]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/auto_trait.rs
Rollup merge of #99371 - ChrisDenton:simplify-gen-random-keys, r=thomcc
[rust.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
1 //! Support code for rustdoc and external tools.
2 //! You really don't want to be using this unless you need to.
3
4 use super::*;
5
6 use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7 use crate::infer::InferCtxt;
8 use crate::traits::project::ProjectAndUnifyResult;
9 use rustc_middle::mir::interpret::ErrorHandled;
10 use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
11 use rustc_middle::ty::visit::TypeVisitable;
12 use rustc_middle::ty::{Region, RegionVid, Term};
13
14 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
15
16 use std::collections::hash_map::Entry;
17 use std::collections::VecDeque;
18 use std::iter;
19
20 // FIXME(twk): this is obviously not nice to duplicate like that
21 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
22 pub enum RegionTarget<'tcx> {
23     Region(Region<'tcx>),
24     RegionVid(RegionVid),
25 }
26
27 #[derive(Default, Debug, Clone)]
28 pub struct RegionDeps<'tcx> {
29     larger: FxHashSet<RegionTarget<'tcx>>,
30     smaller: FxHashSet<RegionTarget<'tcx>>,
31 }
32
33 pub enum AutoTraitResult<A> {
34     ExplicitImpl,
35     PositiveImpl(A),
36     NegativeImpl,
37 }
38
39 #[allow(dead_code)]
40 impl<A> AutoTraitResult<A> {
41     fn is_auto(&self) -> bool {
42         matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
43     }
44 }
45
46 pub struct AutoTraitInfo<'cx> {
47     pub full_user_env: ty::ParamEnv<'cx>,
48     pub region_data: RegionConstraintData<'cx>,
49     pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
50 }
51
52 pub struct AutoTraitFinder<'tcx> {
53     tcx: TyCtxt<'tcx>,
54 }
55
56 impl<'tcx> AutoTraitFinder<'tcx> {
57     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
58         AutoTraitFinder { tcx }
59     }
60
61     /// Makes a best effort to determine whether and under which conditions an auto trait is
62     /// implemented for a type. For example, if you have
63     ///
64     /// ```
65     /// struct Foo<T> { data: Box<T> }
66     /// ```
67     ///
68     /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
69     /// The analysis attempts to account for custom impls as well as other complex cases. This
70     /// result is intended for use by rustdoc and other such consumers.
71     ///
72     /// (Note that due to the coinductive nature of Send, the full and correct result is actually
73     /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
74     /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
75     /// But this is often not the best way to present to the user.)
76     ///
77     /// Warning: The API should be considered highly unstable, and it may be refactored or removed
78     /// in the future.
79     pub fn find_auto_trait_generics<A>(
80         &self,
81         ty: Ty<'tcx>,
82         orig_env: ty::ParamEnv<'tcx>,
83         trait_did: DefId,
84         mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
85     ) -> AutoTraitResult<A> {
86         let tcx = self.tcx;
87
88         let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
89
90         let trait_pred = ty::Binder::dummy(trait_ref);
91
92         let bail_out = tcx.infer_ctxt().enter(|infcx| {
93             let mut selcx = SelectionContext::new(&infcx);
94             let result = selcx.select(&Obligation::new(
95                 ObligationCause::dummy(),
96                 orig_env,
97                 trait_pred.to_poly_trait_predicate(),
98             ));
99
100             match result {
101                 Ok(Some(ImplSource::UserDefined(_))) => {
102                     debug!(
103                         "find_auto_trait_generics({:?}): \
104                          manual impl found, bailing out",
105                         trait_ref
106                     );
107                     return true;
108                 }
109                 _ => {}
110             }
111
112             let result = selcx.select(&Obligation::new(
113                 ObligationCause::dummy(),
114                 orig_env,
115                 trait_pred.to_poly_trait_predicate_negative_polarity(),
116             ));
117
118             match result {
119                 Ok(Some(ImplSource::UserDefined(_))) => {
120                     debug!(
121                         "find_auto_trait_generics({:?}): \
122                          manual impl found, bailing out",
123                         trait_ref
124                     );
125                     true
126                 }
127                 _ => false,
128             }
129         });
130
131         // If an explicit impl exists, it always takes priority over an auto impl
132         if bail_out {
133             return AutoTraitResult::ExplicitImpl;
134         }
135
136         tcx.infer_ctxt().enter(|infcx| {
137             let mut fresh_preds = FxHashSet::default();
138
139             // Due to the way projections are handled by SelectionContext, we need to run
140             // evaluate_predicates twice: once on the original param env, and once on the result of
141             // the first evaluate_predicates call.
