]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/auto_trait.rs
Remove unused #[allow(...)] statements from compiler/
[rust.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
1 //! Support code for rustdoc and external tools.
2 //! You really don't want to be using this unless you need to.
3
4 use super::*;
5
6 use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7 use crate::infer::InferCtxt;
8 use rustc_middle::ty::fold::TypeFolder;
9 use rustc_middle::ty::{Region, RegionVid};
10
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13 use std::collections::hash_map::Entry;
14 use std::collections::VecDeque;
15
16 // FIXME(twk): this is obviously not nice to duplicate like that
17 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
18 pub enum RegionTarget<'tcx> {
19     Region(Region<'tcx>),
20     RegionVid(RegionVid),
21 }
22
23 #[derive(Default, Debug, Clone)]
24 pub struct RegionDeps<'tcx> {
25     larger: FxHashSet<RegionTarget<'tcx>>,
26     smaller: FxHashSet<RegionTarget<'tcx>>,
27 }
28
29 pub enum AutoTraitResult<A> {
30     ExplicitImpl,
31     PositiveImpl(A),
32     NegativeImpl,
33 }
34
35 #[allow(dead_code)]
36 impl<A> AutoTraitResult<A> {
37     fn is_auto(&self) -> bool {
38         match *self {
39             AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
40             _ => false,
41         }
42     }
43 }
44
45 pub struct AutoTraitInfo<'cx> {
46     pub full_user_env: ty::ParamEnv<'cx>,
47     pub region_data: RegionConstraintData<'cx>,
48     pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
49 }
50
51 pub struct AutoTraitFinder<'tcx> {
52     tcx: TyCtxt<'tcx>,
53 }
54
55 impl<'tcx> AutoTraitFinder<'tcx> {
56     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
57         AutoTraitFinder { tcx }
58     }
59
60     /// Makes a best effort to determine whether and under which conditions an auto trait is
61     /// implemented for a type. For example, if you have
62     ///
63     /// ```
64     /// struct Foo<T> { data: Box<T> }
65     /// ```
66     ///
67     /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
68     /// The analysis attempts to account for custom impls as well as other complex cases. This
69     /// result is intended for use by rustdoc and other such consumers.
70     ///
71     /// (Note that due to the coinductive nature of Send, the full and correct result is actually
72     /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
73     /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
74     /// But this is often not the best way to present to the user.)
75     ///
76     /// Warning: The API should be considered highly unstable, and it may be refactored or removed
77     /// in the future.
78     pub fn find_auto_trait_generics<A>(
79         &self,
80         ty: Ty<'tcx>,
81         orig_env: ty::ParamEnv<'tcx>,
82         trait_did: DefId,
83         auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
84     ) -> AutoTraitResult<A> {
85         let tcx = self.tcx;
86
87         let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
88
89         let trait_pred = ty::Binder::bind(trait_ref);
90
91         let bail_out = tcx.infer_ctxt().enter(|infcx| {
92             let mut selcx = SelectionContext::with_negative(&infcx, true);
93             let result = selcx.select(&Obligation::new(
94                 ObligationCause::dummy(),
95                 orig_env,
96                 trait_pred.to_poly_trait_predicate(),
97             ));
98
99             match result {
100                 Ok(Some(ImplSource::UserDefined(_))) => {
101                     debug!(
102                         "find_auto_trait_generics({:?}): \
103                          manual impl found, bailing out",
104                         trait_ref
105                     );
106                     true
107                 }
108                 _ => false,
109             }
110         });
111
112         // If an explicit impl exists, it always takes priority over an auto impl
113         if bail_out {
114             return AutoTraitResult::ExplicitImpl;
115         }
116
117         tcx.infer_ctxt().enter(|infcx| {
118             let mut fresh_preds = FxHashSet::default();
119
120             // Due to the way projections are handled by SelectionContext, we need to run
121             // evaluate_predicates twice: once on the original param env, and once on the result of
122             // the first evaluate_predicates call.
