]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/auto_trait.rs
Rollup merge of #87528 - :stack_overflow_obsd, r=joshtriplett
[rust.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
1 //! Support code for rustdoc and external tools.
2 //! You really don't want to be using this unless you need to.
3
4 use super::*;
5
6 use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7 use crate::infer::InferCtxt;
8 use rustc_middle::ty::fold::TypeFolder;
9 use rustc_middle::ty::{Region, RegionVid};
10
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13 use std::collections::hash_map::Entry;
14 use std::collections::VecDeque;
15 use std::iter;
16
17 // FIXME(twk): this is obviously not nice to duplicate like that
18 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
19 pub enum RegionTarget<'tcx> {
20     Region(Region<'tcx>),
21     RegionVid(RegionVid),
22 }
23
24 #[derive(Default, Debug, Clone)]
25 pub struct RegionDeps<'tcx> {
26     larger: FxHashSet<RegionTarget<'tcx>>,
27     smaller: FxHashSet<RegionTarget<'tcx>>,
28 }
29
30 pub enum AutoTraitResult<A> {
31     ExplicitImpl,
32     PositiveImpl(A),
33     NegativeImpl,
34 }
35
36 #[allow(dead_code)]
37 impl<A> AutoTraitResult<A> {
38     fn is_auto(&self) -> bool {
39         matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
40     }
41 }
42
43 pub struct AutoTraitInfo<'cx> {
44     pub full_user_env: ty::ParamEnv<'cx>,
45     pub region_data: RegionConstraintData<'cx>,
46     pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
47 }
48
49 pub struct AutoTraitFinder<'tcx> {
50     tcx: TyCtxt<'tcx>,
51 }
52
53 impl<'tcx> AutoTraitFinder<'tcx> {
54     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
55         AutoTraitFinder { tcx }
56     }
57
58     /// Makes a best effort to determine whether and under which conditions an auto trait is
59     /// implemented for a type. For example, if you have
60     ///
61     /// ```
62     /// struct Foo<T> { data: Box<T> }
63     /// ```
64     ///
65     /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
66     /// The analysis attempts to account for custom impls as well as other complex cases. This
67     /// result is intended for use by rustdoc and other such consumers.
68     ///
69     /// (Note that due to the coinductive nature of Send, the full and correct result is actually
70     /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
71     /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
72     /// But this is often not the best way to present to the user.)
73     ///
74     /// Warning: The API should be considered highly unstable, and it may be refactored or removed
75     /// in the future.
76     pub fn find_auto_trait_generics<A>(
77         &self,
78         ty: Ty<'tcx>,
79         orig_env: ty::ParamEnv<'tcx>,
80         trait_did: DefId,
81         mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
82     ) -> AutoTraitResult<A> {
83         let tcx = self.tcx;
84
85         let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
86
87         let trait_pred = ty::Binder::dummy(trait_ref);
88
89         let bail_out = tcx.infer_ctxt().enter(|infcx| {
90             let mut selcx = SelectionContext::with_negative(&infcx, true);
91             let result = selcx.select(&Obligation::new(
92                 ObligationCause::dummy(),
93                 orig_env,
94                 trait_pred.to_poly_trait_predicate(),
95             ));
96
97             match result {
98                 Ok(Some(ImplSource::UserDefined(_))) => {
99                     debug!(
100                         "find_auto_trait_generics({:?}): \
101                          manual impl found, bailing out",
102                         trait_ref
103                     );
104                     true
105                 }
106                 _ => false,
107             }
108         });
109
110         // If an explicit impl exists, it always takes priority over an auto impl
111         if bail_out {
112             return AutoTraitResult::ExplicitImpl;
113         }
114
115         tcx.infer_ctxt().enter(|infcx| {
116             let mut fresh_preds = FxHashSet::default();
117
118             // Due to the way projections are handled by SelectionContext, we need to run
119             // evaluate_predicates twice: once on the original param env, and once on the result of
120             // the first evaluate_predicates call.
