]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/auto_trait.rs
fmt
[rust.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
1 //! Support code for rustdoc and external tools.
2 //! You really don't want to be using this unless you need to.
3
4 use super::*;
5
6 use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7 use crate::infer::InferCtxt;
8 use rustc_middle::ty::fold::TypeFolder;
9 use rustc_middle::ty::{Region, RegionVid};
10
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13 use std::collections::hash_map::Entry;
14 use std::collections::VecDeque;
15 use std::iter;
16
17 // FIXME(twk): this is obviously not nice to duplicate like that
18 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
19 pub enum RegionTarget<'tcx> {
20     Region(Region<'tcx>),
21     RegionVid(RegionVid),
22 }
23
24 #[derive(Default, Debug, Clone)]
25 pub struct RegionDeps<'tcx> {
26     larger: FxHashSet<RegionTarget<'tcx>>,
27     smaller: FxHashSet<RegionTarget<'tcx>>,
28 }
29
30 pub enum AutoTraitResult<A> {
31     ExplicitImpl,
32     PositiveImpl(A),
33     NegativeImpl,
34 }
35
36 #[allow(dead_code)]
37 impl<A> AutoTraitResult<A> {
38     fn is_auto(&self) -> bool {
39         matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
40     }
41 }
42
43 pub struct AutoTraitInfo<'cx> {
44     pub full_user_env: ty::ParamEnv<'cx>,
45     pub region_data: RegionConstraintData<'cx>,
46     pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
47 }
48
49 pub struct AutoTraitFinder<'tcx> {
50     tcx: TyCtxt<'tcx>,
51 }
52
53 impl<'tcx> AutoTraitFinder<'tcx> {
54     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
55         AutoTraitFinder { tcx }
56     }
57
58     /// Makes a best effort to determine whether and under which conditions an auto trait is
59     /// implemented for a type. For example, if you have
60     ///
61     /// ```
62     /// struct Foo<T> { data: Box<T> }
63     /// ```
64     ///
65     /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
66     /// The analysis attempts to account for custom impls as well as other complex cases. This
67     /// result is intended for use by rustdoc and other such consumers.
68     ///
69     /// (Note that due to the coinductive nature of Send, the full and correct result is actually
70     /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
71     /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
72     /// But this is often not the best way to present to the user.)
73     ///
74     /// Warning: The API should be considered highly unstable, and it may be refactored or removed
75     /// in the future.
76     pub fn find_auto_trait_generics<A>(
77         &self,
78         ty: Ty<'tcx>,
79         orig_env: ty::ParamEnv<'tcx>,
80         trait_did: DefId,
81         mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
82     ) -> AutoTraitResult<A> {
83         let tcx = self.tcx;
84
85         let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
86
87         let trait_pred = ty::Binder::dummy(trait_ref);
88
89         let bail_out = tcx.infer_ctxt().enter(|infcx| {
90             let mut selcx = SelectionContext::with_negative(&infcx, true);
91             let result = selcx.select(&Obligation::new(
92                 ObligationCause::dummy(),
93                 orig_env,
94                 trait_pred.to_poly_trait_predicate(),
95             ));
96
97             match result {
98                 Ok(Some(ImplSource::UserDefined(_))) => {
99                     debug!(
100                         "find_auto_trait_generics({:?}): \
101                          manual impl found, bailing out",
102                         trait_ref
103                     );
104                     true
105                 }
106                 _ => false,
107             }
108         });
109
110         // If an explicit impl exists, it always takes priority over an auto impl
111         if bail_out {
112             return AutoTraitResult::ExplicitImpl;
113         }
114
115         tcx.infer_ctxt().enter(|infcx| {
116             let mut fresh_preds = FxHashSet::default();
117
118             // Due to the way projections are handled by SelectionContext, we need to run
119             // evaluate_predicates twice: once on the original param env, and once on the result of
120             // the first evaluate_predicates call.
