]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late.rs
Rollup merge of #104146 - Ayush1325:remote-test-server, r=jyn514
[rust.git] / compiler / rustc_resolve / src / late.rs
1 // ignore-tidy-filelength
2 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
3 //! It runs when the crate is fully expanded and its module structure is fully built.
4 //! So it just walks through the crate and resolves all the expressions, types, etc.
5 //!
6 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
7 //! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
8
9 use RibKind::*;
10
11 use crate::{path_names_to_string, BindingError, Finalize, LexicalScopeBinding};
12 use crate::{Module, ModuleOrUniformRoot, NameBinding, ParentScope, PathResult};
13 use crate::{ResolutionError, Resolver, Segment, UseError};
14
15 use rustc_ast::ptr::P;
16 use rustc_ast::visit::{self, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor};
17 use rustc_ast::*;
18 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
19 use rustc_errors::DiagnosticId;
20 use rustc_hir::def::Namespace::{self, *};
21 use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, PartialRes, PerNS};
22 use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
23 use rustc_hir::{BindingAnnotation, PrimTy, TraitCandidate};
24 use rustc_middle::middle::resolve_lifetime::Set1;
25 use rustc_middle::ty::DefIdTree;
26 use rustc_middle::{bug, span_bug};
27 use rustc_session::lint;
28 use rustc_span::symbol::{kw, sym, Ident, Symbol};
29 use rustc_span::{BytePos, Span};
30 use smallvec::{smallvec, SmallVec};
31
32 use rustc_span::source_map::{respan, Spanned};
33 use std::assert_matches::debug_assert_matches;
34 use std::collections::{hash_map::Entry, BTreeSet};
35 use std::mem::{replace, swap, take};
36
37 mod diagnostics;
38
39 type Res = def::Res<NodeId>;
40
41 type IdentMap<T> = FxHashMap<Ident, T>;
42
43 /// Map from the name in a pattern to its binding mode.
44 type BindingMap = IdentMap<BindingInfo>;
45
46 use diagnostics::{
47     ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime, MissingLifetimeKind,
48 };
49
50 #[derive(Copy, Clone, Debug)]
51 struct BindingInfo {
52     span: Span,
53     annotation: BindingAnnotation,
54 }
55
56 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
57 pub enum PatternSource {
58     Match,
59     Let,
60     For,
61     FnParam,
62 }
63
64 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
65 enum IsRepeatExpr {
66     No,
67     Yes,
68 }
69
70 impl PatternSource {
71     pub fn descr(self) -> &'static str {
72         match self {
73             PatternSource::Match => "match binding",
74             PatternSource::Let => "let binding",
75             PatternSource::For => "for binding",
76             PatternSource::FnParam => "function parameter",
77         }
78     }
79 }
80
81 /// Denotes whether the context for the set of already bound bindings is a `Product`
82 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
83 /// See those functions for more information.
84 #[derive(PartialEq)]
85 enum PatBoundCtx {
86     /// A product pattern context, e.g., `Variant(a, b)`.
87     Product,
88     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
89     Or,
90 }
91
92 /// Does this the item (from the item rib scope) allow generic parameters?
93 #[derive(Copy, Clone, Debug)]
94 pub(crate) enum HasGenericParams {
95     Yes(Span),
96     No,
97 }
98
99 /// May this constant have generics?
100 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
101 pub(crate) enum ConstantHasGenerics {
102     Yes,
103     No,
104 }
105
106 impl ConstantHasGenerics {
107     fn force_yes_if(self, b: bool) -> Self {
108         if b { Self::Yes } else { self }
109     }
110 }
111
112 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
113 pub(crate) enum ConstantItemKind {
114     Const,
115     Static,
116 }
117
118 /// The rib kind restricts certain accesses,
119 /// e.g. to a `Res::Local` of an outer item.
120 #[derive(Copy, Clone, Debug)]
121 pub(crate) enum RibKind<'a> {
122     /// No restriction needs to be applied.
123     NormalRibKind,
124
125     /// We passed through an impl or trait and are now in one of its
126     /// methods or associated types. Allow references to ty params that impl or trait
127     /// binds. Disallow any other upvars (including other ty params that are
128     /// upvars).
129     AssocItemRibKind,
130
131     /// We passed through a closure. Disallow labels.
132     ClosureOrAsyncRibKind,
133
134     /// We passed through an item scope. Disallow upvars.
135     ItemRibKind(HasGenericParams),
136
137     /// We're in a constant item. Can't refer to dynamic stuff.
138     ///
139     /// The item may reference generic parameters in trivial constant expressions.
140     /// All other constants aren't allowed to use generic params at all.
141     ConstantItemRibKind(ConstantHasGenerics, Option<(Ident, ConstantItemKind)>),
142
143     /// We passed through a module.
144     ModuleRibKind(Module<'a>),
145
146     /// We passed through a `macro_rules!` statement
147     MacroDefinition(DefId),
148
149     /// All bindings in this rib are generic parameters that can't be used
150     /// from the default of a generic parameter because they're not declared
151     /// before said generic parameter. Also see the `visit_generics` override.
152     ForwardGenericParamBanRibKind,
153
154     /// We are inside of the type of a const parameter. Can't refer to any
155     /// parameters.
156     ConstParamTyRibKind,
157
158     /// We are inside a `sym` inline assembly operand. Can only refer to
159     /// globals.
160     InlineAsmSymRibKind,
161 }
162
163 impl RibKind<'_> {
164     /// Whether this rib kind contains generic parameters, as opposed to local
165     /// variables.
166     pub(crate) fn contains_params(&self) -> bool {
167         match self {
168             NormalRibKind
169             | ClosureOrAsyncRibKind
170             | ConstantItemRibKind(..)
171             | ModuleRibKind(_)
172             | MacroDefinition(_)
173             | ConstParamTyRibKind
174             | InlineAsmSymRibKind => false,
175             AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
176         }
177     }
178
179     /// This rib forbids referring to labels defined in upwards ribs.
180     fn is_label_barrier(self) -> bool {
181         match self {
182             NormalRibKind | MacroDefinition(..) => false,
183
184             AssocItemRibKind
185             | ClosureOrAsyncRibKind
186             | ItemRibKind(..)
187             | ConstantItemRibKind(..)
188             | ModuleRibKind(..)
189             | ForwardGenericParamBanRibKind
190             | ConstParamTyRibKind
191             | InlineAsmSymRibKind => true,
192         }
193     }
194 }
195
196 /// A single local scope.
197 ///
198 /// A rib represents a scope names can live in. Note that these appear in many places, not just
199 /// around braces. At any place where the list of accessible names (of the given namespace)
200 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
201 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
202 /// etc.
203 ///
204 /// Different [rib kinds](enum@RibKind) are transparent for different names.
205 ///
206 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
207 /// resolving, the name is looked up from inside out.
208 #[derive(Debug)]
209 pub(crate) struct Rib<'a, R = Res> {
210     pub bindings: IdentMap<R>,
211     pub kind: RibKind<'a>,
212 }
213
214 impl<'a, R> Rib<'a, R> {
215     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
216         Rib { bindings: Default::default(), kind }
217     }
218 }
219
220 #[derive(Clone, Copy, Debug)]
221 enum LifetimeUseSet {
222     One { use_span: Span, use_ctxt: visit::LifetimeCtxt },
223     Many,
224 }
225
226 #[derive(Copy, Clone, Debug)]
227 enum LifetimeRibKind {
228     // -- Ribs introducing named lifetimes
229     //
230     /// This rib declares generic parameters.
231     /// Only for this kind the `LifetimeRib::bindings` field can be non-empty.
232     Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind },
233
234     // -- Ribs introducing unnamed lifetimes
235     //
236     /// Create a new anonymous lifetime parameter and reference it.
237     ///
238     /// If `report_in_path`, report an error when encountering lifetime elision in a path:
239     /// ```compile_fail
240     /// struct Foo<'a> { x: &'a () }
241     /// async fn foo(x: Foo) {}
242     /// ```
243     ///
244     /// Note: the error should not trigger when the elided lifetime is in a pattern or
245     /// expression-position path:
246     /// ```
247     /// struct Foo<'a> { x: &'a () }
248     /// async fn foo(Foo { x: _ }: Foo<'_>) {}
249     /// ```
250     AnonymousCreateParameter { binder: NodeId, report_in_path: bool },
251
252     /// Replace all anonymous lifetimes by provided lifetime.
253     Elided(LifetimeRes),
254
255     // -- Barrier ribs that stop lifetime lookup, or continue it but produce an error later.
256     //
257     /// Give a hard error when either `&` or `'_` is written. Used to
258     /// rule out things like `where T: Foo<'_>`. Does not imply an
259     /// error on default object bounds (e.g., `Box<dyn Foo>`).
260     AnonymousReportError,
261
262     /// Signal we cannot find which should be the anonymous lifetime.
263     ElisionFailure,
264
265     /// FIXME(const_generics): This patches over an ICE caused by non-'static lifetimes in const
266     /// generics. We are disallowing this until we can decide on how we want to handle non-'static
267     /// lifetimes in const generics. See issue #74052 for discussion.
268     ConstGeneric,
269
270     /// Non-static lifetimes are prohibited in anonymous constants under `min_const_generics`.
271     /// This function will emit an error if `generic_const_exprs` is not enabled, the body
272     /// identified by `body_id` is an anonymous constant and `lifetime_ref` is non-static.
273     AnonConst,
274
275     /// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
276     Item,
277 }
278
279 #[derive(Copy, Clone, Debug)]
280 enum LifetimeBinderKind {
281     BareFnType,
282     PolyTrait,
283     WhereBound,
284     Item,
285     Function,
286     Closure,
287     ImplBlock,
288 }
289
290 impl LifetimeBinderKind {
291     fn descr(self) -> &'static str {
292         use LifetimeBinderKind::*;
293         match self {
294             BareFnType => "type",
295             PolyTrait => "bound",
296             WhereBound => "bound",
297             Item => "item",
298             ImplBlock => "impl block",
299             Function => "function",
300             Closure => "closure",
301         }
302     }
303 }
304
305 #[derive(Debug)]
306 struct LifetimeRib {
307     kind: LifetimeRibKind,
308     // We need to preserve insertion order for async fns.
309     bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
310 }
311
312 impl LifetimeRib {
313     fn new(kind: LifetimeRibKind) -> LifetimeRib {
314         LifetimeRib { bindings: Default::default(), kind }
315     }
316 }
317
318 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
319 pub(crate) enum AliasPossibility {
320     No,
321     Maybe,
322 }
323
324 #[derive(Copy, Clone, Debug)]
325 pub(crate) enum PathSource<'a> {
326     // Type paths `Path`.
327     Type,
328     // Trait paths in bounds or impls.
329     Trait(AliasPossibility),
330     // Expression paths `path`, with optional parent context.
331     Expr(Option<&'a Expr>),
332     // Paths in path patterns `Path`.
333     Pat,
334     // Paths in struct expressions and patterns `Path { .. }`.
335     Struct,
336     // Paths in tuple struct patterns `Path(..)`.
337     TupleStruct(Span, &'a [Span]),
338     // `m::A::B` in `<T as m::A>::B::C`.
339     TraitItem(Namespace),
340 }
341
342 impl<'a> PathSource<'a> {
343     fn namespace(self) -> Namespace {
344         match self {
345             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
346             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
347             PathSource::TraitItem(ns) => ns,
348         }
349     }
350
351     fn defer_to_typeck(self) -> bool {
352         match self {
353             PathSource::Type
354             | PathSource::Expr(..)
355             | PathSource::Pat
356             | PathSource::Struct
357             | PathSource::TupleStruct(..) => true,
358             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
359         }
360     }
361
362     fn descr_expected(self) -> &'static str {
363         match &self {
364             PathSource::Type => "type",
365             PathSource::Trait(_) => "trait",
366             PathSource::Pat => "unit struct, unit variant or constant",
367             PathSource::Struct => "struct, variant or union type",
368             PathSource::TupleStruct(..) => "tuple struct or tuple variant",
369             PathSource::TraitItem(ns) => match ns {
370                 TypeNS => "associated type",
371                 ValueNS => "method or associated constant",
372                 MacroNS => bug!("associated macro"),
373             },
374             PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
375                 // "function" here means "anything callable" rather than `DefKind::Fn`,
376                 // this is not precise but usually more helpful than just "value".
377                 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
378                     // the case of `::some_crate()`
379                     ExprKind::Path(_, path)
380                         if path.segments.len() == 2
381                             && path.segments[0].ident.name == kw::PathRoot =>
382                     {
383                         "external crate"
384                     }
385                     ExprKind::Path(_, path) => {
386                         let mut msg = "function";
387                         if let Some(segment) = path.segments.iter().last() {
388                             if let Some(c) = segment.ident.to_string().chars().next() {
389                                 if c.is_uppercase() {
390                                     msg = "function, tuple struct or tuple variant";
391                                 }
392                             }
393                         }
394                         msg
395                     }
396                     _ => "function",
397                 },
398                 _ => "value",
399             },
400         }
401     }
402
403     fn is_call(self) -> bool {
404         matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
405     }
406
407     pub(crate) fn is_expected(self, res: Res) -> bool {
408         match self {
409             PathSource::Type => matches!(
410                 res,
411                 Res::Def(
412                     DefKind::Struct
413                         | DefKind::Union
414                         | DefKind::Enum
415                         | DefKind::Trait
416                         | DefKind::TraitAlias
417                         | DefKind::TyAlias
418                         | DefKind::AssocTy
419                         | DefKind::TyParam
420                         | DefKind::OpaqueTy
421                         | DefKind::ForeignTy,
422                     _,
423                 ) | Res::PrimTy(..)
424                     | Res::SelfTyParam { .. }
425                     | Res::SelfTyAlias { .. }
426             ),
427             PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
428             PathSource::Trait(AliasPossibility::Maybe) => {
429                 matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
430             }
431             PathSource::Expr(..) => matches!(
432                 res,
433                 Res::Def(
434                     DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
435                         | DefKind::Const
436                         | DefKind::Static(_)
437                         | DefKind::Fn
438                         | DefKind::AssocFn
439                         | DefKind::AssocConst
440                         | DefKind::ConstParam,
441                     _,
442                 ) | Res::Local(..)
443                     | Res::SelfCtor(..)
444             ),
445             PathSource::Pat => {
446                 res.expected_in_unit_struct_pat()
447                     || matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _))
448             }
449             PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
450             PathSource::Struct => matches!(
451                 res,
452                 Res::Def(
453                     DefKind::Struct
454                         | DefKind::Union
455                         | DefKind::Variant
456                         | DefKind::TyAlias
457                         | DefKind::AssocTy,
458                     _,
459                 ) | Res::SelfTyParam { .. }
460                     | Res::SelfTyAlias { .. }
461             ),
462             PathSource::TraitItem(ns) => match res {
463                 Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
464                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
465                 _ => false,
466             },
467         }
468     }
469
470     fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
471         use rustc_errors::error_code;
472         match (self, has_unexpected_resolution) {
473             (PathSource::Trait(_), true) => error_code!(E0404),
474             (PathSource::Trait(_), false) => error_code!(E0405),
475             (PathSource::Type, true) => error_code!(E0573),
476             (PathSource::Type, false) => error_code!(E0412),
477             (PathSource::Struct, true) => error_code!(E0574),
478             (PathSource::Struct, false) => error_code!(E0422),
479             (PathSource::Expr(..), true) => error_code!(E0423),
480             (PathSource::Expr(..), false) => error_code!(E0425),
481             (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
482             (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
483             (PathSource::TraitItem(..), true) => error_code!(E0575),
484             (PathSource::TraitItem(..), false) => error_code!(E0576),
485         }
486     }
487 }
488
489 #[derive(Default)]
490 struct DiagnosticMetadata<'ast> {
491     /// The current trait's associated items' ident, used for diagnostic suggestions.
492     current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
493
494     /// The current self type if inside an impl (used for better errors).
495     current_self_type: Option<Ty>,
496
497     /// The current self item if inside an ADT (used for better errors).
498     current_self_item: Option<NodeId>,
499
500     /// The current trait (used to suggest).
501     current_item: Option<&'ast Item>,
502
503     /// When processing generics and encountering a type not found, suggest introducing a type
504     /// param.
505     currently_processing_generics: bool,
506
507     /// The current enclosing (non-closure) function (used for better errors).
508     current_function: Option<(FnKind<'ast>, Span)>,
509
510     /// A list of labels as of yet unused. Labels will be removed from this map when
511     /// they are used (in a `break` or `continue` statement)
512     unused_labels: FxHashMap<NodeId, Span>,
513
514     /// Only used for better errors on `fn(): fn()`.
515     current_type_ascription: Vec<Span>,
516
517     /// Only used for better errors on `let x = { foo: bar };`.
518     /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
519     /// needed for cases where this parses as a correct type ascription.
520     current_block_could_be_bare_struct_literal: Option<Span>,
521
522     /// Only used for better errors on `let <pat>: <expr, not type>;`.
523     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
524
525     /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
526     in_if_condition: Option<&'ast Expr>,
527
528     /// Used to detect possible new binding written without `let` and to provide structured suggestion.
529     in_assignment: Option<&'ast Expr>,
530     is_assign_rhs: bool,
531
532     /// If we are currently in a trait object definition. Used to point at the bounds when
533     /// encountering a struct or enum.
534     current_trait_object: Option<&'ast [ast::GenericBound]>,
535
536     /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
537     current_where_predicate: Option<&'ast WherePredicate>,
538
539     current_type_path: Option<&'ast Ty>,
540
541     /// The current impl items (used to suggest).
