]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs
Rollup merge of #106509 - estebank:closure-in-block, r=davidtwco
[rust.git] / compiler / rustc_trait_selection / src / traits / error_reporting / mod.rs
1 mod ambiguity;
2 pub mod method_chain;
3 pub mod on_unimplemented;
4 pub mod suggestions;
5
6 use super::{
7     FulfillmentError, FulfillmentErrorCode, MismatchedProjectionTypes, Obligation, ObligationCause,
8     ObligationCauseCode, ObligationCtxt, OutputTypeParameterMismatch, Overflow,
9     PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
10 };
11 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
12 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
13 use crate::infer::{self, InferCtxt};
14 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
15 use crate::traits::query::normalize::QueryNormalizeExt as _;
16 use crate::traits::specialize::to_pretty_impl_header;
17 use crate::traits::NormalizeExt;
18 use on_unimplemented::OnUnimplementedNote;
19 use on_unimplemented::TypeErrCtxtExt as _;
20 use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
21 use rustc_errors::{
22     pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
23     MultiSpan, Style,
24 };
25 use rustc_hir as hir;
26 use rustc_hir::def::Namespace;
27 use rustc_hir::def_id::DefId;
28 use rustc_hir::intravisit::Visitor;
29 use rustc_hir::GenericParam;
30 use rustc_hir::Item;
31 use rustc_hir::Node;
32 use rustc_infer::infer::error_reporting::TypeErrCtxt;
33 use rustc_infer::infer::{InferOk, TypeTrace};
34 use rustc_middle::traits::select::OverflowError;
35 use rustc_middle::ty::abstract_const::NotConstEvaluatable;
36 use rustc_middle::ty::error::{ExpectedFound, TypeError};
37 use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
38 use rustc_middle::ty::print::{with_forced_trimmed_paths, FmtPrinter, Print};
39 use rustc_middle::ty::{
40     self, SubtypePredicate, ToPolyTraitRef, ToPredicate, TraitRef, Ty, TyCtxt, TypeFoldable,
41     TypeVisitable,
42 };
43 use rustc_session::config::TraitSolver;
44 use rustc_session::Limit;
45 use rustc_span::def_id::LOCAL_CRATE;
46 use rustc_span::symbol::sym;
47 use rustc_span::{ExpnKind, Span, DUMMY_SP};
48 use std::fmt;
49 use std::iter;
50 use std::ops::ControlFlow;
51 use suggestions::TypeErrCtxtExt as _;
52
53 pub use rustc_infer::traits::error_reporting::*;
54
55 // When outputting impl candidates, prefer showing those that are more similar.
56 //
57 // We also compare candidates after skipping lifetimes, which has a lower
58 // priority than exact matches.
59 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
60 pub enum CandidateSimilarity {
61     Exact { ignoring_lifetimes: bool },
62     Fuzzy { ignoring_lifetimes: bool },
63 }
64
65 #[derive(Debug, Clone, Copy)]
66 pub struct ImplCandidate<'tcx> {
67     pub trait_ref: ty::TraitRef<'tcx>,
68     pub similarity: CandidateSimilarity,
69 }
70
71 pub trait InferCtxtExt<'tcx> {
72     /// Given some node representing a fn-like thing in the HIR map,
73     /// returns a span and `ArgKind` information that describes the
74     /// arguments it expects. This can be supplied to
75     /// `report_arg_count_mismatch`.
76     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)>;
77
78     /// Reports an error when the number of arguments needed by a
79     /// trait match doesn't match the number that the expression
80     /// provides.
81     fn report_arg_count_mismatch(
82         &self,
83         span: Span,
84         found_span: Option<Span>,
85         expected_args: Vec<ArgKind>,
86         found_args: Vec<ArgKind>,
87         is_closure: bool,
88         closure_pipe_span: Option<Span>,
89     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>;
90
91     /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
92     /// in that order, and returns the generic type corresponding to the
93     /// argument of that trait (corresponding to the closure arguments).
94     fn type_implements_fn_trait(
95         &self,
96         param_env: ty::ParamEnv<'tcx>,
97         ty: ty::Binder<'tcx, Ty<'tcx>>,
98         constness: ty::BoundConstness,
99         polarity: ty::ImplPolarity,
100     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()>;
101 }
102
103 pub trait TypeErrCtxtExt<'tcx> {
104     fn report_overflow_error<T>(
105         &self,
106         predicate: &T,
107         span: Span,
108         suggest_increasing_limit: bool,
109         mutate: impl FnOnce(&mut Diagnostic),
110     ) -> !
111     where
112         T: fmt::Display
113             + TypeFoldable<'tcx>
114             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
115         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug;
116
117     fn report_fulfillment_errors(
118         &self,
119         errors: &[FulfillmentError<'tcx>],
120         body_id: Option<hir::BodyId>,
121     ) -> ErrorGuaranteed;
122
123     fn report_overflow_obligation<T>(
124         &self,
125         obligation: &Obligation<'tcx, T>,
126         suggest_increasing_limit: bool,
127     ) -> !
128     where
129         T: ToPredicate<'tcx> + Clone;
130
131     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic);
132
133     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
134
135     /// The `root_obligation` parameter should be the `root_obligation` field
136     /// from a `FulfillmentError`. If no `FulfillmentError` is available,
137     /// then it should be the same as `obligation`.
138     fn report_selection_error(
139         &self,
140         obligation: PredicateObligation<'tcx>,
141         root_obligation: &PredicateObligation<'tcx>,
142         error: &SelectionError<'tcx>,
143     );
144 }
145
146 impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
147     /// Given some node representing a fn-like thing in the HIR map,
148     /// returns a span and `ArgKind` information that describes the
149     /// arguments it expects. This can be supplied to
150     /// `report_arg_count_mismatch`.
151     fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Option<Span>, Vec<ArgKind>)> {
152         let sm = self.tcx.sess.source_map();
153         let hir = self.tcx.hir();
154         Some(match node {
155             Node::Expr(&hir::Expr {
156                 kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, fn_arg_span, .. }),
157                 ..
158             }) => (
159                 fn_decl_span,
160                 fn_arg_span,
161                 hir.body(body)
162                     .params
163                     .iter()
164                     .map(|arg| {
165                         if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
166                             *arg.pat
167                         {
168                             Some(ArgKind::Tuple(
169                                 Some(span),
170                                 args.iter()
171                                     .map(|pat| {
172                                         sm.span_to_snippet(pat.span)
173                                             .ok()
174                                             .map(|snippet| (snippet, "_".to_owned()))
175                                     })
176                                     .collect::<Option<Vec<_>>>()?,
177                             ))
178                         } else {
179                             let name = sm.span_to_snippet(arg.pat.span).ok()?;
180                             Some(ArgKind::Arg(name, "_".to_owned()))
181                         }
182                     })
183                     .collect::<Option<Vec<ArgKind>>>()?,
184             ),
185             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(ref sig, ..), .. })
186             | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
187             | Node::TraitItem(&hir::TraitItem {
188                 kind: hir::TraitItemKind::Fn(ref sig, _), ..
189             }) => (
190                 sig.span,
191                 None,
192                 sig.decl
193                     .inputs
194                     .iter()
195                     .map(|arg| match arg.kind {
196                         hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
197                             Some(arg.span),
198                             vec![("_".to_owned(), "_".to_owned()); tys.len()],
199                         ),
200                         _ => ArgKind::empty(),
201                     })
202                     .collect::<Vec<ArgKind>>(),
203             ),
204             Node::Ctor(ref variant_data) => {
205                 let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| hir.span(id));
206                 (span, None, vec![ArgKind::empty(); variant_data.fields().len()])
207             }
208             _ => panic!("non-FnLike node found: {:?}", node),
209         })
210     }
211
212     /// Reports an error when the number of arguments needed by a
213     /// trait match doesn't match the number that the expression
214     /// provides.
215     fn report_arg_count_mismatch(
216         &self,
217         span: Span,
218         found_span: Option<Span>,
219         expected_args: Vec<ArgKind>,
220         found_args: Vec<ArgKind>,
221         is_closure: bool,
222         closure_arg_span: Option<Span>,
223     ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
224         let kind = if is_closure { "closure" } else { "function" };
225
226         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
227             let arg_length = arguments.len();
228             let distinct = matches!(other, &[ArgKind::Tuple(..)]);
229             match (arg_length, arguments.get(0)) {
230                 (1, Some(ArgKind::Tuple(_, fields))) => {
231                     format!("a single {}-tuple as argument", fields.len())
232                 }
233                 _ => format!(
234                     "{} {}argument{}",
235                     arg_length,
236                     if distinct && arg_length > 1 { "distinct " } else { "" },
237                     pluralize!(arg_length)
238                 ),
239             }
240         };
241
242         let expected_str = args_str(&expected_args, &found_args);
243         let found_str = args_str(&found_args, &expected_args);
244
245         let mut err = struct_span_err!(
246             self.tcx.sess,
247             span,
248             E0593,
249             "{} is expected to take {}, but it takes {}",
250             kind,
251             expected_str,
252             found_str,
253         );
254
255         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
256
257         if let Some(found_span) = found_span {
258             err.span_label(found_span, format!("takes {}", found_str));
259
260             // Suggest to take and ignore the arguments with expected_args_length `_`s if
261             // found arguments is empty (assume the user just wants to ignore args in this case).
262             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
263             if found_args.is_empty() && is_closure {
264                 let underscores = vec!["_"; expected_args.len()].join(", ");
265                 err.span_suggestion_verbose(
266                     closure_arg_span.unwrap_or(found_span),
267                     &format!(
268                         "consider changing the closure to take and ignore the expected argument{}",
269                         pluralize!(expected_args.len())
270                     ),
271                     format!("|{}|", underscores),
272                     Applicability::MachineApplicable,
273                 );
274             }
275
276             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
277                 if fields.len() == expected_args.len() {
278                     let sugg = fields
279                         .iter()
280                         .map(|(name, _)| name.to_owned())
281                         .collect::<Vec<String>>()
282                         .join(", ");
283                     err.span_suggestion_verbose(
284                         found_span,
285                         "change the closure to take multiple arguments instead of a single tuple",
286                         format!("|{}|", sugg),
287                         Applicability::MachineApplicable,
288                     );
289                 }
290             }
291             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
292                 && fields.len() == found_args.len()
293                 && is_closure
294             {
295                 let sugg = format!(
296                     "|({}){}|",
297                     found_args
298                         .iter()
299                         .map(|arg| match arg {
300                             ArgKind::Arg(name, _) => name.to_owned(),
301                             _ => "_".to_owned(),
302                         })
303                         .collect::<Vec<String>>()
304                         .join(", "),
305                     // add type annotations if available
306                     if found_args.iter().any(|arg| match arg {
307                         ArgKind::Arg(_, ty) => ty != "_",
308                         _ => false,
309                     }) {
310                         format!(
311                             ": ({})",
312                             fields
313                                 .iter()
314                                 .map(|(_, ty)| ty.to_owned())
315                                 .collect::<Vec<String>>()
316                                 .join(", ")
317                         )
318                     } else {
319                         String::new()
320                     },
321                 );
322                 err.span_suggestion_verbose(
323                     found_span,
324                     "change the closure to accept a tuple instead of individual arguments",
325                     sugg,
326                     Applicability::MachineApplicable,
327                 );
328             }
329         }
330
331         err
332     }
333
334     fn type_implements_fn_trait(
335         &self,
336         param_env: ty::ParamEnv<'tcx>,
337         ty: ty::Binder<'tcx, Ty<'tcx>>,
338         constness: ty::BoundConstness,
339         polarity: ty::ImplPolarity,
340     ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
341         self.commit_if_ok(|_| {
342             for trait_def_id in [
343                 self.tcx.lang_items().fn_trait(),
344                 self.tcx.lang_items().fn_mut_trait(),
345                 self.tcx.lang_items().fn_once_trait(),
346             ] {
347                 let Some(trait_def_id) = trait_def_id else { continue };
348                 // Make a fresh inference variable so we can determine what the substitutions
349                 // of the trait are.
350                 let var = self.next_ty_var(TypeVariableOrigin {
351                     span: DUMMY_SP,
352                     kind: TypeVariableOriginKind::MiscVariable,
353                 });
354                 let trait_ref = self.tcx.mk_trait_ref(trait_def_id, [ty.skip_binder(), var]);
355                 let obligation = Obligation::new(
356                     self.tcx,
357                     ObligationCause::dummy(),
358                     param_env,
359                     ty.rebind(ty::TraitPredicate { trait_ref, constness, polarity }),
360                 );
361                 let ocx = ObligationCtxt::new_in_snapshot(self);
362                 ocx.register_obligation(obligation);
363                 if ocx.select_all_or_error().is_empty() {
364                     return Ok((
365                         self.tcx
366                             .fn_trait_kind_from_def_id(trait_def_id)
367                             .expect("expected to map DefId to ClosureKind"),
368                         ty.rebind(self.resolve_vars_if_possible(var)),
369                     ));
370                 }
371             }
372
373             Err(())
374         })
375     }
376 }
377 impl<'tcx> TypeErrCtxtExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
378     fn report_fulfillment_errors(
379         &self,
380         errors: &[FulfillmentError<'tcx>],
381         body_id: Option<hir::BodyId>,
382     ) -> ErrorGuaranteed {
383         #[derive(Debug)]
384         struct ErrorDescriptor<'tcx> {
385             predicate: ty::Predicate<'tcx>,
386             index: Option<usize>, // None if this is an old error
387         }
388
389         let mut error_map: FxIndexMap<_, Vec<_>> = self
390             .reported_trait_errors
391             .borrow()
392             .iter()
393             .map(|(&span, predicates)| {
394                 (
395                     span,
396                     predicates
397                         .iter()
398                         .map(|&predicate| ErrorDescriptor { predicate, index: None })
399                         .collect(),
400                 )
401             })
402             .collect();
403
404         for (index, error) in errors.iter().enumerate() {
405             // We want to ignore desugarings here: spans are equivalent even
406             // if one is the result of a desugaring and the other is not.