121             //
122             // The problem is this: most of rustc, including SelectionContext and traits::project,
123             // are designed to work with a concrete usage of a type (e.g., Vec<u8>
124             // fn<T>() { Vec<T> }. This information will generally never change - given
125             // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
126             // If we're unable to prove that 'T' implements a particular trait, we're done -
127             // there's nothing left to do but error out.
128             //
129             // However, synthesizing an auto trait impl works differently. Here, we start out with
130             // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
131             // with - and progressively discover the conditions we need to fulfill for it to
132             // implement a certain auto trait. This ends up breaking two assumptions made by trait
133             // selection and projection:
134             //
135             // * We can always cache the result of a particular trait selection for the lifetime of
136             // an InfCtxt
137             // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
138             // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
139             //
140             // We fix the first assumption by manually clearing out all of the InferCtxt's caches
141             // in between calls to SelectionContext.select. This allows us to keep all of the
142             // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
143             // them between calls.
144             //
145             // We fix the second assumption by reprocessing the result of our first call to
146             // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
147             // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
148             // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
149             // SelectionContext to return it back to us.
150
151             let (new_env, user_env) = match self.evaluate_predicates(
152                 &infcx,
153                 trait_did,
154                 ty,
155                 orig_env,
156                 orig_env,
157                 &mut fresh_preds,
158                 false,
159             ) {
160                 Some(e) => e,
161                 None => return AutoTraitResult::NegativeImpl,
162             };
163
164             let (full_env, full_user_env) = self
165                 .evaluate_predicates(
166                     &infcx,
167                     trait_did,
168                     ty,
169                     new_env,
170                     user_env,
171                     &mut fresh_preds,
172                     true,
173                 )
174                 .unwrap_or_else(|| {
175                     panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
176                 });
177
178             debug!(
179                 "find_auto_trait_generics({:?}): fulfilling \
180                  with {:?}",
181                 trait_ref, full_env
182             );
183             infcx.clear_caches();
184
185             // At this point, we already have all of the bounds we need. FulfillmentContext is used
186             // to store all of the necessary region/lifetime bounds in the InferContext, as well as
187             // an additional sanity check.
188             let mut fulfill = FulfillmentContext::new();
189             fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
190             fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
191                 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, e)
192             });
193
194             let body_id_map: FxHashMap<_, _> = infcx
195                 .inner
196                 .borrow()
197                 .region_obligations()
198                 .iter()
199                 .map(|&(id, _)| (id, vec![]))
200                 .collect();
201
202             infcx.process_registered_region_obligations(&body_id_map, None, full_env);
203
204             let region_data = infcx
205                 .inner
206                 .borrow_mut()
207                 .unwrap_region_constraints()
208                 .region_constraint_data()
209                 .clone();
210
211             let vid_to_region = self.map_vid_to_region(&region_data);
212
213             let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
214
215             AutoTraitResult::PositiveImpl(auto_trait_callback(info))
216         })
217     }
218 }
219
220 impl AutoTraitFinder<'tcx> {
221     /// The core logic responsible for computing the bounds for our synthesized impl.
222     ///
223     /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
224     /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
225     /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
226     /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
227     /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
228     ///
229     /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
230     /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
231     /// user code. According, it considers all possible ways that a `Predicate` could be met, which
232     /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
233     /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
234     /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
235     /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
236     /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
237     /// like this:
238     ///
239     ///     impl<T> Send for Foo<T> where T: IntoIterator
240     ///
241     /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
242     /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
243     ///
244     /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
245     /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
246     /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
247     /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
248     /// needs to hold.
249     ///
250     /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
251     /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
252     /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
253     /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
254     /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
255     /// else `SelectionContext` will choke on the missing predicates. However, this should never
256     /// show up in the final synthesized generics: we don't want our generated docs page to contain
257     /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
258     /// separate `user_env`, which only holds the predicates that will actually be displayed to the
259     /// user.