542     current_impl_items: Option<&'ast [P<AssocItem>]>,
543
544     /// When processing impl trait
545     currently_processing_impl_trait: Option<(TraitRef, Ty)>,
546
547     /// Accumulate the errors due to missed lifetime elision,
548     /// and report them all at once for each function.
549     current_elision_failures: Vec<MissingLifetime>,
550 }
551
552 struct LateResolutionVisitor<'a, 'b, 'ast> {
553     r: &'b mut Resolver<'a>,
554
555     /// The module that represents the current item scope.
556     parent_scope: ParentScope<'a>,
557
558     /// The current set of local scopes for types and values.
559     /// FIXME #4948: Reuse ribs to avoid allocation.
560     ribs: PerNS<Vec<Rib<'a>>>,
561
562     /// The current set of local scopes, for labels.
563     label_ribs: Vec<Rib<'a, NodeId>>,
564
565     /// The current set of local scopes for lifetimes.
566     lifetime_ribs: Vec<LifetimeRib>,
567
568     /// We are looking for lifetimes in an elision context.
569     /// The set contains all the resolutions that we encountered so far.
570     /// They will be used to determine the correct lifetime for the fn return type.
571     /// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named
572     /// lifetimes.
573     lifetime_elision_candidates: Option<Vec<(LifetimeRes, LifetimeElisionCandidate)>>,
574
575     /// The trait that the current context can refer to.
576     current_trait_ref: Option<(Module<'a>, TraitRef)>,
577
578     /// Fields used to add information to diagnostic errors.
579     diagnostic_metadata: Box<DiagnosticMetadata<'ast>>,
580
581     /// State used to know whether to ignore resolution errors for function bodies.
582     ///
583     /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
584     /// In most cases this will be `None`, in which case errors will always be reported.
585     /// If it is `true`, then it will be updated when entering a nested function or trait body.
586     in_func_body: bool,
587
588     /// Count the number of places a lifetime is used.
589     lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>,
590 }
591
592 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
593 impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
594     fn visit_attribute(&mut self, _: &'ast Attribute) {
595         // We do not want to resolve expressions that appear in attributes,
596         // as they do not correspond to actual code.
597     }
598     fn visit_item(&mut self, item: &'ast Item) {
599         let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
600         // Always report errors in items we just entered.
601         let old_ignore = replace(&mut self.in_func_body, false);
602         self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
603         self.in_func_body = old_ignore;
604         self.diagnostic_metadata.current_item = prev;
605     }
606     fn visit_arm(&mut self, arm: &'ast Arm) {
607         self.resolve_arm(arm);
608     }
609     fn visit_block(&mut self, block: &'ast Block) {
610         self.resolve_block(block);
611     }
612     fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
613         // We deal with repeat expressions explicitly in `resolve_expr`.
614         self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| {
615             this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
616                 this.resolve_anon_const(constant, IsRepeatExpr::No);
617             })
618         })
619     }
620     fn visit_expr(&mut self, expr: &'ast Expr) {
621         self.resolve_expr(expr, None);
622     }
623     fn visit_local(&mut self, local: &'ast Local) {
624         let local_spans = match local.pat.kind {
625             // We check for this to avoid tuple struct fields.
626             PatKind::Wild => None,
627             _ => Some((
628                 local.pat.span,
629                 local.ty.as_ref().map(|ty| ty.span),
630                 local.kind.init().map(|init| init.span),
631             )),
632         };
633         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
634         self.resolve_local(local);
635         self.diagnostic_metadata.current_let_binding = original;
636     }
637     fn visit_ty(&mut self, ty: &'ast Ty) {
638         let prev = self.diagnostic_metadata.current_trait_object;
639         let prev_ty = self.diagnostic_metadata.current_type_path;
640         match ty.kind {
641             TyKind::Rptr(None, _) => {
642                 // Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
643                 // NodeId `ty.id`.
644                 // This span will be used in case of elision failure.
645                 let span = self.r.session.source_map().start_point(ty.span);
646                 self.resolve_elided_lifetime(ty.id, span);
647                 visit::walk_ty(self, ty);
648             }
649             TyKind::Path(ref qself, ref path) => {
650                 self.diagnostic_metadata.current_type_path = Some(ty);
651                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
652
653                 // Check whether we should interpret this as a bare trait object.
654                 if qself.is_none()
655                     && let Some(partial_res) = self.r.partial_res_map.get(&ty.id)
656                     && let Some(Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) = partial_res.full_res()
657                 {
658                     // This path is actually a bare trait object.  In case of a bare `Fn`-trait
659                     // object with anonymous lifetimes, we need this rib to correctly place the
660                     // synthetic lifetimes.
661                     let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo());
662                     self.with_generic_param_rib(
663                         &[],
664                         NormalRibKind,
665                         LifetimeRibKind::Generics {
666                             binder: ty.id,
667                             kind: LifetimeBinderKind::PolyTrait,
668                             span,
669                         },
670                         |this| this.visit_path(&path, ty.id),
671                     );
672                 } else {
673                     visit::walk_ty(self, ty)
674                 }
675             }
676             TyKind::ImplicitSelf => {
677                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
678                 let res = self
679                     .resolve_ident_in_lexical_scope(
680                         self_ty,
681                         TypeNS,
682                         Some(Finalize::new(ty.id, ty.span)),
683                         None,
684                     )
685                     .map_or(Res::Err, |d| d.res());
686                 self.r.record_partial_res(ty.id, PartialRes::new(res));
687                 visit::walk_ty(self, ty)
688             }
689             TyKind::ImplTrait(..) => {
690                 let candidates = self.lifetime_elision_candidates.take();
691                 visit::walk_ty(self, ty);
692                 self.lifetime_elision_candidates = candidates;
693             }
694             TyKind::TraitObject(ref bounds, ..) => {
695                 self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
696                 visit::walk_ty(self, ty)
697             }
698             TyKind::BareFn(ref bare_fn) => {
699                 let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo());
700                 self.with_generic_param_rib(
701                     &bare_fn.generic_params,
702                     NormalRibKind,
703                     LifetimeRibKind::Generics {
704                         binder: ty.id,
705                         kind: LifetimeBinderKind::BareFnType,
706                         span,
707                     },
708                     |this| {
709                         this.visit_generic_params(&bare_fn.generic_params, false);
710                         this.with_lifetime_rib(
711                             LifetimeRibKind::AnonymousCreateParameter {
712                                 binder: ty.id,
713                                 report_in_path: false,
714                             },
715                             |this| {
716                                 this.resolve_fn_signature(
717                                     ty.id,
718                                     false,
719                                     // We don't need to deal with patterns in parameters, because
720                                     // they are not possible for foreign or bodiless functions.
721                                     bare_fn
722                                         .decl
723                                         .inputs
724                                         .iter()
725                                         .map(|Param { ty, .. }| (None, &**ty)),
726                                     &bare_fn.decl.output,
727                                 )
728                             },
729                         );
730                     },
731                 )
732             }
733             _ => visit::walk_ty(self, ty),
734         }
735         self.diagnostic_metadata.current_trait_object = prev;
736         self.diagnostic_metadata.current_type_path = prev_ty;
737     }
738     fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef) {
739         let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo());
740         self.with_generic_param_rib(
741             &tref.bound_generic_params,
742             NormalRibKind,
743             LifetimeRibKind::Generics {
744                 binder: tref.trait_ref.ref_id,
745                 kind: LifetimeBinderKind::PolyTrait,
746                 span,
747             },
748             |this| {
749                 this.visit_generic_params(&tref.bound_generic_params, false);
750                 this.smart_resolve_path(
751                     tref.trait_ref.ref_id,
752                     None,
753                     &tref.trait_ref.path,
754                     PathSource::Trait(AliasPossibility::Maybe),
755                 );
756                 this.visit_trait_ref(&tref.trait_ref);
757             },
758         );
759     }
760     fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
761         match foreign_item.kind {
762             ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
763                 self.with_generic_param_rib(
764                     &generics.params,
765                     ItemRibKind(HasGenericParams::Yes(generics.span)),
766                     LifetimeRibKind::Generics {
767                         binder: foreign_item.id,
768                         kind: LifetimeBinderKind::Item,
769                         span: generics.span,
770                     },
771                     |this| visit::walk_foreign_item(this, foreign_item),
772                 );
773             }
774             ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
775                 self.with_generic_param_rib(
776                     &generics.params,
777                     ItemRibKind(HasGenericParams::Yes(generics.span)),
778                     LifetimeRibKind::Generics {
779                         binder: foreign_item.id,
780                         kind: LifetimeBinderKind::Function,
781                         span: generics.span,
782                     },
783                     |this| visit::walk_foreign_item(this, foreign_item),
784                 );
785             }
786             ForeignItemKind::Static(..) => {
787                 self.with_static_rib(|this| {
788                     visit::walk_foreign_item(this, foreign_item);
789                 });
790             }
791             ForeignItemKind::MacCall(..) => {
792                 panic!("unexpanded macro in resolve!")
793             }
794         }
795     }
796     fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
797         let previous_value = self.diagnostic_metadata.current_function;
798         match fn_kind {
799             // Bail if the function is foreign, and thus cannot validly have
800             // a body, or if there's no body for some other reason.
801             FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _)
802             | FnKind::Fn(_, _, sig, _, generics, None) => {
803                 self.visit_fn_header(&sig.header);
804                 self.visit_generics(generics);
805                 self.with_lifetime_rib(
806                     LifetimeRibKind::AnonymousCreateParameter {
807                         binder: fn_id,
808                         report_in_path: false,
809                     },
810                     |this| {
811                         this.resolve_fn_signature(
812                             fn_id,
813                             sig.decl.has_self(),
814                             sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)),
815                             &sig.decl.output,
816                         );
817
818                         this.record_lifetime_params_for_async(
819                             fn_id,
820                             sig.header.asyncness.opt_return_id(),
821                         );
822                     },
823                 );
824                 return;
825             }
826             FnKind::Fn(..) => {
827                 self.diagnostic_metadata.current_function = Some((fn_kind, sp));
828             }
829             // Do not update `current_function` for closures: it suggests `self` parameters.
830             FnKind::Closure(..) => {}
831         };
832         debug!("(resolving function) entering function");
833
834         // Create a value rib for the function.
835         self.with_rib(ValueNS, ClosureOrAsyncRibKind, |this| {
836             // Create a label rib for the function.
837             this.with_label_rib(ClosureOrAsyncRibKind, |this| {
838                 match fn_kind {
839                     FnKind::Fn(_, _, sig, _, generics, body) => {
840                         this.visit_generics(generics);
841
842                         let declaration = &sig.decl;
843                         let async_node_id = sig.header.asyncness.opt_return_id();
844
845                         this.with_lifetime_rib(
846                             LifetimeRibKind::AnonymousCreateParameter {
847                                 binder: fn_id,
848                                 report_in_path: async_node_id.is_some(),
849                             },
850                             |this| {
851                                 this.resolve_fn_signature(
852                                     fn_id,
853                                     declaration.has_self(),
854                                     declaration
855                                         .inputs
856                                         .iter()
857                                         .map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)),
858                                     &declaration.output,
859                                 )
860                             },
861                         );
862
863                         this.record_lifetime_params_for_async(fn_id, async_node_id);
864
865                         if let Some(body) = body {
866                             // Ignore errors in function bodies if this is rustdoc
867                             // Be sure not to set this until the function signature has been resolved.
868                             let previous_state = replace(&mut this.in_func_body, true);
869                             // Resolve the function body, potentially inside the body of an async closure
870                             this.with_lifetime_rib(
871                                 LifetimeRibKind::Elided(LifetimeRes::Infer),
872                                 |this| this.visit_block(body),
873                             );
874
875                             debug!("(resolving function) leaving function");
876                             this.in_func_body = previous_state;
877                         }
878                     }
879                     FnKind::Closure(binder, declaration, body) => {
880                         this.visit_closure_binder(binder);
881
882                         this.with_lifetime_rib(
883                             match binder {
884                                 // We do not have any explicit generic lifetime parameter.
885                                 ClosureBinder::NotPresent => {
886                                     LifetimeRibKind::AnonymousCreateParameter {
887                                         binder: fn_id,
888                                         report_in_path: false,
889                                     }
890                                 }
891                                 ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
892                             },
893                             // Add each argument to the rib.
894                             |this| this.resolve_params(&declaration.inputs),
895                         );
896                         this.with_lifetime_rib(
897                             match binder {
898                                 ClosureBinder::NotPresent => {
899                                     LifetimeRibKind::Elided(LifetimeRes::Infer)
900                                 }
901                                 ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
902                             },
903                             |this| visit::walk_fn_ret_ty(this, &declaration.output),
904                         );
905
906                         // Ignore errors in function bodies if this is rustdoc
907                         // Be sure not to set this until the function signature has been resolved.
908                         let previous_state = replace(&mut this.in_func_body, true);
909                         // Resolve the function body, potentially inside the body of an async closure
910                         this.with_lifetime_rib(
911                             LifetimeRibKind::Elided(LifetimeRes::Infer),
912                             |this| this.visit_expr(body),
913                         );
914
915                         debug!("(resolving function) leaving function");
916                         this.in_func_body = previous_state;
917                     }
918                 }
919             })
920         });
921         self.diagnostic_metadata.current_function = previous_value;
922     }
923     fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
924         self.resolve_lifetime(lifetime, use_ctxt)
925     }
926
927     fn visit_generics(&mut self, generics: &'ast Generics) {
928         self.visit_generic_params(
929             &generics.params,
930             self.diagnostic_metadata.current_self_item.is_some(),
931         );
932         for p in &generics.where_clause.predicates {
933             self.visit_where_predicate(p);
934         }
935     }
936
937     fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) {
938         match b {
939             ClosureBinder::NotPresent => {}
940             ClosureBinder::For { generic_params, .. } => {
941                 self.visit_generic_params(
942                     &generic_params,
943                     self.diagnostic_metadata.current_self_item.is_some(),
944                 );
945             }
946         }
947     }
948
949     fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
950         debug!("visit_generic_arg({:?})", arg);
951         let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
952         match arg {
953             GenericArg::Type(ref ty) => {
954                 // We parse const arguments as path types as we cannot distinguish them during
955                 // parsing. We try to resolve that ambiguity by attempting resolution the type
956                 // namespace first, and if that fails we try again in the value namespace. If
957                 // resolution in the value namespace succeeds, we have an generic const argument on
958                 // our hands.
959                 if let TyKind::Path(ref qself, ref path) = ty.kind {
960                     // We cannot disambiguate multi-segment paths right now as that requires type
961                     // checking.
962                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
963                         let mut check_ns = |ns| {
964                             self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
965                                 .is_some()
966                         };
967                         if !check_ns(TypeNS) && check_ns(ValueNS) {
968                             // This must be equivalent to `visit_anon_const`, but we cannot call it
969                             // directly due to visitor lifetimes so we have to copy-paste some code.
970                             //
971                             // Note that we might not be inside of an repeat expression here,
972                             // but considering that `IsRepeatExpr` is only relevant for
973                             // non-trivial constants this is doesn't matter.
974                             self.with_constant_rib(
975                                 IsRepeatExpr::No,
976                                 ConstantHasGenerics::Yes,
977                                 None,
978                                 |this| {
979                                     this.smart_resolve_path(
980                                         ty.id,
981                                         qself.as_ref(),
982                                         path,
983                                         PathSource::Expr(None),
984                                     );
985
986                                     if let Some(ref qself) = *qself {
987                                         this.visit_ty(&qself.ty);
988                                     }
989                                     this.visit_path(path, ty.id);
990                                 },
991                             );
992
993                             self.diagnostic_metadata.currently_processing_generics = prev;
994                             return;
995                         }
996                     }
997                 }
998
999                 self.visit_ty(ty);
1000             }
1001             GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg),
1002             GenericArg::Const(ct) => self.visit_anon_const(ct),
1003         }
1004         self.diagnostic_metadata.currently_processing_generics = prev;
1005     }
1006
1007     fn visit_assoc_constraint(&mut self, constraint: &'ast AssocConstraint) {
1008         self.visit_ident(constraint.ident);
1009         if let Some(ref gen_args) = constraint.gen_args {
1010             // Forbid anonymous lifetimes in GAT parameters until proper semantics are decided.
1011             self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1012                 this.visit_generic_args(gen_args)
1013             });
1014         }
1015         match constraint.kind {
1016             AssocConstraintKind::Equality { ref term } => match term {
1017                 Term::Ty(ty) => self.visit_ty(ty),
1018                 Term::Const(c) => self.visit_anon_const(c),
1019             },
1020             AssocConstraintKind::Bound { ref bounds } => {
1021                 walk_list!(self, visit_param_bound, bounds, BoundKind::Bound);
1022             }
1023         }
1024     }
1025
1026     fn visit_path_segment(&mut self, path_segment: &'ast PathSegment) {
1027         if let Some(ref args) = path_segment.args {
1028             match &**args {
1029                 GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, args),
1030                 GenericArgs::Parenthesized(p_args) => {
1031                     // Probe the lifetime ribs to know how to behave.
1032                     for rib in self.lifetime_ribs.iter().rev() {
1033                         match rib.kind {
1034                             // We are inside a `PolyTraitRef`.  The lifetimes are
1035                             // to be intoduced in that (maybe implicit) `for<>` binder.
1036                             LifetimeRibKind::Generics {
1037                                 binder,
1038                                 kind: LifetimeBinderKind::PolyTrait,
1039                                 ..
