         // message, and fall back to regular note otherwise.
2626         if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2627             self.note_obligation_cause_code(
2628                 err,
2629                 obligation.predicate,
2630                 obligation.param_env,
2631                 obligation.cause.code(),
2632                 &mut vec![],
2633                 &mut Default::default(),
2634             );
2635             self.suggest_unsized_bound_if_applicable(err, obligation);
2636         }
2637     }
2638
2639     #[instrument(level = "debug", skip_all)]
2640     fn suggest_unsized_bound_if_applicable(
2641         &self,
2642         err: &mut Diagnostic,
2643         obligation: &PredicateObligation<'tcx>,
2644     ) {
2645         let ty::PredicateKind::Clause(ty::Clause::Trait(pred)) = obligation.predicate.kind().skip_binder() else { return; };
2646         let (ObligationCauseCode::BindingObligation(item_def_id, span)
2647         | ObligationCauseCode::ExprBindingObligation(item_def_id, span, ..))
2648             = *obligation.cause.code().peel_derives() else { return; };
2649         debug!(?pred, ?item_def_id, ?span);
2650
2651         let (Some(node), true) = (
2652             self.tcx.hir().get_if_local(item_def_id),
2653             Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
2654         ) else {
2655             return;
2656         };
2657         self.maybe_suggest_unsized_generics(err, span, node);
2658     }
2659
2660     #[instrument(level = "debug", skip_all)]
2661     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>) {
2662         let Some(generics) = node.generics() else {
2663             return;
2664         };
2665         let sized_trait = self.tcx.lang_items().sized_trait();
2666         debug!(?generics.params);
2667         debug!(?generics.predicates);
2668         let Some(param) = generics.params.iter().find(|param| param.span == span) else {
2669             return;
2670         };
2671         // Check that none of the explicit trait bounds is `Sized`. Assume that an explicit
2672         // `Sized` bound is there intentionally and we don't need to suggest relaxing it.
2673         let explicitly_sized = generics
2674             .bounds_for_param(param.def_id)
2675             .flat_map(|bp| bp.bounds)
2676             .any(|bound| bound.trait_ref().and_then(|tr| tr.trait_def_id()) == sized_trait);
2677         if explicitly_sized {
2678             return;
2679         }
2680         debug!(?param);
2681         match node {
2682             hir::Node::Item(
2683                 item @ hir::Item {
2684                     // Only suggest indirection for uses of type parameters in ADTs.
2685                     kind:
2686                         hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..),
2687                     ..
2688                 },
2689             ) => {
2690                 if self.maybe_indirection_for_unsized(err, item, param) {
2691                     return;
2692                 }
2693             }
2694             _ => {}
2695         };
2696         // Didn't add an indirection suggestion, so add a general suggestion to relax `Sized`.
2697         let (span, separator) = if let Some(s) = generics.bounds_span_for_suggestions(param.def_id)
2698         {
2699             (s, " +")
2700         } else {
2701             (span.shrink_to_hi(), ":")
2702         };
2703         err.span_suggestion_verbose(
2704             span,
2705             "consider relaxing the implicit `Sized` restriction",
2706             format!("{} ?Sized", separator),
2707             Applicability::MachineApplicable,
2708         );
2709     }
2710
2711     fn maybe_indirection_for_unsized(
2712         &self,
2713         err: &mut Diagnostic,
2714         item: &Item<'tcx>,
2715         param: &GenericParam<'tcx>,
2716     ) -> bool {
2717         // Suggesting `T: ?Sized` is only valid in an ADT if `T` is only used in a
2718         // borrow. `struct S<'a, T: ?Sized>(&'a T);` is valid, `struct S<T: ?Sized>(T);`
2719         // is not. Look for invalid "bare" parameter uses, and suggest using indirection.