142             //
143             // The problem is this: most of rustc, including SelectionContext and traits::project,
144             // are designed to work with a concrete usage of a type (e.g., Vec<u8>
145             // fn<T>() { Vec<T> }. This information will generally never change - given
146             // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
147             // If we're unable to prove that 'T' implements a particular trait, we're done -
148             // there's nothing left to do but error out.
149             //
150             // However, synthesizing an auto trait impl works differently. Here, we start out with
151             // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
152             // with - and progressively discover the conditions we need to fulfill for it to
153             // implement a certain auto trait. This ends up breaking two assumptions made by trait
154             // selection and projection:
155             //
156             // * We can always cache the result of a particular trait selection for the lifetime of
157             // an InfCtxt
158             // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
159             // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
160             //
161             // We fix the first assumption by manually clearing out all of the InferCtxt's caches
162             // in between calls to SelectionContext.select. This allows us to keep all of the
163             // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
164             // them between calls.
165             //
166             // We fix the second assumption by reprocessing the result of our first call to
167             // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
168             // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
169             // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
170             // SelectionContext to return it back to us.
171
172             let Some((new_env, user_env)) = self.evaluate_predicates(
173                 &infcx,
174                 trait_did,
175                 ty,
176                 orig_env,
177                 orig_env,
178                 &mut fresh_preds,
179                 false,
180             ) else {
181                 return AutoTraitResult::NegativeImpl;
182             };
183
184             let (full_env, full_user_env) = self
185                 .evaluate_predicates(
186                     &infcx,
187                     trait_did,
188                     ty,
189                     new_env,
190                     user_env,
191                     &mut fresh_preds,
192                     true,
193                 )
194                 .unwrap_or_else(|| {
195                     panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
196                 });
197
198             debug!(
199                 "find_auto_trait_generics({:?}): fulfilling \
200                  with {:?}",
201                 trait_ref, full_env
202             );
203             infcx.clear_caches();
204
205             // At this point, we already have all of the bounds we need. FulfillmentContext is used
206             // to store all of the necessary region/lifetime bounds in the InferContext, as well as
207             // an additional sanity check.
208             let mut fulfill = FulfillmentContext::new();
209             fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
210             let errors = fulfill.select_all_or_error(&infcx);
211
212             if !errors.is_empty() {
213                 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
214             }
215
216             infcx.process_registered_region_obligations(&Default::default(), full_env);
217
218             let region_data = infcx
219                 .inner
220                 .borrow_mut()
221                 .unwrap_region_constraints()
222                 .region_constraint_data()
223                 .clone();
224
225             let vid_to_region = self.map_vid_to_region(&region_data);
226
227             let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
228
229             AutoTraitResult::PositiveImpl(auto_trait_callback(info))
230         })
231     }
232 }
233
234 impl<'tcx> AutoTraitFinder<'tcx> {
235     /// The core logic responsible for computing the bounds for our synthesized impl.
236     ///
237     /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
238     /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
239     /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
240     /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
241     /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
242     ///
243     /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
244     /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
245     /// user code. According, it considers all possible ways that a `Predicate` could be met, which
246     /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
247     /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
248     /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
249     /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
250     /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
251     /// like this:
252     /// ```ignore (illustrative)
253     /// impl<T> Send for Foo<T> where T: IntoIterator
254     /// ```
255     /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
256     /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
257     ///
258     /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
259     /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
260     /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
261     /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
262     /// needs to hold.
263     ///
264     /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
265     /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
266     /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
267     /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
268     /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
269     /// else `SelectionContext` will choke on the missing predicates. However, this should never
270     /// show up in the final synthesized generics: we don't want our generated docs page to contain
271     /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
272     /// separate `user_env`, which only holds the predicates that will actually be displayed to the
273     /// user.