1040                             } => {
1041                                 self.with_lifetime_rib(
1042                                     LifetimeRibKind::AnonymousCreateParameter {
1043                                         binder,
1044                                         report_in_path: false,
1045                                     },
1046                                     |this| {
1047                                         this.resolve_fn_signature(
1048                                             binder,
1049                                             false,
1050                                             p_args.inputs.iter().map(|ty| (None, &**ty)),
1051                                             &p_args.output,
1052                                         )
1053                                     },
1054                                 );
1055                                 break;
1056                             }
1057                             // We have nowhere to introduce generics.  Code is malformed,
1058                             // so use regular lifetime resolution to avoid spurious errors.
1059                             LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => {
1060                                 visit::walk_generic_args(self, args);
1061                                 break;
1062                             }
1063                             LifetimeRibKind::AnonymousCreateParameter { .. }
1064                             | LifetimeRibKind::AnonymousReportError
1065                             | LifetimeRibKind::Elided(_)
1066                             | LifetimeRibKind::ElisionFailure
1067                             | LifetimeRibKind::AnonConst
1068                             | LifetimeRibKind::ConstGeneric => {}
1069                         }
1070                     }
1071                 }
1072             }
1073         }
1074     }
1075
1076     fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
1077         debug!("visit_where_predicate {:?}", p);
1078         let previous_value =
1079             replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
1080         self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1081             if let WherePredicate::BoundPredicate(WhereBoundPredicate {
1082                 ref bounded_ty,
1083                 ref bounds,
1084                 ref bound_generic_params,
1085                 span: predicate_span,
1086                 ..
1087             }) = p
1088             {
1089                 let span = predicate_span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo());
1090                 this.with_generic_param_rib(
1091                     &bound_generic_params,
1092                     NormalRibKind,
1093                     LifetimeRibKind::Generics {
1094                         binder: bounded_ty.id,
1095                         kind: LifetimeBinderKind::WhereBound,
1096                         span,
1097                     },
1098                     |this| {
1099                         this.visit_generic_params(&bound_generic_params, false);
1100                         this.visit_ty(bounded_ty);
1101                         for bound in bounds {
1102                             this.visit_param_bound(bound, BoundKind::Bound)
1103                         }
1104                     },
1105                 );
1106             } else {
1107                 visit::walk_where_predicate(this, p);
1108             }
1109         });
1110         self.diagnostic_metadata.current_where_predicate = previous_value;
1111     }
1112
1113     fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) {
1114         for (op, _) in &asm.operands {
1115             match op {
1116                 InlineAsmOperand::In { expr, .. }
1117                 | InlineAsmOperand::Out { expr: Some(expr), .. }
1118                 | InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr),
1119                 InlineAsmOperand::Out { expr: None, .. } => {}
1120                 InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
1121                     self.visit_expr(in_expr);
1122                     if let Some(out_expr) = out_expr {
1123                         self.visit_expr(out_expr);
1124                     }
1125                 }
1126                 InlineAsmOperand::Const { anon_const, .. } => {
1127                     // Although this is `DefKind::AnonConst`, it is allowed to reference outer
1128                     // generic parameters like an inline const.
1129                     self.resolve_inline_const(anon_const);
1130                 }
1131                 InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym),
1132             }
1133         }
1134     }
1135
1136     fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
1137         // This is similar to the code for AnonConst.
1138         self.with_rib(ValueNS, InlineAsmSymRibKind, |this| {
1139             this.with_rib(TypeNS, InlineAsmSymRibKind, |this| {
1140                 this.with_label_rib(InlineAsmSymRibKind, |this| {
1141                     this.smart_resolve_path(
1142                         sym.id,
1143                         sym.qself.as_ref(),
1144                         &sym.path,
1145                         PathSource::Expr(None),
1146                     );
1147                     visit::walk_inline_asm_sym(this, sym);
1148                 });
1149             })
1150         });
1151     }
1152 }
1153
1154 impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
1155     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
1156         // During late resolution we only track the module component of the parent scope,
1157         // although it may be useful to track other components as well for diagnostics.
1158         let graph_root = resolver.graph_root;
1159         let parent_scope = ParentScope::module(graph_root, resolver);
1160         let start_rib_kind = ModuleRibKind(graph_root);
1161         LateResolutionVisitor {
1162             r: resolver,
1163             parent_scope,
1164             ribs: PerNS {
1165                 value_ns: vec![Rib::new(start_rib_kind)],
1166                 type_ns: vec![Rib::new(start_rib_kind)],
1167                 macro_ns: vec![Rib::new(start_rib_kind)],
1168             },
1169             label_ribs: Vec::new(),
1170             lifetime_ribs: Vec::new(),
1171             lifetime_elision_candidates: None,
1172             current_trait_ref: None,
1173             diagnostic_metadata: Box::new(DiagnosticMetadata::default()),
1174             // errors at module scope should always be reported
1175             in_func_body: false,
1176             lifetime_uses: Default::default(),
1177         }
1178     }
1179
1180     fn maybe_resolve_ident_in_lexical_scope(
1181         &mut self,
1182         ident: Ident,
1183         ns: Namespace,
1184     ) -> Option<LexicalScopeBinding<'a>> {
1185         self.r.resolve_ident_in_lexical_scope(
1186             ident,
1187             ns,
1188             &self.parent_scope,
1189             None,
1190             &self.ribs[ns],
1191             None,
1192         )
1193     }
1194
1195     fn resolve_ident_in_lexical_scope(
1196         &mut self,
1197         ident: Ident,
1198         ns: Namespace,
1199         finalize: Option<Finalize>,
1200         ignore_binding: Option<&'a NameBinding<'a>>,
1201     ) -> Option<LexicalScopeBinding<'a>> {
1202         self.r.resolve_ident_in_lexical_scope(
1203             ident,
1204             ns,
1205             &self.parent_scope,
1206             finalize,
1207             &self.ribs[ns],
1208             ignore_binding,
1209         )
1210     }
1211
1212     fn resolve_path(
1213         &mut self,
1214         path: &[Segment],
1215         opt_ns: Option<Namespace>, // `None` indicates a module path in import
1216         finalize: Option<Finalize>,
1217     ) -> PathResult<'a> {
1218         self.r.resolve_path_with_ribs(
1219             path,
1220             opt_ns,
1221             &self.parent_scope,
1222             finalize,
1223             Some(&self.ribs),
1224             None,
1225         )
1226     }
1227
1228     // AST resolution
1229     //
1230     // We maintain a list of value ribs and type ribs.
1231     //
1232     // Simultaneously, we keep track of the current position in the module
1233     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
1234     // the value or type namespaces, we first look through all the ribs and
1235     // then query the module graph. When we resolve a name in the module
1236     // namespace, we can skip all the ribs (since nested modules are not
1237     // allowed within blocks in Rust) and jump straight to the current module
1238     // graph node.
1239     //
1240     // Named implementations are handled separately. When we find a method
1241     // call, we consult the module node to find all of the implementations in
1242     // scope. This information is lazily cached in the module node. We then
1243     // generate a fake "implementation scope" containing all the
1244     // implementations thus found, for compatibility with old resolve pass.
1245
1246     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
1247     fn with_rib<T>(
1248         &mut self,
1249         ns: Namespace,
1250         kind: RibKind<'a>,
1251         work: impl FnOnce(&mut Self) -> T,
1252     ) -> T {
1253         self.ribs[ns].push(Rib::new(kind));
1254         let ret = work(self);
1255         self.ribs[ns].pop();
1256         ret
1257     }
1258
1259     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
1260         if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
1261             // Move down in the graph.
1262             let orig_module = replace(&mut self.parent_scope.module, module);
1263             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
1264                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
1265                     let ret = f(this);
1266                     this.parent_scope.module = orig_module;
1267                     ret
1268                 })
1269             })
1270         } else {
1271             f(self)
1272         }
1273     }
1274
1275     fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) {
1276         // For type parameter defaults, we have to ban access
1277         // to following type parameters, as the InternalSubsts can only
1278         // provide previous type parameters as they're built. We
1279         // put all the parameters on the ban list and then remove
1280         // them one by one as they are processed and become available.
1281         let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
1282         let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
1283         for param in params.iter() {
1284             match param.kind {
1285                 GenericParamKind::Type { .. } => {
1286                     forward_ty_ban_rib
1287                         .bindings
1288                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
1289                 }
1290                 GenericParamKind::Const { .. } => {
1291                     forward_const_ban_rib
1292                         .bindings
1293                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
1294                 }
1295                 GenericParamKind::Lifetime => {}
1296             }
1297         }
1298
1299         // rust-lang/rust#61631: The type `Self` is essentially
1300         // another type parameter. For ADTs, we consider it
1301         // well-defined only after all of the ADT type parameters have
1302         // been provided. Therefore, we do not allow use of `Self`
1303         // anywhere in ADT type parameter defaults.
1304         //
1305         // (We however cannot ban `Self` for defaults on *all* generic
1306         // lists; e.g. trait generics can usefully refer to `Self`,
1307         // such as in the case of `trait Add<Rhs = Self>`.)
1308         if add_self_upper {
1309             // (`Some` if + only if we are in ADT's generics.)
1310             forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
1311         }
1312
1313         self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1314             for param in params {
1315                 match param.kind {
1316                     GenericParamKind::Lifetime => {
1317                         for bound in &param.bounds {
1318                             this.visit_param_bound(bound, BoundKind::Bound);
1319                         }
1320                     }
1321                     GenericParamKind::Type { ref default } => {
1322                         for bound in &param.bounds {
1323                             this.visit_param_bound(bound, BoundKind::Bound);
1324                         }
1325
1326                         if let Some(ref ty) = default {
1327                             this.ribs[TypeNS].push(forward_ty_ban_rib);
1328                             this.ribs[ValueNS].push(forward_const_ban_rib);
1329                             this.visit_ty(ty);
1330                             forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
1331                             forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
1332                         }
1333
1334                         // Allow all following defaults to refer to this type parameter.
1335                         forward_ty_ban_rib
1336                             .bindings
1337                             .remove(&Ident::with_dummy_span(param.ident.name));
1338                     }
1339                     GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
1340                         // Const parameters can't have param bounds.
1341                         assert!(param.bounds.is_empty());
1342
1343                         this.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
1344                         this.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
1345                         this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| {
1346                             this.visit_ty(ty)
1347                         });
1348                         this.ribs[TypeNS].pop().unwrap();
1349                         this.ribs[ValueNS].pop().unwrap();
1350
1351                         if let Some(ref expr) = default {
1352                             this.ribs[TypeNS].push(forward_ty_ban_rib);
1353                             this.ribs[ValueNS].push(forward_const_ban_rib);
1354                             this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| {
1355                                 this.resolve_anon_const(expr, IsRepeatExpr::No)
1356                             });
1357                             forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
1358                             forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
1359                         }
1360
1361                         // Allow all following defaults to refer to this const parameter.
1362                         forward_const_ban_rib
1363                             .bindings
1364                             .remove(&Ident::with_dummy_span(param.ident.name));
1365                     }
1366                 }
1367             }
1368         })
1369     }
1370
1371     #[instrument(level = "debug", skip(self, work))]
1372     fn with_lifetime_rib<T>(
1373         &mut self,
1374         kind: LifetimeRibKind,
1375         work: impl FnOnce(&mut Self) -> T,
1376     ) -> T {
1377         self.lifetime_ribs.push(LifetimeRib::new(kind));
1378         let outer_elision_candidates = self.lifetime_elision_candidates.take();
1379         let ret = work(self);
1380         self.lifetime_elision_candidates = outer_elision_candidates;
1381         self.lifetime_ribs.pop();
1382         ret
1383     }
1384
1385     #[instrument(level = "debug", skip(self))]
1386     fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
1387         let ident = lifetime.ident;
1388
1389         if ident.name == kw::StaticLifetime {
1390             self.record_lifetime_res(
1391                 lifetime.id,
1392                 LifetimeRes::Static,
1393                 LifetimeElisionCandidate::Named,
1394             );
1395             return;
1396         }
1397
1398         if ident.name == kw::UnderscoreLifetime {
1399             return self.resolve_anonymous_lifetime(lifetime, false);
1400         }
1401
1402         let mut lifetime_rib_iter = self.lifetime_ribs.iter().rev();
1403         while let Some(rib) = lifetime_rib_iter.next() {
1404             let normalized_ident = ident.normalize_to_macros_2_0();
1405             if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) {
1406                 self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named);
1407
1408                 if let LifetimeRes::Param { param, .. } = res {
1409                     match self.lifetime_uses.entry(param) {
1410                         Entry::Vacant(v) => {
1411                             debug!("First use of {:?} at {:?}", res, ident.span);
1412                             let use_set = self
1413                                 .lifetime_ribs
1414                                 .iter()
1415                                 .rev()
1416                                 .find_map(|rib| match rib.kind {
1417                                     // Do not suggest eliding a lifetime where an anonymous
1418                                     // lifetime would be illegal.
1419                                     LifetimeRibKind::Item
1420                                     | LifetimeRibKind::AnonymousReportError
1421                                     | LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many),
1422                                     // An anonymous lifetime is legal here, go ahead.
1423                                     LifetimeRibKind::AnonymousCreateParameter { .. } => {
1424                                         Some(LifetimeUseSet::One { use_span: ident.span, use_ctxt })
1425                                     }
1426                                     // Only report if eliding the lifetime would have the same
1427                                     // semantics.
1428                                     LifetimeRibKind::Elided(r) => Some(if res == r {
1429                                         LifetimeUseSet::One { use_span: ident.span, use_ctxt }
1430                                     } else {
1431                                         LifetimeUseSet::Many
1432                                     }),
1433                                     LifetimeRibKind::Generics { .. } => None,
1434                                     LifetimeRibKind::ConstGeneric | LifetimeRibKind::AnonConst => {
1435                                         span_bug!(ident.span, "unexpected rib kind: {:?}", rib.kind)
1436                                     }
1437                                 })
1438                                 .unwrap_or(LifetimeUseSet::Many);
1439                             debug!(?use_ctxt, ?use_set);
1440                             v.insert(use_set);
1441                         }
1442                         Entry::Occupied(mut o) => {
1443                             debug!("Many uses of {:?} at {:?}", res, ident.span);
1444                             *o.get_mut() = LifetimeUseSet::Many;
1445                         }
1446                     }
1447                 }
1448                 return;
1449             }
1450
1451             match rib.kind {
1452                 LifetimeRibKind::Item => break,
1453                 LifetimeRibKind::ConstGeneric => {
1454                     self.emit_non_static_lt_in_const_generic_error(lifetime);
1455                     self.record_lifetime_res(
1456                         lifetime.id,
1457                         LifetimeRes::Error,
1458                         LifetimeElisionCandidate::Ignore,
1459                     );
1460                     return;
1461                 }
1462                 LifetimeRibKind::AnonConst => {
1463                     self.maybe_emit_forbidden_non_static_lifetime_error(lifetime);
1464                     self.record_lifetime_res(
1465                         lifetime.id,
1466                         LifetimeRes::Error,
1467                         LifetimeElisionCandidate::Ignore,
1468                     );
1469                     return;
1470                 }
1471                 LifetimeRibKind::AnonymousCreateParameter { .. }
1472                 | LifetimeRibKind::Elided(_)
1473                 | LifetimeRibKind::Generics { .. }
1474                 | LifetimeRibKind::ElisionFailure
1475                 | LifetimeRibKind::AnonymousReportError => {}
1476             }
1477         }
1478
1479         let mut outer_res = None;
1480         for rib in lifetime_rib_iter {
1481             let normalized_ident = ident.normalize_to_macros_2_0();
1482             if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) {
1483                 outer_res = Some(outer);
1484                 break;
1485             }
1486         }
1487
1488         self.emit_undeclared_lifetime_error(lifetime, outer_res);
1489         self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named);
1490     }
1491
1492     #[instrument(level = "debug", skip(self))]
1493     fn resolve_anonymous_lifetime(&mut self, lifetime: &Lifetime, elided: bool) {
1494         debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
1495
1496         let missing_lifetime = MissingLifetime {
1497             id: lifetime.id,
1498             span: lifetime.ident.span,
1499             kind: if elided {
1500                 MissingLifetimeKind::Ampersand
1501             } else {
1502                 MissingLifetimeKind::Underscore
1503             },
1504             count: 1,
1505         };
1506         let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
1507         for rib in self.lifetime_ribs.iter().rev() {
1508             debug!(?rib.kind);
1509             match rib.kind {
1510                 LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
1511                     let res = self.create_fresh_lifetime(lifetime.id, lifetime.ident, binder);
1512                     self.record_lifetime_res(lifetime.id, res, elision_candidate);
1513                     return;
1514                 }
1515                 LifetimeRibKind::AnonymousReportError => {
1516                     let (msg, note) = if elided {
1517                         (
1518                             "`&` without an explicit lifetime name cannot be used here",
1519                             "explicit lifetime name needed here",
1520                         )
1521                     } else {
1522                         ("`'_` cannot be used here", "`'_` is a reserved lifetime name")
1523                     };
1524                     rustc_errors::struct_span_err!(
1525                         self.r.session,
1526                         lifetime.ident.span,
1527                         E0637,
1528                         "{}",
1529                         msg,
1530                     )
1531                     .span_label(lifetime.ident.span, note)
1532                     .emit();
1533
1534                     self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
1535                     return;
1536                 }
1537                 LifetimeRibKind::Elided(res) => {
1538                     self.record_lifetime_res(lifetime.id, res, elision_candidate);
1539                     return;
1540                 }
1541                 LifetimeRibKind::ElisionFailure => {
1542                     self.diagnostic_metadata.current_elision_failures.push(missing_lifetime);
1543                     self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
1544                     return;
1545                 }
1546                 LifetimeRibKind::Item => break,
1547                 LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstGeneric => {}
1548                 LifetimeRibKind::AnonConst => {
1549                     // There is always an `Elided(LifetimeRes::Static)` inside an `AnonConst`.