123             //
124             // The problem is this: most of rustc, including SelectionContext and traits::project,
125             // are designed to work with a concrete usage of a type (e.g., Vec<u8>
126             // fn<T>() { Vec<T> }. This information will generally never change - given
127             // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
128             // If we're unable to prove that 'T' implements a particular trait, we're done -
129             // there's nothing left to do but error out.
130             //
131             // However, synthesizing an auto trait impl works differently. Here, we start out with
132             // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
133             // with - and progressively discover the conditions we need to fulfill for it to
134             // implement a certain auto trait. This ends up breaking two assumptions made by trait
135             // selection and projection:
136             //
137             // * We can always cache the result of a particular trait selection for the lifetime of
138             // an InfCtxt
139             // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
140             // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
141             //
142             // We fix the first assumption by manually clearing out all of the InferCtxt's caches
143             // in between calls to SelectionContext.select. This allows us to keep all of the
144             // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
145             // them between calls.
146             //
147             // We fix the second assumption by reprocessing the result of our first call to
148             // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
149             // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
150             // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
151             // SelectionContext to return it back to us.
152
153             let (new_env, user_env) = match self.evaluate_predicates(
154                 &infcx,
155                 trait_did,
156                 ty,
157                 orig_env,
158                 orig_env,
159                 &mut fresh_preds,
160                 false,
161             ) {
162                 Some(e) => e,
163                 None => return AutoTraitResult::NegativeImpl,
164             };
165
166             let (full_env, full_user_env) = self
167                 .evaluate_predicates(
168                     &infcx,
169                     trait_did,
170                     ty,
171                     new_env,
172                     user_env,
173                     &mut fresh_preds,
174                     true,
175                 )
176                 .unwrap_or_else(|| {
177                     panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
178                 });
179
180             debug!(
181                 "find_auto_trait_generics({:?}): fulfilling \
182                  with {:?}",
183                 trait_ref, full_env
184             );
185             infcx.clear_caches();
186
187             // At this point, we already have all of the bounds we need. FulfillmentContext is used
188             // to store all of the necessary region/lifetime bounds in the InferContext, as well as
189             // an additional sanity check.
190             let mut fulfill = FulfillmentContext::new();
191             fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
192             fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
193                 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, e)
194             });
195
196             let body_id_map: FxHashMap<_, _> = infcx
197                 .inner
198                 .borrow()
199                 .region_obligations()
200                 .iter()
201                 .map(|&(id, _)| (id, vec![]))
202                 .collect();
203
204             infcx.process_registered_region_obligations(&body_id_map, None, full_env);
205
206             let region_data = infcx
207                 .inner
208                 .borrow_mut()
209                 .unwrap_region_constraints()
210                 .region_constraint_data()
211                 .clone();
212
213             let vid_to_region = self.map_vid_to_region(&region_data);
214
215             let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
216
217             AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info))
218         })
219     }
220 }
221
222 impl AutoTraitFinder<'tcx> {
223     /// The core logic responsible for computing the bounds for our synthesized impl.
224     ///
225     /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
226     /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
227     /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
228     /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
229     /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
230     ///
231     /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
232     /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
233     /// user code. According, it considers all possible ways that a `Predicate` could be met, which
234     /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
235     /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
236     /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
237     /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
238     /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
239     /// like this:
240     ///
241     ///     impl<T> Send for Foo<T> where T: IntoIterator
242     ///
243     /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
244     /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
245     ///
246     /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
247     /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
248     /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
249     /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
250     /// needs to hold.
251     ///
252     /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
253     /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
254     /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
255     /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
256     /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
257     /// else `SelectionContext` will choke on the missing predicates. However, this should never
258     /// show up in the final synthesized generics: we don't want our generated docs page to contain
259     /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
260     /// separate `user_env`, which only holds the predicates that will actually be displayed to the
261     /// user.