407             let mut span = error.obligation.cause.span;
408             let expn_data = span.ctxt().outer_expn_data();
409             if let ExpnKind::Desugaring(_) = expn_data.kind {
410                 span = expn_data.call_site;
411             }
412
413             error_map.entry(span).or_default().push(ErrorDescriptor {
414                 predicate: error.obligation.predicate,
415                 index: Some(index),
416             });
417
418             self.reported_trait_errors
419                 .borrow_mut()
420                 .entry(span)
421                 .or_default()
422                 .push(error.obligation.predicate);
423         }
424
425         // We do this in 2 passes because we want to display errors in order, though
426         // maybe it *is* better to sort errors by span or something.
427         let mut is_suppressed = vec![false; errors.len()];
428         for (_, error_set) in error_map.iter() {
429             // We want to suppress "duplicate" errors with the same span.
430             for error in error_set {
431                 if let Some(index) = error.index {
432                     // Suppress errors that are either:
433                     // 1) strictly implied by another error.
434                     // 2) implied by an error with a smaller index.
435                     for error2 in error_set {
436                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
437                             // Avoid errors being suppressed by already-suppressed
438                             // errors, to prevent all errors from being suppressed
439                             // at once.
440                             continue;
441                         }
442
443                         if self.error_implies(error2.predicate, error.predicate)
444                             && !(error2.index >= error.index
445                                 && self.error_implies(error.predicate, error2.predicate))
446                         {
447                             info!("skipping {:?} (implied by {:?})", error, error2);
448                             is_suppressed[index] = true;
449                             break;
450                         }
451                     }
452                 }
453             }
454         }
455
456         for (error, suppressed) in iter::zip(errors, is_suppressed) {
457             if !suppressed {
458                 self.report_fulfillment_error(error, body_id);
459             }
460         }
461
462         self.tcx.sess.delay_span_bug(DUMMY_SP, "expected fullfillment errors")
463     }
464
465     /// Reports that an overflow has occurred and halts compilation. We
466     /// halt compilation unconditionally because it is important that
467     /// overflows never be masked -- they basically represent computations
468     /// whose result could not be truly determined and thus we can't say
469     /// if the program type checks or not -- and they are unusual
470     /// occurrences in any case.
471     fn report_overflow_error<T>(
472         &self,
473         predicate: &T,
474         span: Span,
475         suggest_increasing_limit: bool,
476         mutate: impl FnOnce(&mut Diagnostic),
477     ) -> !
478     where
479         T: fmt::Display
480             + TypeFoldable<'tcx>
481             + Print<'tcx, FmtPrinter<'tcx, 'tcx>, Output = FmtPrinter<'tcx, 'tcx>>,
482         <T as Print<'tcx, FmtPrinter<'tcx, 'tcx>>>::Error: std::fmt::Debug,
483     {
484         let predicate = self.resolve_vars_if_possible(predicate.clone());
485         let mut pred_str = predicate.to_string();
486
487         if pred_str.len() > 50 {
488             // We don't need to save the type to a file, we will be talking about this type already
489             // in a separate note when we explain the obligation, so it will be available that way.
490             pred_str = predicate
491                 .print(FmtPrinter::new_with_limit(
492                     self.tcx,
493                     Namespace::TypeNS,
494                     rustc_session::Limit(6),
495                 ))
496                 .unwrap()
497                 .into_buffer();
498         }
499         let mut err = struct_span_err!(
500             self.tcx.sess,
501             span,
502             E0275,
503             "overflow evaluating the requirement `{}`",
504             pred_str,
505         );
506
507         if suggest_increasing_limit {
508             self.suggest_new_overflow_limit(&mut err);
509         }
510
511         mutate(&mut err);
512
513         err.emit();
514         self.tcx.sess.abort_if_errors();
515         bug!();
516     }
517
518     /// Reports that an overflow has occurred and halts compilation. We
519     /// halt compilation unconditionally because it is important that
520     /// overflows never be masked -- they basically represent computations
521     /// whose result could not be truly determined and thus we can't say
522     /// if the program type checks or not -- and they are unusual
523     /// occurrences in any case.
524     fn report_overflow_obligation<T>(
525         &self,
526         obligation: &Obligation<'tcx, T>,
527         suggest_increasing_limit: bool,
528     ) -> !
529     where
530         T: ToPredicate<'tcx> + Clone,
531     {
532         let predicate = obligation.predicate.clone().to_predicate(self.tcx);
533         let predicate = self.resolve_vars_if_possible(predicate);
534         self.report_overflow_error(
535             &predicate,
536             obligation.cause.span,
537             suggest_increasing_limit,
538             |err| {
539                 self.note_obligation_cause_code(
540                     err,
541                     predicate,
542                     obligation.param_env,
543                     obligation.cause.code(),
544                     &mut vec![],
545                     &mut Default::default(),
546                 );
547             },
548         );
549     }
550
551     fn suggest_new_overflow_limit(&self, err: &mut Diagnostic) {
552         let suggested_limit = match self.tcx.recursion_limit() {
553             Limit(0) => Limit(2),
554             limit => limit * 2,
555         };
556         err.help(&format!(
557             "consider increasing the recursion limit by adding a \
558              `#![recursion_limit = \"{}\"]` attribute to your crate (`{}`)",
559             suggested_limit,
560             self.tcx.crate_name(LOCAL_CRATE),
561         ));
562     }
563
564     /// Reports that a cycle was detected which led to overflow and halts
565     /// compilation. This is equivalent to `report_overflow_obligation` except
566     /// that we can give a more helpful error message (and, in particular,
567     /// we do not suggest increasing the overflow limit, which is not
568     /// going to help).
569     fn report_overflow_obligation_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
570         let cycle = self.resolve_vars_if_possible(cycle.to_owned());
571         assert!(!cycle.is_empty());
572
573         debug!(?cycle, "report_overflow_error_cycle");
574
575         // The 'deepest' obligation is most likely to have a useful
576         // cause 'backtrace'
577         self.report_overflow_obligation(
578             cycle.iter().max_by_key(|p| p.recursion_depth).unwrap(),
579             false,
580         );
581     }
582
583     fn report_selection_error(
584         &self,
585         mut obligation: PredicateObligation<'tcx>,
586         root_obligation: &PredicateObligation<'tcx>,
587         error: &SelectionError<'tcx>,
588     ) {
589         let tcx = self.tcx;
590         let mut span = obligation.cause.span;
591         // FIXME: statically guarantee this by tainting after the diagnostic is emitted
592         self.set_tainted_by_errors(
593             tcx.sess.delay_span_bug(span, "`report_selection_error` did not emit an error"),
594         );
595
596         let mut err = match *error {
597             SelectionError::Unimplemented => {
598                 // If this obligation was generated as a result of well-formedness checking, see if we
599                 // can get a better error message by performing HIR-based well-formedness checking.
600                 if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
601                     root_obligation.cause.code().peel_derives()
602                     && !obligation.predicate.has_non_region_infer()
603                 {
604                     if let Some(cause) = self
605                         .tcx
606                         .diagnostic_hir_wf_check((tcx.erase_regions(obligation.predicate), *wf_loc))
607                     {
608                         obligation.cause = cause.clone();
609                         span = obligation.cause.span;
610                     }
611                 }
612                 if let ObligationCauseCode::CompareImplItemObligation {
613                     impl_item_def_id,
614                     trait_item_def_id,
615                     kind: _,
616                 } = *obligation.cause.code()
617                 {
618                     self.report_extra_impl_obligation(
619                         span,
620                         impl_item_def_id,
621                         trait_item_def_id,
622                         &format!("`{}`", obligation.predicate),
623                     )
624                     .emit();
625                     return;
626                 }
627
628                 let bound_predicate = obligation.predicate.kind();
629                 match bound_predicate.skip_binder() {
630                     ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => {
631                         let trait_predicate = bound_predicate.rebind(trait_predicate);
632                         let mut trait_predicate = self.resolve_vars_if_possible(trait_predicate);
633
634                         trait_predicate.remap_constness_diag(obligation.param_env);
635                         let predicate_is_const = ty::BoundConstness::ConstIfConst
636                             == trait_predicate.skip_binder().constness;
637
638                         if self.tcx.sess.has_errors().is_some()
639                             && trait_predicate.references_error()
640                         {
641                             return;
642                         }
643                         let trait_ref = trait_predicate.to_poly_trait_ref();
644                         let (post_message, pre_message, type_def) = self
645                             .get_parent_trait_ref(obligation.cause.code())
646                             .map(|(t, s)| {
647                                 (
648                                     format!(" in `{}`", t),
649                                     format!("within `{}`, ", t),
650                                     s.map(|s| (format!("within this `{}`", t), s)),
651                                 )
652                             })
653                             .unwrap_or_default();
654
655                         let OnUnimplementedNote {
656                             message,
657                             label,
658                             note,
659                             parent_label,
660                             append_const_msg,
661                         } = self.on_unimplemented_note(trait_ref, &obligation);
662                         let have_alt_message = message.is_some() || label.is_some();
663                         let is_try_conversion = self.is_try_conversion(span, trait_ref.def_id());
664                         let is_unsize =
665                             Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait();
666                         let (message, note, append_const_msg) = if is_try_conversion {
667                             (
668                                 Some(format!(
669                                     "`?` couldn't convert the error to `{}`",
670                                     trait_ref.skip_binder().self_ty(),
671                                 )),
672                                 Some(
673                                     "the question mark operation (`?`) implicitly performs a \
674                                      conversion on the error value using the `From` trait"
675                                         .to_owned(),
676                                 ),
677                                 Some(None),
678                             )
679                         } else {
680                             (message, note, append_const_msg)
681                         };
682
683                         let mut err = struct_span_err!(
684                             self.tcx.sess,
685                             span,
686                             E0277,
687                             "{}",
688                             message
689                                 .and_then(|cannot_do_this| {
690                                     match (predicate_is_const, append_const_msg) {
691                                         // do nothing if predicate is not const
692                                         (false, _) => Some(cannot_do_this),
693                                         // suggested using default post message
694                                         (true, Some(None)) => {
695                                             Some(format!("{cannot_do_this} in const contexts"))
696                                         }
697                                         // overridden post message
698                                         (true, Some(Some(post_message))) => {
699                                             Some(format!("{cannot_do_this}{post_message}"))
700                                         }
701                                         // fallback to generic message
702                                         (true, None) => None,
703                                     }
704                                 })
705                                 .unwrap_or_else(|| format!(
706                                     "the trait bound `{}` is not satisfied{}",
707                                     trait_predicate, post_message,
708                                 ))
709                         );
710
711                         if is_try_conversion && let Some(ret_span) = self.return_type_span(&obligation) {
712                             err.span_label(
713                                 ret_span,
714                                 &format!(
715                                     "expected `{}` because of this",
716                                     trait_ref.skip_binder().self_ty()
717                                 ),
718                             );
719                         }
720
721                         if Some(trait_ref.def_id()) == tcx.lang_items().tuple_trait() {
722                             match obligation.cause.code().peel_derives() {
723                                 ObligationCauseCode::RustCall => {
724                                     err.set_primary_message("functions with the \"rust-call\" ABI must take a single non-self tuple argument");
725                                 }
726                                 ObligationCauseCode::BindingObligation(def_id, _)
727                                 | ObligationCauseCode::ItemObligation(def_id)
728                                     if tcx.is_fn_trait(*def_id) =>
729                                 {
730                                     err.code(rustc_errors::error_code!(E0059));
731                                     err.set_primary_message(format!(
732                                         "type parameter to bare `{}` trait must be a tuple",
733                                         tcx.def_path_str(*def_id)
734                                     ));
735                                 }
736                                 _ => {}
737                             }
738                         }
739
740                         if Some(trait_ref.def_id()) == tcx.lang_items().drop_trait()
741                             && predicate_is_const
742                         {
743                             err.note("`~const Drop` was renamed to `~const Destruct`");
744                             err.note("See <https://github.com/rust-lang/rust/pull/94901> for more details");
745                         }
746
747                         let explanation = if let ObligationCauseCode::MainFunctionType =
748                             obligation.cause.code()
749                         {
750                             "consider using `()`, or a `Result`".to_owned()
751                         } else {
752                             let ty_desc = match trait_ref.skip_binder().self_ty().kind() {
753                                 ty::FnDef(_, _) => Some("fn item"),
754                                 ty::Closure(_, _) => Some("closure"),
755                                 _ => None,
756                             };
757
758                             match ty_desc {
759                                 Some(desc) => format!(
760                                     "{}the trait `{}` is not implemented for {} `{}`",
761                                     pre_message,
762                                     trait_predicate.print_modifiers_and_trait_path(),
763                                     desc,
764                                     trait_ref.skip_binder().self_ty(),
765                                 ),
766                                 None => format!(
767                                     "{}the trait `{}` is not implemented for `{}`",
768                                     pre_message,
769                                     trait_predicate.print_modifiers_and_trait_path(),
770                                     trait_ref.skip_binder().self_ty(),
771                                 ),
772                             }
773                         };
774                         self.check_for_binding_assigned_block_without_tail_expression(
775                             &obligation,
776                             &mut err,
777                             trait_predicate,
778                         );
779                         if self.suggest_add_reference_to_arg(
780                             &obligation,
781                             &mut err,
782                             trait_predicate,
783                             have_alt_message,
784                         ) {
785                             self.note_obligation_cause(&mut err, &obligation);
786                             err.emit();
787                             return;
788                         }
789                         if let Some(ref s) = label {
790                             // If it has a custom `#[rustc_on_unimplemented]`
791                             // error message, let's display it as the label!