1550                     span_bug!(lifetime.ident.span, "unexpected rib kind: {:?}", rib.kind)
1551                 }
1552             }
1553         }
1554         self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
1555         self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
1556     }
1557
1558     #[instrument(level = "debug", skip(self))]
1559     fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
1560         let id = self.r.next_node_id();
1561         let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };
1562
1563         self.record_lifetime_res(
1564             anchor_id,
1565             LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
1566             LifetimeElisionCandidate::Ignore,
1567         );
1568         self.resolve_anonymous_lifetime(&lt, true);
1569     }
1570
1571     #[instrument(level = "debug", skip(self))]
1572     fn create_fresh_lifetime(&mut self, id: NodeId, ident: Ident, binder: NodeId) -> LifetimeRes {
1573         debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
1574         debug!(?ident.span);
1575
1576         // Leave the responsibility to create the `LocalDefId` to lowering.
1577         let param = self.r.next_node_id();
1578         let res = LifetimeRes::Fresh { param, binder };
1579
1580         // Record the created lifetime parameter so lowering can pick it up and add it to HIR.
1581         self.r
1582             .extra_lifetime_params_map
1583             .entry(binder)
1584             .or_insert_with(Vec::new)
1585             .push((ident, param, res));
1586         res
1587     }
1588
1589     #[instrument(level = "debug", skip(self))]
1590     fn resolve_elided_lifetimes_in_path(
1591         &mut self,
1592         path_id: NodeId,
1593         partial_res: PartialRes,
1594         path: &[Segment],
1595         source: PathSource<'_>,
1596         path_span: Span,
1597     ) {
1598         let proj_start = path.len() - partial_res.unresolved_segments();
1599         for (i, segment) in path.iter().enumerate() {
1600             if segment.has_lifetime_args {
1601                 continue;
1602             }
1603             let Some(segment_id) = segment.id else {
1604                 continue;
1605             };
1606
1607             // Figure out if this is a type/trait segment,
1608             // which may need lifetime elision performed.
1609             let type_def_id = match partial_res.base_res() {
1610                 Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => self.r.parent(def_id),
1611                 Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => self.r.parent(def_id),
1612                 Res::Def(DefKind::Struct, def_id)
1613                 | Res::Def(DefKind::Union, def_id)
1614                 | Res::Def(DefKind::Enum, def_id)
1615                 | Res::Def(DefKind::TyAlias, def_id)
1616                 | Res::Def(DefKind::Trait, def_id)
1617                     if i + 1 == proj_start =>
1618                 {
1619                     def_id
1620                 }
1621                 _ => continue,
1622             };
1623
1624             let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
1625             if expected_lifetimes == 0 {
1626                 continue;
1627             }
1628
1629             let node_ids = self.r.next_node_ids(expected_lifetimes);
1630             self.record_lifetime_res(
1631                 segment_id,
1632                 LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
1633                 LifetimeElisionCandidate::Ignore,
1634             );
1635
1636             let inferred = match source {
1637                 PathSource::Trait(..) | PathSource::TraitItem(..) | PathSource::Type => false,
1638                 PathSource::Expr(..)
1639                 | PathSource::Pat
1640                 | PathSource::Struct
1641                 | PathSource::TupleStruct(..) => true,
1642             };
1643             if inferred {
1644                 // Do not create a parameter for patterns and expressions: type checking can infer
1645                 // the appropriate lifetime for us.
1646                 for id in node_ids {
1647                     self.record_lifetime_res(
1648                         id,
1649                         LifetimeRes::Infer,
1650                         LifetimeElisionCandidate::Named,
1651                     );
1652                 }
1653                 continue;
1654             }
1655
1656             let elided_lifetime_span = if segment.has_generic_args {
1657                 // If there are brackets, but not generic arguments, then use the opening bracket
1658                 segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
1659             } else {
1660                 // If there are no brackets, use the identifier span.
1661                 // HACK: we use find_ancestor_inside to properly suggest elided spans in paths
1662                 // originating from macros, since the segment's span might be from a macro arg.
1663                 segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
1664             };
1665             let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span);
1666
1667             let missing_lifetime = MissingLifetime {
1668                 id: node_ids.start,
1669                 span: elided_lifetime_span,
1670                 kind: if segment.has_generic_args {
1671                     MissingLifetimeKind::Comma
1672                 } else {
1673                     MissingLifetimeKind::Brackets
1674                 },
1675                 count: expected_lifetimes,
1676             };
1677             let mut should_lint = true;
1678             for rib in self.lifetime_ribs.iter().rev() {
1679                 match rib.kind {
1680                     // In create-parameter mode we error here because we don't want to support
1681                     // deprecated impl elision in new features like impl elision and `async fn`,
1682                     // both of which work using the `CreateParameter` mode:
1683                     //
1684                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
1685                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
1686                     LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. } => {
1687                         let sess = self.r.session;
1688                         let mut err = rustc_errors::struct_span_err!(
1689                             sess,
1690                             path_span,
1691                             E0726,
1692                             "implicit elided lifetime not allowed here"
1693                         );
1694                         rustc_errors::add_elided_lifetime_in_path_suggestion(
1695                             sess.source_map(),
1696                             &mut err,
1697                             expected_lifetimes,
1698                             path_span,
1699                             !segment.has_generic_args,
1700                             elided_lifetime_span,
1701                         );
1702                         err.note("assuming a `'static` lifetime...");
1703                         err.emit();
1704                         should_lint = false;
1705
1706                         for id in node_ids {
1707                             self.record_lifetime_res(
1708                                 id,
1709                                 LifetimeRes::Error,
1710                                 LifetimeElisionCandidate::Named,
1711                             );
1712                         }
1713                         break;
1714                     }
1715                     // Do not create a parameter for patterns and expressions.
1716                     LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
1717                         // Group all suggestions into the first record.
1718                         let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
1719                         for id in node_ids {
1720                             let res = self.create_fresh_lifetime(id, ident, binder);
1721                             self.record_lifetime_res(
1722                                 id,
1723                                 res,
1724                                 replace(&mut candidate, LifetimeElisionCandidate::Named),
1725                             );
1726                         }
1727                         break;
1728                     }
1729                     LifetimeRibKind::Elided(res) => {
1730                         let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
1731                         for id in node_ids {
1732                             self.record_lifetime_res(
1733                                 id,
1734                                 res,
1735                                 replace(&mut candidate, LifetimeElisionCandidate::Ignore),
1736                             );
1737                         }
1738                         break;
1739                     }
1740                     LifetimeRibKind::ElisionFailure => {
1741                         self.diagnostic_metadata.current_elision_failures.push(missing_lifetime);
1742                         for id in node_ids {
1743                             self.record_lifetime_res(
1744                                 id,
1745                                 LifetimeRes::Error,
1746                                 LifetimeElisionCandidate::Ignore,
1747                             );
1748                         }
1749                         break;
1750                     }
1751                     // `LifetimeRes::Error`, which would usually be used in the case of
1752                     // `ReportError`, is unsuitable here, as we don't emit an error yet.  Instead,
1753                     // we simply resolve to an implicit lifetime, which will be checked later, at
1754                     // which point a suitable error will be emitted.
1755                     LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
1756                         for id in node_ids {
1757                             self.record_lifetime_res(
1758                                 id,
1759                                 LifetimeRes::Error,
1760                                 LifetimeElisionCandidate::Ignore,
1761                             );
1762                         }
1763                         self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
1764                         break;
1765                     }
1766                     LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstGeneric => {}
1767                     LifetimeRibKind::AnonConst => {
1768                         // There is always an `Elided(LifetimeRes::Static)` inside an `AnonConst`.
1769                         span_bug!(elided_lifetime_span, "unexpected rib kind: {:?}", rib.kind)
1770                     }
1771                 }
1772             }
1773
1774             if should_lint {
1775                 self.r.lint_buffer.buffer_lint_with_diagnostic(
1776                     lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
1777                     segment_id,
1778                     elided_lifetime_span,
1779                     "hidden lifetime parameters in types are deprecated",
1780                     lint::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1781                         expected_lifetimes,
1782                         path_span,
1783                         !segment.has_generic_args,
1784                         elided_lifetime_span,
1785                     ),
1786                 );
1787             }
1788         }
1789     }
1790
1791     #[instrument(level = "debug", skip(self))]
1792     fn record_lifetime_res(
1793         &mut self,
1794         id: NodeId,
1795         res: LifetimeRes,
1796         candidate: LifetimeElisionCandidate,
1797     ) {
1798         if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
1799             panic!(
1800                 "lifetime {:?} resolved multiple times ({:?} before, {:?} now)",
1801                 id, prev_res, res
1802             )
1803         }
1804         match res {
1805             LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static => {
1806                 if let Some(ref mut candidates) = self.lifetime_elision_candidates {
1807                     candidates.push((res, candidate));
1808                 }
1809             }
1810             LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {}
1811         }
1812     }
1813
1814     #[instrument(level = "debug", skip(self))]
1815     fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) {
1816         if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
1817             panic!(
1818                 "lifetime parameter {:?} resolved multiple times ({:?} before, {:?} now)",
1819                 id, prev_res, res
1820             )
1821         }
1822     }
1823
1824     /// Perform resolution of a function signature, accounting for lifetime elision.
1825     #[instrument(level = "debug", skip(self, inputs))]
1826     fn resolve_fn_signature(
1827         &mut self,
1828         fn_id: NodeId,
1829         has_self: bool,
1830         inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone,
1831         output_ty: &'ast FnRetTy,
1832     ) {
1833         // Add each argument to the rib.
1834         let elision_lifetime = self.resolve_fn_params(has_self, inputs);
1835         debug!(?elision_lifetime);
1836
1837         let outer_failures = take(&mut self.diagnostic_metadata.current_elision_failures);
1838         let output_rib = if let Ok(res) = elision_lifetime.as_ref() {
1839             LifetimeRibKind::Elided(*res)
1840         } else {
1841             LifetimeRibKind::ElisionFailure
1842         };
1843         self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, &output_ty));
1844         let elision_failures =
1845             replace(&mut self.diagnostic_metadata.current_elision_failures, outer_failures);
1846         if !elision_failures.is_empty() {
1847             let Err(failure_info) = elision_lifetime else { bug!() };
1848             self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info));
1849         }
1850     }
1851
1852     /// Resolve inside function parameters and parameter types.
1853     /// Returns the lifetime for elision in fn return type,
1854     /// or diagnostic information in case of elision failure.
1855     fn resolve_fn_params(
1856         &mut self,
1857         has_self: bool,
1858         inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>,
1859     ) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> {
1860         enum Elision {
1861             /// We have not found any candidate.
1862             None,
1863             /// We have a candidate bound to `self`.
1864             Self_(LifetimeRes),
1865             /// We have a candidate bound to a parameter.
1866             Param(LifetimeRes),
1867             /// We failed elision.
1868             Err,
1869         }
1870
1871         // Save elision state to reinstate it later.
1872         let outer_candidates = self.lifetime_elision_candidates.take();
1873
1874         // Result of elision.
1875         let mut elision_lifetime = Elision::None;
1876         // Information for diagnostics.
1877         let mut parameter_info = Vec::new();
1878         let mut all_candidates = Vec::new();
1879
1880         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1881         for (index, (pat, ty)) in inputs.enumerate() {
1882             debug!(?pat, ?ty);
1883             self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
1884                 if let Some(pat) = pat {
1885                     this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1886                 }
1887             });
1888
1889             // Record elision candidates only for this parameter.
1890             debug_assert_matches!(self.lifetime_elision_candidates, None);
1891             self.lifetime_elision_candidates = Some(Default::default());
1892             self.visit_ty(ty);
1893             let local_candidates = self.lifetime_elision_candidates.take();
1894
1895             if let Some(candidates) = local_candidates {
1896                 let distinct: FxHashSet<_> = candidates.iter().map(|(res, _)| *res).collect();
1897                 let lifetime_count = distinct.len();
1898                 if lifetime_count != 0 {
1899                     parameter_info.push(ElisionFnParameter {
1900                         index,
1901                         ident: if let Some(pat) = pat && let PatKind::Ident(_, ident, _) = pat.kind {
1902                             Some(ident)
1903                         } else {
1904                             None
1905                         },
1906                         lifetime_count,
1907                         span: ty.span,
1908                     });
1909                     all_candidates.extend(candidates.into_iter().filter_map(|(_, candidate)| {
1910                         match candidate {
1911                             LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {
1912                                 None
1913                             }
1914                             LifetimeElisionCandidate::Missing(missing) => Some(missing),
1915                         }
1916                     }));
1917                 }
1918                 let mut distinct_iter = distinct.into_iter();
1919                 if let Some(res) = distinct_iter.next() {
1920                     match elision_lifetime {
1921                         // We are the first parameter to bind lifetimes.
1922                         Elision::None => {
1923                             if distinct_iter.next().is_none() {
1924                                 // We have a single lifetime => success.
1925                                 elision_lifetime = Elision::Param(res)
1926                             } else {
1927                                 // We have have multiple lifetimes => error.
1928                                 elision_lifetime = Elision::Err;
1929                             }
1930                         }
1931                         // We have 2 parameters that bind lifetimes => error.
1932                         Elision::Param(_) => elision_lifetime = Elision::Err,
1933                         // `self` elision takes precedence over everything else.
1934                         Elision::Self_(_) | Elision::Err => {}
1935                     }
1936                 }
1937             }
1938
1939             // Handle `self` specially.
1940             if index == 0 && has_self {
1941                 let self_lifetime = self.find_lifetime_for_self(ty);
1942                 if let Set1::One(lifetime) = self_lifetime {
1943                     // We found `self` elision.
1944                     elision_lifetime = Elision::Self_(lifetime);
1945                 } else {
1946                     // We do not have `self` elision: disregard the `Elision::Param` that we may
1947                     // have found.
1948                     elision_lifetime = Elision::None;
1949                 }
1950             }
1951             debug!("(resolving function / closure) recorded parameter");
1952         }
1953
1954         // Reinstate elision state.
1955         debug_assert_matches!(self.lifetime_elision_candidates, None);
1956         self.lifetime_elision_candidates = outer_candidates;
1957
1958         if let Elision::Param(res) | Elision::Self_(res) = elision_lifetime {
1959             return Ok(res);
1960         }
1961
1962         // We do not have a candidate.
1963         Err((all_candidates, parameter_info))
1964     }
1965
1966     /// List all the lifetimes that appear in the provided type.
1967     fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> {
1968         struct SelfVisitor<'r, 'a> {
1969             r: &'r Resolver<'a>,
1970             impl_self: Option<Res>,
1971             lifetime: Set1<LifetimeRes>,
1972         }
1973
1974         impl SelfVisitor<'_, '_> {
1975             // Look for `self: &'a Self` - also desugared from `&'a self`,
1976             // and if that matches, use it for elision and return early.
1977             fn is_self_ty(&self, ty: &Ty) -> bool {
1978                 match ty.kind {
1979                     TyKind::ImplicitSelf => true,
1980                     TyKind::Path(None, _) => {
1981                         let path_res = self.r.partial_res_map[&ty.id].full_res();
1982                         if let Some(Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }) = path_res {
1983                             return true;
1984                         }
1985                         self.impl_self.is_some() && path_res == self.impl_self
1986                     }
1987                     _ => false,
1988                 }
1989             }
1990         }
1991
1992         impl<'a> Visitor<'a> for SelfVisitor<'_, '_> {
1993             fn visit_ty(&mut self, ty: &'a Ty) {
1994                 trace!("SelfVisitor considering ty={:?}", ty);
1995                 if let TyKind::Rptr(lt, ref mt) = ty.kind && self.is_self_ty(&mt.ty) {
1996                     let lt_id = if let Some(lt) = lt {
1997                         lt.id
1998                     } else {
1999                         let res = self.r.lifetimes_res_map[&ty.id];
2000                         let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() };
2001                         start
2002                     };
2003                     let lt_res = self.r.lifetimes_res_map[&lt_id];
2004                     trace!("SelfVisitor inserting res={:?}", lt_res);
2005                     self.lifetime.insert(lt_res);
2006                 }
2007                 visit::walk_ty(self, ty)
2008             }
2009         }
2010
2011         let impl_self = self
2012             .diagnostic_metadata
2013             .current_self_type
2014             .as_ref()
2015             .and_then(|ty| {
2016                 if let TyKind::Path(None, _) = ty.kind {
2017                     self.r.partial_res_map.get(&ty.id)
2018                 } else {
2019                     None
2020                 }
2021             })
2022             .and_then(|res| res.full_res())
2023             .filter(|res| {
2024                 // Permit the types that unambiguously always
2025                 // result in the same type constructor being used
2026                 // (it can't differ between `Self` and `self`).
2027                 matches!(
2028                     res,
2029                     Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_)
2030                 )
2031             });
2032         let mut visitor = SelfVisitor { r: self.r, impl_self, lifetime: Set1::Empty };
2033         visitor.visit_ty(ty);
2034         trace!("SelfVisitor found={:?}", visitor.lifetime);
2035         visitor.lifetime
2036     }
2037
2038     /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
2039     /// label and reports an error if the label is not found or is unreachable.
2040     fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'a>> {
2041         let mut suggestion = None;
2042
2043         for i in (0..self.label_ribs.len()).rev() {
2044             let rib = &self.label_ribs[i];
2045
2046             if let MacroDefinition(def) = rib.kind {
2047                 // If an invocation of this macro created `ident`, give up on `ident`
2048                 // and switch to `ident`'s source from the macro definition.