260     fn evaluate_predicates(
261         &self,
262         infcx: &InferCtxt<'_, 'tcx>,
263         trait_did: DefId,
264         ty: Ty<'tcx>,
265         param_env: ty::ParamEnv<'tcx>,
266         user_env: ty::ParamEnv<'tcx>,
267         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
268         only_projections: bool,
269     ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
270         let tcx = infcx.tcx;
271
272         // Don't try to proess any nested obligations involving predicates
273         // that are already in the `ParamEnv` (modulo regions): we already
274         // know that they must hold.
275         for predicate in param_env.caller_bounds() {
276             fresh_preds.insert(self.clean_pred(infcx, predicate));
277         }
278
279         let mut select = SelectionContext::with_negative(&infcx, true);
280
281         let mut already_visited = FxHashSet::default();
282         let mut predicates = VecDeque::new();
283         predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
284             trait_ref: ty::TraitRef {
285                 def_id: trait_did,
286                 substs: infcx.tcx.mk_substs_trait(ty, &[]),
287             },
288             constness: ty::BoundConstness::NotConst,
289         }));
290
291         let computed_preds = param_env.caller_bounds().iter();
292         let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
293
294         let mut new_env = param_env;
295         let dummy_cause = ObligationCause::dummy();
296
297         while let Some(pred) = predicates.pop_front() {
298             infcx.clear_caches();
299
300             if !already_visited.insert(pred) {
301                 continue;
302             }
303
304             // Call `infcx.resolve_vars_if_possible` to see if we can
305             // get rid of any inference variables.
306             let obligation =
307                 infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
308             let result = select.select(&obligation);
309
310             match result {
311                 Ok(Some(ref impl_source)) => {
312                     // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
313                     // we immediately bail out, since it's impossible for us to continue.
314
315                     if let ImplSource::UserDefined(ImplSourceUserDefinedData {
316                         impl_def_id, ..
317                     }) = impl_source
318                     {
319                         // Blame 'tidy' for the weird bracket placement.
320                         if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
321                             debug!(
322                                 "evaluate_nested_obligations: found explicit negative impl\
323                                         {:?}, bailing out",
324                                 impl_def_id
325                             );
326                             return None;
327                         }
328                     }
329
330                     let obligations = impl_source.clone().nested_obligations().into_iter();
331
332                     if !self.evaluate_nested_obligations(
333                         ty,
334                         obligations,
335                         &mut user_computed_preds,
336                         fresh_preds,
337                         &mut predicates,
338                         &mut select,
339                         only_projections,
340                     ) {
341                         return None;
342                     }
343                 }
344                 Ok(None) => {}
345                 Err(SelectionError::Unimplemented) => {
346                     if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
347                         already_visited.remove(&pred);
348                         self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
349                         predicates.push_back(pred);
350                     } else {
351                         debug!(
352                             "evaluate_nested_obligations: `Unimplemented` found, bailing: \
353                              {:?} {:?} {:?}",
354                             ty,
355                             pred,
356                             pred.skip_binder().trait_ref.substs
357                         );
358                         return None;
359                     }
360                 }
361                 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
362             };
363
364             let normalized_preds = elaborate_predicates(
365                 tcx,
366                 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
367             )
368             .map(|o| o.predicate);
369             new_env = ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal());
370         }
371
372         let final_user_env = ty::ParamEnv::new(
373             tcx.mk_predicates(user_computed_preds.into_iter()),
374             user_env.reveal(),
375         );
376         debug!(
377             "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
378              '{:?}'",
379             ty, trait_did, new_env, final_user_env
380         );
381
382         Some((new_env, final_user_env))
383     }
384
385     /// This method is designed to work around the following issue:
386     /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
387     /// progressively building a `ParamEnv` based on the results we get.
388     /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
389     /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
390     ///
391     /// This can lead to a corner case when dealing with region parameters.