274     fn evaluate_predicates(
275         &self,
276         infcx: &InferCtxt<'_, 'tcx>,
277         trait_did: DefId,
278         ty: Ty<'tcx>,
279         param_env: ty::ParamEnv<'tcx>,
280         user_env: ty::ParamEnv<'tcx>,
281         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
282         only_projections: bool,
283     ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
284         let tcx = infcx.tcx;
285
286         // Don't try to process any nested obligations involving predicates
287         // that are already in the `ParamEnv` (modulo regions): we already
288         // know that they must hold.
289         for predicate in param_env.caller_bounds() {
290             fresh_preds.insert(self.clean_pred(infcx, predicate));
291         }
292
293         let mut select = SelectionContext::new(&infcx);
294
295         let mut already_visited = FxHashSet::default();
296         let mut predicates = VecDeque::new();
297         predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
298             trait_ref: ty::TraitRef {
299                 def_id: trait_did,
300                 substs: infcx.tcx.mk_substs_trait(ty, &[]),
301             },
302             constness: ty::BoundConstness::NotConst,
303             // Auto traits are positive
304             polarity: ty::ImplPolarity::Positive,
305         }));
306
307         let computed_preds = param_env.caller_bounds().iter();
308         let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
309
310         let mut new_env = param_env;
311         let dummy_cause = ObligationCause::dummy();
312
313         while let Some(pred) = predicates.pop_front() {
314             infcx.clear_caches();
315
316             if !already_visited.insert(pred) {
317                 continue;
318             }
319
320             // Call `infcx.resolve_vars_if_possible` to see if we can
321             // get rid of any inference variables.
322             let obligation =
323                 infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
324             let result = select.select(&obligation);
325
326             match result {
327                 Ok(Some(ref impl_source)) => {
328                     // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
329                     // we immediately bail out, since it's impossible for us to continue.
330
331                     if let ImplSource::UserDefined(ImplSourceUserDefinedData {
332                         impl_def_id, ..
333                     }) = impl_source
334                     {
335                         // Blame 'tidy' for the weird bracket placement.
336                         if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
337                             debug!(
338                                 "evaluate_nested_obligations: found explicit negative impl\
339                                         {:?}, bailing out",
340                                 impl_def_id
341                             );
342                             return None;
343                         }
344                     }
345
346                     let obligations = impl_source.clone().nested_obligations().into_iter();
347
348                     if !self.evaluate_nested_obligations(
349                         ty,
350                         obligations,
351                         &mut user_computed_preds,
352                         fresh_preds,
353                         &mut predicates,
354                         &mut select,
355                         only_projections,
356                     ) {
357                         return None;
358                     }
359                 }
360                 Ok(None) => {}
361                 Err(SelectionError::Unimplemented) => {
362                     if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
363                         already_visited.remove(&pred);
364                         self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
365                         predicates.push_back(pred);
366                     } else {
367                         debug!(
368                             "evaluate_nested_obligations: `Unimplemented` found, bailing: \
369                              {:?} {:?} {:?}",
370                             ty,
371                             pred,
372                             pred.skip_binder().trait_ref.substs
373                         );
374                         return None;
375                     }
376                 }
377                 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
378             };
379
380             let normalized_preds = elaborate_predicates(
381                 tcx,
382                 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
383             )
384             .map(|o| o.predicate);
385             new_env = ty::ParamEnv::new(
386                 tcx.mk_predicates(normalized_preds),
387                 param_env.reveal(),
388                 param_env.constness(),
389             );
390         }
391
392         let final_user_env = ty::ParamEnv::new(
393             tcx.mk_predicates(user_computed_preds.into_iter()),
394             user_env.reveal(),
395             user_env.constness(),
396         );
397         debug!(
398             "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
399              '{:?}'",
400             ty, trait_did, new_env, final_user_env
401         );
402
403         Some((new_env, final_user_env))
404     }
405
406     /// This method is designed to work around the following issue:
407     /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
408     /// progressively building a `ParamEnv` based on the results we get.
409     /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
410     /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
411     ///
412     /// This can lead to a corner case when dealing with region parameters.