2049                 if def == self.r.macro_def(label.span.ctxt()) {
2050                     label.span.remove_mark();
2051                 }
2052             }
2053
2054             let ident = label.normalize_to_macro_rules();
2055             if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
2056                 let definition_span = ident.span;
2057                 return if self.is_label_valid_from_rib(i) {
2058                     Ok((*id, definition_span))
2059                 } else {
2060                     Err(ResolutionError::UnreachableLabel {
2061                         name: label.name,
2062                         definition_span,
2063                         suggestion,
2064                     })
2065                 };
2066             }
2067
2068             // Diagnostics: Check if this rib contains a label with a similar name, keep track of
2069             // the first such label that is encountered.
2070             suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
2071         }
2072
2073         Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion })
2074     }
2075
2076     /// Determine whether or not a label from the `rib_index`th label rib is reachable.
2077     fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
2078         let ribs = &self.label_ribs[rib_index + 1..];
2079
2080         for rib in ribs {
2081             if rib.kind.is_label_barrier() {
2082                 return false;
2083             }
2084         }
2085
2086         true
2087     }
2088
2089     fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
2090         debug!("resolve_adt");
2091         self.with_current_self_item(item, |this| {
2092             this.with_generic_param_rib(
2093                 &generics.params,
2094                 ItemRibKind(HasGenericParams::Yes(generics.span)),
2095                 LifetimeRibKind::Generics {
2096                     binder: item.id,
2097                     kind: LifetimeBinderKind::Item,
2098                     span: generics.span,
2099                 },
2100                 |this| {
2101                     let item_def_id = this.r.local_def_id(item.id).to_def_id();
2102                     this.with_self_rib(
2103                         Res::SelfTyAlias {
2104                             alias_to: item_def_id,
2105                             forbid_generic: false,
2106                             is_trait_impl: false,
2107                         },
2108                         |this| {
2109                             visit::walk_item(this, item);
2110                         },
2111                     );
2112                 },
2113             );
2114         });
2115     }
2116
2117     fn future_proof_import(&mut self, use_tree: &UseTree) {
2118         let segments = &use_tree.prefix.segments;
2119         if !segments.is_empty() {
2120             let ident = segments[0].ident;
2121             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
2122                 return;
2123             }
2124
2125             let nss = match use_tree.kind {
2126                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
2127                 _ => &[TypeNS],
2128             };
2129             let report_error = |this: &Self, ns| {
2130                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2131                 if this.should_report_errs() {
2132                     this.r
2133                         .session
2134                         .span_err(ident.span, &format!("imports cannot refer to {}", what));
2135                 }
2136             };
2137
2138             for &ns in nss {
2139                 match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
2140                     Some(LexicalScopeBinding::Res(..)) => {
2141                         report_error(self, ns);
2142                     }
2143                     Some(LexicalScopeBinding::Item(binding)) => {
2144                         if let Some(LexicalScopeBinding::Res(..)) =
2145                             self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
2146                         {
2147                             report_error(self, ns);
2148                         }
2149                     }
2150                     None => {}
2151                 }
2152             }
2153         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
2154             for (use_tree, _) in use_trees {
2155                 self.future_proof_import(use_tree);
2156             }
2157         }
2158     }
2159
2160     fn resolve_item(&mut self, item: &'ast Item) {
2161         let name = item.ident.name;
2162         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
2163
2164         match item.kind {
2165             ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
2166                 self.with_generic_param_rib(
2167                     &generics.params,
2168                     ItemRibKind(HasGenericParams::Yes(generics.span)),
2169                     LifetimeRibKind::Generics {
2170                         binder: item.id,
2171                         kind: LifetimeBinderKind::Item,
2172                         span: generics.span,
2173                     },
2174                     |this| visit::walk_item(this, item),
2175                 );
2176             }
2177
2178             ItemKind::Fn(box Fn { ref generics, .. }) => {
2179                 self.with_generic_param_rib(
2180                     &generics.params,
2181                     ItemRibKind(HasGenericParams::Yes(generics.span)),
2182                     LifetimeRibKind::Generics {
2183                         binder: item.id,
2184                         kind: LifetimeBinderKind::Function,
2185                         span: generics.span,
2186                     },
2187                     |this| visit::walk_item(this, item),
2188                 );
2189             }
2190
2191             ItemKind::Enum(_, ref generics)
2192             | ItemKind::Struct(_, ref generics)
2193             | ItemKind::Union(_, ref generics) => {
2194                 self.resolve_adt(item, generics);
2195             }
2196
2197             ItemKind::Impl(box Impl {
2198                 ref generics,
2199                 ref of_trait,
2200                 ref self_ty,
2201                 items: ref impl_items,
2202                 ..
2203             }) => {
2204                 self.diagnostic_metadata.current_impl_items = Some(impl_items);
2205                 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
2206                 self.diagnostic_metadata.current_impl_items = None;
2207             }
2208
2209             ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
2210                 // Create a new rib for the trait-wide type parameters.
2211                 self.with_generic_param_rib(
2212                     &generics.params,
2213                     ItemRibKind(HasGenericParams::Yes(generics.span)),
2214                     LifetimeRibKind::Generics {
2215                         binder: item.id,
2216                         kind: LifetimeBinderKind::Item,
2217                         span: generics.span,
2218                     },
2219                     |this| {
2220                         let local_def_id = this.r.local_def_id(item.id).to_def_id();
2221                         this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
2222                             this.visit_generics(generics);
2223                             walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
2224                             this.resolve_trait_items(items);
2225                         });
2226                     },
2227                 );
2228             }
2229
2230             ItemKind::TraitAlias(ref generics, ref bounds) => {
2231                 // Create a new rib for the trait-wide type parameters.
2232                 self.with_generic_param_rib(
2233                     &generics.params,
2234                     ItemRibKind(HasGenericParams::Yes(generics.span)),
2235                     LifetimeRibKind::Generics {
2236                         binder: item.id,
2237                         kind: LifetimeBinderKind::Item,
2238                         span: generics.span,
2239                     },
2240                     |this| {
2241                         let local_def_id = this.r.local_def_id(item.id).to_def_id();
2242                         this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
2243                             this.visit_generics(generics);
2244                             walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
2245                         });
2246                     },
2247                 );
2248             }
2249
2250             ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
2251                 self.with_scope(item.id, |this| {
2252                     visit::walk_item(this, item);
2253                 });
2254             }
2255
2256             ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
2257                 self.with_static_rib(|this| {
2258                     this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
2259                         this.visit_ty(ty);
2260                     });
2261                     this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
2262                         if let Some(expr) = expr {
2263                             let constant_item_kind = match item.kind {
2264                                 ItemKind::Const(..) => ConstantItemKind::Const,
2265                                 ItemKind::Static(..) => ConstantItemKind::Static,
2266                                 _ => unreachable!(),
2267                             };
2268                             // We already forbid generic params because of the above item rib,
2269                             // so it doesn't matter whether this is a trivial constant.
2270                             this.with_constant_rib(
2271                                 IsRepeatExpr::No,
2272                                 ConstantHasGenerics::Yes,
2273                                 Some((item.ident, constant_item_kind)),
2274                                 |this| this.visit_expr(expr),
2275                             );
2276                         }
2277                     });
2278                 });
2279             }
2280
2281             ItemKind::Use(ref use_tree) => {
2282                 self.future_proof_import(use_tree);
2283             }
2284
2285             ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => {
2286                 // do nothing, these are just around to be encoded
2287             }
2288
2289             ItemKind::GlobalAsm(_) => {
2290                 visit::walk_item(self, item);
2291             }
2292
2293             ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
2294         }
2295     }
2296
2297     fn with_generic_param_rib<'c, F>(
2298         &'c mut self,
2299         params: &'c [GenericParam],
2300         kind: RibKind<'a>,
2301         lifetime_kind: LifetimeRibKind,
2302         f: F,
2303     ) where
2304         F: FnOnce(&mut Self),
2305     {
2306         debug!("with_generic_param_rib");
2307         let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. }
2308             = lifetime_kind else { panic!() };
2309
2310         let mut function_type_rib = Rib::new(kind);
2311         let mut function_value_rib = Rib::new(kind);
2312         let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);
2313         let mut seen_bindings = FxHashMap::default();
2314         // Store all seen lifetimes names from outer scopes.
2315         let mut seen_lifetimes = FxHashSet::default();
2316
2317         // We also can't shadow bindings from the parent item
2318         if let AssocItemRibKind = kind {
2319             let mut add_bindings_for_ns = |ns| {
2320                 let parent_rib = self.ribs[ns]
2321                     .iter()
2322                     .rfind(|r| matches!(r.kind, ItemRibKind(_)))
2323                     .expect("associated item outside of an item");
2324                 seen_bindings
2325                     .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
2326             };
2327             add_bindings_for_ns(ValueNS);
2328             add_bindings_for_ns(TypeNS);
2329         }
2330
2331         // Forbid shadowing lifetime bindings
2332         for rib in self.lifetime_ribs.iter().rev() {
2333             seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident));
2334             if let LifetimeRibKind::Item = rib.kind {
2335                 break;
2336             }
2337         }
2338
2339         for param in params {
2340             let ident = param.ident.normalize_to_macros_2_0();
2341             debug!("with_generic_param_rib: {}", param.id);
2342
2343             if let GenericParamKind::Lifetime = param.kind
2344                 && let Some(&original) = seen_lifetimes.get(&ident)
2345             {
2346                 diagnostics::signal_lifetime_shadowing(self.r.session, original, param.ident);
2347                 // Record lifetime res, so lowering knows there is something fishy.
2348                 self.record_lifetime_param(param.id, LifetimeRes::Error);
2349                 continue;
2350             }
2351
2352             match seen_bindings.entry(ident) {
2353                 Entry::Occupied(entry) => {
2354                     let span = *entry.get();
2355                     let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
2356                     self.report_error(param.ident.span, err);
2357                     if let GenericParamKind::Lifetime = param.kind {
2358                         // Record lifetime res, so lowering knows there is something fishy.
2359                         self.record_lifetime_param(param.id, LifetimeRes::Error);
2360                         continue;
2361                     }
2362                 }
2363                 Entry::Vacant(entry) => {
2364                     entry.insert(param.ident.span);
2365                 }
2366             }
2367
2368             if param.ident.name == kw::UnderscoreLifetime {
2369                 rustc_errors::struct_span_err!(
2370                     self.r.session,
2371                     param.ident.span,
2372                     E0637,
2373                     "`'_` cannot be used here"
2374                 )
2375                 .span_label(param.ident.span, "`'_` is a reserved lifetime name")
2376                 .emit();
2377                 // Record lifetime res, so lowering knows there is something fishy.
2378                 self.record_lifetime_param(param.id, LifetimeRes::Error);
2379                 continue;
2380             }
2381
2382             if param.ident.name == kw::StaticLifetime {
2383                 rustc_errors::struct_span_err!(
2384                     self.r.session,
2385                     param.ident.span,
2386                     E0262,
2387                     "invalid lifetime parameter name: `{}`",
2388                     param.ident,
2389                 )
2390                 .span_label(param.ident.span, "'static is a reserved lifetime name")
2391                 .emit();
2392                 // Record lifetime res, so lowering knows there is something fishy.
2393                 self.record_lifetime_param(param.id, LifetimeRes::Error);
2394                 continue;
2395             }
2396
2397             let def_id = self.r.local_def_id(param.id);
2398
2399             // Plain insert (no renaming).
2400             let (rib, def_kind) = match param.kind {
2401                 GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
2402                 GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
2403                 GenericParamKind::Lifetime => {
2404                     let res = LifetimeRes::Param { param: def_id, binder };
2405                     self.record_lifetime_param(param.id, res);
2406                     function_lifetime_rib.bindings.insert(ident, (param.id, res));
2407                     continue;
2408                 }
2409             };
2410
2411             let res = match kind {
2412                 ItemRibKind(..) | AssocItemRibKind => Res::Def(def_kind, def_id.to_def_id()),
2413                 NormalRibKind => Res::Err,
2414                 _ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind),
2415             };
2416             self.r.record_partial_res(param.id, PartialRes::new(res));
2417             rib.bindings.insert(ident, res);
2418         }
2419
2420         self.lifetime_ribs.push(function_lifetime_rib);
2421         self.ribs[ValueNS].push(function_value_rib);
2422         self.ribs[TypeNS].push(function_type_rib);
2423
2424         f(self);
2425
2426         self.ribs[TypeNS].pop();
2427         self.ribs[ValueNS].pop();
2428         let function_lifetime_rib = self.lifetime_ribs.pop().unwrap();
2429
2430         // Do not account for the parameters we just bound for function lifetime elision.
2431         if let Some(ref mut candidates) = self.lifetime_elision_candidates {
2432             for (_, res) in function_lifetime_rib.bindings.values() {
2433                 candidates.retain(|(r, _)| r != res);
2434             }
2435         }
2436
2437         if let LifetimeBinderKind::BareFnType
2438         | LifetimeBinderKind::WhereBound
2439         | LifetimeBinderKind::Function
2440         | LifetimeBinderKind::ImplBlock = generics_kind
2441         {
2442             self.maybe_report_lifetime_uses(generics_span, params)
2443         }
2444     }
2445
2446     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
2447         self.label_ribs.push(Rib::new(kind));
2448         f(self);
2449         self.label_ribs.pop();
2450     }
2451
2452     fn with_static_rib(&mut self, f: impl FnOnce(&mut Self)) {
2453         let kind = ItemRibKind(HasGenericParams::No);
2454         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
2455     }
2456
2457     // HACK(min_const_generics,const_evaluatable_unchecked): We
2458     // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
2459     // with a future compat lint for now. We do this by adding an
2460     // additional special case for repeat expressions.
2461     //
2462     // Note that we intentionally still forbid `[0; N + 1]` during
2463     // name resolution so that we don't extend the future
2464     // compat lint to new cases.
2465     #[instrument(level = "debug", skip(self, f))]
2466     fn with_constant_rib(
2467         &mut self,
2468         is_repeat: IsRepeatExpr,
2469         may_use_generics: ConstantHasGenerics,
2470         item: Option<(Ident, ConstantItemKind)>,
2471         f: impl FnOnce(&mut Self),
2472     ) {
2473         self.with_rib(ValueNS, ConstantItemRibKind(may_use_generics, item), |this| {
2474             this.with_rib(
2475                 TypeNS,
2476                 ConstantItemRibKind(
2477                     may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes),
2478                     item,
2479                 ),
2480                 |this| {
2481                     this.with_label_rib(ConstantItemRibKind(may_use_generics, item), f);
2482                 },
2483             )
2484         });
2485     }
2486
2487     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
2488         // Handle nested impls (inside fn bodies)
2489         let previous_value =
2490             replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
2491         let result = f(self);
2492         self.diagnostic_metadata.current_self_type = previous_value;
2493         result
2494     }
2495
2496     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
2497         let previous_value =
2498             replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
2499         let result = f(self);
2500         self.diagnostic_metadata.current_self_item = previous_value;
2501         result
2502     }
2503
2504     /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
2505     fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) {
2506         let trait_assoc_items =
2507             replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
2508
2509         let walk_assoc_item =
2510             |this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| {
2511                 this.with_generic_param_rib(
2512                     &generics.params,
2513                     AssocItemRibKind,
2514                     LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind },
2515                     |this| visit::walk_assoc_item(this, item, AssocCtxt::Trait),
2516                 );
2517             };
2518
2519         for item in trait_items {
2520             match &item.kind {
2521                 AssocItemKind::Const(_, ty, default) => {
2522                     self.visit_ty(ty);
2523                     // Only impose the restrictions of `ConstRibKind` for an
2524                     // actual constant expression in a provided default.
2525                     if let Some(expr) = default {
2526                         // We allow arbitrary const expressions inside of associated consts,
2527                         // even if they are potentially not const evaluatable.
2528                         //
2529                         // Type parameters can already be used and as associated consts are
2530                         // not used as part of the type system, this is far less surprising.
2531                         self.with_lifetime_rib(
2532                             LifetimeRibKind::Elided(LifetimeRes::Infer),
2533                             |this| {
2534                                 this.with_constant_rib(
2535                                     IsRepeatExpr::No,
2536                                     ConstantHasGenerics::Yes,
2537                                     None,
2538                                     |this| this.visit_expr(expr),
2539                                 )
2540                             },
2541                         );
2542                     }
2543                 }
2544                 AssocItemKind::Fn(box Fn { generics, .. }) => {
2545                     walk_assoc_item(self, generics, LifetimeBinderKind::Function, item);
2546                 }
2547                 AssocItemKind::Type(box TyAlias { generics, .. }) => self
2548                     .with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
2549                         walk_assoc_item(this, generics, LifetimeBinderKind::Item, item)
2550                     }),
2551                 AssocItemKind::MacCall(_) => {
2552                     panic!("unexpanded macro in resolve!")