121             //
122             // The problem is this: most of rustc, including SelectionContext and traits::project,
123             // are designed to work with a concrete usage of a type (e.g., Vec<u8>
124             // fn<T>() { Vec<T> }. This information will generally never change - given
125             // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
126             // If we're unable to prove that 'T' implements a particular trait, we're done -
127             // there's nothing left to do but error out.
128             //
129             // However, synthesizing an auto trait impl works differently. Here, we start out with
130             // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
131             // with - and progressively discover the conditions we need to fulfill for it to
132             // implement a certain auto trait. This ends up breaking two assumptions made by trait
133             // selection and projection:
134             //
135             // * We can always cache the result of a particular trait selection for the lifetime of
136             // an InfCtxt
137             // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
138             // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
139             //
140             // We fix the first assumption by manually clearing out all of the InferCtxt's caches
141             // in between calls to SelectionContext.select. This allows us to keep all of the
142             // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
143             // them between calls.
144             //
145             // We fix the second assumption by reprocessing the result of our first call to
146             // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
147             // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
148             // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
149             // SelectionContext to return it back to us.
150
151             let (new_env, user_env) = match self.evaluate_predicates(
152                 &infcx,
153                 trait_did,
154                 ty,
155                 orig_env,
156                 orig_env,
157                 &mut fresh_preds,
158                 false,
159             ) {
160                 Some(e) => e,
161                 None => return AutoTraitResult::NegativeImpl,
162             };
163
164             let (full_env, full_user_env) = self
165                 .evaluate_predicates(
166                     &infcx,
167                     trait_did,
168                     ty,
169                     new_env,
170                     user_env,
171                     &mut fresh_preds,
172                     true,
173                 )
174                 .unwrap_or_else(|| {
175                     panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
176                 });
177
178             debug!(
179                 "find_auto_trait_generics({:?}): fulfilling \
180                  with {:?}",
181                 trait_ref, full_env
182             );
183             infcx.clear_caches();
184
185             // At this point, we already have all of the bounds we need. FulfillmentContext is used
186             // to store all of the necessary region/lifetime bounds in the InferContext, as well as
187             // an additional sanity check.
188             let mut fulfill = FulfillmentContext::new();
189             fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
190             let errors = fulfill.select_all_or_error(&infcx);
191
192             if !errors.is_empty() {
193                 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
194             }
195
196             let body_id_map: FxHashMap<_, _> = infcx
197                 .inner
198                 .borrow()
199                 .region_obligations()
200                 .iter()
201                 .map(|&(id, _)| (id, vec![]))
202                 .collect();
203
204             infcx.process_registered_region_obligations(&body_id_map, None, full_env);
205
206             let region_data = infcx
207                 .inner
208                 .borrow_mut()
209                 .unwrap_region_constraints()
210                 .region_constraint_data()
211                 .clone();
212
213             let vid_to_region = self.map_vid_to_region(&region_data);
214
215             let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
216
217             AutoTraitResult::PositiveImpl(auto_trait_callback(info))
218         })
219     }
220 }
221
222 impl AutoTraitFinder<'tcx> {
223     /// The core logic responsible for computing the bounds for our synthesized impl.
224     ///
225     /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
226     /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
227     /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
228     /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
229     /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
230     ///
231     /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
232     /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
233     /// user code. According, it considers all possible ways that a `Predicate` could be met, which
234     /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
235     /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
236     /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
237     /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
238     /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
239     /// like this:
240     ///
241     ///     impl<T> Send for Foo<T> where T: IntoIterator
242     ///
243     /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
244     /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
245     ///
246     /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
247     /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
248     /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
249     /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
250     /// needs to hold.
251     ///
252     /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
253     /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
254     /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
255     /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
256     /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
257     /// else `SelectionContext` will choke on the missing predicates. However, this should never
258     /// show up in the final synthesized generics: we don't want our generated docs page to contain
259     /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
260     /// separate `user_env`, which only holds the predicates that will actually be displayed to the
261     /// user.