262     fn evaluate_predicates(
263         &self,
264         infcx: &InferCtxt<'_, 'tcx>,
265         trait_did: DefId,
266         ty: Ty<'tcx>,
267         param_env: ty::ParamEnv<'tcx>,
268         user_env: ty::ParamEnv<'tcx>,
269         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
270         only_projections: bool,
271     ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
272         let tcx = infcx.tcx;
273
274         // Don't try to proess any nested obligations involving predicates
275         // that are already in the `ParamEnv` (modulo regions): we already
276         // know that they must hold.
277         for predicate in param_env.caller_bounds() {
278             fresh_preds.insert(self.clean_pred(infcx, predicate));
279         }
280
281         let mut select = SelectionContext::with_negative(&infcx, true);
282
283         let mut already_visited = FxHashSet::default();
284         let mut predicates = VecDeque::new();
285         predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
286             trait_ref: ty::TraitRef {
287                 def_id: trait_did,
288                 substs: infcx.tcx.mk_substs_trait(ty, &[]),
289             },
290         }));
291
292         let computed_preds = param_env.caller_bounds().iter();
293         let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
294
295         let mut new_env = param_env;
296         let dummy_cause = ObligationCause::dummy();
297
298         while let Some(pred) = predicates.pop_front() {
299             infcx.clear_caches();
300
301             if !already_visited.insert(pred) {
302                 continue;
303             }
304
305             // Call `infcx.resolve_vars_if_possible` to see if we can
306             // get rid of any inference variables.
307             let obligation = infcx.resolve_vars_if_possible(&Obligation::new(
308                 dummy_cause.clone(),
309                 new_env,
310                 pred,
311             ));
312             let result = select.select(&obligation);
313
314             match &result {
315                 &Ok(Some(ref impl_source)) => {
316                     // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
317                     // we immediately bail out, since it's impossible for us to continue.
318
319                     if let ImplSource::UserDefined(ImplSourceUserDefinedData {
320                         impl_def_id, ..
321                     }) = impl_source
322                     {
323                         // Blame 'tidy' for the weird bracket placement.
324                         if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
325                             debug!(
326                                 "evaluate_nested_obligations: found explicit negative impl\
327                                         {:?}, bailing out",
328                                 impl_def_id
329                             );
330                             return None;
331                         }
332                     }
333
334                     let obligations = impl_source.clone().nested_obligations().into_iter();
335
336                     if !self.evaluate_nested_obligations(
337                         ty,
338                         obligations,
339                         &mut user_computed_preds,
340                         fresh_preds,
341                         &mut predicates,
342                         &mut select,
343                         only_projections,
344                     ) {
345                         return None;
346                     }
347                 }
348                 &Ok(None) => {}
349                 &Err(SelectionError::Unimplemented) => {
350                     if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
351                         already_visited.remove(&pred);
352                         self.add_user_pred(
353                             &mut user_computed_preds,
354                             pred.without_const().to_predicate(self.tcx),
355                         );
356                         predicates.push_back(pred);
357                     } else {
358                         debug!(
359                             "evaluate_nested_obligations: `Unimplemented` found, bailing: \
360                              {:?} {:?} {:?}",
361                             ty,
362                             pred,
363                             pred.skip_binder().trait_ref.substs
364                         );
365                         return None;
366                     }
367                 }
368                 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
369             };
370
371             let normalized_preds = elaborate_predicates(
372                 tcx,
373                 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
374             )
375             .map(|o| o.predicate);
376             new_env = ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal());
377         }
378
379         let final_user_env = ty::ParamEnv::new(
380             tcx.mk_predicates(user_computed_preds.into_iter()),
381             user_env.reveal(),
382         );
383         debug!(
384             "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
385              '{:?}'",
386             ty, trait_did, new_env, final_user_env
387         );
388
389         Some((new_env, final_user_env))
390     }
391
392     /// This method is designed to work around the following issue:
393     /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
394     /// progressively building a `ParamEnv` based on the results we get.
395     /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
396     /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
397     ///
398     /// This can lead to a corner case when dealing with region parameters.