2553                 }
2554             };
2555         }
2556
2557         self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
2558     }
2559
2560     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
2561     fn with_optional_trait_ref<T>(
2562         &mut self,
2563         opt_trait_ref: Option<&TraitRef>,
2564         self_type: &'ast Ty,
2565         f: impl FnOnce(&mut Self, Option<DefId>) -> T,
2566     ) -> T {
2567         let mut new_val = None;
2568         let mut new_id = None;
2569         if let Some(trait_ref) = opt_trait_ref {
2570             let path: Vec<_> = Segment::from_path(&trait_ref.path);
2571             self.diagnostic_metadata.currently_processing_impl_trait =
2572                 Some((trait_ref.clone(), self_type.clone()));
2573             let res = self.smart_resolve_path_fragment(
2574                 None,
2575                 &path,
2576                 PathSource::Trait(AliasPossibility::No),
2577                 Finalize::new(trait_ref.ref_id, trait_ref.path.span),
2578             );
2579             self.diagnostic_metadata.currently_processing_impl_trait = None;
2580             if let Some(def_id) = res.expect_full_res().opt_def_id() {
2581                 new_id = Some(def_id);
2582                 new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
2583             }
2584         }
2585         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
2586         let result = f(self, new_id);
2587         self.current_trait_ref = original_trait_ref;
2588         result
2589     }
2590
2591     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
2592         let mut self_type_rib = Rib::new(NormalRibKind);
2593
2594         // Plain insert (no renaming, since types are not currently hygienic)
2595         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
2596         self.ribs[ns].push(self_type_rib);
2597         f(self);
2598         self.ribs[ns].pop();
2599     }
2600
2601     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
2602         self.with_self_rib_ns(TypeNS, self_res, f)
2603     }
2604
2605     fn resolve_implementation(
2606         &mut self,
2607         generics: &'ast Generics,
2608         opt_trait_reference: &'ast Option<TraitRef>,
2609         self_type: &'ast Ty,
2610         item_id: NodeId,
2611         impl_items: &'ast [P<AssocItem>],
2612     ) {
2613         debug!("resolve_implementation");
2614         // If applicable, create a rib for the type parameters.
2615         self.with_generic_param_rib(
2616             &generics.params,
2617             ItemRibKind(HasGenericParams::Yes(generics.span)),
2618             LifetimeRibKind::Generics {
2619                 span: generics.span,
2620                 binder: item_id,
2621                 kind: LifetimeBinderKind::ImplBlock,
2622             },
2623             |this| {
2624                 // Dummy self type for better errors if `Self` is used in the trait path.
2625                 this.with_self_rib(Res::SelfTyParam { trait_: LOCAL_CRATE.as_def_id() }, |this| {
2626                     this.with_lifetime_rib(
2627                         LifetimeRibKind::AnonymousCreateParameter {
2628                             binder: item_id,
2629                             report_in_path: true
2630                         },
2631                         |this| {
2632                             // Resolve the trait reference, if necessary.
2633                             this.with_optional_trait_ref(
2634                                 opt_trait_reference.as_ref(),
2635                                 self_type,
2636                                 |this, trait_id| {
2637                                     let item_def_id = this.r.local_def_id(item_id);
2638
2639                                     // Register the trait definitions from here.
2640                                     if let Some(trait_id) = trait_id {
2641                                         this.r
2642                                             .trait_impls
2643                                             .entry(trait_id)
2644                                             .or_default()
2645                                             .push(item_def_id);
2646                                     }
2647
2648                                     let item_def_id = item_def_id.to_def_id();
2649                                     let res = Res::SelfTyAlias {
2650                                         alias_to: item_def_id,
2651                                         forbid_generic: false,
2652                                         is_trait_impl: trait_id.is_some()
2653                                     };
2654                                     this.with_self_rib(res, |this| {
2655                                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
2656                                             // Resolve type arguments in the trait path.
2657                                             visit::walk_trait_ref(this, trait_ref);
2658                                         }
2659                                         // Resolve the self type.
2660                                         this.visit_ty(self_type);
2661                                         // Resolve the generic parameters.
2662                                         this.visit_generics(generics);
2663
2664                                         // Resolve the items within the impl.
2665                                         this.with_current_self_type(self_type, |this| {
2666                                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
2667                                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
2668                                                 let mut seen_trait_items = Default::default();
2669                                                 for item in impl_items {
2670                                                     this.resolve_impl_item(&**item, &mut seen_trait_items);
2671                                                 }
2672                                             });
2673                                         });
2674                                     });
2675                                 },
2676                             )
2677                         },
2678                     );
2679                 });
2680             },
2681         );
2682     }
2683
2684     fn resolve_impl_item(
2685         &mut self,
2686         item: &'ast AssocItem,
2687         seen_trait_items: &mut FxHashMap<DefId, Span>,
2688     ) {
2689         use crate::ResolutionError::*;
2690         match &item.kind {
2691             AssocItemKind::Const(_, ty, default) => {
2692                 debug!("resolve_implementation AssocItemKind::Const");
2693                 // If this is a trait impl, ensure the const
2694                 // exists in trait
2695                 self.check_trait_item(
2696                     item.id,
2697                     item.ident,
2698                     &item.kind,
2699                     ValueNS,
2700                     item.span,
2701                     seen_trait_items,
2702                     |i, s, c| ConstNotMemberOfTrait(i, s, c),
2703                 );
2704
2705                 self.visit_ty(ty);
2706                 if let Some(expr) = default {
2707                     // We allow arbitrary const expressions inside of associated consts,
2708                     // even if they are potentially not const evaluatable.
2709                     //
2710                     // Type parameters can already be used and as associated consts are
2711                     // not used as part of the type system, this is far less surprising.
2712                     self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
2713                         this.with_constant_rib(
2714                             IsRepeatExpr::No,
2715                             ConstantHasGenerics::Yes,
2716                             None,
2717                             |this| this.visit_expr(expr),
2718                         )
2719                     });
2720                 }
2721             }
2722             AssocItemKind::Fn(box Fn { generics, .. }) => {
2723                 debug!("resolve_implementation AssocItemKind::Fn");
2724                 // We also need a new scope for the impl item type parameters.
2725                 self.with_generic_param_rib(
2726                     &generics.params,
2727                     AssocItemRibKind,
2728                     LifetimeRibKind::Generics {
2729                         binder: item.id,
2730                         span: generics.span,
2731                         kind: LifetimeBinderKind::Function,
2732                     },
2733                     |this| {
2734                         // If this is a trait impl, ensure the method
2735                         // exists in trait
2736                         this.check_trait_item(
2737                             item.id,
2738                             item.ident,
2739                             &item.kind,
2740                             ValueNS,
2741                             item.span,
2742                             seen_trait_items,
2743                             |i, s, c| MethodNotMemberOfTrait(i, s, c),
2744                         );
2745
2746                         visit::walk_assoc_item(this, item, AssocCtxt::Impl)
2747                     },
2748                 );
2749             }
2750             AssocItemKind::Type(box TyAlias { generics, .. }) => {
2751                 debug!("resolve_implementation AssocItemKind::Type");
2752                 // We also need a new scope for the impl item type parameters.
2753                 self.with_generic_param_rib(
2754                     &generics.params,
2755                     AssocItemRibKind,
2756                     LifetimeRibKind::Generics {
2757                         binder: item.id,
2758                         span: generics.span,
2759                         kind: LifetimeBinderKind::Item,
2760                     },
2761                     |this| {
2762                         this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
2763                             // If this is a trait impl, ensure the type
2764                             // exists in trait
2765                             this.check_trait_item(
2766                                 item.id,
2767                                 item.ident,
2768                                 &item.kind,
2769                                 TypeNS,
2770                                 item.span,
2771                                 seen_trait_items,
2772                                 |i, s, c| TypeNotMemberOfTrait(i, s, c),
2773                             );
2774
2775                             visit::walk_assoc_item(this, item, AssocCtxt::Impl)
2776                         });
2777                     },
2778                 );
2779             }
2780             AssocItemKind::MacCall(_) => {
2781                 panic!("unexpanded macro in resolve!")
2782             }
2783         }
2784     }
2785
2786     fn check_trait_item<F>(
2787         &mut self,
2788         id: NodeId,
2789         mut ident: Ident,
2790         kind: &AssocItemKind,
2791         ns: Namespace,
2792         span: Span,
2793         seen_trait_items: &mut FxHashMap<DefId, Span>,
2794         err: F,
2795     ) where
2796         F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'a>,
2797     {
2798         // If there is a TraitRef in scope for an impl, then the method must be in the trait.
2799         let Some((module, _)) = &self.current_trait_ref else { return; };
2800         ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
2801         let key = self.r.new_key(ident, ns);
2802         let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
2803         debug!(?binding);
2804         if binding.is_none() {
2805             // We could not find the trait item in the correct namespace.
2806             // Check the other namespace to report an error.
2807             let ns = match ns {
2808                 ValueNS => TypeNS,
2809                 TypeNS => ValueNS,
2810                 _ => ns,
2811             };
2812             let key = self.r.new_key(ident, ns);
2813             binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
2814             debug!(?binding);
2815         }
2816         let Some(binding) = binding else {
2817             // We could not find the method: report an error.
2818             let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
2819             let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2820             let path_names = path_names_to_string(path);
2821             self.report_error(span, err(ident, path_names, candidate));
2822             return;
2823         };
2824
2825         let res = binding.res();
2826         let Res::Def(def_kind, id_in_trait) = res else { bug!() };
2827
2828         match seen_trait_items.entry(id_in_trait) {
2829             Entry::Occupied(entry) => {
2830                 self.report_error(
2831                     span,
2832                     ResolutionError::TraitImplDuplicate {
2833                         name: ident.name,
2834                         old_span: *entry.get(),
2835                         trait_item_span: binding.span,
2836                     },
2837                 );
2838                 return;
2839             }
2840             Entry::Vacant(entry) => {
2841                 entry.insert(span);
2842             }
2843         };
2844
2845         match (def_kind, kind) {
2846             (DefKind::AssocTy, AssocItemKind::Type(..))
2847             | (DefKind::AssocFn, AssocItemKind::Fn(..))
2848             | (DefKind::AssocConst, AssocItemKind::Const(..)) => {
2849                 self.r.record_partial_res(id, PartialRes::new(res));
2850                 return;
2851             }
2852             _ => {}
2853         }
2854
2855         // The method kind does not correspond to what appeared in the trait, report.
2856         let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2857         let (code, kind) = match kind {
2858             AssocItemKind::Const(..) => (rustc_errors::error_code!(E0323), "const"),
2859             AssocItemKind::Fn(..) => (rustc_errors::error_code!(E0324), "method"),
2860             AssocItemKind::Type(..) => (rustc_errors::error_code!(E0325), "type"),
2861             AssocItemKind::MacCall(..) => span_bug!(span, "unexpanded macro"),
2862         };
2863         let trait_path = path_names_to_string(path);
2864         self.report_error(
2865             span,
2866             ResolutionError::TraitImplMismatch {
2867                 name: ident.name,
2868                 kind,
2869                 code,
2870                 trait_path,
2871                 trait_item_span: binding.span,
2872             },
2873         );
2874     }
2875
2876     fn resolve_params(&mut self, params: &'ast [Param]) {
2877         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
2878         self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
2879             for Param { pat, .. } in params {
2880                 this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
2881             }
2882         });
2883         for Param { ty, .. } in params {
2884             self.visit_ty(ty);
2885         }
2886     }
2887
2888     fn resolve_local(&mut self, local: &'ast Local) {
2889         debug!("resolving local ({:?})", local);
2890         // Resolve the type.
2891         walk_list!(self, visit_ty, &local.ty);
2892
2893         // Resolve the initializer.
2894         if let Some((init, els)) = local.kind.init_else_opt() {
2895             self.visit_expr(init);
2896
2897             // Resolve the `else` block
2898             if let Some(els) = els {
2899                 self.visit_block(els);
2900             }
2901         }
2902
2903         // Resolve the pattern.
2904         self.resolve_pattern_top(&local.pat, PatternSource::Let);
2905     }
2906
2907     /// build a map from pattern identifiers to binding-info's.
2908     /// this is done hygienically. This could arise for a macro
2909     /// that expands into an or-pattern where one 'x' was from the
2910     /// user and one 'x' came from the macro.
2911     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2912         let mut binding_map = FxHashMap::default();
2913
2914         pat.walk(&mut |pat| {
2915             match pat.kind {
2916                 PatKind::Ident(annotation, ident, ref sub_pat)
2917                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
2918                 {
2919                     binding_map.insert(ident, BindingInfo { span: ident.span, annotation });
2920                 }
2921                 PatKind::Or(ref ps) => {
2922                     // Check the consistency of this or-pattern and
2923                     // then add all bindings to the larger map.
2924                     for bm in self.check_consistent_bindings(ps) {
2925                         binding_map.extend(bm);
2926                     }
2927                     return false;
2928                 }
2929                 _ => {}
2930             }
2931
2932             true
2933         });
2934
2935         binding_map
2936     }
2937
2938     fn is_base_res_local(&self, nid: NodeId) -> bool {
2939         matches!(
2940             self.r.partial_res_map.get(&nid).map(|res| res.expect_full_res()),
2941             Some(Res::Local(..))
2942         )
2943     }
2944
2945     /// Checks that all of the arms in an or-pattern have exactly the
2946     /// same set of bindings, with the same binding modes for each.
2947     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
2948         let mut missing_vars = FxHashMap::default();
2949         let mut inconsistent_vars = FxHashMap::default();
2950
2951         // 1) Compute the binding maps of all arms.
2952         let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
2953
2954         // 2) Record any missing bindings or binding mode inconsistencies.
2955         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
2956             // Check against all arms except for the same pattern which is always self-consistent.
2957             let inners = pats
2958                 .iter()
2959                 .enumerate()
2960                 .filter(|(_, pat)| pat.id != pat_outer.id)
2961                 .flat_map(|(idx, _)| maps[idx].iter())
2962                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
2963
2964             for (name, info, &binding_inner) in inners {
2965                 match info {
2966                     None => {
2967                         // The inner binding is missing in the outer.
2968                         let binding_error =
2969                             missing_vars.entry(name).or_insert_with(|| BindingError {
2970                                 name,
2971                                 origin: BTreeSet::new(),
2972                                 target: BTreeSet::new(),
2973                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
2974                             });
2975                         binding_error.origin.insert(binding_inner.span);
2976                         binding_error.target.insert(pat_outer.span);
2977                     }
2978                     Some(binding_outer) => {
2979                         if binding_outer.annotation != binding_inner.annotation {
2980                             // The binding modes in the outer and inner bindings differ.
2981                             inconsistent_vars
2982                                 .entry(name)
2983                                 .or_insert((binding_inner.span, binding_outer.span));
2984                         }
2985                     }
2986                 }
2987             }
2988         }
2989
2990         // 3) Report all missing variables we found.
2991         let mut missing_vars = missing_vars.into_iter().collect::<Vec<_>>();
2992         missing_vars.sort_by_key(|&(sym, ref _err)| sym);
2993
2994         for (name, mut v) in missing_vars.into_iter() {
2995             if inconsistent_vars.contains_key(&name) {
2996                 v.could_be_path = false;
2997             }
2998             self.report_error(
2999                 *v.origin.iter().next().unwrap(),
3000                 ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
3001             );
3002         }
3003
3004         // 4) Report all inconsistencies in binding modes we found.
3005         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
3006         inconsistent_vars.sort();
3007         for (name, v) in inconsistent_vars {
3008             self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
3009         }
3010
3011         // 5) Finally bubble up all the binding maps.
3012         maps
3013     }
3014
3015     /// Check the consistency of the outermost or-patterns.
3016     fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
3017         pat.walk(&mut |pat| match pat.kind {
3018             PatKind::Or(ref ps) => {
3019                 self.check_consistent_bindings(ps);
3020                 false
3021             }
3022             _ => true,
3023         })
3024     }
3025
3026     fn resolve_arm(&mut self, arm: &'ast Arm) {
3027         self.with_rib(ValueNS, NormalRibKind, |this| {
3028             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
3029             walk_list!(this, visit_expr, &arm.guard);
3030             this.visit_expr(&arm.body);
3031         });
3032     }
3033
3034     /// Arising from `source`, resolve a top level pattern.
3035     fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
3036         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
3037         self.resolve_pattern(pat, pat_src, &mut bindings);
3038     }
3039
3040     fn resolve_pattern(
3041         &mut self,
3042         pat: &'ast Pat,
3043         pat_src: PatternSource,
3044         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
3045     ) {
3046         // We walk the pattern before declaring the pattern's inner bindings,
3047         // so that we avoid resolving a literal expression to a binding defined
3048         // by the pattern.
3049         visit::walk_pat(self, pat);
3050         self.resolve_pattern_inner(pat, pat_src, bindings);
3051         // This has to happen *after* we determine which pat_idents are variants:
3052         self.check_consistent_bindings_top(pat);
3053     }
3054
3055     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
3056     ///
3057     /// ### `bindings`
3058     ///
3059     /// A stack of sets of bindings accumulated.
3060     ///
3061     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
3062     /// be interpreted as re-binding an already bound binding. This results in an error.
3063     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
3064     /// in reusing this binding rather than creating a fresh one.
3065     ///
3066     /// When called at the top level, the stack must have a single element
3067     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
3068     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
3069     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
3070     /// When each `p_i` has been dealt with, the top set is merged with its parent.
3071     /// When a whole or-pattern has been dealt with, the thing happens.
3072     ///
3073     /// See the implementation and `fresh_binding` for more details.
3074     fn resolve_pattern_inner(
3075         &mut self,
3076         pat: &Pat,
3077         pat_src: PatternSource,
3078         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
3079     ) {
3080         // Visit all direct subpatterns of this pattern.
3081         pat.walk(&mut |pat| {
3082             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
3083             match pat.kind {
3084                 PatKind::Ident(bmode, ident, ref sub) => {
3085                     // First try to resolve the identifier as some existing entity,
3086                     // then fall back to a fresh binding.