262     fn evaluate_predicates(
263         &self,
264         infcx: &InferCtxt<'_, 'tcx>,
265         trait_did: DefId,
266         ty: Ty<'tcx>,
267         param_env: ty::ParamEnv<'tcx>,
268         user_env: ty::ParamEnv<'tcx>,
269         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
270         only_projections: bool,
271     ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
272         let tcx = infcx.tcx;
273
274         // Don't try to proess any nested obligations involving predicates
275         // that are already in the `ParamEnv` (modulo regions): we already
276         // know that they must hold.
277         for predicate in param_env.caller_bounds() {
278             fresh_preds.insert(self.clean_pred(infcx, predicate));
279         }
280
281         let mut select = SelectionContext::with_negative(&infcx, true);
282
283         let mut already_visited = FxHashSet::default();
284         let mut predicates = VecDeque::new();
285         predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
286             trait_ref: ty::TraitRef {
287                 def_id: trait_did,
288                 substs: infcx.tcx.mk_substs_trait(ty, &[]),
289             },
290             constness: ty::BoundConstness::NotConst,
291             // Auto traits are positive
292             polarity: ty::ImplPolarity::Positive,
293         }));
294
295         let computed_preds = param_env.caller_bounds().iter();
296         let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
297
298         let mut new_env = param_env;
299         let dummy_cause = ObligationCause::dummy();
300
301         while let Some(pred) = predicates.pop_front() {
302             infcx.clear_caches();
303
304             if !already_visited.insert(pred) {
305                 continue;
306             }
307
308             // Call `infcx.resolve_vars_if_possible` to see if we can
309             // get rid of any inference variables.
310             let obligation =
311                 infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
312             let result = select.select(&obligation);
313
314             match result {
315                 Ok(Some(ref impl_source)) => {
316                     // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
317                     // we immediately bail out, since it's impossible for us to continue.
318
319                     if let ImplSource::UserDefined(ImplSourceUserDefinedData {
320                         impl_def_id, ..
321                     }) = impl_source
322                     {
323                         // Blame 'tidy' for the weird bracket placement.
324                         if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
325                             debug!(
326                                 "evaluate_nested_obligations: found explicit negative impl\
327                                         {:?}, bailing out",
328                                 impl_def_id
329                             );
330                             return None;
331                         }
332                     }
333
334                     let obligations = impl_source.clone().nested_obligations().into_iter();
335
336                     if !self.evaluate_nested_obligations(
337                         ty,
338                         obligations,
339                         &mut user_computed_preds,
340                         fresh_preds,
341                         &mut predicates,
342                         &mut select,
343                         only_projections,
344                     ) {
345                         return None;
346                     }
347                 }
348                 Ok(None) => {}
349                 Err(SelectionError::Unimplemented) => {
350                     if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
351                         already_visited.remove(&pred);
352                         self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
353                         predicates.push_back(pred);
354                     } else {
355                         debug!(
356                             "evaluate_nested_obligations: `Unimplemented` found, bailing: \
357                              {:?} {:?} {:?}",
358                             ty,
359                             pred,
360                             pred.skip_binder().trait_ref.substs
361                         );
362                         return None;
363                     }
364                 }
365                 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
366             };
367
368             let normalized_preds = elaborate_predicates(
369                 tcx,
370                 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
371             )
372             .map(|o| o.predicate);
373             new_env = ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal());
374         }
375
376         let final_user_env = ty::ParamEnv::new(
377             tcx.mk_predicates(user_computed_preds.into_iter()),
378             user_env.reveal(),
379         );
380         debug!(
381             "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
382              '{:?}'",
383             ty, trait_did, new_env, final_user_env
384         );
385
386         Some((new_env, final_user_env))
387     }
388
389     /// This method is designed to work around the following issue:
390     /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
391     /// progressively building a `ParamEnv` based on the results we get.
392     /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
393     /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
394     ///
395     /// This can lead to a corner case when dealing with region parameters.