413     /// During our selection loop in `evaluate_predicates`, we might end up with
414     /// two trait predicates that differ only in their region parameters:
415     /// one containing a HRTB lifetime parameter, and one containing a 'normal'
416     /// lifetime parameter. For example:
417     /// ```ignore (illustrative)
418     /// T as MyTrait<'a>
419     /// T as MyTrait<'static>
420     /// ```
421     /// If we put both of these predicates in our computed `ParamEnv`, we'll
422     /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
423     ///
424     /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
425     /// Our end goal is to generate a user-visible description of the conditions
426     /// under which a type implements an auto trait. A trait predicate involving
427     /// a HRTB means that the type needs to work with any choice of lifetime,
428     /// not just one specific lifetime (e.g., `'static`).
429     fn add_user_pred(
430         &self,
431         user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
432         new_pred: ty::Predicate<'tcx>,
433     ) {
434         let mut should_add_new = true;
435         user_computed_preds.retain(|&old_pred| {
436             if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
437                 (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
438             {
439                 if new_trait.def_id() == old_trait.def_id() {
440                     let new_substs = new_trait.trait_ref.substs;
441                     let old_substs = old_trait.trait_ref.substs;
442
443                     if !new_substs.types().eq(old_substs.types()) {
444                         // We can't compare lifetimes if the types are different,
445                         // so skip checking `old_pred`.
446                         return true;
447                     }
448
449                     for (new_region, old_region) in
450                         iter::zip(new_substs.regions(), old_substs.regions())
451                     {
452                         match (*new_region, *old_region) {
453                             // If both predicates have an `ReLateBound` (a HRTB) in the
454                             // same spot, we do nothing.
455                             (ty::ReLateBound(_, _), ty::ReLateBound(_, _)) => {}
456
457                             (ty::ReLateBound(_, _), _) | (_, ty::ReVar(_)) => {
458                                 // One of these is true:
459                                 // The new predicate has a HRTB in a spot where the old
460                                 // predicate does not (if they both had a HRTB, the previous
461                                 // match arm would have executed). A HRBT is a 'stricter'
462                                 // bound than anything else, so we want to keep the newer
463                                 // predicate (with the HRBT) in place of the old predicate.
464                                 //
465                                 // OR
466                                 //
467                                 // The old predicate has a region variable where the new
468                                 // predicate has some other kind of region. An region
469                                 // variable isn't something we can actually display to a user,
470                                 // so we choose their new predicate (which doesn't have a region
471                                 // variable).
472                                 //
473                                 // In both cases, we want to remove the old predicate,
474                                 // from `user_computed_preds`, and replace it with the new
475                                 // one. Having both the old and the new
476                                 // predicate in a `ParamEnv` would confuse `SelectionContext`.
477                                 //
478                                 // We're currently in the predicate passed to 'retain',
479                                 // so we return `false` to remove the old predicate from
480                                 // `user_computed_preds`.
481                                 return false;
482                             }
483                             (_, ty::ReLateBound(_, _)) | (ty::ReVar(_), _) => {
484                                 // This is the opposite situation as the previous arm.
485                                 // One of these is true:
486                                 //
487                                 // The old predicate has a HRTB lifetime in a place where the
488                                 // new predicate does not.
489                                 //
490                                 // OR
491                                 //
492                                 // The new predicate has a region variable where the old
493                                 // predicate has some other type of region.
494                                 //
495                                 // We want to leave the old
496                                 // predicate in `user_computed_preds`, and skip adding
497                                 // new_pred to `user_computed_params`.
