]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late.rs
Auto merge of #96600 - c410-f3r:z-errors, r=petrochenkov
[rust.git] / compiler / rustc_resolve / src / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, Finalize, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, NameBinding, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use rustc_ast::ptr::P;
15 use rustc_ast::visit::{self, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor};
16 use rustc_ast::*;
17 use rustc_ast_lowering::{LifetimeRes, ResolverAstLowering};
18 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
19 use rustc_errors::DiagnosticId;
20 use rustc_hir::def::Namespace::{self, *};
21 use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
22 use rustc_hir::def_id::{DefId, CRATE_DEF_ID};
23 use rustc_hir::definitions::DefPathData;
24 use rustc_hir::{PrimTy, TraitCandidate};
25 use rustc_index::vec::Idx;
26 use rustc_middle::ty::DefIdTree;
27 use rustc_middle::{bug, span_bug};
28 use rustc_session::lint;
29 use rustc_span::symbol::{kw, sym, Ident, Symbol};
30 use rustc_span::{BytePos, Span};
31 use smallvec::{smallvec, SmallVec};
32
33 use rustc_span::source_map::{respan, Spanned};
34 use std::collections::{hash_map::Entry, BTreeSet};
35 use std::mem::{replace, take};
36 use tracing::debug;
37
38 mod diagnostics;
39 crate mod lifetimes;
40
41 type Res = def::Res<NodeId>;
42
43 type IdentMap<T> = FxHashMap<Ident, T>;
44
45 /// Map from the name in a pattern to its binding mode.
46 type BindingMap = IdentMap<BindingInfo>;
47
48 #[derive(Copy, Clone, Debug)]
49 struct BindingInfo {
50     span: Span,
51     binding_mode: BindingMode,
52 }
53
54 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
55 enum PatternSource {
56     Match,
57     Let,
58     For,
59     FnParam,
60 }
61
62 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
63 enum IsRepeatExpr {
64     No,
65     Yes,
66 }
67
68 impl PatternSource {
69     fn descr(self) -> &'static str {
70         match self {
71             PatternSource::Match => "match binding",
72             PatternSource::Let => "let binding",
73             PatternSource::For => "for binding",
74             PatternSource::FnParam => "function parameter",
75         }
76     }
77 }
78
79 /// Denotes whether the context for the set of already bound bindings is a `Product`
80 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
81 /// See those functions for more information.
82 #[derive(PartialEq)]
83 enum PatBoundCtx {
84     /// A product pattern context, e.g., `Variant(a, b)`.
85     Product,
86     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
87     Or,
88 }
89
90 /// Does this the item (from the item rib scope) allow generic parameters?
91 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
92 crate enum HasGenericParams {
93     Yes,
94     No,
95 }
96
97 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
98 crate enum ConstantItemKind {
99     Const,
100     Static,
101 }
102
103 /// The rib kind restricts certain accesses,
104 /// e.g. to a `Res::Local` of an outer item.
105 #[derive(Copy, Clone, Debug)]
106 crate enum RibKind<'a> {
107     /// No restriction needs to be applied.
108     NormalRibKind,
109
110     /// We passed through an impl or trait and are now in one of its
111     /// methods or associated types. Allow references to ty params that impl or trait
112     /// binds. Disallow any other upvars (including other ty params that are
113     /// upvars).
114     AssocItemRibKind,
115
116     /// We passed through a closure. Disallow labels.
117     ClosureOrAsyncRibKind,
118
119     /// We passed through a function definition. Disallow upvars.
120     /// Permit only those const parameters that are specified in the function's generics.
121     FnItemRibKind,
122
123     /// We passed through an item scope. Disallow upvars.
124     ItemRibKind(HasGenericParams),
125
126     /// We're in a constant item. Can't refer to dynamic stuff.
127     ///
128     /// The `bool` indicates if this constant may reference generic parameters
129     /// and is used to only allow generic parameters to be used in trivial constant expressions.
130     ConstantItemRibKind(bool, Option<(Ident, ConstantItemKind)>),
131
132     /// We passed through a module.
133     ModuleRibKind(Module<'a>),
134
135     /// We passed through a `macro_rules!` statement
136     MacroDefinition(DefId),
137
138     /// All bindings in this rib are generic parameters that can't be used
139     /// from the default of a generic parameter because they're not declared
140     /// before said generic parameter. Also see the `visit_generics` override.
141     ForwardGenericParamBanRibKind,
142
143     /// We are inside of the type of a const parameter. Can't refer to any
144     /// parameters.
145     ConstParamTyRibKind,
146
147     /// We are inside a `sym` inline assembly operand. Can only refer to
148     /// globals.
149     InlineAsmSymRibKind,
150 }
151
152 impl RibKind<'_> {
153     /// Whether this rib kind contains generic parameters, as opposed to local
154     /// variables.
155     crate fn contains_params(&self) -> bool {
156         match self {
157             NormalRibKind
158             | ClosureOrAsyncRibKind
159             | FnItemRibKind
160             | ConstantItemRibKind(..)
161             | ModuleRibKind(_)
162             | MacroDefinition(_)
163             | ConstParamTyRibKind
164             | InlineAsmSymRibKind => false,
165             AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
166         }
167     }
168 }
169
170 /// A single local scope.
171 ///
172 /// A rib represents a scope names can live in. Note that these appear in many places, not just
173 /// around braces. At any place where the list of accessible names (of the given namespace)
174 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
175 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
176 /// etc.
177 ///
178 /// Different [rib kinds](enum.RibKind) are transparent for different names.
179 ///
180 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
181 /// resolving, the name is looked up from inside out.
182 #[derive(Debug)]
183 crate struct Rib<'a, R = Res> {
184     pub bindings: IdentMap<R>,
185     pub kind: RibKind<'a>,
186 }
187
188 impl<'a, R> Rib<'a, R> {
189     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
190         Rib { bindings: Default::default(), kind }
191     }
192 }
193
194 #[derive(Copy, Clone, Debug)]
195 enum LifetimeRibKind {
196     /// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
197     Item,
198
199     /// This rib declares generic parameters.
200     Generics { parent: NodeId, span: Span, kind: LifetimeBinderKind },
201
202     /// FIXME(const_generics): This patches over an ICE caused by non-'static lifetimes in const
203     /// generics. We are disallowing this until we can decide on how we want to handle non-'static
204     /// lifetimes in const generics. See issue #74052 for discussion.
205     ConstGeneric,
206
207     /// Non-static lifetimes are prohibited in anonymous constants under `min_const_generics`.
208     /// This function will emit an error if `generic_const_exprs` is not enabled, the body identified by
209     /// `body_id` is an anonymous constant and `lifetime_ref` is non-static.
210     AnonConst,
211
212     /// For **Modern** cases, create a new anonymous region parameter
213     /// and reference that.
214     ///
215     /// For **Dyn Bound** cases, pass responsibility to
216     /// `resolve_lifetime` code.
217     ///
218     /// For **Deprecated** cases, report an error.
219     AnonymousCreateParameter(NodeId),
220
221     /// Give a hard error when either `&` or `'_` is written. Used to
222     /// rule out things like `where T: Foo<'_>`. Does not imply an
223     /// error on default object bounds (e.g., `Box<dyn Foo>`).
224     AnonymousReportError,
225
226     /// Pass responsibility to `resolve_lifetime` code for all cases.
227     AnonymousPassThrough(NodeId),
228 }
229
230 #[derive(Copy, Clone, Debug)]
231 enum LifetimeBinderKind {
232     BareFnType,
233     PolyTrait,
234     WhereBound,
235     Item,
236     Function,
237     ImplBlock,
238 }
239
240 impl LifetimeBinderKind {
241     fn descr(self) -> &'static str {
242         use LifetimeBinderKind::*;
243         match self {
244             BareFnType => "type",
245             PolyTrait => "bound",
246             WhereBound => "bound",
247             Item => "item",
248             ImplBlock => "impl block",
249             Function => "function",
250         }
251     }
252 }
253
254 #[derive(Debug)]
255 struct LifetimeRib {
256     kind: LifetimeRibKind,
257     // We need to preserve insertion order for async fns.
258     bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
259 }
260
261 impl LifetimeRib {
262     fn new(kind: LifetimeRibKind) -> LifetimeRib {
263         LifetimeRib { bindings: Default::default(), kind }
264     }
265 }
266
267 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
268 crate enum AliasPossibility {
269     No,
270     Maybe,
271 }
272
273 #[derive(Copy, Clone, Debug)]
274 crate enum PathSource<'a> {
275     // Type paths `Path`.
276     Type,
277     // Trait paths in bounds or impls.
278     Trait(AliasPossibility),
279     // Expression paths `path`, with optional parent context.
280     Expr(Option<&'a Expr>),
281     // Paths in path patterns `Path`.
282     Pat,
283     // Paths in struct expressions and patterns `Path { .. }`.
284     Struct,
285     // Paths in tuple struct patterns `Path(..)`.
286     TupleStruct(Span, &'a [Span]),
287     // `m::A::B` in `<T as m::A>::B::C`.
288     TraitItem(Namespace),
289 }
290
291 impl<'a> PathSource<'a> {
292     fn namespace(self) -> Namespace {
293         match self {
294             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
295             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
296             PathSource::TraitItem(ns) => ns,
297         }
298     }
299
300     fn defer_to_typeck(self) -> bool {
301         match self {
302             PathSource::Type
303             | PathSource::Expr(..)
304             | PathSource::Pat
305             | PathSource::Struct
306             | PathSource::TupleStruct(..) => true,
307             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
308         }
309     }
310
311     fn descr_expected(self) -> &'static str {
312         match &self {
313             PathSource::Type => "type",
314             PathSource::Trait(_) => "trait",
315             PathSource::Pat => "unit struct, unit variant or constant",
316             PathSource::Struct => "struct, variant or union type",
317             PathSource::TupleStruct(..) => "tuple struct or tuple variant",
318             PathSource::TraitItem(ns) => match ns {
319                 TypeNS => "associated type",
320                 ValueNS => "method or associated constant",
321                 MacroNS => bug!("associated macro"),
322             },
323             PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
324                 // "function" here means "anything callable" rather than `DefKind::Fn`,
325                 // this is not precise but usually more helpful than just "value".