3087                     let has_sub = sub.is_some();
3088                     let res = self
3089                         .try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
3090                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
3091                     self.r.record_partial_res(pat.id, PartialRes::new(res));
3092                     self.r.record_pat_span(pat.id, pat.span);
3093                 }
3094                 PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
3095                     self.smart_resolve_path(
3096                         pat.id,
3097                         qself.as_ref(),
3098                         path,
3099                         PathSource::TupleStruct(
3100                             pat.span,
3101                             self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
3102                         ),
3103                     );
3104                 }
3105                 PatKind::Path(ref qself, ref path) => {
3106                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
3107                 }
3108                 PatKind::Struct(ref qself, ref path, ..) => {
3109                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct);
3110                 }
3111                 PatKind::Or(ref ps) => {
3112                     // Add a new set of bindings to the stack. `Or` here records that when a
3113                     // binding already exists in this set, it should not result in an error because
3114                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
3115                     bindings.push((PatBoundCtx::Or, Default::default()));
3116                     for p in ps {
3117                         // Now we need to switch back to a product context so that each
3118                         // part of the or-pattern internally rejects already bound names.
3119                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
3120                         bindings.push((PatBoundCtx::Product, Default::default()));
3121                         self.resolve_pattern_inner(p, pat_src, bindings);
3122                         // Move up the non-overlapping bindings to the or-pattern.
3123                         // Existing bindings just get "merged".
3124                         let collected = bindings.pop().unwrap().1;
3125                         bindings.last_mut().unwrap().1.extend(collected);
3126                     }
3127                     // This or-pattern itself can itself be part of a product,
3128                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
3129                     // Both cases bind `a` again in a product pattern and must be rejected.
3130                     let collected = bindings.pop().unwrap().1;
3131                     bindings.last_mut().unwrap().1.extend(collected);
3132
3133                     // Prevent visiting `ps` as we've already done so above.
3134                     return false;
3135                 }
3136                 _ => {}
3137             }
3138             true
3139         });
3140     }
3141
3142     fn fresh_binding(
3143         &mut self,
3144         ident: Ident,
3145         pat_id: NodeId,
3146         pat_src: PatternSource,
3147         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
3148     ) -> Res {
3149         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
3150         // (We must not add it if it's in the bindings map because that breaks the assumptions
3151         // later passes make about or-patterns.)
3152         let ident = ident.normalize_to_macro_rules();
3153
3154         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
3155         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
3156         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
3157         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
3158         // This is *required* for consistency which is checked later.
3159         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
3160
3161         if already_bound_and {
3162             // Overlap in a product pattern somewhere; report an error.
3163             use ResolutionError::*;
3164             let error = match pat_src {
3165                 // `fn f(a: u8, a: u8)`:
3166                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
3167                 // `Variant(a, a)`:
3168                 _ => IdentifierBoundMoreThanOnceInSamePattern,
3169             };
3170             self.report_error(ident.span, error(ident.name));
3171         }
3172
3173         // Record as bound if it's valid:
3174         let ident_valid = ident.name != kw::Empty;
3175         if ident_valid {
3176             bindings.last_mut().unwrap().1.insert(ident);
3177         }
3178
3179         if already_bound_or {
3180             // `Variant1(a) | Variant2(a)`, ok
3181             // Reuse definition from the first `a`.
3182             self.innermost_rib_bindings(ValueNS)[&ident]
3183         } else {
3184             let res = Res::Local(pat_id);
3185             if ident_valid {
3186                 // A completely fresh binding add to the set if it's valid.
3187                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
3188             }
3189             res
3190         }
3191     }
3192
3193     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
3194         &mut self.ribs[ns].last_mut().unwrap().bindings
3195     }
3196
3197     fn try_resolve_as_non_binding(
3198         &mut self,
3199         pat_src: PatternSource,
3200         ann: BindingAnnotation,
3201         ident: Ident,
3202         has_sub: bool,
3203     ) -> Option<Res> {
3204         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
3205         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
3206         // also be interpreted as a path to e.g. a constant, variant, etc.
3207         let is_syntactic_ambiguity = !has_sub && ann == BindingAnnotation::NONE;
3208
3209         let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
3210         let (res, binding) = match ls_binding {
3211             LexicalScopeBinding::Item(binding)
3212                 if is_syntactic_ambiguity && binding.is_ambiguity() =>
3213             {
3214                 // For ambiguous bindings we don't know all their definitions and cannot check
3215                 // whether they can be shadowed by fresh bindings or not, so force an error.
3216                 // issues/33118#issuecomment-233962221 (see below) still applies here,
3217                 // but we have to ignore it for backward compatibility.
3218                 self.r.record_use(ident, binding, false);
3219                 return None;
3220             }
3221             LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
3222             LexicalScopeBinding::Res(res) => (res, None),
3223         };
3224
3225         match res {
3226             Res::SelfCtor(_) // See #70549.
3227             | Res::Def(
3228                 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
3229                 _,
3230             ) if is_syntactic_ambiguity => {
3231                 // Disambiguate in favor of a unit struct/variant or constant pattern.
3232                 if let Some(binding) = binding {
3233                     self.r.record_use(ident, binding, false);
3234                 }
3235                 Some(res)
3236             }
3237             Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static(_), _) => {
3238                 // This is unambiguously a fresh binding, either syntactically
3239                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
3240                 // to something unusable as a pattern (e.g., constructor function),
3241                 // but we still conservatively report an error, see
3242                 // issues/33118#issuecomment-233962221 for one reason why.
3243                 let binding = binding.expect("no binding for a ctor or static");
3244                 self.report_error(
3245                     ident.span,
3246                     ResolutionError::BindingShadowsSomethingUnacceptable {
3247                         shadowing_binding: pat_src,
3248                         name: ident.name,
3249                         participle: if binding.is_import() { "imported" } else { "defined" },
3250                         article: binding.res().article(),
3251                         shadowed_binding: binding.res(),
3252                         shadowed_binding_span: binding.span,
3253                     },
3254                 );
3255                 None
3256             }
3257             Res::Def(DefKind::ConstParam, def_id) => {
3258                 // Same as for DefKind::Const above, but here, `binding` is `None`, so we
3259                 // have to construct the error differently
3260                 self.report_error(
3261                     ident.span,
3262                     ResolutionError::BindingShadowsSomethingUnacceptable {
3263                         shadowing_binding: pat_src,
3264                         name: ident.name,
3265                         participle: "defined",
3266                         article: res.article(),
3267                         shadowed_binding: res,
3268                         shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"),
3269                     }
3270                 );
3271                 None
3272             }
3273             Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
3274                 // These entities are explicitly allowed to be shadowed by fresh bindings.
3275                 None
3276             }
3277             Res::SelfCtor(_) => {
3278                 // We resolve `Self` in pattern position as an ident sometimes during recovery,
3279                 // so delay a bug instead of ICEing.
3280                 self.r.session.delay_span_bug(
3281                     ident.span,
3282                     "unexpected `SelfCtor` in pattern, expected identifier"
3283                 );
3284                 None
3285             }
3286             _ => span_bug!(
3287                 ident.span,
3288                 "unexpected resolution for an identifier in pattern: {:?}",
3289                 res,
3290             ),
3291         }
3292     }
3293
3294     // High-level and context dependent path resolution routine.
3295     // Resolves the path and records the resolution into definition map.
3296     // If resolution fails tries several techniques to find likely
3297     // resolution candidates, suggest imports or other help, and report
3298     // errors in user friendly way.
3299     fn smart_resolve_path(
3300         &mut self,
3301         id: NodeId,
3302         qself: Option<&QSelf>,
3303         path: &Path,
3304         source: PathSource<'ast>,
3305     ) {
3306         self.smart_resolve_path_fragment(
3307             qself,
3308             &Segment::from_path(path),
3309             source,
3310             Finalize::new(id, path.span),
3311         );
3312     }
3313
3314     fn smart_resolve_path_fragment(
3315         &mut self,
3316         qself: Option<&QSelf>,
3317         path: &[Segment],
3318         source: PathSource<'ast>,
3319         finalize: Finalize,
3320     ) -> PartialRes {
3321         debug!(
3322             "smart_resolve_path_fragment(qself={:?}, path={:?}, finalize={:?})",
3323             qself, path, finalize,
3324         );
3325         let ns = source.namespace();
3326
3327         let Finalize { node_id, path_span, .. } = finalize;
3328         let report_errors = |this: &mut Self, res: Option<Res>| {
3329             if this.should_report_errs() {
3330                 let (err, candidates) =
3331                     this.smart_resolve_report_errors(path, path_span, source, res);
3332
3333                 let def_id = this.parent_scope.module.nearest_parent_mod();
3334                 let instead = res.is_some();
3335                 let suggestion =
3336                     if res.is_none() { this.report_missing_type_error(path) } else { None };
3337
3338                 this.r.use_injections.push(UseError {
3339                     err,
3340                     candidates,
3341                     def_id,
3342                     instead,
3343                     suggestion,
3344                     path: path.into(),
3345                     is_call: source.is_call(),
3346                 });
3347             }
3348
3349             PartialRes::new(Res::Err)
3350         };
3351
3352         // For paths originating from calls (like in `HashMap::new()`), tries
3353         // to enrich the plain `failed to resolve: ...` message with hints
3354         // about possible missing imports.
3355         //
3356         // Similar thing, for types, happens in `report_errors` above.
3357         let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
3358             if !source.is_call() {
3359                 return Some(parent_err);
3360             }
3361
3362             // Before we start looking for candidates, we have to get our hands
3363             // on the type user is trying to perform invocation on; basically:
3364             // we're transforming `HashMap::new` into just `HashMap`.
3365             let path = match path.split_last() {
3366                 Some((_, path)) if !path.is_empty() => path,
3367                 _ => return Some(parent_err),
3368             };
3369
3370             let (mut err, candidates) =
3371                 this.smart_resolve_report_errors(path, path_span, PathSource::Type, None);
3372
3373             // There are two different error messages user might receive at
3374             // this point:
3375             // - E0412 cannot find type `{}` in this scope
3376             // - E0433 failed to resolve: use of undeclared type or module `{}`
3377             //
3378             // The first one is emitted for paths in type-position, and the
3379             // latter one - for paths in expression-position.
3380             //
3381             // Thus (since we're in expression-position at this point), not to
3382             // confuse the user, we want to keep the *message* from E0433 (so
3383             // `parent_err`), but we want *hints* from E0412 (so `err`).
3384             //
3385             // And that's what happens below - we're just mixing both messages
3386             // into a single one.
3387             let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
3388
3389             // overwrite all properties with the parent's error message
3390             err.message = take(&mut parent_err.message);
3391             err.code = take(&mut parent_err.code);
3392             swap(&mut err.span, &mut parent_err.span);
3393             err.children = take(&mut parent_err.children);
3394             err.sort_span = parent_err.sort_span;
3395             err.is_lint = parent_err.is_lint;
3396
3397             // merge the parent's suggestions with the typo suggestions
3398             fn append_result<T, E>(res1: &mut Result<Vec<T>, E>, res2: Result<Vec<T>, E>) {
3399                 match res1 {
3400                     Ok(vec1) => match res2 {
3401                         Ok(mut vec2) => vec1.append(&mut vec2),
3402                         Err(e) => *res1 = Err(e),
3403                     },
3404                     Err(_) => (),
3405                 };
3406             }
3407             append_result(&mut err.suggestions, parent_err.suggestions.clone());
3408
3409             parent_err.cancel();
3410
3411             let def_id = this.parent_scope.module.nearest_parent_mod();
3412
3413             if this.should_report_errs() {
3414                 if candidates.is_empty() {
3415                     // When there is no suggested imports, we can just emit the error
3416                     // and suggestions immediately. Note that we bypass the usually error
3417                     // reporting routine (ie via `self.r.report_error`) because we need
3418                     // to post-process the `ResolutionError` above.
3419                     err.emit();
3420                 } else {
3421                     // If there are suggested imports, the error reporting is delayed
3422                     this.r.use_injections.push(UseError {
3423                         err,
3424                         candidates,
3425                         def_id,
3426                         instead: false,
3427                         suggestion: None,
3428                         path: path.into(),
3429                         is_call: source.is_call(),
3430                     });
3431                 }
3432             } else {
3433                 err.cancel();
3434             }
3435
3436             // We don't return `Some(parent_err)` here, because the error will
3437             // be already printed either immediately or as part of the `use` injections
3438             None
3439         };
3440
3441         let partial_res = match self.resolve_qpath_anywhere(
3442             qself,
3443             path,
3444             ns,
3445             path_span,
3446             source.defer_to_typeck(),
3447             finalize,
3448         ) {
3449             Ok(Some(partial_res)) if let Some(res) = partial_res.full_res() => {
3450                 if source.is_expected(res) || res == Res::Err {
3451                     partial_res
3452                 } else {
3453                     report_errors(self, Some(res))
3454                 }
3455             }
3456
3457             Ok(Some(partial_res)) if source.defer_to_typeck() => {
3458                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
3459                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
3460                 // it needs to be added to the trait map.
3461                 if ns == ValueNS {
3462                     let item_name = path.last().unwrap().ident;
3463                     let traits = self.traits_in_scope(item_name, ns);
3464                     self.r.trait_map.insert(node_id, traits);
3465                 }
3466
3467                 if PrimTy::from_name(path[0].ident.name).is_some() {
3468                     let mut std_path = Vec::with_capacity(1 + path.len());
3469
3470                     std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
3471                     std_path.extend(path);
3472                     if let PathResult::Module(_) | PathResult::NonModule(_) =
3473                         self.resolve_path(&std_path, Some(ns), None)
3474                     {
3475                         // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
3476                         let item_span =
3477                             path.iter().last().map_or(path_span, |segment| segment.ident.span);
3478
3479                         self.r.confused_type_with_std_module.insert(item_span, path_span);
3480                         self.r.confused_type_with_std_module.insert(path_span, path_span);
3481                     }
3482                 }
3483
3484                 partial_res
3485             }
3486
3487             Err(err) => {
3488                 if let Some(err) = report_errors_for_call(self, err) {
3489                     self.report_error(err.span, err.node);
3490                 }
3491
3492                 PartialRes::new(Res::Err)
3493             }
3494
3495             _ => report_errors(self, None),
3496         };
3497
3498         if !matches!(source, PathSource::TraitItem(..)) {
3499             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
3500             self.r.record_partial_res(node_id, partial_res);
3501             self.resolve_elided_lifetimes_in_path(node_id, partial_res, path, source, path_span);
3502         }
3503
3504         partial_res
3505     }
3506
3507     fn self_type_is_available(&mut self) -> bool {
3508         let binding = self
3509             .maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
3510         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
3511     }
3512
3513     fn self_value_is_available(&mut self, self_span: Span) -> bool {
3514         let ident = Ident::new(kw::SelfLower, self_span);
3515         let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
3516         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
3517     }
3518
3519     /// A wrapper around [`Resolver::report_error`].
3520     ///
3521     /// This doesn't emit errors for function bodies if this is rustdoc.
3522     fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'a>) {
3523         if self.should_report_errs() {
3524             self.r.report_error(span, resolution_error);
3525         }
3526     }
3527
3528     #[inline]
3529     /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
3530     fn should_report_errs(&self) -> bool {
3531         !(self.r.session.opts.actually_rustdoc && self.in_func_body)
3532     }
3533
3534     // Resolve in alternative namespaces if resolution in the primary namespace fails.
3535     fn resolve_qpath_anywhere(
3536         &mut self,
3537         qself: Option<&QSelf>,
3538         path: &[Segment],
3539         primary_ns: Namespace,
3540         span: Span,
3541         defer_to_typeck: bool,
3542         finalize: Finalize,
3543     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
3544         let mut fin_res = None;
3545
3546         for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
3547             if i == 0 || ns != primary_ns {
3548                 match self.resolve_qpath(qself, path, ns, finalize)? {
3549                     Some(partial_res)
3550                         if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
3551                     {
3552                         return Ok(Some(partial_res));
3553                     }
3554                     partial_res => {
3555                         if fin_res.is_none() {
3556                             fin_res = partial_res;
3557                         }
3558                     }
3559                 }
3560             }
3561         }
3562
3563         assert!(primary_ns != MacroNS);
3564
3565         if qself.is_none() {
3566             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
3567             let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
3568             if let Ok((_, res)) =
3569                 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
3570             {
3571                 return Ok(Some(PartialRes::new(res)));
3572             }
3573         }
3574
3575         Ok(fin_res)
3576     }
3577
3578     /// Handles paths that may refer to associated items.
3579     fn resolve_qpath(
3580         &mut self,
3581         qself: Option<&QSelf>,
3582         path: &[Segment],
3583         ns: Namespace,
3584         finalize: Finalize,
3585     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
3586         debug!(
3587             "resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
3588             qself, path, ns, finalize,
3589         );
3590
3591         if let Some(qself) = qself {
3592             if qself.position == 0 {
3593                 // This is a case like `<T>::B`, where there is no
3594                 // trait to resolve.  In that case, we leave the `B`
3595                 // segment to be resolved by type-check.
3596                 return Ok(Some(PartialRes::with_unresolved_segments(
3597                     Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
3598                     path.len(),
3599                 )));
3600             }
3601
3602             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
3603             //
3604             // Currently, `path` names the full item (`A::B::C`, in
3605             // our example).  so we extract the prefix of that that is
3606             // the trait (the slice upto and including
3607             // `qself.position`). And then we recursively resolve that,
3608             // but with `qself` set to `None`.
3609             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
3610             let partial_res = self.smart_resolve_path_fragment(
3611                 None,
3612                 &path[..=qself.position],
3613                 PathSource::TraitItem(ns),
3614                 Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
3615             );
3616
3617             // The remaining segments (the `C` in our example) will
3618             // have to be resolved by type-check, since that requires doing
3619             // trait resolution.