792                             err.span_label(span, s);
793                             if !matches!(trait_ref.skip_binder().self_ty().kind(), ty::Param(_)) {
794                                 // When the self type is a type param We don't need to "the trait
795                                 // `std::marker::Sized` is not implemented for `T`" as we will point
796                                 // at the type param with a label to suggest constraining it.
797                                 err.help(&explanation);
798                             }
799                         } else {
800                             err.span_label(span, explanation);
801                         }
802
803                         if let ObligationCauseCode::ObjectCastObligation(concrete_ty, obj_ty) = obligation.cause.code().peel_derives() &&
804                             Some(trait_ref.def_id()) == self.tcx.lang_items().sized_trait() {
805                             self.suggest_borrowing_for_object_cast(&mut err, &root_obligation, *concrete_ty, *obj_ty);
806                         }
807
808                         let mut unsatisfied_const = false;
809                         if trait_predicate.is_const_if_const() && obligation.param_env.is_const() {
810                             let non_const_predicate = trait_ref.without_const();
811                             let non_const_obligation = Obligation {
812                                 cause: obligation.cause.clone(),
813                                 param_env: obligation.param_env.without_const(),
814                                 predicate: non_const_predicate.to_predicate(tcx),
815                                 recursion_depth: obligation.recursion_depth,
816                             };
817                             if self.predicate_may_hold(&non_const_obligation) {
818                                 unsatisfied_const = true;
819                                 err.span_note(
820                                     span,
821                                     &format!(
822                                         "the trait `{}` is implemented for `{}`, \
823                                         but that implementation is not `const`",
824                                         non_const_predicate.print_modifiers_and_trait_path(),
825                                         trait_ref.skip_binder().self_ty(),
826                                     ),
827                                 );
828                             }
829                         }
830
831                         if let Some((msg, span)) = type_def {
832                             err.span_label(span, &msg);
833                         }
834                         if let Some(ref s) = note {
835                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
836                             err.note(s.as_str());
837                         }
838                         if let Some(ref s) = parent_label {
839                             let body = tcx
840                                 .hir()
841                                 .opt_local_def_id(obligation.cause.body_id)
842                                 .unwrap_or_else(|| {
843                                     tcx.hir().body_owner_def_id(hir::BodyId {
844                                         hir_id: obligation.cause.body_id,
845                                     })
846                                 });
847                             err.span_label(tcx.def_span(body), s);
848                         }
849
850                         self.suggest_floating_point_literal(&obligation, &mut err, &trait_ref);
851                         self.suggest_dereferencing_index(&obligation, &mut err, trait_predicate);
852                         let mut suggested =
853                             self.suggest_dereferences(&obligation, &mut err, trait_predicate);
854                         suggested |= self.suggest_fn_call(&obligation, &mut err, trait_predicate);
855                         suggested |=
856                             self.suggest_remove_reference(&obligation, &mut err, trait_predicate);
857                         suggested |= self.suggest_semicolon_removal(
858                             &obligation,
859                             &mut err,
860                             span,
861                             trait_predicate,
862                         );
863                         self.note_version_mismatch(&mut err, &trait_ref);
864                         self.suggest_remove_await(&obligation, &mut err);
865                         self.suggest_derive(&obligation, &mut err, trait_predicate);
866
867                         if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
868                             self.suggest_await_before_try(
869                                 &mut err,
870                                 &obligation,
871                                 trait_predicate,
872                                 span,
873                             );
874                         }
875
876                         if self.suggest_impl_trait(&mut err, span, &obligation, trait_predicate) {
877                             err.emit();
878                             return;
879                         }
880
881                         if is_unsize {
882                             // If the obligation failed due to a missing implementation of the
883                             // `Unsize` trait, give a pointer to why that might be the case
884                             err.note(
885                                 "all implementations of `Unsize` are provided \
886                                 automatically by the compiler, see \
887                                 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
888                                 for more information",
889                             );
890                         }
891
892                         let is_fn_trait = tcx.is_fn_trait(trait_ref.def_id());
893                         let is_target_feature_fn = if let ty::FnDef(def_id, _) =
894                             *trait_ref.skip_binder().self_ty().kind()
895                         {
896                             !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
897                         } else {
898                             false
899                         };
900                         if is_fn_trait && is_target_feature_fn {
901                             err.note(
902                                 "`#[target_feature]` functions do not implement the `Fn` traits",
903                             );
904                         }
905
906                         // Try to report a help message
907                         if is_fn_trait
908                             && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
909                             obligation.param_env,
910                             trait_ref.self_ty(),
911                             trait_predicate.skip_binder().constness,
912                             trait_predicate.skip_binder().polarity,
913                         )
914                         {
915                             // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
916                             // suggestion to add trait bounds for the type, since we only typically implement
917                             // these traits once.
918
919                             // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
920                             // to implement.
921                             let selected_kind =
922                                 self.tcx.fn_trait_kind_from_def_id(trait_ref.def_id())
923                                     .expect("expected to map DefId to ClosureKind");
924                             if !implemented_kind.extends(selected_kind) {
925                                 err.note(
926                                     &format!(
927                                         "`{}` implements `{}`, but it must implement `{}`, which is more general",
928                                         trait_ref.skip_binder().self_ty(),
929                                         implemented_kind,
930                                         selected_kind
931                                     )
932                                 );
933                             }
934
935                             // Note any argument mismatches
936                             let given_ty = params.skip_binder();
937                             let expected_ty = trait_ref.skip_binder().substs.type_at(1);
938                             if let ty::Tuple(given) = given_ty.kind()
939                                 && let ty::Tuple(expected) = expected_ty.kind()
940                             {
941                                 if expected.len() != given.len() {
942                                     // Note number of types that were expected and given
943                                     err.note(
944                                         &format!(
945                                             "expected a closure taking {} argument{}, but one taking {} argument{} was given",
946                                             given.len(),
947                                             pluralize!(given.len()),
948                                             expected.len(),
949                                             pluralize!(expected.len()),
950                                         )
951                                     );
952                                 } else if !self.same_type_modulo_infer(given_ty, expected_ty) {
953                                     // Print type mismatch
954                                     let (expected_args, given_args) =
955                                         self.cmp(given_ty, expected_ty);
956                                     err.note_expected_found(
957                                         &"a closure with arguments",
958                                         expected_args,
959                                         &"a closure with arguments",
960                                         given_args,
961                                     );
962                                 }
963                             }
964                         } else if !trait_ref.has_non_region_infer()
965                             && self.predicate_can_apply(obligation.param_env, trait_predicate)
966                         {
967                             // If a where-clause may be useful, remind the
968                             // user that they can add it.
969                             //
970                             // don't display an on-unimplemented note, as
971                             // these notes will often be of the form
972                             //     "the type `T` can't be frobnicated"
973                             // which is somewhat confusing.
974                             self.suggest_restricting_param_bound(
975                                 &mut err,
976                                 trait_predicate,
977                                 None,
978                                 obligation.cause.body_id,
979                             );
980                         } else if !suggested && !unsatisfied_const {
981                             // Can't show anything else useful, try to find similar impls.
982                             let impl_candidates = self.find_similar_impl_candidates(trait_predicate);
983                             if !self.report_similar_impl_candidates(
984                                 impl_candidates,
985                                 trait_ref,
986                                 obligation.cause.body_id,
987                                 &mut err,
988                                 true,
989                             ) {
990                                 // This is *almost* equivalent to
991                                 // `obligation.cause.code().peel_derives()`, but it gives us the
992                                 // trait predicate for that corresponding root obligation. This
993                                 // lets us get a derived obligation from a type parameter, like
994                                 // when calling `string.strip_suffix(p)` where `p` is *not* an
995                                 // implementer of `Pattern<'_>`.
996                                 let mut code = obligation.cause.code();
997                                 let mut trait_pred = trait_predicate;
998                                 let mut peeled = false;
999                                 while let Some((parent_code, parent_trait_pred)) = code.parent() {
1000                                     code = parent_code;
1001                                     if let Some(parent_trait_pred) = parent_trait_pred {
1002                                         trait_pred = parent_trait_pred;
1003                                         peeled = true;
1004                                     }
1005                                 }
1006                                 let def_id = trait_pred.def_id();
1007                                 // Mention *all* the `impl`s for the *top most* obligation, the
1008                                 // user might have meant to use one of them, if any found. We skip
1009                                 // auto-traits or fundamental traits that might not be exactly what
1010                                 // the user might expect to be presented with. Instead this is
1011                                 // useful for less general traits.
1012                                 if peeled
1013                                     && !self.tcx.trait_is_auto(def_id)
1014                                     && !self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1015                                 {
1016                                     let trait_ref = trait_pred.to_poly_trait_ref();
1017                                     let impl_candidates =
1018                                         self.find_similar_impl_candidates(trait_pred);
1019                                     self.report_similar_impl_candidates(
1020                                         impl_candidates,
1021                                         trait_ref,
1022                                         obligation.cause.body_id,
1023                                         &mut err,
1024                                         true,
1025                                     );
1026                                 }
1027                             }
1028                         }
1029
1030                         // Changing mutability doesn't make a difference to whether we have
1031                         // an `Unsize` impl (Fixes ICE in #71036)
1032                         if !is_unsize {
1033                             self.suggest_change_mut(&obligation, &mut err, trait_predicate);
1034                         }
1035
1036                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
1037                         // implemented, and fallback has occurred, then it could be due to a
1038                         // variable that used to fallback to `()` now falling back to `!`. Issue a
1039                         // note informing about the change in behaviour.
1040                         if trait_predicate.skip_binder().self_ty().is_never()
1041                             && self.fallback_has_occurred
1042                         {
1043                             let predicate = trait_predicate.map_bound(|trait_pred| {
1044                                 trait_pred.with_self_ty(self.tcx, self.tcx.mk_unit())
1045                             });
1046                             let unit_obligation = obligation.with(tcx, predicate);
1047                             if self.predicate_may_hold(&unit_obligation) {
1048                                 err.note(
1049                                     "this error might have been caused by changes to \
1050                                     Rust's type-inference algorithm (see issue #48950 \
1051                                     <https://github.com/rust-lang/rust/issues/48950> \
1052                                     for more information)",
1053                                 );
1054                                 err.help("did you intend to use the type `()` here instead?");
1055                             }
1056                         }
1057
1058                         // Return early if the trait is Debug or Display and the invocation
1059                         // originates within a standard library macro, because the output
1060                         // is otherwise overwhelming and unhelpful (see #85844 for an
1061                         // example).
1062
1063                         let in_std_macro =
1064                             match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
1065                                 Some(macro_def_id) => {
1066                                     let crate_name = tcx.crate_name(macro_def_id.krate);
1067                                     crate_name == sym::std || crate_name == sym::core
1068                                 }
1069                                 None => false,
1070                             };
1071
1072                         if in_std_macro
1073                             && matches!(
1074                                 self.tcx.get_diagnostic_name(trait_ref.def_id()),
1075                                 Some(sym::Debug | sym::Display)
1076                             )
1077                         {
1078                             err.emit();
1079                             return;
1080                         }
1081
1082                         err
1083                     }
1084
1085                     ty::PredicateKind::Subtype(predicate) => {
1086                         // Errors for Subtype predicates show up as
1087                         // `FulfillmentErrorCode::CodeSubtypeError`,
1088                         // not selection error.
1089                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
1090                     }
1091
1092                     ty::PredicateKind::Coerce(predicate) => {
1093                         // Errors for Coerce predicates show up as
1094                         // `FulfillmentErrorCode::CodeSubtypeError`,
1095                         // not selection error.
1096                         span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
1097                     }
1098
1099                     ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..))
1100                     | ty::PredicateKind::Clause(ty::Clause::Projection(..))