326                 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
327                     // the case of `::some_crate()`
328                     ExprKind::Path(_, path)
329                         if path.segments.len() == 2
330                             && path.segments[0].ident.name == kw::PathRoot =>
331                     {
332                         "external crate"
333                     }
334                     ExprKind::Path(_, path) => {
335                         let mut msg = "function";
336                         if let Some(segment) = path.segments.iter().last() {
337                             if let Some(c) = segment.ident.to_string().chars().next() {
338                                 if c.is_uppercase() {
339                                     msg = "function, tuple struct or tuple variant";
340                                 }
341                             }
342                         }
343                         msg
344                     }
345                     _ => "function",
346                 },
347                 _ => "value",
348             },
349         }
350     }
351
352     fn is_call(self) -> bool {
353         matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
354     }
355
356     crate fn is_expected(self, res: Res) -> bool {
357         match self {
358             PathSource::Type => matches!(
359                 res,
360                 Res::Def(
361                     DefKind::Struct
362                         | DefKind::Union
363                         | DefKind::Enum
364                         | DefKind::Trait
365                         | DefKind::TraitAlias
366                         | DefKind::TyAlias
367                         | DefKind::AssocTy
368                         | DefKind::TyParam
369                         | DefKind::OpaqueTy
370                         | DefKind::ForeignTy,
371                     _,
372                 ) | Res::PrimTy(..)
373                     | Res::SelfTy { .. }
374             ),
375             PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
376             PathSource::Trait(AliasPossibility::Maybe) => {
377                 matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
378             }
379             PathSource::Expr(..) => matches!(
380                 res,
381                 Res::Def(
382                     DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
383                         | DefKind::Const
384                         | DefKind::Static(_)
385                         | DefKind::Fn
386                         | DefKind::AssocFn
387                         | DefKind::AssocConst
388                         | DefKind::ConstParam,
389                     _,
390                 ) | Res::Local(..)
391                     | Res::SelfCtor(..)
392             ),
393             PathSource::Pat => matches!(
394                 res,
395                 Res::Def(
396                     DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
397                     _,
398                 ) | Res::SelfCtor(..)
399             ),
400             PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
401             PathSource::Struct => matches!(
402                 res,
403                 Res::Def(
404                     DefKind::Struct
405                         | DefKind::Union
406                         | DefKind::Variant
407                         | DefKind::TyAlias
408                         | DefKind::AssocTy,
409                     _,
410                 ) | Res::SelfTy { .. }
411             ),
412             PathSource::TraitItem(ns) => match res {
413                 Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
414                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
415                 _ => false,
416             },
417         }
418     }
419
420     fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
421         use rustc_errors::error_code;
422         match (self, has_unexpected_resolution) {
423             (PathSource::Trait(_), true) => error_code!(E0404),
424             (PathSource::Trait(_), false) => error_code!(E0405),
425             (PathSource::Type, true) => error_code!(E0573),
426             (PathSource::Type, false) => error_code!(E0412),
427             (PathSource::Struct, true) => error_code!(E0574),
428             (PathSource::Struct, false) => error_code!(E0422),
429             (PathSource::Expr(..), true) => error_code!(E0423),
430             (PathSource::Expr(..), false) => error_code!(E0425),
431             (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
432             (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
433             (PathSource::TraitItem(..), true) => error_code!(E0575),
434             (PathSource::TraitItem(..), false) => error_code!(E0576),
435         }
436     }
437 }
438
439 #[derive(Default)]
440 struct DiagnosticMetadata<'ast> {
441     /// The current trait's associated items' ident, used for diagnostic suggestions.
442     current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
443
444     /// The current self type if inside an impl (used for better errors).
445     current_self_type: Option<Ty>,
446
447     /// The current self item if inside an ADT (used for better errors).
448     current_self_item: Option<NodeId>,
449
450     /// The current trait (used to suggest).
451     current_item: Option<&'ast Item>,
452
453     /// When processing generics and encountering a type not found, suggest introducing a type
454     /// param.
455     currently_processing_generics: bool,
456
457     /// The current enclosing (non-closure) function (used for better errors).
458     current_function: Option<(FnKind<'ast>, Span)>,
459
460     /// A list of labels as of yet unused. Labels will be removed from this map when
461     /// they are used (in a `break` or `continue` statement)
462     unused_labels: FxHashMap<NodeId, Span>,
463
464     /// Only used for better errors on `fn(): fn()`.
465     current_type_ascription: Vec<Span>,
466
467     /// Only used for better errors on `let x = { foo: bar };`.
468     /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
469     /// needed for cases where this parses as a correct type ascription.
470     current_block_could_be_bare_struct_literal: Option<Span>,
471
472     /// Only used for better errors on `let <pat>: <expr, not type>;`.
473     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
474
475     /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
476     in_if_condition: Option<&'ast Expr>,
477
478     /// If we are currently in a trait object definition. Used to point at the bounds when
479     /// encountering a struct or enum.
480     current_trait_object: Option<&'ast [ast::GenericBound]>,
481
482     /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
483     current_where_predicate: Option<&'ast WherePredicate>,
484
485     current_type_path: Option<&'ast Ty>,
486 }
487
488 struct LateResolutionVisitor<'a, 'b, 'ast> {
489     r: &'b mut Resolver<'a>,
490
491     /// The module that represents the current item scope.
492     parent_scope: ParentScope<'a>,
493
494     /// The current set of local scopes for types and values.
495     /// FIXME #4948: Reuse ribs to avoid allocation.
496     ribs: PerNS<Vec<Rib<'a>>>,
497
498     /// The current set of local scopes, for labels.
499     label_ribs: Vec<Rib<'a, NodeId>>,
500
501     /// The current set of local scopes for lifetimes.
502     lifetime_ribs: Vec<LifetimeRib>,
503
504     /// The trait that the current context can refer to.
505     current_trait_ref: Option<(Module<'a>, TraitRef)>,
506
507     /// Fields used to add information to diagnostic errors.
508     diagnostic_metadata: DiagnosticMetadata<'ast>,
509
510     /// State used to know whether to ignore resolution errors for function bodies.
511     ///
512     /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
513     /// In most cases this will be `None`, in which case errors will always be reported.
514     /// If it is `true`, then it will be updated when entering a nested function or trait body.
515     in_func_body: bool,
516 }
517
518 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
519 impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
520     fn visit_attribute(&mut self, _: &'ast Attribute) {
521         // We do not want to resolve expressions that appear in attributes,
522         // as they do not correspond to actual code.
523     }
524     fn visit_item(&mut self, item: &'ast Item) {
525         let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
526         // Always report errors in items we just entered.
527         let old_ignore = replace(&mut self.in_func_body, false);
528         self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
529         self.in_func_body = old_ignore;
530         self.diagnostic_metadata.current_item = prev;
531     }
532     fn visit_arm(&mut self, arm: &'ast Arm) {
533         self.resolve_arm(arm);
534     }
535     fn visit_block(&mut self, block: &'ast Block) {
536         self.resolve_block(block);
537     }
538     fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
539         // We deal with repeat expressions explicitly in `resolve_expr`.
540         self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| {
541             this.resolve_anon_const(constant, IsRepeatExpr::No);
542         })
543     }
544     fn visit_expr(&mut self, expr: &'ast Expr) {
545         self.resolve_expr(expr, None);
546     }
547     fn visit_local(&mut self, local: &'ast Local) {
548         let local_spans = match local.pat.kind {
549             // We check for this to avoid tuple struct fields.
550             PatKind::Wild => None,
551             _ => Some((
552                 local.pat.span,
553                 local.ty.as_ref().map(|ty| ty.span),
554                 local.kind.init().map(|init| init.span),
555             )),
556         };
557         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
558         self.resolve_local(local);
559         self.diagnostic_metadata.current_let_binding = original;
560     }
561     fn visit_ty(&mut self, ty: &'ast Ty) {
562         let prev = self.diagnostic_metadata.current_trait_object;
563         let prev_ty = self.diagnostic_metadata.current_type_path;
564         match ty.kind {
565             TyKind::Rptr(None, _) => {
566                 // Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
567                 // NodeId `ty.id`.
568                 let span = self.r.session.source_map().next_point(ty.span.shrink_to_lo());
569                 self.resolve_elided_lifetime(ty.id, span);
570             }
571             TyKind::Path(ref qself, ref path) => {
572                 self.diagnostic_metadata.current_type_path = Some(ty);
573                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
574             }
575             TyKind::ImplicitSelf => {
576                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
577                 let res = self
578                     .resolve_ident_in_lexical_scope(
579                         self_ty,
580                         TypeNS,
581                         Some(Finalize::new(ty.id, ty.span)),
582                         None,
583                     )
584                     .map_or(Res::Err, |d| d.res());
585                 self.r.record_partial_res(ty.id, PartialRes::new(res));
586             }
587             TyKind::TraitObject(ref bounds, ..) => {
588                 self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
589             }
590             TyKind::BareFn(ref bare_fn) => {
591                 let span = if bare_fn.generic_params.is_empty() {
592                     ty.span.shrink_to_lo()
593                 } else {
594                     ty.span
595                 };
596                 self.with_generic_param_rib(
597                     &bare_fn.generic_params,
598                     NormalRibKind,
599                     LifetimeRibKind::Generics {
600                         parent: ty.id,
601                         kind: LifetimeBinderKind::BareFnType,
602                         span,
603                     },
604                     |this| {
605                         this.with_lifetime_rib(
606                             LifetimeRibKind::AnonymousPassThrough(ty.id),
607                             |this| {
608                                 this.visit_generic_param_vec(&bare_fn.generic_params, false);
609                                 visit::walk_fn_decl(this, &bare_fn.decl);
610                             },
611                         );
612                     },
613                 );
614                 self.diagnostic_metadata.current_trait_object = prev;
615                 return;
616             }
617             _ => (),
618         }
619         visit::walk_ty(self, ty);
620         self.diagnostic_metadata.current_trait_object = prev;
621         self.diagnostic_metadata.current_type_path = prev_ty;
622     }
623     fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, _: &'ast TraitBoundModifier) {
624         let span =
625             if tref.bound_generic_params.is_empty() { tref.span.shrink_to_lo() } else { tref.span };
626         self.with_generic_param_rib(
627             &tref.bound_generic_params,
628             NormalRibKind,
629             LifetimeRibKind::Generics {
630                 parent: tref.trait_ref.ref_id,
631                 kind: LifetimeBinderKind::PolyTrait,
632                 span,
633             },
634             |this| {
635                 this.visit_generic_param_vec(&tref.bound_generic_params, false);
636                 this.smart_resolve_path(
637                     tref.trait_ref.ref_id,
638                     None,
639                     &tref.trait_ref.path,
640                     PathSource::Trait(AliasPossibility::Maybe),
641                 );
642                 this.visit_trait_ref(&tref.trait_ref);
643             },
644         );
645     }
646     fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
647         match foreign_item.kind {
648             ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
649                 self.with_lifetime_rib(LifetimeRibKind::Item, |this| {
650                     this.with_generic_param_rib(
651                         &generics.params,
652                         ItemRibKind(HasGenericParams::Yes),
653                         LifetimeRibKind::Generics {
654                             parent: foreign_item.id,
655                             kind: LifetimeBinderKind::Item,
656                             span: generics.span,
657                         },
658                         |this| visit::walk_foreign_item(this, foreign_item),
659                     )
660                 });
661             }
662             ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
663                 self.with_lifetime_rib(LifetimeRibKind::Item, |this| {
664                     this.with_generic_param_rib(
665                         &generics.params,
666                         ItemRibKind(HasGenericParams::Yes),
667                         LifetimeRibKind::Generics {
668                             parent: foreign_item.id,
669                             kind: LifetimeBinderKind::Function,
670                             span: generics.span,
671                         },
672                         |this| visit::walk_foreign_item(this, foreign_item),
673                     )
674                 });
675             }
676             ForeignItemKind::Static(..) => {
677                 self.with_item_rib(|this| {
678                     visit::walk_foreign_item(this, foreign_item);
679                 });
680             }
681             ForeignItemKind::MacCall(..) => {
682                 panic!("unexpanded macro in resolve!")