392     /// During our selection loop in `evaluate_predicates`, we might end up with
393     /// two trait predicates that differ only in their region parameters:
394     /// one containing a HRTB lifetime parameter, and one containing a 'normal'
395     /// lifetime parameter. For example:
396     ///
397     ///     T as MyTrait<'a>
398     ///     T as MyTrait<'static>
399     ///
400     /// If we put both of these predicates in our computed `ParamEnv`, we'll
401     /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
402     ///
403     /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
404     /// Our end goal is to generate a user-visible description of the conditions
405     /// under which a type implements an auto trait. A trait predicate involving
406     /// a HRTB means that the type needs to work with any choice of lifetime,
407     /// not just one specific lifetime (e.g., `'static`).
408     fn add_user_pred(
409         &self,
410         user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
411         new_pred: ty::Predicate<'tcx>,
412     ) {
413         let mut should_add_new = true;
414         user_computed_preds.retain(|&old_pred| {
415             if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
416                 (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
417             {
418                 if new_trait.def_id() == old_trait.def_id() {
419                     let new_substs = new_trait.trait_ref.substs;
420                     let old_substs = old_trait.trait_ref.substs;
421
422                     if !new_substs.types().eq(old_substs.types()) {
423                         // We can't compare lifetimes if the types are different,
424                         // so skip checking `old_pred`.
425                         return true;
426                     }
427
428                     for (new_region, old_region) in
429                         iter::zip(new_substs.regions(), old_substs.regions())
430                     {
431                         match (new_region, old_region) {
432                             // If both predicates have an `ReLateBound` (a HRTB) in the
433                             // same spot, we do nothing.
434                             (
435                                 ty::RegionKind::ReLateBound(_, _),
436                                 ty::RegionKind::ReLateBound(_, _),
437                             ) => {}
438
439                             (ty::RegionKind::ReLateBound(_, _), _)
440                             | (_, ty::RegionKind::ReVar(_)) => {
441                                 // One of these is true:
442                                 // The new predicate has a HRTB in a spot where the old
443                                 // predicate does not (if they both had a HRTB, the previous
444                                 // match arm would have executed). A HRBT is a 'stricter'
445                                 // bound than anything else, so we want to keep the newer
446                                 // predicate (with the HRBT) in place of the old predicate.
447                                 //
448                                 // OR
449                                 //
450                                 // The old predicate has a region variable where the new
451                                 // predicate has some other kind of region. An region
452                                 // variable isn't something we can actually display to a user,
453                                 // so we choose their new predicate (which doesn't have a region
454                                 // variable).
455                                 //
456                                 // In both cases, we want to remove the old predicate,
457                                 // from `user_computed_preds`, and replace it with the new
458                                 // one. Having both the old and the new
459                                 // predicate in a `ParamEnv` would confuse `SelectionContext`.
460                                 //
461                                 // We're currently in the predicate passed to 'retain',
462                                 // so we return `false` to remove the old predicate from
463                                 // `user_computed_preds`.
464                                 return false;
465                             }
466                             (_, ty::RegionKind::ReLateBound(_, _))
467                             | (ty::RegionKind::ReVar(_), _) => {
468                                 // This is the opposite situation as the previous arm.
469                                 // One of these is true:
470                                 //
471                                 // The old predicate has a HRTB lifetime in a place where the
472                                 // new predicate does not.
473                                 //
474                                 // OR
475                                 //
476                                 // The new predicate has a region variable where the old
477                                 // predicate has some other type of region.
478                                 //
479                                 // We want to leave the old
480                                 // predicate in `user_computed_preds`, and skip adding
481                                 // new_pred to `user_computed_params`.