399     /// During our selection loop in `evaluate_predicates`, we might end up with
400     /// two trait predicates that differ only in their region parameters:
401     /// one containing a HRTB lifetime parameter, and one containing a 'normal'
402     /// lifetime parameter. For example:
403     ///
404     ///     T as MyTrait<'a>
405     ///     T as MyTrait<'static>
406     ///
407     /// If we put both of these predicates in our computed `ParamEnv`, we'll
408     /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
409     ///
410     /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
411     /// Our end goal is to generate a user-visible description of the conditions
412     /// under which a type implements an auto trait. A trait predicate involving
413     /// a HRTB means that the type needs to work with any choice of lifetime,
414     /// not just one specific lifetime (e.g., `'static`).
415     fn add_user_pred(
416         &self,
417         user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
418         new_pred: ty::Predicate<'tcx>,
419     ) {
420         let mut should_add_new = true;
421         user_computed_preds.retain(|&old_pred| {
422             if let (
423                 ty::PredicateAtom::Trait(new_trait, _),
424                 ty::PredicateAtom::Trait(old_trait, _),
425             ) = (new_pred.skip_binders(), old_pred.skip_binders())
426             {
427                 if new_trait.def_id() == old_trait.def_id() {
428                     let new_substs = new_trait.trait_ref.substs;
429                     let old_substs = old_trait.trait_ref.substs;
430
431                     if !new_substs.types().eq(old_substs.types()) {
432                         // We can't compare lifetimes if the types are different,
433                         // so skip checking `old_pred`.
434                         return true;
435                     }
436
437                     for (new_region, old_region) in new_substs.regions().zip(old_substs.regions()) {
438                         match (new_region, old_region) {
439                             // If both predicates have an `ReLateBound` (a HRTB) in the
440                             // same spot, we do nothing.
441                             (
442                                 ty::RegionKind::ReLateBound(_, _),
443                                 ty::RegionKind::ReLateBound(_, _),
444                             ) => {}
445
446                             (ty::RegionKind::ReLateBound(_, _), _)
447                             | (_, ty::RegionKind::ReVar(_)) => {
448                                 // One of these is true:
449                                 // The new predicate has a HRTB in a spot where the old
450                                 // predicate does not (if they both had a HRTB, the previous
451                                 // match arm would have executed). A HRBT is a 'stricter'
452                                 // bound than anything else, so we want to keep the newer
453                                 // predicate (with the HRBT) in place of the old predicate.
454                                 //
455                                 // OR
456                                 //
457                                 // The old predicate has a region variable where the new
458                                 // predicate has some other kind of region. An region
459                                 // variable isn't something we can actually display to a user,
460                                 // so we choose their new predicate (which doesn't have a region
461                                 // variable).
462                                 //
463                                 // In both cases, we want to remove the old predicate,
464                                 // from `user_computed_preds`, and replace it with the new
465                                 // one. Having both the old and the new
466                                 // predicate in a `ParamEnv` would confuse `SelectionContext`.
467                                 //
468                                 // We're currently in the predicate passed to 'retain',
469                                 // so we return `false` to remove the old predicate from
470                                 // `user_computed_preds`.
471                                 return false;
472                             }
473                             (_, ty::RegionKind::ReLateBound(_, _))
474                             | (ty::RegionKind::ReVar(_), _) => {
475                                 // This is the opposite situation as the previous arm.
476                                 // One of these is true:
477                                 //
478                                 // The old predicate has a HRTB lifetime in a place where the
479                                 // new predicate does not.
480                                 //
481                                 // OR
482                                 //
483                                 // The new predicate has a region variable where the old
484                                 // predicate has some other type of region.
485                                 //
486                                 // We want to leave the old
487                                 // predicate in `user_computed_preds`, and skip adding
488                                 // new_pred to `user_computed_params`.