3620             return Ok(Some(PartialRes::with_unresolved_segments(
3621                 partial_res.base_res(),
3622                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
3623             )));
3624         }
3625
3626         let result = match self.resolve_path(&path, Some(ns), Some(finalize)) {
3627             PathResult::NonModule(path_res) => path_res,
3628             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
3629                 PartialRes::new(module.res().unwrap())
3630             }
3631             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
3632             // don't report an error right away, but try to fallback to a primitive type.
3633             // So, we are still able to successfully resolve something like
3634             //
3635             // use std::u8; // bring module u8 in scope
3636             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
3637             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
3638             //                     // not to non-existent std::u8::max_value
3639             // }
3640             //
3641             // Such behavior is required for backward compatibility.
3642             // The same fallback is used when `a` resolves to nothing.
3643             PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
3644                 if (ns == TypeNS || path.len() > 1)
3645                     && PrimTy::from_name(path[0].ident.name).is_some() =>
3646             {
3647                 let prim = PrimTy::from_name(path[0].ident.name).unwrap();
3648                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
3649             }
3650             PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
3651                 PartialRes::new(module.res().unwrap())
3652             }
3653             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
3654                 return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
3655             }
3656             PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
3657             PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
3658         };
3659
3660         if path.len() > 1
3661             && let Some(res) = result.full_res()
3662             && res != Res::Err
3663             && path[0].ident.name != kw::PathRoot
3664             && path[0].ident.name != kw::DollarCrate
3665         {
3666             let unqualified_result = {
3667                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), None) {
3668                     PathResult::NonModule(path_res) => path_res.expect_full_res(),
3669                     PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
3670                         module.res().unwrap()
3671                     }
3672                     _ => return Ok(Some(result)),
3673                 }
3674             };
3675             if res == unqualified_result {
3676                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
3677                 self.r.lint_buffer.buffer_lint(
3678                     lint,
3679                     finalize.node_id,
3680                     finalize.path_span,
3681                     "unnecessary qualification",
3682                 )
3683             }
3684         }
3685
3686         Ok(Some(result))
3687     }
3688
3689     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
3690         if let Some(label) = label {
3691             if label.ident.as_str().as_bytes()[1] != b'_' {
3692                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
3693             }
3694
3695             if let Ok((_, orig_span)) = self.resolve_label(label.ident) {
3696                 diagnostics::signal_label_shadowing(self.r.session, orig_span, label.ident)
3697             }
3698
3699             self.with_label_rib(NormalRibKind, |this| {
3700                 let ident = label.ident.normalize_to_macro_rules();
3701                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
3702                 f(this);
3703             });
3704         } else {
3705             f(self);
3706         }
3707     }
3708
3709     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
3710         self.with_resolved_label(label, id, |this| this.visit_block(block));
3711     }
3712
3713     fn resolve_block(&mut self, block: &'ast Block) {
3714         debug!("(resolving block) entering block");
3715         // Move down in the graph, if there's an anonymous module rooted here.
3716         let orig_module = self.parent_scope.module;
3717         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
3718
3719         let mut num_macro_definition_ribs = 0;
3720         if let Some(anonymous_module) = anonymous_module {
3721             debug!("(resolving block) found anonymous module, moving down");
3722             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
3723             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
3724             self.parent_scope.module = anonymous_module;
3725         } else {
3726             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3727         }
3728
3729         let prev = self.diagnostic_metadata.current_block_could_be_bare_struct_literal.take();
3730         if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
3731             (block.could_be_bare_literal, &block.stmts[..])
3732             && let ExprKind::Type(..) = expr.kind
3733         {
3734             self.diagnostic_metadata.current_block_could_be_bare_struct_literal =
3735             Some(block.span);
3736         }
3737         // Descend into the block.
3738         for stmt in &block.stmts {
3739             if let StmtKind::Item(ref item) = stmt.kind
3740                 && let ItemKind::MacroDef(..) = item.kind {
3741                 num_macro_definition_ribs += 1;
3742                 let res = self.r.local_def_id(item.id).to_def_id();
3743                 self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
3744                 self.label_ribs.push(Rib::new(MacroDefinition(res)));
3745             }
3746
3747             self.visit_stmt(stmt);
3748         }
3749         self.diagnostic_metadata.current_block_could_be_bare_struct_literal = prev;
3750
3751         // Move back up.
3752         self.parent_scope.module = orig_module;
3753         for _ in 0..num_macro_definition_ribs {
3754             self.ribs[ValueNS].pop();
3755             self.label_ribs.pop();
3756         }
3757         self.ribs[ValueNS].pop();
3758         if anonymous_module.is_some() {
3759             self.ribs[TypeNS].pop();
3760         }
3761         debug!("(resolving block) leaving block");
3762     }
3763
3764     fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
3765         debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
3766         self.with_constant_rib(
3767             is_repeat,
3768             if constant.value.is_potential_trivial_const_param() {
3769                 ConstantHasGenerics::Yes
3770             } else {
3771                 ConstantHasGenerics::No
3772             },
3773             None,
3774             |this| visit::walk_anon_const(this, constant),
3775         );
3776     }
3777
3778     fn resolve_inline_const(&mut self, constant: &'ast AnonConst) {
3779         debug!("resolve_anon_const {constant:?}");
3780         self.with_constant_rib(IsRepeatExpr::No, ConstantHasGenerics::Yes, None, |this| {
3781             visit::walk_anon_const(this, constant)
3782         });
3783     }
3784
3785     fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
3786         // First, record candidate traits for this expression if it could
3787         // result in the invocation of a method call.
3788
3789         self.record_candidate_traits_for_expr_if_necessary(expr);
3790
3791         // Next, resolve the node.
3792         match expr.kind {
3793             ExprKind::Path(ref qself, ref path) => {
3794                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3795                 visit::walk_expr(self, expr);
3796             }
3797
3798             ExprKind::Struct(ref se) => {
3799                 self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct);
3800                 visit::walk_expr(self, expr);
3801             }
3802
3803             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3804                 match self.resolve_label(label.ident) {
3805                     Ok((node_id, _)) => {
3806                         // Since this res is a label, it is never read.
3807                         self.r.label_res_map.insert(expr.id, node_id);
3808                         self.diagnostic_metadata.unused_labels.remove(&node_id);
3809                     }
3810                     Err(error) => {
3811                         self.report_error(label.ident.span, error);
3812                     }
3813                 }
3814
3815                 // visit `break` argument if any
3816                 visit::walk_expr(self, expr);
3817             }
3818
3819             ExprKind::Break(None, Some(ref e)) => {
3820                 // We use this instead of `visit::walk_expr` to keep the parent expr around for
3821                 // better diagnostics.
3822                 self.resolve_expr(e, Some(&expr));
3823             }
3824
3825             ExprKind::Let(ref pat, ref scrutinee, _) => {
3826                 self.visit_expr(scrutinee);
3827                 self.resolve_pattern_top(pat, PatternSource::Let);
3828             }
3829
3830             ExprKind::If(ref cond, ref then, ref opt_else) => {
3831                 self.with_rib(ValueNS, NormalRibKind, |this| {
3832                     let old = this.diagnostic_metadata.in_if_condition.replace(cond);
3833                     this.visit_expr(cond);
3834                     this.diagnostic_metadata.in_if_condition = old;
3835                     this.visit_block(then);
3836                 });
3837                 if let Some(expr) = opt_else {
3838                     self.visit_expr(expr);
3839                 }
3840             }
3841
3842             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3843
3844             ExprKind::While(ref cond, ref block, label) => {
3845                 self.with_resolved_label(label, expr.id, |this| {
3846                     this.with_rib(ValueNS, NormalRibKind, |this| {
3847                         let old = this.diagnostic_metadata.in_if_condition.replace(cond);
3848                         this.visit_expr(cond);
3849                         this.diagnostic_metadata.in_if_condition = old;
3850                         this.visit_block(block);
3851                     })
3852                 });
3853             }
3854
3855             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
3856                 self.visit_expr(iter_expr);
3857                 self.with_rib(ValueNS, NormalRibKind, |this| {
3858                     this.resolve_pattern_top(pat, PatternSource::For);
3859                     this.resolve_labeled_block(label, expr.id, block);
3860                 });
3861             }
3862
3863             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3864
3865             // Equivalent to `visit::walk_expr` + passing some context to children.
3866             ExprKind::Field(ref subexpression, _) => {
3867                 self.resolve_expr(subexpression, Some(expr));
3868             }
3869             ExprKind::MethodCall(ref segment, ref receiver, ref arguments, _) => {
3870                 self.resolve_expr(receiver, Some(expr));
3871                 for argument in arguments {
3872                     self.resolve_expr(argument, None);
3873                 }
3874                 self.visit_path_segment(segment);
3875             }
3876
3877             ExprKind::Call(ref callee, ref arguments) => {
3878                 self.resolve_expr(callee, Some(expr));
3879                 let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
3880                 for (idx, argument) in arguments.iter().enumerate() {
3881                     // Constant arguments need to be treated as AnonConst since
3882                     // that is how they will be later lowered to HIR.
3883                     if const_args.contains(&idx) {
3884                         self.with_constant_rib(
3885                             IsRepeatExpr::No,
3886                             if argument.is_potential_trivial_const_param() {
3887                                 ConstantHasGenerics::Yes
3888                             } else {
3889                                 ConstantHasGenerics::No
3890                             },
3891                             None,
3892                             |this| {
3893                                 this.resolve_expr(argument, None);
3894                             },
3895                         );
3896                     } else {
3897                         self.resolve_expr(argument, None);
3898                     }
3899                 }
3900             }
3901             ExprKind::Type(ref type_expr, ref ty) => {
3902                 // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
3903                 // type ascription. Here we are trying to retrieve the span of the colon token as
3904                 // well, but only if it's written without spaces `expr:Ty` and therefore confusable
3905                 // with `expr::Ty`, only in this case it will match the span from
3906                 // `type_ascription_path_suggestions`.
3907                 self.diagnostic_metadata
3908                     .current_type_ascription
3909                     .push(type_expr.span.between(ty.span));
3910                 visit::walk_expr(self, expr);
3911                 self.diagnostic_metadata.current_type_ascription.pop();
3912             }
3913             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
3914             // resolve the arguments within the proper scopes so that usages of them inside the
3915             // closure are detected as upvars rather than normal closure arg usages.
3916             ExprKind::Closure(_, _, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
3917                 self.with_rib(ValueNS, NormalRibKind, |this| {
3918                     this.with_label_rib(ClosureOrAsyncRibKind, |this| {
3919                         // Resolve arguments:
3920                         this.resolve_params(&fn_decl.inputs);
3921                         // No need to resolve return type --
3922                         // the outer closure return type is `FnRetTy::Default`.
3923
3924                         // Now resolve the inner closure
3925                         {
3926                             // No need to resolve arguments: the inner closure has none.
3927                             // Resolve the return type:
3928                             visit::walk_fn_ret_ty(this, &fn_decl.output);
3929                             // Resolve the body
3930                             this.visit_expr(body);
3931                         }
3932                     })
3933                 });
3934             }
3935             // For closures, ClosureOrAsyncRibKind is added in visit_fn
3936             ExprKind::Closure(ClosureBinder::For { ref generic_params, span }, ..) => {
3937                 self.with_generic_param_rib(
3938                     &generic_params,
3939                     NormalRibKind,
3940                     LifetimeRibKind::Generics {
3941                         binder: expr.id,
3942                         kind: LifetimeBinderKind::Closure,
3943                         span,
3944                     },
3945                     |this| visit::walk_expr(this, expr),
3946                 );
3947             }
3948             ExprKind::Closure(..) => visit::walk_expr(self, expr),
3949             ExprKind::Async(..) => {
3950                 self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
3951             }
3952             ExprKind::Repeat(ref elem, ref ct) => {
3953                 self.visit_expr(elem);
3954                 self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| {
3955                     this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| {
3956                         this.resolve_anon_const(ct, IsRepeatExpr::Yes)
3957                     })
3958                 });
3959             }
3960             ExprKind::ConstBlock(ref ct) => {
3961                 self.resolve_inline_const(ct);
3962             }
3963             ExprKind::Index(ref elem, ref idx) => {
3964                 self.resolve_expr(elem, Some(expr));
3965                 self.visit_expr(idx);
3966             }
3967             ExprKind::Assign(ref lhs, ref rhs, _) => {
3968                 if !self.diagnostic_metadata.is_assign_rhs {
3969                     self.diagnostic_metadata.in_assignment = Some(expr);
3970                 }
3971                 self.visit_expr(lhs);
3972                 self.diagnostic_metadata.is_assign_rhs = true;
3973                 self.diagnostic_metadata.in_assignment = None;
3974                 self.visit_expr(rhs);
3975                 self.diagnostic_metadata.is_assign_rhs = false;
3976             }
3977             _ => {
3978                 visit::walk_expr(self, expr);
3979             }
3980         }
3981     }
3982
3983     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
3984         match expr.kind {
3985             ExprKind::Field(_, ident) => {
3986                 // FIXME(#6890): Even though you can't treat a method like a
3987                 // field, we need to add any trait methods we find that match
3988                 // the field name so that we can do some nice error reporting
3989                 // later on in typeck.
3990                 let traits = self.traits_in_scope(ident, ValueNS);
3991                 self.r.trait_map.insert(expr.id, traits);
3992             }
3993             ExprKind::MethodCall(ref segment, ..) => {
3994                 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
3995                 let traits = self.traits_in_scope(segment.ident, ValueNS);
3996                 self.r.trait_map.insert(expr.id, traits);
3997             }
3998             _ => {
3999                 // Nothing to do.
4000             }
4001         }
4002     }
4003
4004     fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
4005         self.r.traits_in_scope(
4006             self.current_trait_ref.as_ref().map(|(module, _)| *module),
4007             &self.parent_scope,
4008             ident.span.ctxt(),
4009             Some((ident.name, ns)),
4010         )
4011     }
4012
4013     /// Construct the list of in-scope lifetime parameters for async lowering.
4014     /// We include all lifetime parameters, either named or "Fresh".
4015     /// The order of those parameters does not matter, as long as it is
4016     /// deterministic.
4017     fn record_lifetime_params_for_async(
4018         &mut self,
4019         fn_id: NodeId,
4020         async_node_id: Option<(NodeId, Span)>,
4021     ) {
4022         if let Some((async_node_id, span)) = async_node_id {
4023             let mut extra_lifetime_params =
4024                 self.r.extra_lifetime_params_map.get(&fn_id).cloned().unwrap_or_default();
4025             for rib in self.lifetime_ribs.iter().rev() {
4026                 extra_lifetime_params.extend(
4027                     rib.bindings.iter().map(|(&ident, &(node_id, res))| (ident, node_id, res)),
4028                 );
4029                 match rib.kind {
4030                     LifetimeRibKind::Item => break,
4031                     LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
4032                         if let Some(earlier_fresh) = self.r.extra_lifetime_params_map.get(&binder) {
4033                             extra_lifetime_params.extend(earlier_fresh);
4034                         }
4035                     }
4036                     LifetimeRibKind::Generics { .. } => {}
4037                     _ => {
4038                         // We are in a function definition. We should only find `Generics`
4039                         // and `AnonymousCreateParameter` inside the innermost `Item`.
4040                         span_bug!(span, "unexpected rib kind: {:?}", rib.kind)
4041                     }
4042                 }
4043             }
4044             self.r.extra_lifetime_params_map.insert(async_node_id, extra_lifetime_params);
4045         }
4046     }
4047 }
4048
4049 struct LifetimeCountVisitor<'a, 'b> {
4050     r: &'b mut Resolver<'a>,
4051 }
4052
4053 /// Walks the whole crate in DFS order, visiting each item, counting the declared number of
4054 /// lifetime generic parameters.
4055 impl<'ast> Visitor<'ast> for LifetimeCountVisitor<'_, '_> {
4056     fn visit_item(&mut self, item: &'ast Item) {
4057         match &item.kind {
4058             ItemKind::TyAlias(box TyAlias { ref generics, .. })
4059             | ItemKind::Fn(box Fn { ref generics, .. })
4060             | ItemKind::Enum(_, ref generics)
4061             | ItemKind::Struct(_, ref generics)
4062             | ItemKind::Union(_, ref generics)
4063             | ItemKind::Impl(box Impl { ref generics, .. })
4064             | ItemKind::Trait(box Trait { ref generics, .. })
4065             | ItemKind::TraitAlias(ref generics, _) => {
4066                 let def_id = self.r.local_def_id(item.id);
4067                 let count = generics
4068                     .params
4069                     .iter()
4070                     .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
4071                     .count();
4072                 self.r.item_generics_num_lifetimes.insert(def_id, count);
4073             }
4074
4075             ItemKind::Mod(..)
4076             | ItemKind::ForeignMod(..)
4077             | ItemKind::Static(..)
4078             | ItemKind::Const(..)
4079             | ItemKind::Use(..)
4080             | ItemKind::ExternCrate(..)
4081             | ItemKind::MacroDef(..)
4082             | ItemKind::GlobalAsm(..)
4083             | ItemKind::MacCall(..) => {}
4084         }
4085         visit::walk_item(self, item)
4086     }
4087 }
4088
4089 impl<'a> Resolver<'a> {
4090     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
4091         visit::walk_crate(&mut LifetimeCountVisitor { r: self }, krate);
4092         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
4093         visit::walk_crate(&mut late_resolution_visitor, krate);
4094         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
4095             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
4096         }
4097     }
4098 }