396     /// During our selection loop in `evaluate_predicates`, we might end up with
397     /// two trait predicates that differ only in their region parameters:
398     /// one containing a HRTB lifetime parameter, and one containing a 'normal'
399     /// lifetime parameter. For example:
400     ///
401     ///     T as MyTrait<'a>
402     ///     T as MyTrait<'static>
403     ///
404     /// If we put both of these predicates in our computed `ParamEnv`, we'll
405     /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
406     ///
407     /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
408     /// Our end goal is to generate a user-visible description of the conditions
409     /// under which a type implements an auto trait. A trait predicate involving
410     /// a HRTB means that the type needs to work with any choice of lifetime,
411     /// not just one specific lifetime (e.g., `'static`).
412     fn add_user_pred(
413         &self,
414         user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
415         new_pred: ty::Predicate<'tcx>,
416     ) {
417         let mut should_add_new = true;
418         user_computed_preds.retain(|&old_pred| {
419             if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
420                 (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
421             {
422                 if new_trait.def_id() == old_trait.def_id() {
423                     let new_substs = new_trait.trait_ref.substs;
424                     let old_substs = old_trait.trait_ref.substs;
425
426                     if !new_substs.types().eq(old_substs.types()) {
427                         // We can't compare lifetimes if the types are different,
428                         // so skip checking `old_pred`.
429                         return true;
430                     }
431
432                     for (new_region, old_region) in
433                         iter::zip(new_substs.regions(), old_substs.regions())
434                     {
435                         match (new_region, old_region) {
436                             // If both predicates have an `ReLateBound` (a HRTB) in the
437                             // same spot, we do nothing.
438                             (
439                                 ty::RegionKind::ReLateBound(_, _),
440                                 ty::RegionKind::ReLateBound(_, _),
441                             ) => {}
442
443                             (ty::RegionKind::ReLateBound(_, _), _)
444                             | (_, ty::RegionKind::ReVar(_)) => {
445                                 // One of these is true:
446                                 // The new predicate has a HRTB in a spot where the old
447                                 // predicate does not (if they both had a HRTB, the previous
448                                 // match arm would have executed). A HRBT is a 'stricter'
449                                 // bound than anything else, so we want to keep the newer
450                                 // predicate (with the HRBT) in place of the old predicate.
451                                 //
452                                 // OR
453                                 //
454                                 // The old predicate has a region variable where the new
455                                 // predicate has some other kind of region. An region
456                                 // variable isn't something we can actually display to a user,
457                                 // so we choose their new predicate (which doesn't have a region
458                                 // variable).
459                                 //
460                                 // In both cases, we want to remove the old predicate,
461                                 // from `user_computed_preds`, and replace it with the new
462                                 // one. Having both the old and the new
463                                 // predicate in a `ParamEnv` would confuse `SelectionContext`.
464                                 //
465                                 // We're currently in the predicate passed to 'retain',
466                                 // so we return `false` to remove the old predicate from
467                                 // `user_computed_preds`.
468                                 return false;
469                             }
470                             (_, ty::RegionKind::ReLateBound(_, _))
471                             | (ty::RegionKind::ReVar(_), _) => {
472                                 // This is the opposite situation as the previous arm.
473                                 // One of these is true:
474                                 //
475                                 // The old predicate has a HRTB lifetime in a place where the
476                                 // new predicate does not.
477                                 //
478                                 // OR
479                                 //
480                                 // The new predicate has a region variable where the old
481                                 // predicate has some other type of region.
482                                 //
483                                 // We want to leave the old
484                                 // predicate in `user_computed_preds`, and skip adding
485                                 // new_pred to `user_computed_params`.