2720         let mut visitor =
2721             FindTypeParam { param: param.name.ident().name, invalid_spans: vec![], nested: false };
2722         visitor.visit_item(item);
2723         if visitor.invalid_spans.is_empty() {
2724             return false;
2725         }
2726         let mut multispan: MultiSpan = param.span.into();
2727         multispan.push_span_label(
2728             param.span,
2729             format!("this could be changed to `{}: ?Sized`...", param.name.ident()),
2730         );
2731         for sp in visitor.invalid_spans {
2732             multispan.push_span_label(
2733                 sp,
2734                 format!("...if indirection were used here: `Box<{}>`", param.name.ident()),
2735             );
2736         }
2737         err.span_help(
2738             multispan,
2739             &format!(
2740                 "you could relax the implicit `Sized` bound on `{T}` if it were \
2741                 used through indirection like `&{T}` or `Box<{T}>`",
2742                 T = param.name.ident(),
2743             ),
2744         );
2745         true
2746     }
2747
2748     fn is_recursive_obligation(
2749         &self,
2750         obligated_types: &mut Vec<Ty<'tcx>>,
2751         cause_code: &ObligationCauseCode<'tcx>,
2752     ) -> bool {
2753         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
2754             let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2755             let self_ty = parent_trait_ref.skip_binder().self_ty();
2756             if obligated_types.iter().any(|ot| ot == &self_ty) {
2757                 return true;
2758             }
2759             if let ty::Adt(def, substs) = self_ty.kind()
2760                 && let [arg] = &substs[..]
2761                 && let ty::subst::GenericArgKind::Type(ty) = arg.unpack()
2762                 && let ty::Adt(inner_def, _) = ty.kind()
2763                 && inner_def == def
2764             {
2765                 return true;
2766             }
2767         }
2768         false
2769     }
2770 }
2771
2772 /// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
2773 /// `param: ?Sized` would be a valid constraint.
2774 struct FindTypeParam {
2775     param: rustc_span::Symbol,
2776     invalid_spans: Vec<Span>,
2777     nested: bool,
2778 }
2779
2780 impl<'v> Visitor<'v> for FindTypeParam {
2781     fn visit_where_predicate(&mut self, _: &'v hir::WherePredicate<'v>) {
2782         // Skip where-clauses, to avoid suggesting indirection for type parameters found there.
2783     }
2784
2785     fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2786         // We collect the spans of all uses of the "bare" type param, like in `field: T` or
2787         // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
2788         // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
2789         // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
2790         // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
2791         // in that case should make what happened clear enough.
2792         match ty.kind {
2793             hir::TyKind::Ptr(_) | hir::TyKind::Ref(..) | hir::TyKind::TraitObject(..) => {}
2794             hir::TyKind::Path(hir::QPath::Resolved(None, path))
2795                 if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
2796             {
2797                 if !self.nested {
2798                     debug!(?ty, "FindTypeParam::visit_ty");
2799                     self.invalid_spans.push(ty.span);
2800                 }
2801             }
2802             hir::TyKind::Path(_) => {
2803                 let prev = self.nested;
2804                 self.nested = true;
2805                 hir::intravisit::walk_ty(self, ty);
2806                 self.nested = prev;
2807             }
2808             _ => {
2809                 hir::intravisit::walk_ty(self, ty);
2810             }
2811         }
2812     }
2813 }
2814
2815 /// Summarizes information
2816 #[derive(Clone)]
2817 pub enum ArgKind {
2818     /// An argument of non-tuple type. Parameters are (name, ty)
2819     Arg(String, String),
2820
2821     /// An argument of tuple type. For a "found" argument, the span is
2822     /// the location in the source of the pattern. For an "expected"
2823     /// argument, it will be None. The vector is a list of (name, ty)
2824     /// strings for the components of the tuple.
2825     Tuple(Option<Span>, Vec<(String, String)>),
2826 }
2827
2828 impl ArgKind {
2829     fn empty() -> ArgKind {
2830         ArgKind::Arg("_".to_owned(), "_".to_owned())
2831     }
2832
2833     /// Creates an `ArgKind` from the expected type of an
2834     /// argument. It has no name (`_`) and an optional source span.
2835     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
2836         match t.kind() {
2837             ty::Tuple(tys) => ArgKind::Tuple(
2838                 span,
2839                 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
2840             ),
2841             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
2842         }
2843     }
2844 }
2845
2846 struct HasNumericInferVisitor;
2847
2848 impl<'tcx> ty::TypeVisitor<'tcx> for HasNumericInferVisitor {
2849     type BreakTy = ();
2850
2851     fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
2852         if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
2853             ControlFlow::Break(())
2854         } else {
2855             ControlFlow::CONTINUE
2856         }
2857     }
2858 }
2859
2860 pub enum DefIdOrName {
2861     DefId(DefId),
2862     Name(&'static str),
2863 }