683             }
684         }
685     }
686     fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
687         let rib_kind = match fn_kind {
688             // Bail if the function is foreign, and thus cannot validly have
689             // a body, or if there's no body for some other reason.
690             FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _)
691             | FnKind::Fn(_, _, sig, _, generics, None) => {
692                 self.with_lifetime_rib(LifetimeRibKind::AnonymousPassThrough(fn_id), |this| {
693                     // We don't need to deal with patterns in parameters, because
694                     // they are not possible for foreign or bodiless functions.
695                     this.visit_fn_header(&sig.header);
696                     this.visit_generics(generics);
697                     visit::walk_fn_decl(this, &sig.decl);
698                 });
699                 return;
700             }
701             FnKind::Fn(FnCtxt::Free, ..) => FnItemRibKind,
702             FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
703             FnKind::Closure(..) => ClosureOrAsyncRibKind,
704         };
705         let previous_value = self.diagnostic_metadata.current_function;
706         if matches!(fn_kind, FnKind::Fn(..)) {
707             self.diagnostic_metadata.current_function = Some((fn_kind, sp));
708         }
709         debug!("(resolving function) entering function");
710         let declaration = fn_kind.decl();
711
712         // Create a value rib for the function.
713         self.with_rib(ValueNS, rib_kind, |this| {
714             // Create a label rib for the function.
715             this.with_label_rib(rib_kind, |this| {
716                 let async_node_id = fn_kind.header().and_then(|h| h.asyncness.opt_return_id());
717
718                 if let FnKind::Fn(_, _, _, _, generics, _) = fn_kind {
719                     this.visit_generics(generics);
720                 }
721
722                 if let Some(async_node_id) = async_node_id {
723                     // In `async fn`, argument-position elided lifetimes
724                     // must be transformed into fresh generic parameters so that
725                     // they can be applied to the opaque `impl Trait` return type.
726                     this.with_lifetime_rib(
727                         LifetimeRibKind::AnonymousCreateParameter(fn_id),
728                         |this| {
729                             // Add each argument to the rib.
730                             this.resolve_params(&declaration.inputs)
731                         },
732                     );
733
734                     // Construct the list of in-scope lifetime parameters for async lowering.
735                     // We include all lifetime parameters, either named or "Fresh".
736                     // The order of those parameters does not matter, as long as it is
737                     // deterministic.
738                     let mut extra_lifetime_params =
739                         this.r.extra_lifetime_params_map.get(&fn_id).cloned().unwrap_or_default();
740                     for rib in this.lifetime_ribs.iter().rev() {
741                         extra_lifetime_params.extend(
742                             rib.bindings
743                                 .iter()
744                                 .map(|(&ident, &(node_id, res))| (ident, node_id, res)),
745                         );
746                         match rib.kind {
747                             LifetimeRibKind::Item => break,
748                             LifetimeRibKind::AnonymousCreateParameter(id) => {
749                                 if let Some(earlier_fresh) =
750                                     this.r.extra_lifetime_params_map.get(&id)
751                                 {
752                                     extra_lifetime_params.extend(earlier_fresh);
753                                 }
754                             }
755                             _ => {}
756                         }
757                     }
758                     this.r.extra_lifetime_params_map.insert(async_node_id, extra_lifetime_params);
759
760                     this.with_lifetime_rib(
761                         LifetimeRibKind::AnonymousPassThrough(async_node_id),
762                         |this| visit::walk_fn_ret_ty(this, &declaration.output),
763                     );
764                 } else {
765                     this.with_lifetime_rib(LifetimeRibKind::AnonymousPassThrough(fn_id), |this| {
766                         // Add each argument to the rib.
767                         this.resolve_params(&declaration.inputs);
768
769                         visit::walk_fn_ret_ty(this, &declaration.output);
770                     });
771                 };
772
773                 // Ignore errors in function bodies if this is rustdoc
774                 // Be sure not to set this until the function signature has been resolved.
775                 let previous_state = replace(&mut this.in_func_body, true);
776                 // Resolve the function body, potentially inside the body of an async closure
777                 this.with_lifetime_rib(LifetimeRibKind::AnonymousPassThrough(fn_id), |this| {
778                     match fn_kind {
779                         FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
780                         FnKind::Closure(_, body) => this.visit_expr(body),
781                     }
782                 });
783
784                 debug!("(resolving function) leaving function");
785                 this.in_func_body = previous_state;
786             })
787         });
788         self.diagnostic_metadata.current_function = previous_value;
789     }
790     fn visit_lifetime(&mut self, lifetime: &'ast Lifetime) {
791         self.resolve_lifetime(lifetime)
792     }
793
794     fn visit_generics(&mut self, generics: &'ast Generics) {
795         self.visit_generic_param_vec(
796             &generics.params,
797             self.diagnostic_metadata.current_self_item.is_some(),
798         );
799         for p in &generics.where_clause.predicates {
800             self.visit_where_predicate(p);
801         }
802     }
803
804     fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
805         debug!("visit_generic_arg({:?})", arg);
806         let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
807         match arg {
808             GenericArg::Type(ref ty) => {
809                 // We parse const arguments as path types as we cannot distinguish them during
810                 // parsing. We try to resolve that ambiguity by attempting resolution the type
811                 // namespace first, and if that fails we try again in the value namespace. If
812                 // resolution in the value namespace succeeds, we have an generic const argument on
813                 // our hands.
814                 if let TyKind::Path(ref qself, ref path) = ty.kind {
815                     // We cannot disambiguate multi-segment paths right now as that requires type
816                     // checking.
817                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
818                         let mut check_ns = |ns| {
819                             self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
820                                 .is_some()
821                         };
822                         if !check_ns(TypeNS) && check_ns(ValueNS) {
823                             // This must be equivalent to `visit_anon_const`, but we cannot call it
824                             // directly due to visitor lifetimes so we have to copy-paste some code.
825                             //
826                             // Note that we might not be inside of an repeat expression here,
827                             // but considering that `IsRepeatExpr` is only relevant for
828                             // non-trivial constants this is doesn't matter.
829                             self.with_constant_rib(IsRepeatExpr::No, true, None, |this| {
830                                 this.smart_resolve_path(
831                                     ty.id,
832                                     qself.as_ref(),
833                                     path,
834                                     PathSource::Expr(None),
835                                 );
836
837                                 if let Some(ref qself) = *qself {
838                                     this.visit_ty(&qself.ty);
839                                 }
840                                 this.visit_path(path, ty.id);
841                             });
842
843                             self.diagnostic_metadata.currently_processing_generics = prev;
844                             return;
845                         }
846                     }
847                 }
848
849                 self.visit_ty(ty);
850             }
851             GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
852             GenericArg::Const(ct) => self.visit_anon_const(ct),
853         }
854         self.diagnostic_metadata.currently_processing_generics = prev;
855     }
856
857     fn visit_path_segment(&mut self, path_span: Span, path_segment: &'ast PathSegment) {
858         if let Some(ref args) = path_segment.args {
859             match &**args {
860                 GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, path_span, args),
861                 GenericArgs::Parenthesized(..) => self.with_lifetime_rib(
862                     LifetimeRibKind::AnonymousPassThrough(path_segment.id),
863                     |this| visit::walk_generic_args(this, path_span, args),
864                 ),
865             }
866         }
867     }
868
869     fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
870         debug!("visit_where_predicate {:?}", p);
871         let previous_value =
872             replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
873         self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
874             if let WherePredicate::BoundPredicate(WhereBoundPredicate {
875                 ref bounded_ty,
876                 ref bounds,
877                 ref bound_generic_params,
878                 span: predicate_span,
879                 ..
880             }) = p
881             {
882                 let span = if bound_generic_params.is_empty() {
883                     predicate_span.shrink_to_lo()
884                 } else {
885                     *predicate_span
886                 };
887                 this.with_generic_param_rib(
888                     &bound_generic_params,
889                     NormalRibKind,
890                     LifetimeRibKind::Generics {
891                         parent: bounded_ty.id,
892                         kind: LifetimeBinderKind::WhereBound,
893                         span,
894                     },
895                     |this| {
896                         this.visit_generic_param_vec(&bound_generic_params, false);
897                         this.visit_ty(bounded_ty);
898                         for bound in bounds {
899                             this.visit_param_bound(bound, BoundKind::Bound)
900                         }
901                     },
902                 );
903             } else {
904                 visit::walk_where_predicate(this, p);
905             }
906         });
907         self.diagnostic_metadata.current_where_predicate = previous_value;
908     }
909
910     fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
911         // This is similar to the code for AnonConst.
912         self.with_rib(ValueNS, InlineAsmSymRibKind, |this| {
913             this.with_rib(TypeNS, InlineAsmSymRibKind, |this| {
914                 this.with_label_rib(InlineAsmSymRibKind, |this| {
915                     this.smart_resolve_path(
916                         sym.id,
917                         sym.qself.as_ref(),
918                         &sym.path,
919                         PathSource::Expr(None),
920                     );
921                     visit::walk_inline_asm_sym(this, sym);
922                 });
923             })
924         });
925     }
926 }
927
928 impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
929     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
930         // During late resolution we only track the module component of the parent scope,
931         // although it may be useful to track other components as well for diagnostics.