489                                 should_add_new = false
490                             }
491                             _ => {}
492                         }
493                     }
494                 }
495             }
496             true
497         });
498
499         if should_add_new {
500             user_computed_preds.insert(new_pred);
501         }
502     }
503
504     /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
505     /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
506     fn map_vid_to_region<'cx>(
507         &self,
508         regions: &RegionConstraintData<'cx>,
509     ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
510         let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
511         let mut finished_map = FxHashMap::default();
512
513         for constraint in regions.constraints.keys() {
514             match constraint {
515                 &Constraint::VarSubVar(r1, r2) => {
516                     {
517                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
518                         deps1.larger.insert(RegionTarget::RegionVid(r2));
519                     }
520
521                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
522                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
523                 }
524                 &Constraint::RegSubVar(region, vid) => {
525                     {
526                         let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
527                         deps1.larger.insert(RegionTarget::RegionVid(vid));
528                     }
529
530                     let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
531                     deps2.smaller.insert(RegionTarget::Region(region));
532                 }
533                 &Constraint::VarSubReg(vid, region) => {
534                     finished_map.insert(vid, region);
535                 }
536                 &Constraint::RegSubReg(r1, r2) => {
537                     {
538                         let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
539                         deps1.larger.insert(RegionTarget::Region(r2));
540                     }
541
542                     let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
543                     deps2.smaller.insert(RegionTarget::Region(r1));
544                 }
545             }
546         }
547
548         while !vid_map.is_empty() {
549             let target = *vid_map.keys().next().expect("Keys somehow empty");
550             let deps = vid_map.remove(&target).expect("Entry somehow missing");
551
552             for smaller in deps.smaller.iter() {
553                 for larger in deps.larger.iter() {
554                     match (smaller, larger) {
555                         (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
556                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
557                                 let smaller_deps = v.into_mut();
558                                 smaller_deps.larger.insert(*larger);
559                                 smaller_deps.larger.remove(&target);
560                             }
561
562                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
563                                 let larger_deps = v.into_mut();
564                                 larger_deps.smaller.insert(*smaller);
565                                 larger_deps.smaller.remove(&target);
566                             }
567                         }
568                         (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
569                             finished_map.insert(v1, r1);
570                         }
571                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
572                             // Do nothing; we don't care about regions that are smaller than vids.
573                         }
574                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
575                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
576                                 let smaller_deps = v.into_mut();
577                                 smaller_deps.larger.insert(*larger);
578                                 smaller_deps.larger.remove(&target);
579                             }
580
581                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
582                                 let larger_deps = v.into_mut();
583                                 larger_deps.smaller.insert(*smaller);
584                                 larger_deps.smaller.remove(&target);
585                             }
586                         }
587                     }
588                 }
589             }
590         }
591         finished_map
592     }
593
594     fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
595         self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
596     }
597
598     pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
599         match ty.kind() {
600             ty::Param(_) => true,
601             ty::Projection(p) => self.is_of_param(p.self_ty()),
602             _ => false,
603         }
604     }
605
606     fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
607         match *p.ty().skip_binder().kind() {
608             ty::Projection(proj) if proj == p.skip_binder().projection_ty => true,
609             _ => false,
610         }
611     }
612
613     fn evaluate_nested_obligations(
614         &self,
615         ty: Ty<'_>,
616         nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
617         computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
618         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
619         predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
620         select: &mut SelectionContext<'_, 'tcx>,
621         only_projections: bool,
622     ) -> bool {
623         let dummy_cause = ObligationCause::dummy();
624
625         for obligation in nested {
626             let is_new_pred =
627                 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
628
629             // Resolve any inference variables that we can, to help selection succeed
630             let predicate = select.infcx().resolve_vars_if_possible(&obligation.predicate);
631
632             // We only add a predicate as a user-displayable bound if
633             // it involves a generic parameter, and doesn't contain
634             // any inference variables.
635             //
636             // Displaying a bound involving a concrete type (instead of a generic
637             // parameter) would be pointless, since it's always true
638             // (e.g. u8: Copy)
639             // Displaying an inference variable is impossible, since they're
640             // an internal compiler detail without a defined visual representation
641             //
642             // We check this by calling is_of_param on the relevant types
643             // from the various possible predicates
644
645             match predicate.skip_binders() {
646                 ty::PredicateAtom::Trait(p, _) => {
647                     if self.is_param_no_infer(p.trait_ref.substs)
648                         && !only_projections
649                         && is_new_pred
650                     {
651                         self.add_user_pred(computed_preds, predicate);
652                     }
653                     predicates.push_back(ty::Binder::bind(p));
654                 }
655                 ty::PredicateAtom::Projection(p) => {
656                     let p = ty::Binder::bind(p);
657                     debug!(
658                         "evaluate_nested_obligations: examining projection predicate {:?}",
659                         predicate
660                     );
661
662                     // As described above, we only want to display
663                     // bounds which include a generic parameter but don't include
664                     // an inference variable.