486                                 should_add_new = false
487                             }
488                             _ => {}
489                         }
490                     }
491                 }
492             }
493             true
494         });
495
496         if should_add_new {
497             user_computed_preds.insert(new_pred);
498         }
499     }
500
501     /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
502     /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
503     fn map_vid_to_region<'cx>(
504         &self,
505         regions: &RegionConstraintData<'cx>,
506     ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
507         let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
508         let mut finished_map = FxHashMap::default();
509
510         for constraint in regions.constraints.keys() {
511             match constraint {
512                 &Constraint::VarSubVar(r1, r2) => {
513                     {
514                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
515                         deps1.larger.insert(RegionTarget::RegionVid(r2));
516                     }
517
518                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
519                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
520                 }
521                 &Constraint::RegSubVar(region, vid) => {
522                     {
523                         let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
524                         deps1.larger.insert(RegionTarget::RegionVid(vid));
525                     }
526
527                     let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
528                     deps2.smaller.insert(RegionTarget::Region(region));
529                 }
530                 &Constraint::VarSubReg(vid, region) => {
531                     finished_map.insert(vid, region);
532                 }
533                 &Constraint::RegSubReg(r1, r2) => {
534                     {
535                         let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
536                         deps1.larger.insert(RegionTarget::Region(r2));
537                     }
538
539                     let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
540                     deps2.smaller.insert(RegionTarget::Region(r1));
541                 }
542             }
543         }
544
545         while !vid_map.is_empty() {
546             let target = *vid_map.keys().next().expect("Keys somehow empty");
547             let deps = vid_map.remove(&target).expect("Entry somehow missing");
548
549             for smaller in deps.smaller.iter() {
550                 for larger in deps.larger.iter() {
551                     match (smaller, larger) {
552                         (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
553                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
554                                 let smaller_deps = v.into_mut();
555                                 smaller_deps.larger.insert(*larger);
556                                 smaller_deps.larger.remove(&target);
557                             }
558
559                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
560                                 let larger_deps = v.into_mut();
561                                 larger_deps.smaller.insert(*smaller);
562                                 larger_deps.smaller.remove(&target);
563                             }
564                         }
565                         (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
566                             finished_map.insert(v1, r1);
567                         }
568                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
569                             // Do nothing; we don't care about regions that are smaller than vids.
570                         }
571                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
572                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
573                                 let smaller_deps = v.into_mut();
574                                 smaller_deps.larger.insert(*larger);
575                                 smaller_deps.larger.remove(&target);
576                             }
577
578                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
579                                 let larger_deps = v.into_mut();
580                                 larger_deps.smaller.insert(*smaller);
581                                 larger_deps.smaller.remove(&target);
582                             }
583                         }
584                     }
585                 }
586             }
587         }
588         finished_map
589     }
590
591     fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
592         self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
593     }
594
595     pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
596         match ty.kind() {
597             ty::Param(_) => true,
598             ty::Projection(p) => self.is_of_param(p.self_ty()),
599             _ => false,
600         }
601     }
602
603     fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
604         matches!(*p.ty().skip_binder().kind(), ty::Projection(proj) if proj == p.skip_binder().projection_ty)
605     }
606
607     fn evaluate_nested_obligations(
608         &self,
609         ty: Ty<'_>,
610         nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
611         computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
612         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
613         predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
614         select: &mut SelectionContext<'_, 'tcx>,
615         only_projections: bool,
616     ) -> bool {
617         let dummy_cause = ObligationCause::dummy();
618
619         for obligation in nested {
620             let is_new_pred =
621                 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
622
623             // Resolve any inference variables that we can, to help selection succeed
624             let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
625
626             // We only add a predicate as a user-displayable bound if
627             // it involves a generic parameter, and doesn't contain
628             // any inference variables.
629             //
630             // Displaying a bound involving a concrete type (instead of a generic
631             // parameter) would be pointless, since it's always true
632             // (e.g. u8: Copy)
633             // Displaying an inference variable is impossible, since they're
634             // an internal compiler detail without a defined visual representation
635             //
636             // We check this by calling is_of_param on the relevant types
637             // from the various possible predicates
638
639             let bound_predicate = predicate.kind();
640             match bound_predicate.skip_binder() {
641                 ty::PredicateKind::Trait(p) => {
642                     // Add this to `predicates` so that we end up calling `select`
643                     // with it. If this predicate ends up being unimplemented,
644                     // then `evaluate_predicates` will handle adding it the `ParamEnv`
645                     // if possible.