1101                     | ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) => {
1102                         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1103                         struct_span_err!(
1104                             self.tcx.sess,
1105                             span,
1106                             E0280,
1107                             "the requirement `{}` is not satisfied",
1108                             predicate
1109                         )
1110                     }
1111
1112                     ty::PredicateKind::ObjectSafe(trait_def_id) => {
1113                         let violations = self.tcx.object_safety_violations(trait_def_id);
1114                         report_object_safety_error(self.tcx, span, trait_def_id, violations)
1115                     }
1116
1117                     ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => {
1118                         let found_kind = self.closure_kind(closure_substs).unwrap();
1119                         let closure_span = self.tcx.def_span(closure_def_id);
1120                         let mut err = struct_span_err!(
1121                             self.tcx.sess,
1122                             closure_span,
1123                             E0525,
1124                             "expected a closure that implements the `{}` trait, \
1125                              but this closure only implements `{}`",
1126                             kind,
1127                             found_kind
1128                         );
1129
1130                         err.span_label(
1131                             closure_span,
1132                             format!("this closure implements `{}`, not `{}`", found_kind, kind),
1133                         );
1134                         err.span_label(
1135                             obligation.cause.span,
1136                             format!("the requirement to implement `{}` derives from here", kind),
1137                         );
1138
1139                         // Additional context information explaining why the closure only implements
1140                         // a particular trait.
1141                         if let Some(typeck_results) = &self.typeck_results {
1142                             let hir_id = self
1143                                 .tcx
1144                                 .hir()
1145                                 .local_def_id_to_hir_id(closure_def_id.expect_local());
1146                             match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
1147                                 (ty::ClosureKind::FnOnce, Some((span, place))) => {
1148                                     err.span_label(
1149                                         *span,
1150                                         format!(
1151                                             "closure is `FnOnce` because it moves the \
1152                                          variable `{}` out of its environment",
1153                                             ty::place_to_string_for_capture(tcx, place)
1154                                         ),
1155                                     );
1156                                 }
1157                                 (ty::ClosureKind::FnMut, Some((span, place))) => {
1158                                     err.span_label(
1159                                         *span,
1160                                         format!(
1161                                             "closure is `FnMut` because it mutates the \
1162                                          variable `{}` here",
1163                                             ty::place_to_string_for_capture(tcx, place)
1164                                         ),
1165                                     );
1166                                 }
1167                                 _ => {}
1168                             }
1169                         }
1170
1171                         err
1172                     }
1173
1174                     ty::PredicateKind::WellFormed(ty) => {
1175                         if self.tcx.sess.opts.unstable_opts.trait_solver == TraitSolver::Classic {
1176                             // WF predicates cannot themselves make
1177                             // errors. They can only block due to
1178                             // ambiguity; otherwise, they always
1179                             // degenerate into other obligations
1180                             // (which may fail).
1181                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
1182                         } else {
1183                             // FIXME: we'll need a better message which takes into account
1184                             // which bounds actually failed to hold.
1185                             self.tcx.sess.struct_span_err(
1186                                 span,
1187                                 &format!("the type `{}` is not well-formed", ty),
1188                             )
1189                         }
1190                     }
1191
1192                     ty::PredicateKind::ConstEvaluatable(..) => {
1193                         // Errors for `ConstEvaluatable` predicates show up as
1194                         // `SelectionError::ConstEvalFailure`,
1195                         // not `Unimplemented`.
1196                         span_bug!(
1197                             span,
1198                             "const-evaluatable requirement gave wrong error: `{:?}`",
1199                             obligation
1200                         )
1201                     }
1202
1203                     ty::PredicateKind::ConstEquate(..) => {
1204                         // Errors for `ConstEquate` predicates show up as
1205                         // `SelectionError::ConstEvalFailure`,
1206                         // not `Unimplemented`.
1207                         span_bug!(
1208                             span,
1209                             "const-equate requirement gave wrong error: `{:?}`",
1210                             obligation
1211                         )
1212                     }
1213
1214                     ty::PredicateKind::Ambiguous => span_bug!(span, "ambiguous"),
1215
1216                     ty::PredicateKind::TypeWellFormedFromEnv(..) => span_bug!(
1217                         span,
1218                         "TypeWellFormedFromEnv predicate should only exist in the environment"
1219                     ),
1220                 }
1221             }
1222
1223             OutputTypeParameterMismatch(
1224                 found_trait_ref,
1225                 expected_trait_ref,
1226                 terr @ TypeError::CyclicTy(_),
1227             ) => {
1228                 let self_ty = found_trait_ref.self_ty().skip_binder();
1229                 let (cause, terr) = if let ty::Closure(def_id, _) = self_ty.kind() {
1230                     (
1231                         ObligationCause::dummy_with_span(tcx.def_span(def_id)),
1232                         TypeError::CyclicTy(self_ty),
1233                     )
1234                 } else {
1235                     (obligation.cause.clone(), terr)
1236                 };
1237                 self.report_and_explain_type_error(
1238                     TypeTrace::poly_trait_refs(&cause, true, expected_trait_ref, found_trait_ref),
1239                     terr,
1240                 )
1241             }
1242             OutputTypeParameterMismatch(found_trait_ref, expected_trait_ref, _) => {
1243                 let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
1244                 let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
1245
1246                 if expected_trait_ref.self_ty().references_error() {
1247                     return;
1248                 }
1249
1250                 let Some(found_trait_ty) = found_trait_ref.self_ty().no_bound_vars() else {
1251                     return;
1252                 };
1253
1254                 let found_did = match *found_trait_ty.kind() {
1255                     ty::Closure(did, _)
1256                     | ty::Foreign(did)
1257                     | ty::FnDef(did, _)
1258                     | ty::Generator(did, ..) => Some(did),
1259                     ty::Adt(def, _) => Some(def.did()),
1260                     _ => None,
1261                 };
1262
1263                 let found_node = found_did.and_then(|did| self.tcx.hir().get_if_local(did));
1264                 let found_span = found_did.and_then(|did| self.tcx.hir().span_if_local(did));
1265
1266                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
1267                     // We check closures twice, with obligations flowing in different directions,
1268                     // but we want to complain about them only once.
1269                     return;
1270                 }
1271
1272                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
1273
1274                 let mut not_tupled = false;
1275
1276                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind() {
1277                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
1278                     _ => {
1279                         not_tupled = true;
1280                         vec![ArgKind::empty()]
1281                     }
1282                 };
1283
1284                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
1285                 let expected = match expected_ty.kind() {
1286                     ty::Tuple(ref tys) => {
1287                         tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
1288                     }
1289                     _ => {
1290                         not_tupled = true;
1291                         vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())]
1292                     }
1293                 };
1294
1295                 // If this is a `Fn` family trait and either the expected or found
1296                 // is not tupled, then fall back to just a regular mismatch error.
1297                 // This shouldn't be common unless manually implementing one of the
1298                 // traits manually, but don't make it more confusing when it does
1299                 // happen.
1300                 if Some(expected_trait_ref.def_id()) != tcx.lang_items().gen_trait() && not_tupled {
1301                     self.report_and_explain_type_error(
1302                         TypeTrace::poly_trait_refs(
1303                             &obligation.cause,
1304                             true,
1305                             expected_trait_ref,
1306                             found_trait_ref,
1307                         ),
1308                         ty::error::TypeError::Mismatch,
1309                     )
1310                 } else if found.len() == expected.len() {
1311                     self.report_closure_arg_mismatch(
1312                         span,
1313                         found_span,
1314                         found_trait_ref,
1315                         expected_trait_ref,
1316                         obligation.cause.code(),
1317                         found_node,
1318                     )
1319                 } else {
1320                     let (closure_span, closure_arg_span, found) = found_did
1321                         .and_then(|did| {
1322                             let node = self.tcx.hir().get_if_local(did)?;
1323                             let (found_span, closure_arg_span, found) =
1324                                 self.get_fn_like_arguments(node)?;
1325                             Some((Some(found_span), closure_arg_span, found))
1326                         })
1327                         .unwrap_or((found_span, None, found));
1328
1329                     self.report_arg_count_mismatch(
1330                         span,
1331                         closure_span,
1332                         expected,
1333                         found,
1334                         found_trait_ty.is_closure(),
1335                         closure_arg_span,
1336                     )
1337                 }
1338             }
1339
1340             TraitNotObjectSafe(did) => {
1341                 let violations = self.tcx.object_safety_violations(did);
1342                 report_object_safety_error(self.tcx, span, did, violations)
1343             }
1344
1345             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
1346                 bug!(
1347                     "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
1348                 )
1349             }
1350             SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
1351                 if !self.tcx.features().generic_const_exprs {
1352                     let mut err = self.tcx.sess.struct_span_err(
1353                         span,
1354                         "constant expression depends on a generic parameter",
1355                     );
1356                     // FIXME(const_generics): we should suggest to the user how they can resolve this
1357                     // issue. However, this is currently not actually possible
1358                     // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
1359                     //
1360                     // Note that with `feature(generic_const_exprs)` this case should not
1361                     // be reachable.
1362                     err.note("this may fail depending on what value the parameter takes");
1363                     err.emit();
1364                     return;
1365                 }
1366
1367                 match obligation.predicate.kind().skip_binder() {
1368                     ty::PredicateKind::ConstEvaluatable(ct) => {
1369                         let ty::ConstKind::Unevaluated(uv) = ct.kind() else {
1370                             bug!("const evaluatable failed for non-unevaluated const `{ct:?}`");
1371                         };
1372                         let mut err =
1373                             self.tcx.sess.struct_span_err(span, "unconstrained generic constant");
1374                         let const_span = self.tcx.def_span(uv.def.did);
1375                         match self.tcx.sess.source_map().span_to_snippet(const_span) {
1376                             Ok(snippet) => err.help(&format!(
1377                                 "try adding a `where` bound using this expression: `where [(); {}]:`",
1378                                 snippet
1379                             )),
1380                             _ => err.help("consider adding a `where` bound using this expression"),
1381                         };
1382                         err
1383                     }
1384                     _ => {
1385                         span_bug!(
1386                             span,
1387                             "unexpected non-ConstEvaluatable predicate, this should not be reachable"
1388                         )
1389                     }
1390                 }
1391             }
1392
1393             // Already reported in the query.
1394             SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(_)) => {
1395                 // FIXME(eddyb) remove this once `ErrorGuaranteed` becomes a proof token.
1396                 self.tcx.sess.delay_span_bug(span, "`ErrorGuaranteed` without an error");
1397                 return;
1398             }
1399             // Already reported.
1400             Overflow(OverflowError::Error(_)) => {
1401                 self.tcx.sess.delay_span_bug(span, "`OverflowError` has been reported");
1402                 return;
1403             }
1404             Overflow(_) => {
1405                 bug!("overflow should be handled before the `report_selection_error` path");
1406             }
1407             SelectionError::ErrorReporting => {
1408                 bug!("ErrorReporting Overflow should not reach `report_selection_err` call")
1409             }
1410         };
1411
1412         self.note_obligation_cause(&mut err, &obligation);
1413         self.point_at_returns_when_relevant(&mut err, &obligation);
1414         err.emit();
1415     }
1416 }
1417
1418 trait InferCtxtPrivExt<'tcx> {
1419     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1420     // `error` occurring implies that `cond` occurs.
1421     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
1422
1423     fn report_fulfillment_error(
1424         &self,
1425         error: &FulfillmentError<'tcx>,
1426         body_id: Option<hir::BodyId>,
1427     );
1428
1429     fn report_projection_error(
1430         &self,
1431         obligation: &PredicateObligation<'tcx>,
1432         error: &MismatchedProjectionTypes<'tcx>,
1433     );
1434
1435     fn maybe_detailed_projection_msg(
1436         &self,
1437         pred: ty::ProjectionPredicate<'tcx>,
1438         normalized_ty: ty::Term<'tcx>,
1439         expected_ty: ty::Term<'tcx>,
1440     ) -> Option<String>;
1441
1442     fn fuzzy_match_tys(
1443         &self,
1444         a: Ty<'tcx>,
1445         b: Ty<'tcx>,
1446         ignoring_lifetimes: bool,
1447     ) -> Option<CandidateSimilarity>;
1448
1449     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
1450
1451     fn find_similar_impl_candidates(
1452         &self,
1453         trait_pred: ty::PolyTraitPredicate<'tcx>,
1454     ) -> Vec<ImplCandidate<'tcx>>;
1455
1456     fn report_similar_impl_candidates(
1457         &self,
1458         impl_candidates: Vec<ImplCandidate<'tcx>>,
1459         trait_ref: ty::PolyTraitRef<'tcx>,
1460         body_id: hir::HirId,
1461         err: &mut Diagnostic,
1462         other: bool,
1463     ) -> bool;
1464
1465     /// Gets the parent trait chain start
1466     fn get_parent_trait_ref(
1467         &self,
1468         code: &ObligationCauseCode<'tcx>,
1469     ) -> Option<(String, Option<Span>)>;
1470
1471     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1472     /// with the same path as `trait_ref`, a help message about
1473     /// a probable version mismatch is added to `err`
1474     fn note_version_mismatch(
1475         &self,
1476         err: &mut Diagnostic,
1477         trait_ref: &ty::PolyTraitRef<'tcx>,
1478     ) -> bool;
1479
1480     /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1481     /// `trait_ref`.
1482     ///
1483     /// For this to work, `new_self_ty` must have no escaping bound variables.