665                     // Additionally, we check if we've seen this predicate before,
666                     // to avoid rendering duplicate bounds to the user.
667                     if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
668                         && !p.ty().skip_binder().has_infer_types()
669                         && is_new_pred
670                     {
671                         debug!(
672                             "evaluate_nested_obligations: adding projection predicate\
673                             to computed_preds: {:?}",
674                             predicate
675                         );
676
677                         // Under unusual circumstances, we can end up with a self-refeential
678                         // projection predicate. For example:
679                         // <T as MyType>::Value == <T as MyType>::Value
680                         // Not only is displaying this to the user pointless,
681                         // having it in the ParamEnv will cause an issue if we try to call
682                         // poly_project_and_unify_type on the predicate, since this kind of
683                         // predicate will normally never end up in a ParamEnv.
684                         //
685                         // For these reasons, we ignore these weird predicates,
686                         // ensuring that we're able to properly synthesize an auto trait impl
687                         if self.is_self_referential_projection(p) {
688                             debug!(
689                                 "evaluate_nested_obligations: encountered a projection
690                                  predicate equating a type with itself! Skipping"
691                             );
692                         } else {
693                             self.add_user_pred(computed_preds, predicate);
694                         }
695                     }
696
697                     // There are three possible cases when we project a predicate:
698                     //
699                     // 1. We encounter an error. This means that it's impossible for
700                     // our current type to implement the auto trait - there's bound
701                     // that we could add to our ParamEnv that would 'fix' this kind
702                     // of error, as it's not caused by an unimplemented type.
703                     //
704                     // 2. We successfully project the predicate (Ok(Some(_))), generating
705                     //  some subobligations. We then process these subobligations
706                     //  like any other generated sub-obligations.
707                     //
708                     // 3. We receive an 'ambiguous' result (Ok(None))
709                     // If we were actually trying to compile a crate,
710                     // we would need to re-process this obligation later.
711                     // However, all we care about is finding out what bounds
712                     // are needed for our type to implement a particular auto trait.
713                     // We've already added this obligation to our computed ParamEnv
714                     // above (if it was necessary). Therefore, we don't need
715                     // to do any further processing of the obligation.
716                     //
717                     // Note that we *must* try to project *all* projection predicates
718                     // we encounter, even ones without inference variable.
719                     // This ensures that we detect any projection errors,
720                     // which indicate that our type can *never* implement the given
721                     // auto trait. In that case, we will generate an explicit negative
722                     // impl (e.g. 'impl !Send for MyType'). However, we don't
723                     // try to process any of the generated subobligations -
724                     // they contain no new information, since we already know
725                     // that our type implements the projected-through trait,
726                     // and can lead to weird region issues.
727                     //
728                     // Normally, we'll generate a negative impl as a result of encountering
729                     // a type with an explicit negative impl of an auto trait
730                     // (for example, raw pointers have !Send and !Sync impls)
731                     // However, through some **interesting** manipulations of the type
732                     // system, it's actually possible to write a type that never
733                     // implements an auto trait due to a projection error, not a normal
734                     // negative impl error. To properly handle this case, we need
735                     // to ensure that we catch any potential projection errors,
736                     // and turn them into an explicit negative impl for our type.