482                                 should_add_new = false
483                             }
484                             _ => {}
485                         }
486                     }
487                 }
488             }
489             true
490         });
491
492         if should_add_new {
493             user_computed_preds.insert(new_pred);
494         }
495     }
496
497     /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
498     /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
499     fn map_vid_to_region<'cx>(
500         &self,
501         regions: &RegionConstraintData<'cx>,
502     ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
503         let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
504         let mut finished_map = FxHashMap::default();
505
506         for constraint in regions.constraints.keys() {
507             match constraint {
508                 &Constraint::VarSubVar(r1, r2) => {
509                     {
510                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
511                         deps1.larger.insert(RegionTarget::RegionVid(r2));
512                     }
513
514                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
515                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
516                 }
517                 &Constraint::RegSubVar(region, vid) => {
518                     {
519                         let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
520                         deps1.larger.insert(RegionTarget::RegionVid(vid));
521                     }
522
523                     let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
524                     deps2.smaller.insert(RegionTarget::Region(region));
525                 }
526                 &Constraint::VarSubReg(vid, region) => {
527                     finished_map.insert(vid, region);
528                 }
529                 &Constraint::RegSubReg(r1, r2) => {
530                     {
531                         let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
532                         deps1.larger.insert(RegionTarget::Region(r2));
533                     }
534
535                     let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
536                     deps2.smaller.insert(RegionTarget::Region(r1));
537                 }
538             }
539         }
540
541         while !vid_map.is_empty() {
542             let target = *vid_map.keys().next().expect("Keys somehow empty");
543             let deps = vid_map.remove(&target).expect("Entry somehow missing");
544
545             for smaller in deps.smaller.iter() {
546                 for larger in deps.larger.iter() {
547                     match (smaller, larger) {
548                         (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
549                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
550                                 let smaller_deps = v.into_mut();
551                                 smaller_deps.larger.insert(*larger);
552                                 smaller_deps.larger.remove(&target);
553                             }
554
555                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
556                                 let larger_deps = v.into_mut();
557                                 larger_deps.smaller.insert(*smaller);
558                                 larger_deps.smaller.remove(&target);
559                             }
560                         }
561                         (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
562                             finished_map.insert(v1, r1);
563                         }
564                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
565                             // Do nothing; we don't care about regions that are smaller than vids.
566                         }
567                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
568                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
569                                 let smaller_deps = v.into_mut();
570                                 smaller_deps.larger.insert(*larger);
571                                 smaller_deps.larger.remove(&target);
572                             }
573
574                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
575                                 let larger_deps = v.into_mut();
576                                 larger_deps.smaller.insert(*smaller);
577                                 larger_deps.smaller.remove(&target);
578                             }
579                         }
580                     }
581                 }
582             }
583         }
584         finished_map
585     }
586
587     fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
588         self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
589     }
590
591     pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
592         match ty.kind() {
593             ty::Param(_) => true,
594             ty::Projection(p) => self.is_of_param(p.self_ty()),
595             _ => false,
596         }
597     }
598
599     fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
600         matches!(*p.ty().skip_binder().kind(), ty::Projection(proj) if proj == p.skip_binder().projection_ty)
601     }
602
603     fn evaluate_nested_obligations(
604         &self,
605         ty: Ty<'_>,
606         nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
607         computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
608         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
609         predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
610         select: &mut SelectionContext<'_, 'tcx>,
611         only_projections: bool,
612     ) -> bool {
613         let dummy_cause = ObligationCause::dummy();
614
615         for obligation in nested {
616             let is_new_pred =
617                 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
618
619             // Resolve any inference variables that we can, to help selection succeed
620             let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
621
622             // We only add a predicate as a user-displayable bound if
623             // it involves a generic parameter, and doesn't contain
624             // any inference variables.
625             //
626             // Displaying a bound involving a concrete type (instead of a generic
627             // parameter) would be pointless, since it's always true
628             // (e.g. u8: Copy)
629             // Displaying an inference variable is impossible, since they're
630             // an internal compiler detail without a defined visual representation
631             //
632             // We check this by calling is_of_param on the relevant types
633             // from the various possible predicates
634
635             let bound_predicate = predicate.kind();
636             match bound_predicate.skip_binder() {
637                 ty::PredicateKind::Trait(p) => {
638                     // Add this to `predicates` so that we end up calling `select`
639                     // with it. If this predicate ends up being unimplemented,
640                     // then `evaluate_predicates` will handle adding it the `ParamEnv`
641                     // if possible.