1484     fn mk_trait_obligation_with_new_self_ty(
1485         &self,
1486         param_env: ty::ParamEnv<'tcx>,
1487         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
1488     ) -> PredicateObligation<'tcx>;
1489
1490     fn maybe_report_ambiguity(
1491         &self,
1492         obligation: &PredicateObligation<'tcx>,
1493         body_id: Option<hir::BodyId>,
1494     );
1495
1496     fn predicate_can_apply(
1497         &self,
1498         param_env: ty::ParamEnv<'tcx>,
1499         pred: ty::PolyTraitPredicate<'tcx>,
1500     ) -> bool;
1501
1502     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>);
1503
1504     fn suggest_unsized_bound_if_applicable(
1505         &self,
1506         err: &mut Diagnostic,
1507         obligation: &PredicateObligation<'tcx>,
1508     );
1509
1510     fn annotate_source_of_ambiguity(
1511         &self,
1512         err: &mut Diagnostic,
1513         impls: &[ambiguity::Ambiguity],
1514         predicate: ty::Predicate<'tcx>,
1515     );
1516
1517     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>);
1518
1519     fn maybe_indirection_for_unsized(
1520         &self,
1521         err: &mut Diagnostic,
1522         item: &'tcx Item<'tcx>,
1523         param: &'tcx GenericParam<'tcx>,
1524     ) -> bool;
1525
1526     fn is_recursive_obligation(
1527         &self,
1528         obligated_types: &mut Vec<Ty<'tcx>>,
1529         cause_code: &ObligationCauseCode<'tcx>,
1530     ) -> bool;
1531 }
1532
1533 impl<'tcx> InferCtxtPrivExt<'tcx> for TypeErrCtxt<'_, 'tcx> {
1534     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1535     // `error` occurring implies that `cond` occurs.
1536     fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1537         if cond == error {
1538             return true;
1539         }
1540
1541         // FIXME: It should be possible to deal with `ForAll` in a cleaner way.
1542         let bound_error = error.kind();
1543         let (cond, error) = match (cond.kind().skip_binder(), bound_error.skip_binder()) {
1544             (
1545                 ty::PredicateKind::Clause(ty::Clause::Trait(..)),
1546                 ty::PredicateKind::Clause(ty::Clause::Trait(error)),
1547             ) => (cond, bound_error.rebind(error)),
1548             _ => {
1549                 // FIXME: make this work in other cases too.
1550                 return false;
1551             }
1552         };
1553
1554         for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1555             let bound_predicate = obligation.predicate.kind();
1556             if let ty::PredicateKind::Clause(ty::Clause::Trait(implication)) =
1557                 bound_predicate.skip_binder()
1558             {
1559                 let error = error.to_poly_trait_ref();
1560                 let implication = bound_predicate.rebind(implication.trait_ref);
1561                 // FIXME: I'm just not taking associated types at all here.
1562                 // Eventually I'll need to implement param-env-aware
1563                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1564                 let param_env = ty::ParamEnv::empty();
1565                 if self.can_sub(param_env, error, implication).is_ok() {
1566                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1567                     return true;
1568                 }
1569             }
1570         }
1571
1572         false
1573     }
1574
1575     #[instrument(skip(self), level = "debug")]
1576     fn report_fulfillment_error(
1577         &self,
1578         error: &FulfillmentError<'tcx>,
1579         body_id: Option<hir::BodyId>,
1580     ) {
1581         match error.code {
1582             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1583                 self.report_selection_error(
1584                     error.obligation.clone(),
1585                     &error.root_obligation,
1586                     selection_error,
1587                 );
1588             }
1589             FulfillmentErrorCode::CodeProjectionError(ref e) => {
1590                 self.report_projection_error(&error.obligation, e);
1591             }
1592             FulfillmentErrorCode::CodeAmbiguity => {
1593                 self.maybe_report_ambiguity(&error.obligation, body_id);
1594             }
1595             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1596                 self.report_mismatched_types(
1597                     &error.obligation.cause,
1598                     expected_found.expected,
1599                     expected_found.found,
1600                     *err,
1601                 )
1602                 .emit();
1603             }
1604             FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1605                 let mut diag = self.report_mismatched_consts(
1606                     &error.obligation.cause,
1607                     expected_found.expected,
1608                     expected_found.found,
1609                     *err,
1610                 );
1611                 let code = error.obligation.cause.code().peel_derives().peel_match_impls();
1612                 if let ObligationCauseCode::BindingObligation(..)
1613                 | ObligationCauseCode::ItemObligation(..)
1614                 | ObligationCauseCode::ExprBindingObligation(..)
1615                 | ObligationCauseCode::ExprItemObligation(..) = code
1616                 {
1617                     self.note_obligation_cause_code(
1618                         &mut diag,
1619                         error.obligation.predicate,
1620                         error.obligation.param_env,
1621                         code,
1622                         &mut vec![],
1623                         &mut Default::default(),
1624                     );
1625                 }
1626                 diag.emit();
1627             }
1628             FulfillmentErrorCode::CodeCycle(ref cycle) => {
1629                 self.report_overflow_obligation_cycle(cycle);
1630             }
1631         }
1632     }
1633
1634     #[instrument(level = "debug", skip_all)]
1635     fn report_projection_error(
1636         &self,
1637         obligation: &PredicateObligation<'tcx>,
1638         error: &MismatchedProjectionTypes<'tcx>,
1639     ) {
1640         let predicate = self.resolve_vars_if_possible(obligation.predicate);
1641
1642         if predicate.references_error() {
1643             return;
1644         }
1645
1646         self.probe(|_| {
1647             let ocx = ObligationCtxt::new_in_snapshot(self);
1648
1649             // try to find the mismatched types to report the error with.
1650             //
1651             // this can fail if the problem was higher-ranked, in which
1652             // cause I have no idea for a good error message.
1653             let bound_predicate = predicate.kind();
1654             let (values, err) = if let ty::PredicateKind::Clause(ty::Clause::Projection(data)) =
1655                 bound_predicate.skip_binder()
1656             {
1657                 let data = self.replace_bound_vars_with_fresh_vars(
1658                     obligation.cause.span,
1659                     infer::LateBoundRegionConversionTime::HigherRankedType,
1660                     bound_predicate.rebind(data),
1661                 );
1662                 let unnormalized_term = match data.term.unpack() {
1663                     ty::TermKind::Ty(_) => self
1664                         .tcx
1665                         .mk_projection(data.projection_ty.def_id, data.projection_ty.substs)
1666                         .into(),
1667                     ty::TermKind::Const(ct) => self
1668                         .tcx
1669                         .mk_const(
1670                             ty::UnevaluatedConst {
1671                                 def: ty::WithOptConstParam::unknown(data.projection_ty.def_id),
1672                                 substs: data.projection_ty.substs,
1673                             },
1674                             ct.ty(),
1675                         )
1676                         .into(),
1677                 };
1678                 let normalized_term =
1679                     ocx.normalize(&obligation.cause, obligation.param_env, unnormalized_term);
1680
1681                 debug!(?obligation.cause, ?obligation.param_env);
1682
1683                 debug!(?normalized_term, data.ty = ?data.term);
1684
1685                 let is_normalized_term_expected = !matches!(
1686                     obligation.cause.code().peel_derives(),
1687                     ObligationCauseCode::ItemObligation(_)
1688                         | ObligationCauseCode::BindingObligation(_, _)
1689                         | ObligationCauseCode::ExprItemObligation(..)
1690                         | ObligationCauseCode::ExprBindingObligation(..)
1691                         | ObligationCauseCode::ObjectCastObligation(..)
1692                         | ObligationCauseCode::OpaqueType
1693                 );
1694
1695                 // constrain inference variables a bit more to nested obligations from normalize so
1696                 // we can have more helpful errors.
1697                 ocx.select_where_possible();
1698
1699                 if let Err(new_err) = ocx.eq_exp(
1700                     &obligation.cause,
1701                     obligation.param_env,
1702                     is_normalized_term_expected,
1703                     normalized_term,
1704                     data.term,
1705                 ) {
1706                     (Some((data, is_normalized_term_expected, normalized_term, data.term)), new_err)
1707                 } else {
1708                     (None, error.err)
1709                 }
1710             } else {
1711                 (None, error.err)
1712             };
1713
1714             let msg = values
1715                 .and_then(|(predicate, _, normalized_term, expected_term)| {
1716                     self.maybe_detailed_projection_msg(predicate, normalized_term, expected_term)
1717                 })
1718                 .unwrap_or_else(|| format!("type mismatch resolving `{}`", predicate));
1719             let mut diag = struct_span_err!(self.tcx.sess, obligation.cause.span, E0271, "{msg}");
1720
1721             let secondary_span = match predicate.kind().skip_binder() {
1722                 ty::PredicateKind::Clause(ty::Clause::Projection(proj)) => self
1723                     .tcx
1724                     .opt_associated_item(proj.projection_ty.def_id)
1725                     .and_then(|trait_assoc_item| {
1726                         self.tcx
1727                             .trait_of_item(proj.projection_ty.def_id)
1728                             .map(|id| (trait_assoc_item, id))
1729                     })
1730                     .and_then(|(trait_assoc_item, id)| {
1731                         let trait_assoc_ident = trait_assoc_item.ident(self.tcx);
1732                         self.tcx.find_map_relevant_impl(id, proj.projection_ty.self_ty(), |did| {
1733                             self.tcx
1734                                 .associated_items(did)
1735                                 .in_definition_order()
1736                                 .find(|assoc| assoc.ident(self.tcx) == trait_assoc_ident)
1737                         })
1738                     })
1739                     .and_then(|item| match self.tcx.hir().get_if_local(item.def_id) {
1740                         Some(
1741                             hir::Node::TraitItem(hir::TraitItem {
1742                                 kind: hir::TraitItemKind::Type(_, Some(ty)),
1743                                 ..
1744                             })
1745                             | hir::Node::ImplItem(hir::ImplItem {
1746                                 kind: hir::ImplItemKind::Type(ty),
1747                                 ..
1748                             }),
1749                         ) => Some((ty.span, format!("type mismatch resolving `{}`", predicate))),
1750                         _ => None,
1751                     }),
1752                 _ => None,
1753             };
1754             self.note_type_err(
1755                 &mut diag,
1756                 &obligation.cause,
1757                 secondary_span,
1758                 values.map(|(_, is_normalized_ty_expected, normalized_ty, expected_ty)| {
1759                     infer::ValuePairs::Terms(ExpectedFound::new(
1760                         is_normalized_ty_expected,
1761                         normalized_ty,
1762                         expected_ty,
1763                     ))
1764                 }),
1765                 err,
1766                 true,
1767                 false,
1768             );
1769             self.note_obligation_cause(&mut diag, obligation);
1770             diag.emit();
1771         });
1772     }
1773
1774     fn maybe_detailed_projection_msg(
1775         &self,
1776         pred: ty::ProjectionPredicate<'tcx>,
1777         normalized_ty: ty::Term<'tcx>,
1778         expected_ty: ty::Term<'tcx>,
1779     ) -> Option<String> {
1780         let trait_def_id = pred.projection_ty.trait_def_id(self.tcx);
1781         let self_ty = pred.projection_ty.self_ty();
1782
1783         with_forced_trimmed_paths! {
1784             if Some(pred.projection_ty.def_id) == self.tcx.lang_items().fn_once_output() {
1785                 Some(format!(
1786                     "expected `{self_ty}` to be a {fn_kind} that returns `{expected_ty}`, but it \
1787                      returns `{normalized_ty}`",
1788                     fn_kind = self_ty.prefix_string(self.tcx)
1789                 ))
1790             } else if Some(trait_def_id) == self.tcx.lang_items().future_trait() {
1791                 Some(format!(
1792                     "expected `{self_ty}` to be a future that resolves to `{expected_ty}`, but it \
1793                      resolves to `{normalized_ty}`"
1794                 ))
1795             } else if Some(trait_def_id) == self.tcx.get_diagnostic_item(sym::Iterator) {
1796                 Some(format!(
1797                     "expected `{self_ty}` to be an iterator that yields `{expected_ty}`, but it \
1798                      yields `{normalized_ty}`"
1799                 ))
1800             } else {
1801                 None
1802             }
1803         }
1804     }
1805
1806     fn fuzzy_match_tys(
1807         &self,
1808         mut a: Ty<'tcx>,
1809         mut b: Ty<'tcx>,
1810         ignoring_lifetimes: bool,
1811     ) -> Option<CandidateSimilarity> {
1812         /// returns the fuzzy category of a given type, or None
1813         /// if the type can be equated to any type.
1814         fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1815             match t.kind() {
1816                 ty::Bool => Some(0),
1817                 ty::Char => Some(1),
1818                 ty::Str => Some(2),
1819                 ty::Adt(def, _) if Some(def.did()) == tcx.lang_items().string() => Some(2),
1820                 ty::Int(..)
1821                 | ty::Uint(..)
1822                 | ty::Float(..)