646                     predicates.push_back(bound_predicate.rebind(p));
647                 }
648                 ty::PredicateKind::Projection(p) => {
649                     let p = bound_predicate.rebind(p);
650                     debug!(
651                         "evaluate_nested_obligations: examining projection predicate {:?}",
652                         predicate
653                     );
654
655                     // As described above, we only want to display
656                     // bounds which include a generic parameter but don't include
657                     // an inference variable.
658                     // Additionally, we check if we've seen this predicate before,
659                     // to avoid rendering duplicate bounds to the user.
660                     if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
661                         && !p.ty().skip_binder().has_infer_types()
662                         && is_new_pred
663                     {
664                         debug!(
665                             "evaluate_nested_obligations: adding projection predicate\
666                             to computed_preds: {:?}",
667                             predicate
668                         );
669
670                         // Under unusual circumstances, we can end up with a self-refeential
671                         // projection predicate. For example:
672                         // <T as MyType>::Value == <T as MyType>::Value
673                         // Not only is displaying this to the user pointless,
674                         // having it in the ParamEnv will cause an issue if we try to call
675                         // poly_project_and_unify_type on the predicate, since this kind of
676                         // predicate will normally never end up in a ParamEnv.
677                         //
678                         // For these reasons, we ignore these weird predicates,
679                         // ensuring that we're able to properly synthesize an auto trait impl
680                         if self.is_self_referential_projection(p) {
681                             debug!(
682                                 "evaluate_nested_obligations: encountered a projection
683                                  predicate equating a type with itself! Skipping"
684                             );
685                         } else {
686                             self.add_user_pred(computed_preds, predicate);
687                         }
688                     }
689
690                     // There are three possible cases when we project a predicate:
691                     //
692                     // 1. We encounter an error. This means that it's impossible for
693                     // our current type to implement the auto trait - there's bound
694                     // that we could add to our ParamEnv that would 'fix' this kind
695                     // of error, as it's not caused by an unimplemented type.
696                     //
697                     // 2. We successfully project the predicate (Ok(Some(_))), generating
698                     //  some subobligations. We then process these subobligations
699                     //  like any other generated sub-obligations.
700                     //
701                     // 3. We receive an 'ambiguous' result (Ok(None))
702                     // If we were actually trying to compile a crate,
703                     // we would need to re-process this obligation later.
704                     // However, all we care about is finding out what bounds
705                     // are needed for our type to implement a particular auto trait.
706                     // We've already added this obligation to our computed ParamEnv
707                     // above (if it was necessary). Therefore, we don't need
708                     // to do any further processing of the obligation.
709                     //
710                     // Note that we *must* try to project *all* projection predicates
711                     // we encounter, even ones without inference variable.
712                     // This ensures that we detect any projection errors,
713                     // which indicate that our type can *never* implement the given
714                     // auto trait. In that case, we will generate an explicit negative
715                     // impl (e.g. 'impl !Send for MyType'). However, we don't
716                     // try to process any of the generated subobligations -
717                     // they contain no new information, since we already know
718                     // that our type implements the projected-through trait,
719                     // and can lead to weird region issues.
720                     //
721                     // Normally, we'll generate a negative impl as a result of encountering
722                     // a type with an explicit negative impl of an auto trait
723                     // (for example, raw pointers have !Send and !Sync impls)
724                     // However, through some **interesting** manipulations of the type
725                     // system, it's actually possible to write a type that never
726                     // implements an auto trait due to a projection error, not a normal
727                     // negative impl error. To properly handle this case, we need
728                     // to ensure that we catch any potential projection errors,
729                     // and turn them into an explicit negative impl for our type.