642                     predicates.push_back(bound_predicate.rebind(p));
643                 }
644                 ty::PredicateKind::Projection(p) => {
645                     let p = bound_predicate.rebind(p);
646                     debug!(
647                         "evaluate_nested_obligations: examining projection predicate {:?}",
648                         predicate
649                     );
650
651                     // As described above, we only want to display
652                     // bounds which include a generic parameter but don't include
653                     // an inference variable.
654                     // Additionally, we check if we've seen this predicate before,
655                     // to avoid rendering duplicate bounds to the user.
656                     if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
657                         && !p.ty().skip_binder().has_infer_types()
658                         && is_new_pred
659                     {
660                         debug!(
661                             "evaluate_nested_obligations: adding projection predicate\
662                             to computed_preds: {:?}",
663                             predicate
664                         );
665
666                         // Under unusual circumstances, we can end up with a self-refeential
667                         // projection predicate. For example:
668                         // <T as MyType>::Value == <T as MyType>::Value
669                         // Not only is displaying this to the user pointless,
670                         // having it in the ParamEnv will cause an issue if we try to call
671                         // poly_project_and_unify_type on the predicate, since this kind of
672                         // predicate will normally never end up in a ParamEnv.
673                         //
674                         // For these reasons, we ignore these weird predicates,
675                         // ensuring that we're able to properly synthesize an auto trait impl
676                         if self.is_self_referential_projection(p) {
677                             debug!(
678                                 "evaluate_nested_obligations: encountered a projection
679                                  predicate equating a type with itself! Skipping"
680                             );
681                         } else {
682                             self.add_user_pred(computed_preds, predicate);
683                         }
684                     }
685
686                     // There are three possible cases when we project a predicate:
687                     //
688                     // 1. We encounter an error. This means that it's impossible for
689                     // our current type to implement the auto trait - there's bound
690                     // that we could add to our ParamEnv that would 'fix' this kind
691                     // of error, as it's not caused by an unimplemented type.
692                     //
693                     // 2. We successfully project the predicate (Ok(Some(_))), generating
694                     //  some subobligations. We then process these subobligations
695                     //  like any other generated sub-obligations.
696                     //
697                     // 3. We receive an 'ambiguous' result (Ok(None))
698                     // If we were actually trying to compile a crate,
699                     // we would need to re-process this obligation later.
700                     // However, all we care about is finding out what bounds
701                     // are needed for our type to implement a particular auto trait.
702                     // We've already added this obligation to our computed ParamEnv
703                     // above (if it was necessary). Therefore, we don't need
704                     // to do any further processing of the obligation.
705                     //
706                     // Note that we *must* try to project *all* projection predicates
707                     // we encounter, even ones without inference variable.
708                     // This ensures that we detect any projection errors,
709                     // which indicate that our type can *never* implement the given
710                     // auto trait. In that case, we will generate an explicit negative
711                     // impl (e.g. 'impl !Send for MyType'). However, we don't
712                     // try to process any of the generated subobligations -
713                     // they contain no new information, since we already know
714                     // that our type implements the projected-through trait,
715                     // and can lead to weird region issues.
716                     //
717                     // Normally, we'll generate a negative impl as a result of encountering
718                     // a type with an explicit negative impl of an auto trait
719                     // (for example, raw pointers have !Send and !Sync impls)
720                     // However, through some **interesting** manipulations of the type
721                     // system, it's actually possible to write a type that never
722                     // implements an auto trait due to a projection error, not a normal
723                     // negative impl error. To properly handle this case, we need
724                     // to ensure that we catch any potential projection errors,
725                     // and turn them into an explicit negative impl for our type.