1823                 | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1824                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1825                 ty::Array(..) | ty::Slice(..) => Some(6),
1826                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1827                 ty::Dynamic(..) => Some(8),
1828                 ty::Closure(..) => Some(9),
1829                 ty::Tuple(..) => Some(10),
1830                 ty::Param(..) => Some(11),
1831                 ty::Alias(ty::Projection, ..) => Some(12),
1832                 ty::Alias(ty::Opaque, ..) => Some(13),
1833                 ty::Never => Some(14),
1834                 ty::Adt(..) => Some(15),
1835                 ty::Generator(..) => Some(16),
1836                 ty::Foreign(..) => Some(17),
1837                 ty::GeneratorWitness(..) => Some(18),
1838                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1839             }
1840         }
1841
1842         let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1843             loop {
1844                 match t.kind() {
1845                     ty::Ref(_, inner, _) | ty::RawPtr(ty::TypeAndMut { ty: inner, .. }) => {
1846                         t = *inner
1847                     }
1848                     _ => break t,
1849                 }
1850             }
1851         };
1852
1853         if !ignoring_lifetimes {
1854             a = strip_references(a);
1855             b = strip_references(b);
1856         }
1857
1858         let cat_a = type_category(self.tcx, a)?;
1859         let cat_b = type_category(self.tcx, b)?;
1860         if a == b {
1861             Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1862         } else if cat_a == cat_b {
1863             match (a.kind(), b.kind()) {
1864                 (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1865                 (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1866                 // Matching on references results in a lot of unhelpful
1867                 // suggestions, so let's just not do that for now.
1868                 //
1869                 // We still upgrade successful matches to `ignoring_lifetimes: true`
1870                 // to prioritize that impl.
1871                 (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1872                     self.fuzzy_match_tys(a, b, true).is_some()
1873                 }
1874                 _ => true,
1875             }
1876             .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1877         } else if ignoring_lifetimes {
1878             None
1879         } else {
1880             self.fuzzy_match_tys(a, b, true)
1881         }
1882     }
1883
1884     fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1885         self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1886             hir::GeneratorKind::Gen => "a generator",
1887             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1888             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1889             hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1890         })
1891     }
1892
1893     fn find_similar_impl_candidates(
1894         &self,
1895         trait_pred: ty::PolyTraitPredicate<'tcx>,
1896     ) -> Vec<ImplCandidate<'tcx>> {
1897         let mut candidates: Vec<_> = self
1898             .tcx
1899             .all_impls(trait_pred.def_id())
1900             .filter_map(|def_id| {
1901                 if self.tcx.impl_polarity(def_id) == ty::ImplPolarity::Negative
1902                     || !trait_pred
1903                         .skip_binder()
1904                         .is_constness_satisfied_by(self.tcx.constness(def_id))
1905                 {
1906                     return None;
1907                 }
1908
1909                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1910
1911                 self.fuzzy_match_tys(trait_pred.skip_binder().self_ty(), imp.self_ty(), false)
1912                     .map(|similarity| ImplCandidate { trait_ref: imp, similarity })
1913             })
1914             .collect();
1915         if candidates.iter().any(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. })) {
1916             // If any of the candidates is a perfect match, we don't want to show all of them.
1917             // This is particularly relevant for the case of numeric types (as they all have the
1918             // same cathegory).
1919             candidates.retain(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. }));
1920         }
1921         candidates
1922     }
1923
1924     fn report_similar_impl_candidates(
1925         &self,
1926         impl_candidates: Vec<ImplCandidate<'tcx>>,
1927         trait_ref: ty::PolyTraitRef<'tcx>,
1928         body_id: hir::HirId,
1929         err: &mut Diagnostic,
1930         other: bool,
1931     ) -> bool {
1932         let other = if other { "other " } else { "" };
1933         let report = |mut candidates: Vec<TraitRef<'tcx>>, err: &mut Diagnostic| {
1934             candidates.sort();
1935             candidates.dedup();
1936             let len = candidates.len();
1937             if candidates.len() == 0 {
1938                 return false;
1939             }
1940             if candidates.len() == 1 {
1941                 let ty_desc = match candidates[0].self_ty().kind() {
1942                     ty::FnPtr(_) => Some("fn pointer"),
1943                     _ => None,
1944                 };
1945                 let the_desc = match ty_desc {
1946                     Some(desc) => format!(" implemented for {} `", desc),
1947                     None => " implemented for `".to_string(),
1948                 };
1949                 err.highlighted_help(vec![
1950                     (
1951                         format!("the trait `{}` ", candidates[0].print_only_trait_path()),
1952                         Style::NoStyle,
1953                     ),
1954                     ("is".to_string(), Style::Highlight),
1955                     (the_desc, Style::NoStyle),
1956                     (candidates[0].self_ty().to_string(), Style::Highlight),
1957                     ("`".to_string(), Style::NoStyle),
1958                 ]);
1959                 return true;
1960             }
1961             let trait_ref = TraitRef::identity(self.tcx, candidates[0].def_id);
1962             // Check if the trait is the same in all cases. If so, we'll only show the type.
1963             let mut traits: Vec<_> =
1964                 candidates.iter().map(|c| c.print_only_trait_path().to_string()).collect();
1965             traits.sort();
1966             traits.dedup();
1967
1968             let mut candidates: Vec<String> = candidates
1969                 .into_iter()
1970                 .map(|c| {
1971                     if traits.len() == 1 {
1972                         format!("\n  {}", c.self_ty())
1973                     } else {
1974                         format!("\n  {}", c)
1975                     }
1976                 })
1977                 .collect();
1978
1979             candidates.sort();
1980             candidates.dedup();
1981             let end = if candidates.len() <= 9 { candidates.len() } else { 8 };
1982             err.help(&format!(
1983                 "the following {other}types implement trait `{}`:{}{}",
1984                 trait_ref.print_only_trait_path(),
1985                 candidates[..end].join(""),
1986                 if len > 9 { format!("\nand {} others", len - 8) } else { String::new() }
1987             ));
1988             true
1989         };
1990
1991         let def_id = trait_ref.def_id();
1992         if impl_candidates.is_empty() {
1993             if self.tcx.trait_is_auto(def_id)
1994                 || self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
1995                 || self.tcx.get_diagnostic_name(def_id).is_some()
1996             {
1997                 // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
1998                 return false;
1999             }
2000             let normalized_impl_candidates: Vec<_> = self
2001                 .tcx
2002                 .all_impls(def_id)
2003                 // Ignore automatically derived impls and `!Trait` impls.
2004                 .filter(|&def_id| {
2005                     self.tcx.impl_polarity(def_id) != ty::ImplPolarity::Negative
2006                         || self.tcx.is_builtin_derive(def_id)
2007                 })
2008                 .filter_map(|def_id| self.tcx.impl_trait_ref(def_id))
2009                 .filter(|trait_ref| {
2010                     let self_ty = trait_ref.self_ty();
2011                     // Avoid mentioning type parameters.
2012                     if let ty::Param(_) = self_ty.kind() {
2013                         false
2014                     }
2015                     // Avoid mentioning types that are private to another crate
2016                     else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
2017                         // FIXME(compiler-errors): This could be generalized, both to
2018                         // be more granular, and probably look past other `#[fundamental]`
2019                         // types, too.
2020                         self.tcx
2021                             .visibility(def.did())
2022                             .is_accessible_from(body_id.owner.def_id, self.tcx)
2023                     } else {
2024                         true
2025                     }
2026                 })
2027                 .collect();
2028             return report(normalized_impl_candidates, err);
2029         }
2030
2031         // Sort impl candidates so that ordering is consistent for UI tests.
2032         // because the ordering of `impl_candidates` may not be deterministic:
2033         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
2034         //
2035         // Prefer more similar candidates first, then sort lexicographically
2036         // by their normalized string representation.
2037         let mut normalized_impl_candidates_and_similarities = impl_candidates
2038             .into_iter()
2039             .map(|ImplCandidate { trait_ref, similarity }| {
2040                 // FIXME(compiler-errors): This should be using `NormalizeExt::normalize`
2041                 let normalized = self
2042                     .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
2043                     .query_normalize(trait_ref)
2044                     .map_or(trait_ref, |normalized| normalized.value);
2045                 (similarity, normalized)
2046             })
2047             .collect::<Vec<_>>();
2048         normalized_impl_candidates_and_similarities.sort();
2049         normalized_impl_candidates_and_similarities.dedup();
2050
2051         let normalized_impl_candidates = normalized_impl_candidates_and_similarities
2052             .into_iter()
2053             .map(|(_, normalized)| normalized)
2054             .collect::<Vec<_>>();
2055
2056         report(normalized_impl_candidates, err)
2057     }
2058
2059     /// Gets the parent trait chain start
2060     fn get_parent_trait_ref(
2061         &self,
2062         code: &ObligationCauseCode<'tcx>,
2063     ) -> Option<(String, Option<Span>)> {
2064         match code {
2065             ObligationCauseCode::BuiltinDerivedObligation(data) => {
2066                 let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2067                 match self.get_parent_trait_ref(&data.parent_code) {
2068                     Some(t) => Some(t),
2069                     None => {
2070                         let ty = parent_trait_ref.skip_binder().self_ty();
2071                         let span = TyCategory::from_ty(self.tcx, ty)
2072                             .map(|(_, def_id)| self.tcx.def_span(def_id));
2073                         Some((ty.to_string(), span))
2074                     }
2075                 }
2076             }
2077             ObligationCauseCode::FunctionArgumentObligation { parent_code, .. } => {
2078                 self.get_parent_trait_ref(&parent_code)
2079             }
2080             _ => None,
2081         }
2082     }
2083
2084     /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
2085     /// with the same path as `trait_ref`, a help message about
2086     /// a probable version mismatch is added to `err`
2087     fn note_version_mismatch(
2088         &self,
2089         err: &mut Diagnostic,
2090         trait_ref: &ty::PolyTraitRef<'tcx>,
2091     ) -> bool {
2092         let get_trait_impl = |trait_def_id| {
2093             self.tcx.find_map_relevant_impl(trait_def_id, trait_ref.skip_binder().self_ty(), Some)
2094         };
2095         let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
2096         let traits_with_same_path: std::collections::BTreeSet<_> = self
2097             .tcx
2098             .all_traits()
2099             .filter(|trait_def_id| *trait_def_id != trait_ref.def_id())
2100             .filter(|trait_def_id| self.tcx.def_path_str(*trait_def_id) == required_trait_path)
2101             .collect();
2102         let mut suggested = false;
2103         for trait_with_same_path in traits_with_same_path {
2104             if let Some(impl_def_id) = get_trait_impl(trait_with_same_path) {
2105                 let impl_span = self.tcx.def_span(impl_def_id);
2106                 err.span_help(impl_span, "trait impl with same name found");
2107                 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
2108                 let crate_msg = format!(
2109                     "perhaps two different versions of crate `{}` are being used?",
2110                     trait_crate
2111                 );
2112                 err.note(&crate_msg);
2113                 suggested = true;
2114             }
2115         }
2116         suggested
2117     }
2118
2119     fn mk_trait_obligation_with_new_self_ty(
2120         &self,
2121         param_env: ty::ParamEnv<'tcx>,
2122         trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
2123     ) -> PredicateObligation<'tcx> {
2124         let trait_pred =
2125             trait_ref_and_ty.map_bound(|(tr, new_self_ty)| tr.with_self_ty(self.tcx, new_self_ty));
2126
2127         Obligation::new(self.tcx, ObligationCause::dummy(), param_env, trait_pred)
2128     }
2129
2130     #[instrument(skip(self), level = "debug")]
2131     fn maybe_report_ambiguity(
2132         &self,
2133         obligation: &PredicateObligation<'tcx>,
2134         body_id: Option<hir::BodyId>,
2135     ) {
2136         // Unable to successfully determine, probably means
2137         // insufficient type information, but could mean
2138         // ambiguous impls. The latter *ought* to be a
2139         // coherence violation, so we don't report it here.
2140
2141         let predicate = self.resolve_vars_if_possible(obligation.predicate);
2142         let span = obligation.cause.span;
2143
2144         debug!(?predicate, obligation.cause.code = ?obligation.cause.code());
2145
2146         // Ambiguity errors are often caused as fallout from earlier errors.
2147         // We ignore them if this `infcx` is tainted in some cases below.
2148
2149         let bound_predicate = predicate.kind();
2150         let mut err = match bound_predicate.skip_binder() {
2151             ty::PredicateKind::Clause(ty::Clause::Trait(data)) => {
2152                 let trait_ref = bound_predicate.rebind(data.trait_ref);
2153                 debug!(?trait_ref);
2154
2155                 if predicate.references_error() {
2156                     return;
2157                 }
2158
2159                 // This is kind of a hack: it frequently happens that some earlier
2160                 // error prevents types from being fully inferred, and then we get
2161                 // a bunch of uninteresting errors saying something like "<generic
2162                 // #0> doesn't implement Sized".  It may even be true that we
2163                 // could just skip over all checks where the self-ty is an
2164                 // inference variable, but I was afraid that there might be an
2165                 // inference variable created, registered as an obligation, and
2166                 // then never forced by writeback, and hence by skipping here we'd
2167                 // be ignoring the fact that we don't KNOW the type works
2168                 // out. Though even that would probably be harmless, given that
2169                 // we're only talking about builtin traits, which are known to be
2170                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
2171                 // avoid inundating the user with unnecessary errors, but we now
2172                 // check upstream for type errors and don't add the obligations to
2173                 // begin with in those cases.