932         let graph_root = resolver.graph_root;
933         let parent_scope = ParentScope::module(graph_root, resolver);
934         let start_rib_kind = ModuleRibKind(graph_root);
935         LateResolutionVisitor {
936             r: resolver,
937             parent_scope,
938             ribs: PerNS {
939                 value_ns: vec![Rib::new(start_rib_kind)],
940                 type_ns: vec![Rib::new(start_rib_kind)],
941                 macro_ns: vec![Rib::new(start_rib_kind)],
942             },
943             label_ribs: Vec::new(),
944             lifetime_ribs: Vec::new(),
945             current_trait_ref: None,
946             diagnostic_metadata: DiagnosticMetadata::default(),
947             // errors at module scope should always be reported
948             in_func_body: false,
949         }
950     }
951
952     fn maybe_resolve_ident_in_lexical_scope(
953         &mut self,
954         ident: Ident,
955         ns: Namespace,
956     ) -> Option<LexicalScopeBinding<'a>> {
957         self.r.resolve_ident_in_lexical_scope(
958             ident,
959             ns,
960             &self.parent_scope,
961             None,
962             &self.ribs[ns],
963             None,
964         )
965     }
966
967     fn resolve_ident_in_lexical_scope(
968         &mut self,
969         ident: Ident,
970         ns: Namespace,
971         finalize: Option<Finalize>,
972         ignore_binding: Option<&'a NameBinding<'a>>,
973     ) -> Option<LexicalScopeBinding<'a>> {
974         self.r.resolve_ident_in_lexical_scope(
975             ident,
976             ns,
977             &self.parent_scope,
978             finalize,
979             &self.ribs[ns],
980             ignore_binding,
981         )
982     }
983
984     fn resolve_path(
985         &mut self,
986         path: &[Segment],
987         opt_ns: Option<Namespace>, // `None` indicates a module path in import
988         finalize: Option<Finalize>,
989     ) -> PathResult<'a> {
990         self.r.resolve_path_with_ribs(
991             path,
992             opt_ns,
993             &self.parent_scope,
994             finalize,
995             Some(&self.ribs),
996             None,
997         )
998     }
999
1000     // AST resolution
1001     //
1002     // We maintain a list of value ribs and type ribs.
1003     //
1004     // Simultaneously, we keep track of the current position in the module
1005     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
1006     // the value or type namespaces, we first look through all the ribs and
1007     // then query the module graph. When we resolve a name in the module
1008     // namespace, we can skip all the ribs (since nested modules are not
1009     // allowed within blocks in Rust) and jump straight to the current module
1010     // graph node.
1011     //
1012     // Named implementations are handled separately. When we find a method
1013     // call, we consult the module node to find all of the implementations in
1014     // scope. This information is lazily cached in the module node. We then
1015     // generate a fake "implementation scope" containing all the
1016     // implementations thus found, for compatibility with old resolve pass.
1017
1018     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
1019     fn with_rib<T>(
1020         &mut self,
1021         ns: Namespace,
1022         kind: RibKind<'a>,
1023         work: impl FnOnce(&mut Self) -> T,
1024     ) -> T {
1025         self.ribs[ns].push(Rib::new(kind));
1026         let ret = work(self);
1027         self.ribs[ns].pop();
1028         ret
1029     }
1030
1031     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
1032         if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
1033             // Move down in the graph.
1034             let orig_module = replace(&mut self.parent_scope.module, module);
1035             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
1036                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
1037                     let ret = f(this);
1038                     this.parent_scope.module = orig_module;
1039                     ret
1040                 })
1041             })
1042         } else {
1043             f(self)
1044         }
1045     }
1046
1047     fn visit_generic_param_vec(&mut self, params: &'ast Vec<GenericParam>, add_self_upper: bool) {
1048         // For type parameter defaults, we have to ban access
1049         // to following type parameters, as the InternalSubsts can only
1050         // provide previous type parameters as they're built. We
1051         // put all the parameters on the ban list and then remove
1052         // them one by one as they are processed and become available.
1053         let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
1054         let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
1055         for param in params.iter() {
1056             match param.kind {
1057                 GenericParamKind::Type { .. } => {
1058                     forward_ty_ban_rib
1059                         .bindings
1060                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
1061                 }
1062                 GenericParamKind::Const { .. } => {
1063                     forward_const_ban_rib
1064                         .bindings
1065                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
1066                 }
1067                 GenericParamKind::Lifetime => {}
1068             }
1069         }
1070
1071         // rust-lang/rust#61631: The type `Self` is essentially
1072         // another type parameter. For ADTs, we consider it
1073         // well-defined only after all of the ADT type parameters have
1074         // been provided. Therefore, we do not allow use of `Self`
1075         // anywhere in ADT type parameter defaults.
1076         //
1077         // (We however cannot ban `Self` for defaults on *all* generic
1078         // lists; e.g. trait generics can usefully refer to `Self`,
1079         // such as in the case of `trait Add<Rhs = Self>`.)
1080         if add_self_upper {
1081             // (`Some` if + only if we are in ADT's generics.)
1082             forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
1083         }
1084
1085         self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1086             for param in params {
1087                 match param.kind {
1088                     GenericParamKind::Lifetime => {
1089                         for bound in &param.bounds {
1090                             this.visit_param_bound(bound, BoundKind::Bound);
1091                         }
1092                     }
1093                     GenericParamKind::Type { ref default } => {
1094                         for bound in &param.bounds {
1095                             this.visit_param_bound(bound, BoundKind::Bound);
1096                         }
1097
1098                         if let Some(ref ty) = default {
1099                             this.ribs[TypeNS].push(forward_ty_ban_rib);
1100                             this.ribs[ValueNS].push(forward_const_ban_rib);
1101                             this.visit_ty(ty);
1102                             forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
1103                             forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
1104                         }
1105
1106                         // Allow all following defaults to refer to this type parameter.
1107                         forward_ty_ban_rib
1108                             .bindings
1109                             .remove(&Ident::with_dummy_span(param.ident.name));
1110                     }
1111                     GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
1112                         // Const parameters can't have param bounds.
1113                         assert!(param.bounds.is_empty());
1114
1115                         this.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
1116                         this.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
1117                         this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| {
1118                             this.visit_ty(ty)
1119                         });
1120                         this.ribs[TypeNS].pop().unwrap();
1121                         this.ribs[ValueNS].pop().unwrap();
1122
1123                         if let Some(ref expr) = default {
1124                             this.ribs[TypeNS].push(forward_ty_ban_rib);
1125                             this.ribs[ValueNS].push(forward_const_ban_rib);
1126                             this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| {
1127                                 this.resolve_anon_const(expr, IsRepeatExpr::No)
1128                             });
1129                             forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
1130                             forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
1131                         }
1132
1133                         // Allow all following defaults to refer to this const parameter.
1134                         forward_const_ban_rib
1135                             .bindings
1136                             .remove(&Ident::with_dummy_span(param.ident.name));
1137                     }
1138                 }
1139             }
1140         })
1141     }
1142
1143     #[tracing::instrument(level = "debug", skip(self, work))]
1144     fn with_lifetime_rib<T>(
1145         &mut self,
1146         kind: LifetimeRibKind,
1147         work: impl FnOnce(&mut Self) -> T,
1148     ) -> T {
1149         self.lifetime_ribs.push(LifetimeRib::new(kind));
1150         let ret = work(self);
1151         self.lifetime_ribs.pop();
1152         ret
1153     }
1154
1155     #[tracing::instrument(level = "debug", skip(self))]
1156     fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime) {
1157         let ident = lifetime.ident;
1158
1159         if ident.name == kw::StaticLifetime {
1160             self.record_lifetime_res(lifetime.id, LifetimeRes::Static);
1161             return;
1162         }
1163
1164         if ident.name == kw::UnderscoreLifetime {
1165             return self.resolve_anonymous_lifetime(lifetime, false);
1166         }
1167
1168         let mut indices = (0..self.lifetime_ribs.len()).rev();
1169         for i in &mut indices {
1170             let rib = &self.lifetime_ribs[i];
1171             let normalized_ident = ident.normalize_to_macros_2_0();
1172             if let Some(&(_, region)) = rib.bindings.get(&normalized_ident) {
1173                 self.record_lifetime_res(lifetime.id, region);
1174                 return;
1175             }
1176
1177             match rib.kind {
1178                 LifetimeRibKind::Item => break,
1179                 LifetimeRibKind::ConstGeneric => {
1180                     self.emit_non_static_lt_in_const_generic_error(lifetime);
1181                     self.r.lifetimes_res_map.insert(lifetime.id, LifetimeRes::Error);
1182                     return;
1183                 }
1184                 LifetimeRibKind::AnonConst => {
1185                     self.maybe_emit_forbidden_non_static_lifetime_error(lifetime);
1186                     self.r.lifetimes_res_map.insert(lifetime.id, LifetimeRes::Error);
1187                     return;
1188                 }
1189                 _ => {}
1190             }
1191         }
1192
1193         let mut outer_res = None;
1194         for i in indices {
1195             let rib = &self.lifetime_ribs[i];
1196             let normalized_ident = ident.normalize_to_macros_2_0();
1197             if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) {
1198                 outer_res = Some(outer);
1199                 break;
1200             }
1201         }
1202
1203         self.emit_undeclared_lifetime_error(lifetime, outer_res);
1204         self.record_lifetime_res(lifetime.id, LifetimeRes::Error);
1205     }
1206
1207     #[tracing::instrument(level = "debug", skip(self))]
1208     fn resolve_anonymous_lifetime(&mut self, lifetime: &Lifetime, elided: bool) {
1209         debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
1210
1211         for i in (0..self.lifetime_ribs.len()).rev() {
1212             let rib = &mut self.lifetime_ribs[i];
1213             match rib.kind {
1214                 LifetimeRibKind::AnonymousCreateParameter(item_node_id) => {
1215                     self.create_fresh_lifetime(lifetime.id, lifetime.ident, item_node_id);
1216                     return;
1217                 }
1218                 LifetimeRibKind::AnonymousReportError => {
1219                     let (msg, note) = if elided {
1220                         (
1221                             "`&` without an explicit lifetime name cannot be used here",
1222                             "explicit lifetime name needed here",
1223                         )
1224                     } else {
1225                         ("`'_` cannot be used here", "`'_` is a reserved lifetime name")
1226                     };
1227                     rustc_errors::struct_span_err!(
1228                         self.r.session,
1229                         lifetime.ident.span,
1230                         E0637,
1231                         "{}",
1232                         msg,
1233                     )
1234                     .span_label(lifetime.ident.span, note)
1235                     .emit();
1236
1237                     self.record_lifetime_res(lifetime.id, LifetimeRes::Error);
1238                     return;
1239                 }
1240                 LifetimeRibKind::AnonymousPassThrough(node_id) => {
1241                     self.record_lifetime_res(
1242                         lifetime.id,
1243                         LifetimeRes::Anonymous { binder: node_id, elided },
1244                     );
1245                     return;
1246                 }
1247                 LifetimeRibKind::Item => break,
1248                 _ => {}
1249             }
1250         }
1251         // This resolution is wrong, it passes the work to HIR lifetime resolution.