498                                 should_add_new = false
499                             }
500                             _ => {}
501                         }
502                     }
503                 }
504             }
505             true
506         });
507
508         if should_add_new {
509             user_computed_preds.insert(new_pred);
510         }
511     }
512
513     /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
514     /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
515     fn map_vid_to_region<'cx>(
516         &self,
517         regions: &RegionConstraintData<'cx>,
518     ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
519         let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
520         let mut finished_map = FxHashMap::default();
521
522         for constraint in regions.constraints.keys() {
523             match constraint {
524                 &Constraint::VarSubVar(r1, r2) => {
525                     {
526                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
527                         deps1.larger.insert(RegionTarget::RegionVid(r2));
528                     }
529
530                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
531                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
532                 }
533                 &Constraint::RegSubVar(region, vid) => {
534                     {
535                         let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
536                         deps1.larger.insert(RegionTarget::RegionVid(vid));
537                     }
538
539                     let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
540                     deps2.smaller.insert(RegionTarget::Region(region));
541                 }
542                 &Constraint::VarSubReg(vid, region) => {
543                     finished_map.insert(vid, region);
544                 }
545                 &Constraint::RegSubReg(r1, r2) => {
546                     {
547                         let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
548                         deps1.larger.insert(RegionTarget::Region(r2));
549                     }
550
551                     let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
552                     deps2.smaller.insert(RegionTarget::Region(r1));
553                 }
554             }
555         }
556
557         while !vid_map.is_empty() {
558             let target = *vid_map.keys().next().expect("Keys somehow empty");
559             let deps = vid_map.remove(&target).expect("Entry somehow missing");
560
561             for smaller in deps.smaller.iter() {
562                 for larger in deps.larger.iter() {
563                     match (smaller, larger) {
564                         (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
565                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
566                                 let smaller_deps = v.into_mut();
567                                 smaller_deps.larger.insert(*larger);
568                                 smaller_deps.larger.remove(&target);
569                             }
570
571                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
572                                 let larger_deps = v.into_mut();
573                                 larger_deps.smaller.insert(*smaller);
574                                 larger_deps.smaller.remove(&target);
575                             }
576                         }
577                         (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
578                             finished_map.insert(v1, r1);
579                         }
580                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
581                             // Do nothing; we don't care about regions that are smaller than vids.
582                         }
583                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
584                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
585                                 let smaller_deps = v.into_mut();
586                                 smaller_deps.larger.insert(*larger);
587                                 smaller_deps.larger.remove(&target);
588                             }
589
590                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
591                                 let larger_deps = v.into_mut();
592                                 larger_deps.smaller.insert(*smaller);
593                                 larger_deps.smaller.remove(&target);
594                             }
595                         }
596                     }
597                 }
598             }
599         }
600         finished_map
601     }
602
603     fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
604         self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
605     }
606
607     pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
608         match ty.kind() {
609             ty::Param(_) => true,
610             ty::Projection(p) => self.is_of_param(p.self_ty()),
611             _ => false,
612         }
613     }
614
615     fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
616         if let Term::Ty(ty) = p.term().skip_binder() {
617             matches!(ty.kind(), ty::Projection(proj) if proj == &p.skip_binder().projection_ty)
618         } else {
619             false
620         }
621     }
622
623     fn evaluate_nested_obligations(
624         &self,
625         ty: Ty<'_>,
626         nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
627         computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
628         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
629         predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
630         select: &mut SelectionContext<'_, 'tcx>,
631         only_projections: bool,
632     ) -> bool {
633         let dummy_cause = ObligationCause::dummy();
634
635         for obligation in nested {
636             let is_new_pred =
637                 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
638
639             // Resolve any inference variables that we can, to help selection succeed
640             let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
641
642             // We only add a predicate as a user-displayable bound if
643             // it involves a generic parameter, and doesn't contain
644             // any inference variables.
645             //
646             // Displaying a bound involving a concrete type (instead of a generic
647             // parameter) would be pointless, since it's always true
648             // (e.g. u8: Copy)
649             // Displaying an inference variable is impossible, since they're
650             // an internal compiler detail without a defined visual representation
651             //
652             // We check this by calling is_of_param on the relevant types
653             // from the various possible predicates
654
655             let bound_predicate = predicate.kind();
656             match bound_predicate.skip_binder() {
657                 ty::PredicateKind::Trait(p) => {
658                     // Add this to `predicates` so that we end up calling `select`
659                     // with it. If this predicate ends up being unimplemented,
660                     // then `evaluate_predicates` will handle adding it the `ParamEnv`
661                     // if possible.
662                     predicates.push_back(bound_predicate.rebind(p));
663                 }
664                 ty::PredicateKind::Projection(p) => {
665                     let p = bound_predicate.rebind(p);
666                     debug!(
667                         "evaluate_nested_obligations: examining projection predicate {:?}",
668                         predicate
669                     );
670
671                     // As described above, we only want to display
672                     // bounds which include a generic parameter but don't include
673                     // an inference variable.