2174                 if self.tcx.lang_items().sized_trait() == Some(trait_ref.def_id()) {
2175                     if let None = self.tainted_by_errors() {
2176                         self.emit_inference_failure_err(
2177                             body_id,
2178                             span,
2179                             trait_ref.self_ty().skip_binder().into(),
2180                             ErrorCode::E0282,
2181                             false,
2182                         )
2183                         .emit();
2184                     }
2185                     return;
2186                 }
2187
2188                 // Typically, this ambiguity should only happen if
2189                 // there are unresolved type inference variables
2190                 // (otherwise it would suggest a coherence
2191                 // failure). But given #21974 that is not necessarily
2192                 // the case -- we can have multiple where clauses that
2193                 // are only distinguished by a region, which results
2194                 // in an ambiguity even when all types are fully
2195                 // known, since we don't dispatch based on region
2196                 // relationships.
2197
2198                 // Pick the first substitution that still contains inference variables as the one
2199                 // we're going to emit an error for. If there are none (see above), fall back to
2200                 // a more general error.
2201                 let subst = data.trait_ref.substs.iter().find(|s| s.has_non_region_infer());
2202
2203                 let mut err = if let Some(subst) = subst {
2204                     self.emit_inference_failure_err(body_id, span, subst, ErrorCode::E0283, true)
2205                 } else {
2206                     struct_span_err!(
2207                         self.tcx.sess,
2208                         span,
2209                         E0283,
2210                         "type annotations needed: cannot satisfy `{}`",
2211                         predicate,
2212                     )
2213                 };
2214
2215                 let obligation = obligation.with(self.tcx, trait_ref);
2216                 let mut selcx = SelectionContext::new(&self);
2217                 match selcx.select_from_obligation(&obligation) {
2218                     Ok(None) => {
2219                         let ambiguities =
2220                             ambiguity::recompute_applicable_impls(self.infcx, &obligation);
2221                         let has_non_region_infer =
2222                             trait_ref.skip_binder().substs.types().any(|t| !t.is_ty_infer());
2223                         // It doesn't make sense to talk about applicable impls if there are more
2224                         // than a handful of them.
2225                         if ambiguities.len() > 1 && ambiguities.len() < 10 && has_non_region_infer {
2226                             if self.tainted_by_errors().is_some() && subst.is_none() {
2227                                 // If `subst.is_none()`, then this is probably two param-env
2228                                 // candidates or impl candidates that are equal modulo lifetimes.
2229                                 // Therefore, if we've already emitted an error, just skip this
2230                                 // one, since it's not particularly actionable.
2231                                 err.cancel();
2232                                 return;
2233                             }
2234                             self.annotate_source_of_ambiguity(&mut err, &ambiguities, predicate);
2235                         } else {
2236                             if self.tainted_by_errors().is_some() {
2237                                 err.cancel();
2238                                 return;
2239                             }
2240                             err.note(&format!("cannot satisfy `{}`", predicate));
2241                             let impl_candidates = self.find_similar_impl_candidates(
2242                                 predicate.to_opt_poly_trait_pred().unwrap(),
2243                             );
2244                             if impl_candidates.len() < 10 {
2245                                 self.report_similar_impl_candidates(
2246                                     impl_candidates,
2247                                     trait_ref,
2248                                     body_id.map(|id| id.hir_id).unwrap_or(obligation.cause.body_id),
2249                                     &mut err,
2250                                     false,
2251                                 );
2252                             }
2253                         }
2254                     }
2255                     _ => {
2256                         if self.tainted_by_errors().is_some() {
2257                             err.cancel();
2258                             return;
2259                         }
2260                         err.note(&format!("cannot satisfy `{}`", predicate));
2261                     }
2262                 }
2263
2264                 if let ObligationCauseCode::ItemObligation(def_id)
2265                 | ObligationCauseCode::ExprItemObligation(def_id, ..) = *obligation.cause.code()
2266                 {
2267                     self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
2268                 }
2269
2270                 if let (Some(body_id), Some(ty::subst::GenericArgKind::Type(_))) =
2271                     (body_id, subst.map(|subst| subst.unpack()))
2272                 {
2273                     let mut expr_finder = FindExprBySpan::new(span);
2274                     expr_finder.visit_expr(&self.tcx.hir().body(body_id).value);
2275
2276                     if let Some(hir::Expr {
2277                         kind: hir::ExprKind::Path(hir::QPath::Resolved(None, path)), .. }
2278                     ) = expr_finder.result
2279                         && let [
2280                             ..,
2281                             trait_path_segment @ hir::PathSegment {
2282                                 res: rustc_hir::def::Res::Def(rustc_hir::def::DefKind::Trait, trait_id),
2283                                 ..
2284                             },
2285                             hir::PathSegment {
2286                                 ident: assoc_item_name,
2287                                 res: rustc_hir::def::Res::Def(_, item_id),
2288                                 ..
2289                             }
2290                         ] = path.segments
2291                         && data.trait_ref.def_id == *trait_id
2292                         && self.tcx.trait_of_item(*item_id) == Some(*trait_id)
2293                         && let None = self.tainted_by_errors()
2294                     {
2295                         let (verb, noun) = match self.tcx.associated_item(item_id).kind {
2296                             ty::AssocKind::Const => ("refer to the", "constant"),
2297                             ty::AssocKind::Fn => ("call", "function"),
2298                             ty::AssocKind::Type => ("refer to the", "type"), // this is already covered by E0223, but this single match arm doesn't hurt here
2299                         };
2300
2301                         // Replace the more general E0283 with a more specific error
2302                         err.cancel();
2303                         err = self.tcx.sess.struct_span_err_with_code(
2304                             span,
2305                             &format!(
2306                                 "cannot {verb} associated {noun} on trait without specifying the corresponding `impl` type",
2307                              ),
2308                             rustc_errors::error_code!(E0790),
2309                         );
2310
2311                         if let Some(local_def_id) = data.trait_ref.def_id.as_local()
2312                             && let Some(hir::Node::Item(hir::Item { ident: trait_name, kind: hir::ItemKind::Trait(_, _, _, _, trait_item_refs), .. })) = self.tcx.hir().find_by_def_id(local_def_id)
2313                             && let Some(method_ref) = trait_item_refs.iter().find(|item_ref| item_ref.ident == *assoc_item_name) {
2314                             err.span_label(method_ref.span, format!("`{}::{}` defined here", trait_name, assoc_item_name));
2315                         }
2316
2317                         err.span_label(span, format!("cannot {verb} associated {noun} of trait"));
2318
2319                         let trait_impls = self.tcx.trait_impls_of(data.trait_ref.def_id);
2320
2321                         if trait_impls.blanket_impls().is_empty()
2322                             && let Some(impl_def_id) = trait_impls.non_blanket_impls().values().flatten().next()
2323                         {
2324                             let non_blanket_impl_count = trait_impls.non_blanket_impls().values().flatten().count();
2325                             let message = if non_blanket_impl_count == 1 {
2326                                 "use the fully-qualified path to the only available implementation".to_string()
2327                             } else {
2328                                 format!(
2329                                     "use a fully-qualified path to a specific available implementation ({} found)",
2330                                     non_blanket_impl_count
2331                                 )
2332                             };
2333                             let mut suggestions = vec![(
2334                                 path.span.shrink_to_lo(),
2335                                 format!("<{} as ", self.tcx.type_of(impl_def_id))
2336                             )];
2337                             if let Some(generic_arg) = trait_path_segment.args {
2338                                 let between_span = trait_path_segment.ident.span.between(generic_arg.span_ext);
2339                                 // get rid of :: between Trait and <type>
2340                                 // must be '::' between them, otherwise the parser won't accept the code
2341                                 suggestions.push((between_span, "".to_string(),));
2342                                 suggestions.push((generic_arg.span_ext.shrink_to_hi(), ">".to_string()));
2343                             } else {
2344                                 suggestions.push((trait_path_segment.ident.span.shrink_to_hi(), ">".to_string()));
2345                             }
2346                             err.multipart_suggestion(
2347                                 message,
2348                                 suggestions,
2349                                 Applicability::MaybeIncorrect
2350                             );
2351                         }
2352                     }
2353                 };
2354
2355                 err
2356             }
2357
2358             ty::PredicateKind::WellFormed(arg) => {
2359                 // Same hacky approach as above to avoid deluging user
2360                 // with error messages.
2361                 if arg.references_error()
2362                     || self.tcx.sess.has_errors().is_some()
2363                     || self.tainted_by_errors().is_some()
2364                 {
2365                     return;
2366                 }
2367
2368                 self.emit_inference_failure_err(body_id, span, arg, ErrorCode::E0282, false)
2369             }
2370
2371             ty::PredicateKind::Subtype(data) => {
2372                 if data.references_error()
2373                     || self.tcx.sess.has_errors().is_some()
2374                     || self.tainted_by_errors().is_some()
2375                 {
2376                     // no need to overload user in such cases
2377                     return;
2378                 }
2379                 let SubtypePredicate { a_is_expected: _, a, b } = data;
2380                 // both must be type variables, or the other would've been instantiated
2381                 assert!(a.is_ty_var() && b.is_ty_var());
2382                 self.emit_inference_failure_err(body_id, span, a.into(), ErrorCode::E0282, true)
2383             }
2384             ty::PredicateKind::Clause(ty::Clause::Projection(data)) => {
2385                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2386                     return;
2387                 }
2388                 let subst = data
2389                     .projection_ty
2390                     .substs
2391                     .iter()
2392                     .chain(Some(data.term.into_arg()))
2393                     .find(|g| g.has_non_region_infer());
2394                 if let Some(subst) = subst {
2395                     let mut err = self.emit_inference_failure_err(
2396                         body_id,
2397                         span,
2398                         subst,
2399                         ErrorCode::E0284,
2400                         true,
2401                     );
2402                     err.note(&format!("cannot satisfy `{}`", predicate));
2403                     err
2404                 } else {
2405                     // If we can't find a substitution, just print a generic error
2406                     let mut err = struct_span_err!(
2407                         self.tcx.sess,
2408                         span,
2409                         E0284,
2410                         "type annotations needed: cannot satisfy `{}`",
2411                         predicate,
2412                     );
2413                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2414                     err
2415                 }
2416             }
2417
2418             ty::PredicateKind::ConstEvaluatable(data) => {
2419                 if predicate.references_error() || self.tainted_by_errors().is_some() {
2420                     return;
2421                 }
2422                 let subst = data.walk().find(|g| g.is_non_region_infer());
2423                 if let Some(subst) = subst {
2424                     let err = self.emit_inference_failure_err(
2425                         body_id,
2426                         span,
2427                         subst,
2428                         ErrorCode::E0284,
2429                         true,
2430                     );
2431                     err
2432                 } else {
2433                     // If we can't find a substitution, just print a generic error
2434                     let mut err = struct_span_err!(
2435                         self.tcx.sess,
2436                         span,
2437                         E0284,
2438                         "type annotations needed: cannot satisfy `{}`",
2439                         predicate,
2440                     );
2441                     err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2442                     err
2443                 }
2444             }
2445             _ => {
2446                 if self.tcx.sess.has_errors().is_some() || self.tainted_by_errors().is_some() {
2447                     return;
2448                 }
2449                 let mut err = struct_span_err!(
2450                     self.tcx.sess,
2451                     span,
2452                     E0284,
2453                     "type annotations needed: cannot satisfy `{}`",
2454                     predicate,
2455                 );
2456                 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
2457                 err
2458             }
2459         };
2460         self.note_obligation_cause(&mut err, obligation);
2461         err.emit();
2462     }
2463
2464     fn annotate_source_of_ambiguity(
2465         &self,
2466         err: &mut Diagnostic,
2467         ambiguities: &[ambiguity::Ambiguity],
2468         predicate: ty::Predicate<'tcx>,
2469     ) {
2470         let mut spans = vec![];
2471         let mut crates = vec![];
2472         let mut post = vec![];
2473         let mut has_param_env = false;
2474         for ambiguity in ambiguities {
2475             match ambiguity {
2476                 ambiguity::Ambiguity::DefId(impl_def_id) => {
2477                     match self.tcx.span_of_impl(*impl_def_id) {
2478                         Ok(span) => spans.push(span),
2479                         Err(name) => {
2480                             crates.push(name);
2481                             if let Some(header) = to_pretty_impl_header(self.tcx, *impl_def_id) {
2482                                 post.push(header);
2483                             }
2484                         }
2485                     }
2486                 }
2487                 ambiguity::Ambiguity::ParamEnv(span) => {
2488                     has_param_env = true;
2489                     spans.push(*span);
2490                 }
2491             }
2492         }
2493         let mut crate_names: Vec<_> = crates.iter().map(|n| format!("`{}`", n)).collect();
2494         crate_names.sort();
2495         crate_names.dedup();
2496         post.sort();
2497         post.dedup();
2498
2499         if self.tainted_by_errors().is_some()
2500             && (crate_names.len() == 1
2501                 && spans.len() == 0
2502                 && ["`core`", "`alloc`", "`std`"].contains(&crate_names[0].as_str())
2503                 || predicate.visit_with(&mut HasNumericInferVisitor).is_break())
2504         {
2505             // Avoid complaining about other inference issues for expressions like
2506             // `42 >> 1`, where the types are still `{integer}`, but we want to
2507             // Do we need `trait_ref.skip_binder().self_ty().is_numeric() &&` too?