1252         // We cannot use `LifetimeRes::Error` because we do not emit a diagnostic.
1253         self.record_lifetime_res(
1254             lifetime.id,
1255             LifetimeRes::Anonymous { binder: DUMMY_NODE_ID, elided },
1256         );
1257     }
1258
1259     #[tracing::instrument(level = "debug", skip(self))]
1260     fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
1261         let id = self.r.next_node_id();
1262         self.record_lifetime_res(
1263             anchor_id,
1264             LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
1265         );
1266
1267         let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };
1268         self.resolve_anonymous_lifetime(&lt, true);
1269     }
1270
1271     #[tracing::instrument(level = "debug", skip(self))]
1272     fn create_fresh_lifetime(&mut self, id: NodeId, ident: Ident, item_node_id: NodeId) {
1273         debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
1274         debug!(?ident.span);
1275         let item_def_id = self.r.local_def_id(item_node_id);
1276         let def_node_id = self.r.next_node_id();
1277         let def_id = self.r.create_def(
1278             item_def_id,
1279             def_node_id,
1280             DefPathData::LifetimeNs(kw::UnderscoreLifetime),
1281             self.parent_scope.expansion.to_expn_id(),
1282             ident.span,
1283         );
1284         debug!(?def_id);
1285
1286         let region = LifetimeRes::Fresh { param: def_id, binder: item_node_id };
1287         self.record_lifetime_res(id, region);
1288         self.r.extra_lifetime_params_map.entry(item_node_id).or_insert_with(Vec::new).push((
1289             ident,
1290             def_node_id,
1291             region,
1292         ));
1293     }
1294
1295     #[tracing::instrument(level = "debug", skip(self))]
1296     fn resolve_elided_lifetimes_in_path(
1297         &mut self,
1298         path_id: NodeId,
1299         partial_res: PartialRes,
1300         path: &[Segment],
1301         source: PathSource<'_>,
1302         path_span: Span,
1303     ) {
1304         let proj_start = path.len() - partial_res.unresolved_segments();
1305         for (i, segment) in path.iter().enumerate() {
1306             if segment.has_lifetime_args {
1307                 continue;
1308             }
1309             let Some(segment_id) = segment.id else {
1310                 continue;
1311             };
1312
1313             // Figure out if this is a type/trait segment,
1314             // which may need lifetime elision performed.
1315             let type_def_id = match partial_res.base_res() {
1316                 Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1317                     self.r.parent(def_id).unwrap()
1318                 }
1319                 Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1320                     self.r.parent(def_id).unwrap()
1321                 }
1322                 Res::Def(DefKind::Struct, def_id)
1323                 | Res::Def(DefKind::Union, def_id)
1324                 | Res::Def(DefKind::Enum, def_id)
1325                 | Res::Def(DefKind::TyAlias, def_id)
1326                 | Res::Def(DefKind::Trait, def_id)
1327                     if i + 1 == proj_start =>
1328                 {
1329                     def_id
1330                 }
1331                 _ => continue,
1332             };
1333
1334             let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
1335             if expected_lifetimes == 0 {
1336                 continue;
1337             }
1338
1339             let missing = match source {
1340                 PathSource::Trait(..) | PathSource::TraitItem(..) | PathSource::Type => true,
1341                 PathSource::Expr(..)
1342                 | PathSource::Pat
1343                 | PathSource::Struct
1344                 | PathSource::TupleStruct(..) => false,
1345             };
1346             let mut res = LifetimeRes::Error;
1347             for rib in self.lifetime_ribs.iter().rev() {
1348                 match rib.kind {
1349                     // In create-parameter mode we error here because we don't want to support
1350                     // deprecated impl elision in new features like impl elision and `async fn`,
1351                     // both of which work using the `CreateParameter` mode:
1352                     //
1353                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
1354                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
1355                     LifetimeRibKind::AnonymousCreateParameter(_) => {
1356                         break;
1357                     }
1358                     // `PassThrough` is the normal case.
1359                     // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
1360                     // is unsuitable here, as these can occur from missing lifetime parameters in a
1361                     // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
1362                     // lifetime. Instead, we simply create an implicit lifetime, which will be checked
1363                     // later, at which point a suitable error will be emitted.
1364                     LifetimeRibKind::AnonymousPassThrough(binder) => {
1365                         res = LifetimeRes::Anonymous { binder, elided: true };
1366                         break;
1367                     }
1368                     LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
1369                         // FIXME(cjgillot) This resolution is wrong, but this does not matter
1370                         // since these cases are erroneous anyway.  Lifetime resolution should
1371                         // emit a "missing lifetime specifier" diagnostic.
1372                         res = LifetimeRes::Anonymous { binder: DUMMY_NODE_ID, elided: true };
1373                         break;
1374                     }
1375                     _ => {}
1376                 }
1377             }
1378
1379             let node_ids = self.r.next_node_ids(expected_lifetimes);
1380             self.record_lifetime_res(
1381                 segment_id,
1382                 LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
1383             );
1384             for i in 0..expected_lifetimes {
1385                 let id = node_ids.start.plus(i);
1386                 self.record_lifetime_res(id, res);
1387             }
1388
1389             if !missing {
1390                 continue;
1391             }
1392
1393             let elided_lifetime_span = if segment.has_generic_args {
1394                 // If there are brackets, but not generic arguments, then use the opening bracket
1395                 segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
1396             } else {
1397                 // If there are no brackets, use the identifier span.
1398                 // HACK: we use find_ancestor_inside to properly suggest elided spans in paths
1399                 // originating from macros, since the segment's span might be from a macro arg.
1400                 segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
1401             };
1402             if let LifetimeRes::Error = res {
1403                 let sess = self.r.session;
1404                 let mut err = rustc_errors::struct_span_err!(
1405                     sess,
1406                     path_span,
1407                     E0726,
1408                     "implicit elided lifetime not allowed here"
1409                 );
1410                 rustc_errors::add_elided_lifetime_in_path_suggestion(
1411                     sess.source_map(),
1412                     &mut err,
1413                     expected_lifetimes,
1414                     path_span,
1415                     !segment.has_generic_args,
1416                     elided_lifetime_span,
1417                 );
1418                 err.note("assuming a `'static` lifetime...");
1419                 err.emit();
1420             } else {
1421                 self.r.lint_buffer.buffer_lint_with_diagnostic(
1422                     lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
1423                     segment_id,
1424                     elided_lifetime_span,
1425                     "hidden lifetime parameters in types are deprecated",
1426                     lint::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1427                         expected_lifetimes,
1428                         path_span,
1429                         !segment.has_generic_args,
1430                         elided_lifetime_span,
1431                     ),
1432                 );
1433             }
1434         }
1435     }
1436
1437     #[tracing::instrument(level = "debug", skip(self))]
1438     fn record_lifetime_res(&mut self, id: NodeId, res: LifetimeRes) {
1439         if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
1440             panic!(
1441                 "lifetime {:?} resolved multiple times ({:?} before, {:?} now)",
1442                 id, prev_res, res
1443             )
1444         }
1445     }
1446
1447     /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
1448     /// label and reports an error if the label is not found or is unreachable.
1449     fn resolve_label(&mut self, mut label: Ident) -> Option<NodeId> {
1450         let mut suggestion = None;
1451
1452         // Preserve the original span so that errors contain "in this macro invocation"
1453         // information.
1454         let original_span = label.span;
1455
1456         for i in (0..self.label_ribs.len()).rev() {
1457             let rib = &self.label_ribs[i];
1458
1459             if let MacroDefinition(def) = rib.kind {
1460                 // If an invocation of this macro created `ident`, give up on `ident`
1461                 // and switch to `ident`'s source from the macro definition.
1462                 if def == self.r.macro_def(label.span.ctxt()) {
1463                     label.span.remove_mark();
1464                 }
1465             }
1466
1467             let ident = label.normalize_to_macro_rules();
1468             if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
1469                 let definition_span = ident.span;
1470                 return if self.is_label_valid_from_rib(i) {
1471                     Some(*id)
1472                 } else {
1473                     self.report_error(
1474                         original_span,
1475                         ResolutionError::UnreachableLabel {
1476                             name: label.name,
1477                             definition_span,
1478                             suggestion,
1479                         },
1480                     );
1481
1482                     None
1483                 };
1484             }
1485
1486             // Diagnostics: Check if this rib contains a label with a similar name, keep track of
1487             // the first such label that is encountered.
1488             suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
1489         }
1490
1491         self.report_error(
1492             original_span,
1493             ResolutionError::UndeclaredLabel { name: label.name, suggestion },
1494         );
1495         None
1496     }
1497
1498     /// Determine whether or not a label from the `rib_index`th label rib is reachable.
1499     fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
1500         let ribs = &self.label_ribs[rib_index + 1..];
1501
1502         for rib in ribs {
1503             match rib.kind {
1504                 NormalRibKind | MacroDefinition(..) => {
1505                     // Nothing to do. Continue.
1506                 }
1507
1508                 AssocItemRibKind
1509                 | ClosureOrAsyncRibKind
1510                 | FnItemRibKind
1511                 | ItemRibKind(..)
1512                 | ConstantItemRibKind(..)
1513                 | ModuleRibKind(..)