730                     debug!("Projecting and unifying projection predicate {:?}", predicate);
731
732                     match project::poly_project_and_unify_type(select, &obligation.with(p)) {
733                         Err(e) => {
734                             debug!(
735                                 "evaluate_nested_obligations: Unable to unify predicate \
736                                  '{:?}' '{:?}', bailing out",
737                                 ty, e
738                             );
739                             return false;
740                         }
741                         Ok(Err(project::InProgress)) => {
742                             debug!("evaluate_nested_obligations: recursive projection predicate");
743                             return false;
744                         }
745                         Ok(Ok(Some(v))) => {
746                             // We only care about sub-obligations
747                             // when we started out trying to unify
748                             // some inference variables. See the comment above
749                             // for more infomration
750                             if p.ty().skip_binder().has_infer_types() {
751                                 if !self.evaluate_nested_obligations(
752                                     ty,
753                                     v.into_iter(),
754                                     computed_preds,
755                                     fresh_preds,
756                                     predicates,
757                                     select,
758                                     only_projections,
759                                 ) {
760                                     return false;
761                                 }
762                             }
763                         }
764                         Ok(Ok(None)) => {
765                             // It's ok not to make progress when have no inference variables -
766                             // in that case, we were only performing unifcation to check if an
767                             // error occurred (which would indicate that it's impossible for our
768                             // type to implement the auto trait).
769                             // However, we should always make progress (either by generating
770                             // subobligations or getting an error) when we started off with
771                             // inference variables
772                             if p.ty().skip_binder().has_infer_types() {
773                                 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
774                             }
775                         }
776                     }
777                 }
778                 ty::PredicateKind::RegionOutlives(binder) => {
779                     let binder = bound_predicate.rebind(binder);
780                     if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
781                         return false;
782                     }
783                 }
784                 ty::PredicateKind::TypeOutlives(binder) => {
785                     let binder = bound_predicate.rebind(binder);
786                     match (
787                         binder.no_bound_vars(),
788                         binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
789                     ) {
790                         (None, Some(t_a)) => {
791                             select.infcx().register_region_obligation_with_cause(
792                                 t_a,
793                                 select.infcx().tcx.lifetimes.re_static,
794                                 &dummy_cause,
795                             );
796                         }
797                         (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
798                             select.infcx().register_region_obligation_with_cause(
799                                 t_a,
800                                 r_b,
801                                 &dummy_cause,
802                             );
803                         }
804                         _ => {}
805                     };
806                 }
807                 ty::PredicateKind::ConstEquate(c1, c2) => {
808                     let evaluate = |c: &'tcx ty::Const<'tcx>| {
809                         if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
810                             match select.infcx().const_eval_resolve(
811                                 obligation.param_env,
812                                 unevaluated,
813                                 Some(obligation.cause.span),
814                             ) {
815                                 Ok(val) => Ok(ty::Const::from_value(select.tcx(), val, c.ty)),
816                                 Err(err) => Err(err),
817                             }
818                         } else {
819                             Ok(c)
820                         }
821                     };
822
823                     match (evaluate(c1), evaluate(c2)) {
824                         (Ok(c1), Ok(c2)) => {
825                             match select
826                                 .infcx()
827                                 .at(&obligation.cause, obligation.param_env)
828                                 .eq(c1, c2)
829                             {
830                                 Ok(_) => (),
831                                 Err(_) => return false,
832                             }
833                         }
834                         _ => return false,
835                     }
836                 }
837                 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
838             };
839         }
840         true
841     }
842
843     pub fn clean_pred(
844         &self,
845         infcx: &InferCtxt<'_, 'tcx>,
846         p: ty::Predicate<'tcx>,
847     ) -> ty::Predicate<'tcx> {
848         infcx.freshen(p)
849     }
850 }
851
852 // Replaces all ReVars in a type with ty::Region's, using the provided map
853 pub struct RegionReplacer<'a, 'tcx> {
854     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
855     tcx: TyCtxt<'tcx>,
856 }
857
858 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
859     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
860         self.tcx
861     }
862
863     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
864         (match r {
865             ty::ReVar(vid) => self.vid_to_region.get(vid).cloned(),
866             _ => None,
867         })
868         .unwrap_or_else(|| r.super_fold_with(self))
869     }
870 }