726                     debug!("Projecting and unifying projection predicate {:?}", predicate);
727
728                     match project::poly_project_and_unify_type(select, &obligation.with(p)) {
729                         Err(e) => {
730                             debug!(
731                                 "evaluate_nested_obligations: Unable to unify predicate \
732                                  '{:?}' '{:?}', bailing out",
733                                 ty, e
734                             );
735                             return false;
736                         }
737                         Ok(Err(project::InProgress)) => {
738                             debug!("evaluate_nested_obligations: recursive projection predicate");
739                             return false;
740                         }
741                         Ok(Ok(Some(v))) => {
742                             // We only care about sub-obligations
743                             // when we started out trying to unify
744                             // some inference variables. See the comment above
745                             // for more infomration
746                             if p.ty().skip_binder().has_infer_types() {
747                                 if !self.evaluate_nested_obligations(
748                                     ty,
749                                     v.into_iter(),
750                                     computed_preds,
751                                     fresh_preds,
752                                     predicates,
753                                     select,
754                                     only_projections,
755                                 ) {
756                                     return false;
757                                 }
758                             }
759                         }
760                         Ok(Ok(None)) => {
761                             // It's ok not to make progress when have no inference variables -
762                             // in that case, we were only performing unifcation to check if an
763                             // error occurred (which would indicate that it's impossible for our
764                             // type to implement the auto trait).
765                             // However, we should always make progress (either by generating
766                             // subobligations or getting an error) when we started off with
767                             // inference variables
768                             if p.ty().skip_binder().has_infer_types() {
769                                 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
770                             }
771                         }
772                     }
773                 }
774                 ty::PredicateKind::RegionOutlives(binder) => {
775                     let binder = bound_predicate.rebind(binder);
776                     if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
777                         return false;
778                     }
779                 }
780                 ty::PredicateKind::TypeOutlives(binder) => {
781                     let binder = bound_predicate.rebind(binder);
782                     match (
783                         binder.no_bound_vars(),
784                         binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
785                     ) {
786                         (None, Some(t_a)) => {
787                             select.infcx().register_region_obligation_with_cause(
788                                 t_a,
789                                 select.infcx().tcx.lifetimes.re_static,
790                                 &dummy_cause,
791                             );
792                         }
793                         (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
794                             select.infcx().register_region_obligation_with_cause(
795                                 t_a,
796                                 r_b,
797                                 &dummy_cause,
798                             );
799                         }
800                         _ => {}
801                     };
802                 }
803                 ty::PredicateKind::ConstEquate(c1, c2) => {
804                     let evaluate = |c: &'tcx ty::Const<'tcx>| {
805                         if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
806                             match select.infcx().const_eval_resolve(
807                                 obligation.param_env,
808                                 unevaluated,
809                                 Some(obligation.cause.span),
810                             ) {
811                                 Ok(val) => Ok(ty::Const::from_value(select.tcx(), val, c.ty)),
812                                 Err(err) => Err(err),
813                             }
814                         } else {
815                             Ok(c)
816                         }
817                     };
818
819                     match (evaluate(c1), evaluate(c2)) {
820                         (Ok(c1), Ok(c2)) => {
821                             match select
822                                 .infcx()
823                                 .at(&obligation.cause, obligation.param_env)
824                                 .eq(c1, c2)
825                             {
826                                 Ok(_) => (),
827                                 Err(_) => return false,
828                             }
829                         }
830                         _ => return false,
831                     }
832                 }
833                 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
834             };
835         }
836         true
837     }
838
839     pub fn clean_pred(
840         &self,
841         infcx: &InferCtxt<'_, 'tcx>,
842         p: ty::Predicate<'tcx>,
843     ) -> ty::Predicate<'tcx> {
844         infcx.freshen(p)
845     }
846 }
847
848 // Replaces all ReVars in a type with ty::Region's, using the provided map
849 pub struct RegionReplacer<'a, 'tcx> {
850     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
851     tcx: TyCtxt<'tcx>,
852 }
853
854 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
855     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
856         self.tcx
857     }
858
859     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
860         (match r {
861             ty::ReVar(vid) => self.vid_to_region.get(vid).cloned(),
862             _ => None,
863         })
864         .unwrap_or_else(|| r.super_fold_with(self))
865     }
866 }