1514                 | ForwardGenericParamBanRibKind
1515                 | ConstParamTyRibKind
1516                 | InlineAsmSymRibKind => {
1517                     return false;
1518                 }
1519             }
1520         }
1521
1522         true
1523     }
1524
1525     fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
1526         debug!("resolve_adt");
1527         self.with_current_self_item(item, |this| {
1528             this.with_generic_param_rib(
1529                 &generics.params,
1530                 ItemRibKind(HasGenericParams::Yes),
1531                 LifetimeRibKind::Generics {
1532                     parent: item.id,
1533                     kind: LifetimeBinderKind::Item,
1534                     span: generics.span,
1535                 },
1536                 |this| {
1537                     let item_def_id = this.r.local_def_id(item.id).to_def_id();
1538                     this.with_self_rib(
1539                         Res::SelfTy { trait_: None, alias_to: Some((item_def_id, false)) },
1540                         |this| {
1541                             visit::walk_item(this, item);
1542                         },
1543                     );
1544                 },
1545             );
1546         });
1547     }
1548
1549     fn future_proof_import(&mut self, use_tree: &UseTree) {
1550         let segments = &use_tree.prefix.segments;
1551         if !segments.is_empty() {
1552             let ident = segments[0].ident;
1553             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
1554                 return;
1555             }
1556
1557             let nss = match use_tree.kind {
1558                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
1559                 _ => &[TypeNS],
1560             };
1561             let report_error = |this: &Self, ns| {
1562                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
1563                 if this.should_report_errs() {
1564                     this.r
1565                         .session
1566                         .span_err(ident.span, &format!("imports cannot refer to {}", what));
1567                 }
1568             };
1569
1570             for &ns in nss {
1571                 match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
1572                     Some(LexicalScopeBinding::Res(..)) => {
1573                         report_error(self, ns);
1574                     }
1575                     Some(LexicalScopeBinding::Item(binding)) => {
1576                         if let Some(LexicalScopeBinding::Res(..)) =
1577                             self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
1578                         {
1579                             report_error(self, ns);
1580                         }
1581                     }
1582                     None => {}
1583                 }
1584             }
1585         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
1586             for (use_tree, _) in use_trees {
1587                 self.future_proof_import(use_tree);
1588             }
1589         }
1590     }
1591
1592     fn resolve_item(&mut self, item: &'ast Item) {
1593         let name = item.ident.name;
1594         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
1595
1596         match item.kind {
1597             ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
1598                 self.with_generic_param_rib(
1599                     &generics.params,
1600                     ItemRibKind(HasGenericParams::Yes),
1601                     LifetimeRibKind::Generics {
1602                         parent: item.id,
1603                         kind: LifetimeBinderKind::Item,
1604                         span: generics.span,
1605                     },
1606                     |this| visit::walk_item(this, item),
1607                 );
1608             }
1609
1610             ItemKind::Fn(box Fn { ref generics, .. }) => {
1611                 self.with_generic_param_rib(
1612                     &generics.params,
1613                     ItemRibKind(HasGenericParams::Yes),
1614                     LifetimeRibKind::Generics {
1615                         parent: item.id,
1616                         kind: LifetimeBinderKind::Function,
1617                         span: generics.span,
1618                     },
1619                     |this| visit::walk_item(this, item),
1620                 );
1621             }
1622
1623             ItemKind::Enum(_, ref generics)
1624             | ItemKind::Struct(_, ref generics)
1625             | ItemKind::Union(_, ref generics) => {
1626                 self.resolve_adt(item, generics);
1627             }
1628
1629             ItemKind::Impl(box Impl {
1630                 ref generics,
1631                 ref of_trait,
1632                 ref self_ty,
1633                 items: ref impl_items,
1634                 ..
1635             }) => {
1636                 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
1637             }
1638
1639             ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
1640                 // Create a new rib for the trait-wide type parameters.
1641                 self.with_generic_param_rib(
1642                     &generics.params,
1643                     ItemRibKind(HasGenericParams::Yes),
1644                     LifetimeRibKind::Generics {
1645                         parent: item.id,
1646                         kind: LifetimeBinderKind::Item,
1647                         span: generics.span,
1648                     },
1649                     |this| {
1650                         let local_def_id = this.r.local_def_id(item.id).to_def_id();
1651                         this.with_self_rib(
1652                             Res::SelfTy { trait_: Some(local_def_id), alias_to: None },
1653                             |this| {
1654                                 this.visit_generics(generics);
1655                                 walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
1656
1657                                 let walk_assoc_item =
1658                                     |this: &mut Self,
1659                                      generics: &Generics,
1660                                      kind,
1661                                      item: &'ast AssocItem| {
1662                                         this.with_generic_param_rib(
1663                                             &generics.params,
1664                                             AssocItemRibKind,
1665                                             LifetimeRibKind::Generics {
1666                                                 parent: item.id,
1667                                                 span: generics.span,
1668                                                 kind,
1669                                             },
1670                                             |this| {
1671                                                 visit::walk_assoc_item(this, item, AssocCtxt::Trait)
1672                                             },
1673                                         );
1674                                     };
1675
1676                                 this.with_trait_items(items, |this| {
1677                                     for item in items {
1678                                         match &item.kind {
1679                                             AssocItemKind::Const(_, ty, default) => {
1680                                                 this.visit_ty(ty);
1681                                                 // Only impose the restrictions of `ConstRibKind` for an
1682                                                 // actual constant expression in a provided default.
1683                                                 if let Some(expr) = default {
1684                                                     // We allow arbitrary const expressions inside of associated consts,
1685                                                     // even if they are potentially not const evaluatable.
1686                                                     //
1687                                                     // Type parameters can already be used and as associated consts are
1688                                                     // not used as part of the type system, this is far less surprising.
1689                                                     this.with_constant_rib(
1690                                                         IsRepeatExpr::No,
1691                                                         true,
1692                                                         None,
1693                                                         |this| this.visit_expr(expr),
1694                                                     );
1695                                                 }
1696                                             }
1697                                             AssocItemKind::Fn(box Fn { generics, .. }) => {
1698                                                 walk_assoc_item(
1699                                                     this,
1700                                                     generics,
1701                                                     LifetimeBinderKind::Function,
1702                                                     item,
1703                                                 );
1704                                             }
1705                                             AssocItemKind::TyAlias(box TyAlias {
1706                                                 generics,
1707                                                 ..
1708                                             }) => {
1709                                                 walk_assoc_item(
1710                                                     this,
1711                                                     generics,
1712                                                     LifetimeBinderKind::Item,
1713                                                     item,
1714                                                 );
1715                                             }
1716                                             AssocItemKind::MacCall(_) => {
1717                                                 panic!("unexpanded macro in resolve!")
1718                                             }
1719                                         };
1720                                     }
1721                                 });
1722                             },
1723                         );
1724                     },
1725                 );
1726             }
1727
1728             ItemKind::TraitAlias(ref generics, ref bounds) => {
1729                 // Create a new rib for the trait-wide type parameters.
1730                 self.with_generic_param_rib(
1731                     &generics.params,
1732                     ItemRibKind(HasGenericParams::Yes),
1733                     LifetimeRibKind::Generics {
1734                         parent: item.id,
1735                         kind: LifetimeBinderKind::Item,
1736                         span: generics.span,
1737                     },
1738                     |this| {
1739                         let local_def_id = this.r.local_def_id(item.id).to_def_id();
1740                         this.with_self_rib(
1741                             Res::SelfTy { trait_: Some(local_def_id), alias_to: None },
1742                             |this| {
1743                                 this.visit_generics(generics);
1744                                 walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
1745                             },
1746                         );
1747                     },
1748                 );
1749             }
1750
1751             ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
1752                 self.with_scope(item.id, |this| {
1753                     visit::walk_item(this, item);
1754                 });
1755             }
1756
1757             ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
1758                 self.with_item_rib(|this| {
1759                     this.visit_ty(ty);
1760                     if let Some(expr) = expr {
1761                         let constant_item_kind = match item.kind {
1762                             ItemKind::Const(..) => ConstantItemKind::Const,
1763                             ItemKind::Static(..) => ConstantItemKind::Static,
1764                             _ => unreachable!(),
1765                         };
1766                         // We already forbid generic params because of the above item rib,
1767                         // so it doesn't matter whether this is a trivial constant.
1768                         this.with_constant_rib(
1769                             IsRepeatExpr::No,
1770                             true,
1771                             Some((item.ident, constant_item_kind)),
1772                             |this| this.visit_expr(expr),
1773                         );
1774                     }
1775                 });
1776             }
1777
1778             ItemKind::Use(ref use_tree) => {
1779                 self.future_proof_import(use_tree);
1780             }
1781
1782             ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => {
1783                 // do nothing, these are just around to be encoded
1784             }
1785
1786             ItemKind::GlobalAsm(_) => {
1787                 visit::walk_item(self, item);
1788             }
1789
1790             ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
1791         }
1792     }
1793
1794     fn with_generic_param_rib<'c, F>(
1795         &'c mut self,
1796         params: &'c Vec<GenericParam>,
1797         kind: RibKind<'a>,
1798         lifetime_kind: LifetimeRibKind,
1799         f: F,
1800     ) where
1801         F: FnOnce(&mut Self),
1802     {
1803         debug!("with_generic_param_rib");
1804         let mut function_type_rib = Rib::new(kind);
1805         let mut function_value_rib = Rib::new(kind);
1806         let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);
1807         let mut seen_bindings = FxHashMap::default();
1808
1809         // We also can't shadow bindings from the parent item
1810         if let AssocItemRibKind = kind {
1811             let mut add_bindings_for_ns = |ns| {
1812                 let parent_rib = self.ribs[ns]
1813                     .iter()
1814                     .rfind(|r| matches!(r.kind, ItemRibKind(_)))
1815                     .expect("associated item outside of an item");
1816                 seen_bindings
1817                     .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
1818             };
1819             add_bindings_for_ns(ValueNS);
1820             add_bindings_for_ns(TypeNS);
1821         }
1822
1823         for param in params {
1824             let ident = param.ident.normalize_to_macros_2_0();
1825             debug!("with_generic_param_rib: {}", param.id);
1826
1827             match seen_bindings.entry(ident) {
1828                 Entry::Occupied(entry) => {
1829                     let span = *entry.get();
1830                     let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
1831                     if !matches!(param.kind, GenericParamKind::Lifetime) {
1832                         self.report_error(param.ident.span, err);
1833                     }
1834                 }
1835                 Entry::Vacant(entry) => {
1836                     entry.insert(param.ident.span);
1837                 }
1838             }
1839
1840             if param.ident.name == kw::UnderscoreLifetime {
1841                 rustc_errors::struct_span_err!(
1842                     self.r.session,
1843                     param.ident.span,
1844                     E0637,
1845                     "`'_` cannot be used here"
1846                 )
1847                 .span_label(param.ident.span, "`'_` is a reserved lifetime name")
1848                 .emit();
1849                 continue;
1850             }
1851
1852             if param.ident.name == kw::StaticLifetime {
1853                 rustc_errors::struct_span_err!(
1854                     self.r.session,
1855                     param.ident.span,
1856                     E0262,
1857                     "invalid lifetime parameter name: `{}`",
1858                     param.ident,
1859                 )
1860                 .span_label(param.ident.span, "'static is a reserved lifetime name")
1861                 .emit();
1862                 continue;
1863             }
1864
1865             let def_id = self.r.local_def_id(param.id);
1866
1867             // Plain insert (no renaming).