737                     debug!("Projecting and unifying projection predicate {:?}", predicate);
738
739                     match project::poly_project_and_unify_type(select, &obligation.with(p)) {
740                         Err(e) => {
741                             debug!(
742                                 "evaluate_nested_obligations: Unable to unify predicate \
743                                  '{:?}' '{:?}', bailing out",
744                                 ty, e
745                             );
746                             return false;
747                         }
748                         Ok(Err(project::InProgress)) => {
749                             debug!("evaluate_nested_obligations: recursive projection predicate");
750                             return false;
751                         }
752                         Ok(Ok(Some(v))) => {
753                             // We only care about sub-obligations
754                             // when we started out trying to unify
755                             // some inference variables. See the comment above
756                             // for more infomration
757                             if p.ty().skip_binder().has_infer_types() {
758                                 if !self.evaluate_nested_obligations(
759                                     ty,
760                                     v.into_iter(),
761                                     computed_preds,
762                                     fresh_preds,
763                                     predicates,
764                                     select,
765                                     only_projections,
766                                 ) {
767                                     return false;
768                                 }
769                             }
770                         }
771                         Ok(Ok(None)) => {
772                             // It's ok not to make progress when have no inference variables -
773                             // in that case, we were only performing unifcation to check if an
774                             // error occurred (which would indicate that it's impossible for our
775                             // type to implement the auto trait).
776                             // However, we should always make progress (either by generating
777                             // subobligations or getting an error) when we started off with
778                             // inference variables
779                             if p.ty().skip_binder().has_infer_types() {
780                                 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
781                             }
782                         }
783                     }
784                 }
785                 ty::PredicateAtom::RegionOutlives(binder) => {
786                     let binder = ty::Binder::bind(binder);
787                     if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
788                         return false;
789                     }
790                 }
791                 ty::PredicateAtom::TypeOutlives(binder) => {
792                     let binder = ty::Binder::bind(binder);
793                     match (
794                         binder.no_bound_vars(),
795                         binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
796                     ) {
797                         (None, Some(t_a)) => {
798                             select.infcx().register_region_obligation_with_cause(
799                                 t_a,
800                                 select.infcx().tcx.lifetimes.re_static,
801                                 &dummy_cause,
802                             );
803                         }
804                         (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
805                             select.infcx().register_region_obligation_with_cause(
806                                 t_a,
807                                 r_b,
808                                 &dummy_cause,
809                             );
810                         }
811                         _ => {}
812                     };
813                 }
814                 ty::PredicateAtom::ConstEquate(c1, c2) => {
815                     let evaluate = |c: &'tcx ty::Const<'tcx>| {
816                         if let ty::ConstKind::Unevaluated(def, substs, promoted) = c.val {
817                             match select.infcx().const_eval_resolve(
818                                 obligation.param_env,
819                                 def,
820                                 substs,
821                                 promoted,
822                                 Some(obligation.cause.span),
823                             ) {
824                                 Ok(val) => Ok(ty::Const::from_value(select.tcx(), val, c.ty)),
825                                 Err(err) => Err(err),
826                             }
827                         } else {
828                             Ok(c)
829                         }
830                     };
831
832                     match (evaluate(c1), evaluate(c2)) {
833                         (Ok(c1), Ok(c2)) => {
834                             match select
835                                 .infcx()
836                                 .at(&obligation.cause, obligation.param_env)
837                                 .eq(c1, c2)
838                             {
839                                 Ok(_) => (),
840                                 Err(_) => return false,
841                             }
842                         }
843                         _ => return false,
844                     }
845                 }
846                 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
847             };
848         }
849         true
850     }
851
852     pub fn clean_pred(
853         &self,
854         infcx: &InferCtxt<'_, 'tcx>,
855         p: ty::Predicate<'tcx>,
856     ) -> ty::Predicate<'tcx> {
857         infcx.freshen(p)
858     }
859 }
860
861 // Replaces all ReVars in a type with ty::Region's, using the provided map
862 pub struct RegionReplacer<'a, 'tcx> {
863     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
864     tcx: TyCtxt<'tcx>,
865 }
866
867 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
868     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
869         self.tcx
870     }
871
872     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
873         (match r {
874             &ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
875             _ => None,
876         })
877         .unwrap_or_else(|| r.super_fold_with(self))
878     }
879 }