2508             // NOTE(eddyb) this was `.cancel()`, but `err`
2509             // is borrowed, so we can't fully defuse it.
2510             err.downgrade_to_delayed_bug();
2511             return;
2512         }
2513
2514         let msg = format!(
2515             "multiple `impl`s{} satisfying `{}` found",
2516             if has_param_env { " or `where` clauses" } else { "" },
2517             predicate
2518         );
2519         let post = if post.len() > 1 || (post.len() == 1 && post[0].contains('\n')) {
2520             format!(":\n{}", post.iter().map(|p| format!("- {}", p)).collect::<Vec<_>>().join("\n"),)
2521         } else if post.len() == 1 {
2522             format!(": `{}`", post[0])
2523         } else {
2524             String::new()
2525         };
2526
2527         match (spans.len(), crates.len(), crate_names.len()) {
2528             (0, 0, 0) => {
2529                 err.note(&format!("cannot satisfy `{}`", predicate));
2530             }
2531             (0, _, 1) => {
2532                 err.note(&format!("{} in the `{}` crate{}", msg, crates[0], post,));
2533             }
2534             (0, _, _) => {
2535                 err.note(&format!(
2536                     "{} in the following crates: {}{}",
2537                     msg,
2538                     crate_names.join(", "),
2539                     post,
2540                 ));
2541             }
2542             (_, 0, 0) => {
2543                 let span: MultiSpan = spans.into();
2544                 err.span_note(span, &msg);
2545             }
2546             (_, 1, 1) => {
2547                 let span: MultiSpan = spans.into();
2548                 err.span_note(span, &msg);
2549                 err.note(
2550                     &format!("and another `impl` found in the `{}` crate{}", crates[0], post,),
2551                 );
2552             }
2553             _ => {
2554                 let span: MultiSpan = spans.into();
2555                 err.span_note(span, &msg);
2556                 err.note(&format!(
2557                     "and more `impl`s found in the following crates: {}{}",
2558                     crate_names.join(", "),
2559                     post,
2560                 ));
2561             }
2562         }
2563     }
2564
2565     /// Returns `true` if the trait predicate may apply for *some* assignment
2566     /// to the type parameters.
2567     fn predicate_can_apply(
2568         &self,
2569         param_env: ty::ParamEnv<'tcx>,
2570         pred: ty::PolyTraitPredicate<'tcx>,
2571     ) -> bool {
2572         struct ParamToVarFolder<'a, 'tcx> {
2573             infcx: &'a InferCtxt<'tcx>,
2574             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2575         }
2576
2577         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
2578             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
2579                 self.infcx.tcx
2580             }
2581
2582             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2583                 if let ty::Param(ty::ParamTy { name, .. }) = *ty.kind() {
2584                     let infcx = self.infcx;
2585                     *self.var_map.entry(ty).or_insert_with(|| {
2586                         infcx.next_ty_var(TypeVariableOrigin {
2587                             kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
2588                             span: DUMMY_SP,
2589                         })
2590                     })
2591                 } else {
2592                     ty.super_fold_with(self)
2593                 }
2594             }
2595         }
2596
2597         self.probe(|_| {
2598             let cleaned_pred =
2599                 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2600
2601             let InferOk { value: cleaned_pred, .. } =
2602                 self.infcx.at(&ObligationCause::dummy(), param_env).normalize(cleaned_pred);
2603
2604             let obligation =
2605                 Obligation::new(self.tcx, ObligationCause::dummy(), param_env, cleaned_pred);
2606
2607             self.predicate_may_hold(&obligation)
2608         })
2609     }
2610
2611     fn note_obligation_cause(&self, err: &mut Diagnostic, obligation: &PredicateObligation<'tcx>) {
2612         // First, attempt to add note to this error with an async-await-specific
2613         // message, and fall back to regular note otherwise.
2614         if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2615             self.note_obligation_cause_code(
2616                 err,
2617                 obligation.predicate,
2618                 obligation.param_env,
2619                 obligation.cause.code(),
2620                 &mut vec![],
2621                 &mut Default::default(),
2622             );
2623             self.suggest_unsized_bound_if_applicable(err, obligation);
2624         }
2625     }
2626
2627     #[instrument(level = "debug", skip_all)]
2628     fn suggest_unsized_bound_if_applicable(
2629         &self,
2630         err: &mut Diagnostic,
2631         obligation: &PredicateObligation<'tcx>,
2632     ) {
2633         let ty::PredicateKind::Clause(ty::Clause::Trait(pred)) = obligation.predicate.kind().skip_binder() else { return; };
2634         let (ObligationCauseCode::BindingObligation(item_def_id, span)
2635         | ObligationCauseCode::ExprBindingObligation(item_def_id, span, ..))
2636             = *obligation.cause.code().peel_derives() else { return; };
2637         debug!(?pred, ?item_def_id, ?span);
2638
2639         let (Some(node), true) = (
2640             self.tcx.hir().get_if_local(item_def_id),
2641             Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
2642         ) else {
2643             return;
2644         };
2645         self.maybe_suggest_unsized_generics(err, span, node);
2646     }
2647
2648     #[instrument(level = "debug", skip_all)]
2649     fn maybe_suggest_unsized_generics(&self, err: &mut Diagnostic, span: Span, node: Node<'tcx>) {
2650         let Some(generics) = node.generics() else {
2651             return;
2652         };
2653         let sized_trait = self.tcx.lang_items().sized_trait();
2654         debug!(?generics.params);
2655         debug!(?generics.predicates);
2656         let Some(param) = generics.params.iter().find(|param| param.span == span) else {
2657             return;
2658         };
2659         // Check that none of the explicit trait bounds is `Sized`. Assume that an explicit
2660         // `Sized` bound is there intentionally and we don't need to suggest relaxing it.
2661         let explicitly_sized = generics
2662             .bounds_for_param(param.def_id)
2663             .flat_map(|bp| bp.bounds)
2664             .any(|bound| bound.trait_ref().and_then(|tr| tr.trait_def_id()) == sized_trait);
2665         if explicitly_sized {
2666             return;
2667         }
2668         debug!(?param);
2669         match node {
2670             hir::Node::Item(
2671                 item @ hir::Item {
2672                     // Only suggest indirection for uses of type parameters in ADTs.
2673                     kind:
2674                         hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..),
2675                     ..
2676                 },
2677             ) => {
2678                 if self.maybe_indirection_for_unsized(err, item, param) {
2679                     return;
2680                 }
2681             }
2682             _ => {}
2683         };
2684         // Didn't add an indirection suggestion, so add a general suggestion to relax `Sized`.
2685         let (span, separator) = if let Some(s) = generics.bounds_span_for_suggestions(param.def_id)
2686         {
2687             (s, " +")
2688         } else {
2689             (span.shrink_to_hi(), ":")
2690         };
2691         err.span_suggestion_verbose(
2692             span,
2693             "consider relaxing the implicit `Sized` restriction",
2694             format!("{} ?Sized", separator),
2695             Applicability::MachineApplicable,
2696         );
2697     }
2698
2699     fn maybe_indirection_for_unsized(
2700         &self,
2701         err: &mut Diagnostic,
2702         item: &Item<'tcx>,
2703         param: &GenericParam<'tcx>,
2704     ) -> bool {
2705         // Suggesting `T: ?Sized` is only valid in an ADT if `T` is only used in a
2706         // borrow. `struct S<'a, T: ?Sized>(&'a T);` is valid, `struct S<T: ?Sized>(T);`
2707         // is not. Look for invalid "bare" parameter uses, and suggest using indirection.
2708         let mut visitor =
2709             FindTypeParam { param: param.name.ident().name, invalid_spans: vec![], nested: false };
2710         visitor.visit_item(item);
2711         if visitor.invalid_spans.is_empty() {
2712             return false;
2713         }
2714         let mut multispan: MultiSpan = param.span.into();
2715         multispan.push_span_label(
2716             param.span,
2717             format!("this could be changed to `{}: ?Sized`...", param.name.ident()),
2718         );
2719         for sp in visitor.invalid_spans {
2720             multispan.push_span_label(
2721                 sp,
2722                 format!("...if indirection were used here: `Box<{}>`", param.name.ident()),
2723             );
2724         }
2725         err.span_help(
2726             multispan,
2727             &format!(
2728                 "you could relax the implicit `Sized` bound on `{T}` if it were \
2729                 used through indirection like `&{T}` or `Box<{T}>`",
2730                 T = param.name.ident(),
2731             ),
2732         );
2733         true
2734     }
2735
2736     fn is_recursive_obligation(
2737         &self,
2738         obligated_types: &mut Vec<Ty<'tcx>>,
2739         cause_code: &ObligationCauseCode<'tcx>,
2740     ) -> bool {
2741         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
2742             let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2743             let self_ty = parent_trait_ref.skip_binder().self_ty();
2744             if obligated_types.iter().any(|ot| ot == &self_ty) {
2745                 return true;
2746             }
2747             if let ty::Adt(def, substs) = self_ty.kind()
2748                 && let [arg] = &substs[..]
2749                 && let ty::subst::GenericArgKind::Type(ty) = arg.unpack()
2750                 && let ty::Adt(inner_def, _) = ty.kind()
2751                 && inner_def == def
2752             {
2753                 return true;
2754             }
2755         }
2756         false
2757     }
2758 }
2759
2760 /// Crude way of getting back an `Expr` from a `Span`.
2761 pub struct FindExprBySpan<'hir> {
2762     pub span: Span,
2763     pub result: Option<&'hir hir::Expr<'hir>>,
2764     pub ty_result: Option<&'hir hir::Ty<'hir>>,
2765 }
2766
2767 impl<'hir> FindExprBySpan<'hir> {
2768     fn new(span: Span) -> Self {
2769         Self { span, result: None, ty_result: None }
2770     }
2771 }
2772
2773 impl<'v> Visitor<'v> for FindExprBySpan<'v> {
2774     fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
2775         if self.span == ex.span {
2776             self.result = Some(ex);
2777         } else {
2778             hir::intravisit::walk_expr(self, ex);
2779         }
2780     }
2781     fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
2782         if self.span == ty.span {
2783             self.ty_result = Some(ty);
2784         } else {
2785             hir::intravisit::walk_ty(self, ty);
2786         }
2787     }
2788 }
2789
2790 /// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
2791 /// `param: ?Sized` would be a valid constraint.
2792 struct FindTypeParam {
2793     param: rustc_span::Symbol,
2794     invalid_spans: Vec<Span>,
2795     nested: bool,
2796 }
2797
2798 impl<'v> Visitor<'v> for FindTypeParam {
2799     fn visit_where_predicate(&mut self, _: &'v hir::WherePredicate<'v>) {
2800         // Skip where-clauses, to avoid suggesting indirection for type parameters found there.
2801     }
2802
2803     fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2804         // We collect the spans of all uses of the "bare" type param, like in `field: T` or
2805         // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
2806         // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
2807         // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
2808         // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
2809         // in that case should make what happened clear enough.
2810         match ty.kind {
2811             hir::TyKind::Ptr(_) | hir::TyKind::Ref(..) | hir::TyKind::TraitObject(..) => {}
2812             hir::TyKind::Path(hir::QPath::Resolved(None, path))
2813                 if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
2814             {
2815                 if !self.nested {
2816                     debug!(?ty, "FindTypeParam::visit_ty");
2817                     self.invalid_spans.push(ty.span);
2818                 }
2819             }
2820             hir::TyKind::Path(_) => {
2821                 let prev = self.nested;
2822                 self.nested = true;
2823                 hir::intravisit::walk_ty(self, ty);
2824                 self.nested = prev;
2825             }
2826             _ => {
2827                 hir::intravisit::walk_ty(self, ty);
2828             }
2829         }
2830     }
2831 }
2832
2833 /// Summarizes information
2834 #[derive(Clone)]
2835 pub enum ArgKind {
2836     /// An argument of non-tuple type. Parameters are (name, ty)
2837     Arg(String, String),
2838
2839     /// An argument of tuple type. For a "found" argument, the span is
2840     /// the location in the source of the pattern. For an "expected"
2841     /// argument, it will be None. The vector is a list of (name, ty)
2842     /// strings for the components of the tuple.
2843     Tuple(Option<Span>, Vec<(String, String)>),
2844 }
2845
2846 impl ArgKind {
2847     fn empty() -> ArgKind {
2848         ArgKind::Arg("_".to_owned(), "_".to_owned())
2849     }
2850
2851     /// Creates an `ArgKind` from the expected type of an
2852     /// argument. It has no name (`_`) and an optional source span.
2853     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
2854         match t.kind() {
2855             ty::Tuple(tys) => ArgKind::Tuple(
2856                 span,
2857                 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
2858             ),
2859             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
2860         }
2861     }
2862 }
2863
2864 struct HasNumericInferVisitor;
2865
2866 impl<'tcx> ty::TypeVisitor<'tcx> for HasNumericInferVisitor {
2867     type BreakTy = ();
2868
2869     fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
2870         if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
2871             ControlFlow::Break(())
2872         } else {
2873             ControlFlow::CONTINUE
2874         }
2875     }
2876 }
2877
2878 pub enum DefIdOrName {
2879     DefId(DefId),
2880     Name(&'static str),
2881 }