1868             let (rib, def_kind) = match param.kind {
1869                 GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
1870                 GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
1871                 GenericParamKind::Lifetime => {
1872                     let LifetimeRibKind::Generics { parent, .. } = lifetime_kind else { panic!() };
1873                     let res = LifetimeRes::Param { param: def_id, binder: parent };
1874                     self.record_lifetime_res(param.id, res);
1875                     function_lifetime_rib.bindings.insert(ident, (param.id, res));
1876                     continue;
1877                 }
1878             };
1879             let res = Res::Def(def_kind, def_id.to_def_id());
1880             self.r.record_partial_res(param.id, PartialRes::new(res));
1881             rib.bindings.insert(ident, res);
1882         }
1883
1884         self.lifetime_ribs.push(function_lifetime_rib);
1885         self.ribs[ValueNS].push(function_value_rib);
1886         self.ribs[TypeNS].push(function_type_rib);
1887
1888         f(self);
1889
1890         self.ribs[TypeNS].pop();
1891         self.ribs[ValueNS].pop();
1892         self.lifetime_ribs.pop();
1893     }
1894
1895     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
1896         self.label_ribs.push(Rib::new(kind));
1897         f(self);
1898         self.label_ribs.pop();
1899     }
1900
1901     fn with_item_rib(&mut self, f: impl FnOnce(&mut Self)) {
1902         let kind = ItemRibKind(HasGenericParams::No);
1903         self.with_lifetime_rib(LifetimeRibKind::Item, |this| {
1904             this.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
1905         })
1906     }
1907
1908     // HACK(min_const_generics,const_evaluatable_unchecked): We
1909     // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
1910     // with a future compat lint for now. We do this by adding an
1911     // additional special case for repeat expressions.
1912     //
1913     // Note that we intentionally still forbid `[0; N + 1]` during
1914     // name resolution so that we don't extend the future
1915     // compat lint to new cases.
1916     fn with_constant_rib(
1917         &mut self,
1918         is_repeat: IsRepeatExpr,
1919         is_trivial: bool,
1920         item: Option<(Ident, ConstantItemKind)>,
1921         f: impl FnOnce(&mut Self),
1922     ) {
1923         debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
1924         self.with_rib(ValueNS, ConstantItemRibKind(is_trivial, item), |this| {
1925             this.with_rib(
1926                 TypeNS,
1927                 ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial, item),
1928                 |this| {
1929                     this.with_label_rib(ConstantItemRibKind(is_trivial, item), f);
1930                 },
1931             )
1932         });
1933     }
1934
1935     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
1936         // Handle nested impls (inside fn bodies)
1937         let previous_value =
1938             replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
1939         let result = f(self);
1940         self.diagnostic_metadata.current_self_type = previous_value;
1941         result
1942     }
1943
1944     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
1945         let previous_value =
1946             replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
1947         let result = f(self);
1948         self.diagnostic_metadata.current_self_item = previous_value;
1949         result
1950     }
1951
1952     /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
1953     fn with_trait_items<T>(
1954         &mut self,
1955         trait_items: &'ast [P<AssocItem>],
1956         f: impl FnOnce(&mut Self) -> T,
1957     ) -> T {
1958         let trait_assoc_items =
1959             replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
1960         let result = f(self);
1961         self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
1962         result
1963     }
1964
1965     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
1966     fn with_optional_trait_ref<T>(
1967         &mut self,
1968         opt_trait_ref: Option<&TraitRef>,
1969         f: impl FnOnce(&mut Self, Option<DefId>) -> T,
1970     ) -> T {
1971         let mut new_val = None;
1972         let mut new_id = None;
1973         if let Some(trait_ref) = opt_trait_ref {
1974             let path: Vec<_> = Segment::from_path(&trait_ref.path);
1975             let res = self.smart_resolve_path_fragment(
1976                 None,
1977                 &path,
1978                 PathSource::Trait(AliasPossibility::No),
1979                 Finalize::new(trait_ref.ref_id, trait_ref.path.span),
1980             );
1981             if let Some(def_id) = res.base_res().opt_def_id() {
1982                 new_id = Some(def_id);
1983                 new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
1984             }
1985         }
1986         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1987         let result = f(self, new_id);
1988         self.current_trait_ref = original_trait_ref;
1989         result
1990     }
1991
1992     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1993         let mut self_type_rib = Rib::new(NormalRibKind);
1994
1995         // Plain insert (no renaming, since types are not currently hygienic)
1996         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1997         self.ribs[ns].push(self_type_rib);
1998         f(self);
1999         self.ribs[ns].pop();
2000     }
2001
2002     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
2003         self.with_self_rib_ns(TypeNS, self_res, f)
2004     }
2005
2006     fn resolve_implementation(
2007         &mut self,
2008         generics: &'ast Generics,
2009         opt_trait_reference: &'ast Option<TraitRef>,
2010         self_type: &'ast Ty,
2011         item_id: NodeId,
2012         impl_items: &'ast [P<AssocItem>],
2013     ) {
2014         debug!("resolve_implementation");
2015         // If applicable, create a rib for the type parameters.
2016         self.with_generic_param_rib(&generics.params, ItemRibKind(HasGenericParams::Yes), LifetimeRibKind::Generics { span: generics.span, parent: item_id, kind: LifetimeBinderKind::ImplBlock }, |this| {
2017             // Dummy self type for better errors if `Self` is used in the trait path.
2018             this.with_self_rib(Res::SelfTy { trait_: None, alias_to: None }, |this| {
2019                 this.with_lifetime_rib(LifetimeRibKind::AnonymousCreateParameter(item_id), |this| {
2020                     // Resolve the trait reference, if necessary.
2021                     this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
2022                         let item_def_id = this.r.local_def_id(item_id);
2023
2024                         // Register the trait definitions from here.
2025                         if let Some(trait_id) = trait_id {
2026                             this.r.trait_impls.entry(trait_id).or_default().push(item_def_id);
2027                         }
2028
2029                         let item_def_id = item_def_id.to_def_id();
2030                         let res =
2031                             Res::SelfTy { trait_: trait_id, alias_to: Some((item_def_id, false)) };
2032                         this.with_self_rib(res, |this| {
2033                             if let Some(trait_ref) = opt_trait_reference.as_ref() {
2034                                 // Resolve type arguments in the trait path.
2035                                 visit::walk_trait_ref(this, trait_ref);
2036                             }
2037                             // Resolve the self type.
2038                             this.visit_ty(self_type);
2039                             // Resolve the generic parameters.
2040                             this.visit_generics(generics);
2041
2042                             // Resolve the items within the impl.
2043                             this.with_lifetime_rib(LifetimeRibKind::AnonymousPassThrough(item_id),
2044                                 |this| {
2045                                     this.with_current_self_type(self_type, |this| {
2046                                         this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
2047                                             debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
2048                                             for item in impl_items {
2049                                                 use crate::ResolutionError::*;
2050                                                 match &item.kind {
2051                                                     AssocItemKind::Const(_default, _ty, _expr) => {
2052                                                         debug!("resolve_implementation AssocItemKind::Const");
2053                                                         // If this is a trait impl, ensure the const
2054                                                         // exists in trait
2055                                                         this.check_trait_item(
2056                                                             item.id,
2057                                                             item.ident,
2058                                                             &item.kind,
2059                                                             ValueNS,
2060                                                             item.span,
2061                                                             |i, s, c| ConstNotMemberOfTrait(i, s, c),
2062                                                         );
2063
2064                                                         // We allow arbitrary const expressions inside of associated consts,
2065                                                         // even if they are potentially not const evaluatable.
2066                                                         //
2067                                                         // Type parameters can already be used and as associated consts are
2068                                                         // not used as part of the type system, this is far less surprising.
2069                                                         this.with_constant_rib(
2070                                                             IsRepeatExpr::No,
2071                                                             true,
2072                                                             None,
2073                                                             |this| {
2074                                                                 visit::walk_assoc_item(
2075                                                                     this,
2076                                                                     item,
2077                                                                     AssocCtxt::Impl,
2078                                                                 )
2079                                                             },
2080                                                         );
2081                                                     }
2082                                                     AssocItemKind::Fn(box Fn { generics, .. }) => {
2083                                                         debug!("resolve_implementation AssocItemKind::Fn");
2084                                                         // We also need a new scope for the impl item type parameters.
2085                                                         this.with_generic_param_rib(
2086                                                             &generics.params,
2087                                                             AssocItemRibKind,
2088                                                             LifetimeRibKind::Generics { parent: item.id, span: generics.span, kind: LifetimeBinderKind::Function },
2089                                                             |this| {
2090                                                                 // If this is a trait impl, ensure the method
2091                                                                 // exists in trait
2092                                                                 this.check_trait_item(
2093                                                                     item.id,
2094                                                                     item.ident,
2095                                                                     &item.kind,
2096                                                                     ValueNS,
2097                                                                     item.span,
2098                                                                     |i, s, c| MethodNotMemberOfTrait(i, s, c),
2099                                                                 );
2100
2101                                                                 visit::walk_assoc_item(
2102                                                                     this,
2103                                                                     item,
2104                                                                     AssocCtxt::Impl,
2105                                                                 )
2106                                                             },
2107                                                         );
2108                                                     }
2109                                                     AssocItemKind::TyAlias(box TyAlias {
2110                                                         generics, ..
2111                                                     }) => {
2112                                                         debug!("resolve_implementation AssocItemKind::TyAlias");
2113                                                         // We also need a new scope for the impl item type parameters.
2114                                                         this.with_generic_param_rib(
2115                                                             &generics.params,
2116                                                             AssocItemRibKind,
2117                                                             LifetimeRibKind::Generics { parent: item.id, span: generics.span, kind: LifetimeBinderKind::Item },
2118                                                             |this| {
2119                                                                 // If this is a trait impl, ensure the type
2120                                                                 // exists in trait
2121                                                                 this.check_trait_item(
2122                                                                     item.id,
2123                                                                     item.ident,
2124                                                                     &item.kind,
2125                                                                     TypeNS,
2126                                                                     item.span,
2127                                                                     |i, s, c| TypeNotMemberOfTrait(i, s, c),
2128                                                                 );
2129
2130                                                                 visit::walk_assoc_item(
2131                                                                     this,
2132                                                                     item,
2133                                                                     AssocCtxt::Impl,
2134                                                                 )
2135                                                             },
2136                                                         );
2137                                                     }
2138                                                     AssocItemKind::MacCall(_) => {
2139                                                         panic!("unexpanded macro in resolve!")