674                     // Additionally, we check if we've seen this predicate before,
675                     // to avoid rendering duplicate bounds to the user.
676                     if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
677                         && !p.term().skip_binder().has_infer_types()
678                         && is_new_pred
679                     {
680                         debug!(
681                             "evaluate_nested_obligations: adding projection predicate \
682                             to computed_preds: {:?}",
683                             predicate
684                         );
685
686                         // Under unusual circumstances, we can end up with a self-referential
687                         // projection predicate. For example:
688                         // <T as MyType>::Value == <T as MyType>::Value
689                         // Not only is displaying this to the user pointless,
690                         // having it in the ParamEnv will cause an issue if we try to call
691                         // poly_project_and_unify_type on the predicate, since this kind of
692                         // predicate will normally never end up in a ParamEnv.
693                         //
694                         // For these reasons, we ignore these weird predicates,
695                         // ensuring that we're able to properly synthesize an auto trait impl
696                         if self.is_self_referential_projection(p) {
697                             debug!(
698                                 "evaluate_nested_obligations: encountered a projection
699                                  predicate equating a type with itself! Skipping"
700                             );
701                         } else {
702                             self.add_user_pred(computed_preds, predicate);
703                         }
704                     }
705
706                     // There are three possible cases when we project a predicate:
707                     //
708                     // 1. We encounter an error. This means that it's impossible for
709                     // our current type to implement the auto trait - there's bound
710                     // that we could add to our ParamEnv that would 'fix' this kind
711                     // of error, as it's not caused by an unimplemented type.
712                     //
713                     // 2. We successfully project the predicate (Ok(Some(_))), generating
714                     //  some subobligations. We then process these subobligations
715                     //  like any other generated sub-obligations.
716                     //
717                     // 3. We receive an 'ambiguous' result (Ok(None))
718                     // If we were actually trying to compile a crate,
719                     // we would need to re-process this obligation later.
720                     // However, all we care about is finding out what bounds
721                     // are needed for our type to implement a particular auto trait.
722                     // We've already added this obligation to our computed ParamEnv
723                     // above (if it was necessary). Therefore, we don't need
724                     // to do any further processing of the obligation.
725                     //
726                     // Note that we *must* try to project *all* projection predicates
727                     // we encounter, even ones without inference variable.
728                     // This ensures that we detect any projection errors,
729                     // which indicate that our type can *never* implement the given
730                     // auto trait. In that case, we will generate an explicit negative
731                     // impl (e.g. 'impl !Send for MyType'). However, we don't
732                     // try to process any of the generated subobligations -
733                     // they contain no new information, since we already know
734                     // that our type implements the projected-through trait,
735                     // and can lead to weird region issues.
736                     //
737                     // Normally, we'll generate a negative impl as a result of encountering
738                     // a type with an explicit negative impl of an auto trait
739                     // (for example, raw pointers have !Send and !Sync impls)
740                     // However, through some **interesting** manipulations of the type
741                     // system, it's actually possible to write a type that never
742                     // implements an auto trait due to a projection error, not a normal
743                     // negative impl error. To properly handle this case, we need
744                     // to ensure that we catch any potential projection errors,
745                     // and turn them into an explicit negative impl for our type.
746                     debug!("Projecting and unifying projection predicate {:?}", predicate);
747
748                     match project::poly_project_and_unify_type(select, &obligation.with(p)) {
749                         ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
750                             debug!(
751                                 "evaluate_nested_obligations: Unable to unify predicate \
752                                  '{:?}' '{:?}', bailing out",
753                                 ty, e
754                             );
755                             return false;
756                         }
757                         ProjectAndUnifyResult::Recursive => {
758                             debug!("evaluate_nested_obligations: recursive projection predicate");
759                             return false;
760                         }
761                         ProjectAndUnifyResult::Holds(v) => {
762                             // We only care about sub-obligations
763                             // when we started out trying to unify
764                             // some inference variables. See the comment above
765                             // for more information
766                             if p.term().skip_binder().has_infer_types() {
767                                 if !self.evaluate_nested_obligations(
768                                     ty,
769                                     v.into_iter(),
770                                     computed_preds,
771                                     fresh_preds,
772                                     predicates,
773                                     select,
774                                     only_projections,
775                                 ) {
776                                     return false;
777                                 }
778                             }
779                         }
780                         ProjectAndUnifyResult::FailedNormalization => {
781                             // It's ok not to make progress when have no inference variables -
782                             // in that case, we were only performing unification to check if an
783                             // error occurred (which would indicate that it's impossible for our
784                             // type to implement the auto trait).
785                             // However, we should always make progress (either by generating
786                             // subobligations or getting an error) when we started off with
787                             // inference variables
788                             if p.term().skip_binder().has_infer_types() {
789                                 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
790                             }
791                         }
792                     }
793                 }
794                 ty::PredicateKind::RegionOutlives(binder) => {
795                     let binder = bound_predicate.rebind(binder);
796                     select.infcx().region_outlives_predicate(&dummy_cause, binder)
797                 }
798                 ty::PredicateKind::TypeOutlives(binder) => {
799                     let binder = bound_predicate.rebind(binder);
800                     match (
801                         binder.no_bound_vars(),
802                         binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
803                     ) {
804                         (None, Some(t_a)) => {
805                             select.infcx().register_region_obligation_with_cause(
806                                 t_a,
807                                 select.infcx().tcx.lifetimes.re_static,
808                                 &dummy_cause,
809                             );
810                         }
811                         (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
812                             select.infcx().register_region_obligation_with_cause(
813                                 t_a,
814                                 r_b,
815                                 &dummy_cause,
816                             );
817                         }
818                         _ => {}
819                     };
820                 }
821                 ty::PredicateKind::ConstEquate(c1, c2) => {
822                     let evaluate = |c: ty::Const<'tcx>| {
823                         if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
824                             match select.infcx().const_eval_resolve(
825                                 obligation.param_env,
826                                 unevaluated,
827                                 Some(obligation.cause.span),
828                             ) {
829                                 Ok(Some(valtree)) => {
830                                     Ok(ty::Const::from_value(select.tcx(), valtree, c.ty()))
831                                 }
832                                 Ok(None) => {
833                                     let tcx = self.tcx;
834                                     let def_id = unevaluated.def.did;
835                                     let reported = tcx.sess.struct_span_err(tcx.def_span(def_id), &format!("unable to construct a constant value for the unevaluated constant {:?}", unevaluated)).emit();
836
837                                     Err(ErrorHandled::Reported(reported))
838                                 }
839                                 Err(err) => Err(err),
840                             }
841                         } else {
842                             Ok(c)
843                         }
844                     };
845
846                     match (evaluate(c1), evaluate(c2)) {
847                         (Ok(c1), Ok(c2)) => {
848                             match select
849                                 .infcx()
850                                 .at(&obligation.cause, obligation.param_env)
851                                 .eq(c1, c2)
852                             {
853                                 Ok(_) => (),
854                                 Err(_) => return false,
855                             }
856                         }
857                         _ => return false,
858                     }
859                 }
860                 // There's not really much we can do with these predicates -
861                 // we start out with a `ParamEnv` with no inference variables,
862                 // and these don't correspond to adding any new bounds to
863                 // the `ParamEnv`.
864                 ty::PredicateKind::WellFormed(..)
865                 | ty::PredicateKind::ObjectSafe(..)
866                 | ty::PredicateKind::ClosureKind(..)
867                 | ty::PredicateKind::Subtype(..)
868                 | ty::PredicateKind::ConstEvaluatable(..)
869                 | ty::PredicateKind::Coerce(..)
870                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => {}
871             };
872         }
873         true
874     }
875
876     pub fn clean_pred(
877         &self,
878         infcx: &InferCtxt<'_, 'tcx>,
879         p: ty::Predicate<'tcx>,
880     ) -> ty::Predicate<'tcx> {
881         infcx.freshen(p)
882     }
883 }
884
885 // Replaces all ReVars in a type with ty::Region's, using the provided map
886 pub struct RegionReplacer<'a, 'tcx> {
887     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
888     tcx: TyCtxt<'tcx>,
889 }
890
891 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
892     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
893         self.tcx
894     }
895
896     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
897         (match *r {
898             ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
899             _ => None,
900         })
901         .unwrap_or_else(|| r.super_fold_with(self))
902     }
903 }