2140                                                     }
2141                                                 }
2142                                             }
2143                                         });
2144                                     });
2145                                 },
2146                             );
2147                         });
2148                     });
2149                 });
2150             });
2151         });
2152     }
2153
2154     fn check_trait_item<F>(
2155         &mut self,
2156         id: NodeId,
2157         mut ident: Ident,
2158         kind: &AssocItemKind,
2159         ns: Namespace,
2160         span: Span,
2161         err: F,
2162     ) where
2163         F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'a>,
2164     {
2165         // If there is a TraitRef in scope for an impl, then the method must be in the trait.
2166         let Some((module, _)) = &self.current_trait_ref else { return; };
2167         ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
2168         let key = self.r.new_key(ident, ns);
2169         let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
2170         debug!(?binding);
2171         if binding.is_none() {
2172             // We could not find the trait item in the correct namespace.
2173             // Check the other namespace to report an error.
2174             let ns = match ns {
2175                 ValueNS => TypeNS,
2176                 TypeNS => ValueNS,
2177                 _ => ns,
2178             };
2179             let key = self.r.new_key(ident, ns);
2180             binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
2181             debug!(?binding);
2182         }
2183         let Some(binding) = binding else {
2184             // We could not find the method: report an error.
2185             let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
2186             let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2187             let path_names = path_names_to_string(path);
2188             self.report_error(span, err(ident, path_names, candidate));
2189             return;
2190         };
2191
2192         let res = binding.res();
2193         let Res::Def(def_kind, _) = res else { bug!() };
2194         match (def_kind, kind) {
2195             (DefKind::AssocTy, AssocItemKind::TyAlias(..))
2196             | (DefKind::AssocFn, AssocItemKind::Fn(..))
2197             | (DefKind::AssocConst, AssocItemKind::Const(..)) => {
2198                 self.r.record_partial_res(id, PartialRes::new(res));
2199                 return;
2200             }
2201             _ => {}
2202         }
2203
2204         // The method kind does not correspond to what appeared in the trait, report.
2205         let path = &self.current_trait_ref.as_ref().unwrap().1.path;
2206         let (code, kind) = match kind {
2207             AssocItemKind::Const(..) => (rustc_errors::error_code!(E0323), "const"),
2208             AssocItemKind::Fn(..) => (rustc_errors::error_code!(E0324), "method"),
2209             AssocItemKind::TyAlias(..) => (rustc_errors::error_code!(E0325), "type"),
2210             AssocItemKind::MacCall(..) => span_bug!(span, "unexpanded macro"),
2211         };
2212         let trait_path = path_names_to_string(path);
2213         self.report_error(
2214             span,
2215             ResolutionError::TraitImplMismatch {
2216                 name: ident.name,
2217                 kind,
2218                 code,
2219                 trait_path,
2220                 trait_item_span: binding.span,
2221             },
2222         );
2223     }
2224
2225     fn resolve_params(&mut self, params: &'ast [Param]) {
2226         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
2227         for Param { pat, ty, .. } in params {
2228             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
2229             self.visit_ty(ty);
2230             debug!("(resolving function / closure) recorded parameter");
2231         }
2232     }
2233
2234     fn resolve_local(&mut self, local: &'ast Local) {
2235         debug!("resolving local ({:?})", local);
2236         // Resolve the type.
2237         walk_list!(self, visit_ty, &local.ty);
2238
2239         // Resolve the initializer.
2240         if let Some((init, els)) = local.kind.init_else_opt() {
2241             self.visit_expr(init);
2242
2243             // Resolve the `else` block
2244             if let Some(els) = els {
2245                 self.visit_block(els);
2246             }
2247         }
2248
2249         // Resolve the pattern.
2250         self.resolve_pattern_top(&local.pat, PatternSource::Let);
2251     }
2252
2253     /// build a map from pattern identifiers to binding-info's.
2254     /// this is done hygienically. This could arise for a macro
2255     /// that expands into an or-pattern where one 'x' was from the
2256     /// user and one 'x' came from the macro.
2257     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
2258         let mut binding_map = FxHashMap::default();
2259
2260         pat.walk(&mut |pat| {
2261             match pat.kind {
2262                 PatKind::Ident(binding_mode, ident, ref sub_pat)
2263                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
2264                 {
2265                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
2266                 }
2267                 PatKind::Or(ref ps) => {
2268                     // Check the consistency of this or-pattern and
2269                     // then add all bindings to the larger map.
2270                     for bm in self.check_consistent_bindings(ps) {
2271                         binding_map.extend(bm);
2272                     }
2273                     return false;
2274                 }
2275                 _ => {}
2276             }
2277
2278             true
2279         });
2280
2281         binding_map
2282     }
2283
2284     fn is_base_res_local(&self, nid: NodeId) -> bool {
2285         matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
2286     }
2287
2288     /// Checks that all of the arms in an or-pattern have exactly the
2289     /// same set of bindings, with the same binding modes for each.
2290     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
2291         let mut missing_vars = FxHashMap::default();
2292         let mut inconsistent_vars = FxHashMap::default();
2293
2294         // 1) Compute the binding maps of all arms.
2295         let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
2296
2297         // 2) Record any missing bindings or binding mode inconsistencies.
2298         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
2299             // Check against all arms except for the same pattern which is always self-consistent.
2300             let inners = pats
2301                 .iter()
2302                 .enumerate()
2303                 .filter(|(_, pat)| pat.id != pat_outer.id)
2304                 .flat_map(|(idx, _)| maps[idx].iter())
2305                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
2306
2307             for (name, info, &binding_inner) in inners {
2308                 match info {
2309                     None => {
2310                         // The inner binding is missing in the outer.
2311                         let binding_error =
2312                             missing_vars.entry(name).or_insert_with(|| BindingError {
2313                                 name,
2314                                 origin: BTreeSet::new(),
2315                                 target: BTreeSet::new(),
2316                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
2317                             });
2318                         binding_error.origin.insert(binding_inner.span);
2319                         binding_error.target.insert(pat_outer.span);
2320                     }
2321                     Some(binding_outer) => {
2322                         if binding_outer.binding_mode != binding_inner.binding_mode {
2323                             // The binding modes in the outer and inner bindings differ.
2324                             inconsistent_vars
2325                                 .entry(name)
2326                                 .or_insert((binding_inner.span, binding_outer.span));
2327                         }
2328                     }
2329                 }
2330             }
2331         }
2332
2333         // 3) Report all missing variables we found.
2334         let mut missing_vars = missing_vars.into_iter().collect::<Vec<_>>();
2335         missing_vars.sort_by_key(|&(sym, ref _err)| sym);
2336
2337         for (name, mut v) in missing_vars.into_iter() {
2338             if inconsistent_vars.contains_key(&name) {
2339                 v.could_be_path = false;
2340             }
2341             self.report_error(
2342                 *v.origin.iter().next().unwrap(),
2343                 ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
2344             );
2345         }
2346
2347         // 4) Report all inconsistencies in binding modes we found.
2348         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
2349         inconsistent_vars.sort();
2350         for (name, v) in inconsistent_vars {
2351             self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
2352         }
2353
2354         // 5) Finally bubble up all the binding maps.
2355         maps
2356     }
2357
2358     /// Check the consistency of the outermost or-patterns.
2359     fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
2360         pat.walk(&mut |pat| match pat.kind {
2361             PatKind::Or(ref ps) => {
2362                 self.check_consistent_bindings(ps);
2363                 false
2364             }
2365             _ => true,
2366         })
2367     }
2368
2369     fn resolve_arm(&mut self, arm: &'ast Arm) {
2370         self.with_rib(ValueNS, NormalRibKind, |this| {
2371             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
2372             walk_list!(this, visit_expr, &arm.guard);
2373             this.visit_expr(&arm.body);
2374         });
2375     }
2376
2377     /// Arising from `source`, resolve a top level pattern.
2378     fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
2379         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
2380         self.resolve_pattern(pat, pat_src, &mut bindings);
2381     }
2382
2383     fn resolve_pattern(
2384         &mut self,
2385         pat: &'ast Pat,
2386         pat_src: PatternSource,
2387         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
2388     ) {
2389         // We walk the pattern before declaring the pattern's inner bindings,
2390         // so that we avoid resolving a literal expression to a binding defined
2391         // by the pattern.
2392         visit::walk_pat(self, pat);
2393         self.resolve_pattern_inner(pat, pat_src, bindings);
2394         // This has to happen *after* we determine which pat_idents are variants:
2395         self.check_consistent_bindings_top(pat);
2396     }
2397
2398     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
2399     ///
2400     /// ### `bindings`
2401     ///
2402     /// A stack of sets of bindings accumulated.
2403     ///
2404     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
2405     /// be interpreted as re-binding an already bound binding. This results in an error.
2406     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
2407     /// in reusing this binding rather than creating a fresh one.
2408     ///
2409     /// When called at the top level, the stack must have a single element
2410     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
2411     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
2412     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
2413     /// When each `p_i` has been dealt with, the top set is merged with its parent.
2414     /// When a whole or-pattern has been dealt with, the thing happens.
2415     ///
2416     /// See the implementation and `fresh_binding` for more details.
2417     fn resolve_pattern_inner(
2418         &mut self,
2419         pat: &Pat,
2420         pat_src: PatternSource,
2421         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
2422     ) {
2423         // Visit all direct subpatterns of this pattern.
2424         pat.walk(&mut |pat| {
2425             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
2426             match pat.kind {
2427                 PatKind::Ident(bmode, ident, ref sub) => {
2428                     // First try to resolve the identifier as some existing entity,
2429                     // then fall back to a fresh binding.
2430                     let has_sub = sub.is_some();
2431                     let res = self
2432                         .try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
2433                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
2434                     self.r.record_partial_res(pat.id, PartialRes::new(res));
2435                     self.r.record_pat_span(pat.id, pat.span);
2436                 }
2437                 PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
2438                     self.smart_resolve_path(
2439                         pat.id,
2440                         qself.as_ref(),
2441                         path,
2442                         PathSource::TupleStruct(
2443                             pat.span,
2444                             self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
2445                         ),
2446                     );
2447                 }
2448                 PatKind::Path(ref qself, ref path) => {
2449                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
2450                 }
2451                 PatKind::Struct(ref qself, ref path, ..) => {
2452                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct);
2453                 }
2454                 PatKind::Or(ref ps) => {
2455                     // Add a new set of bindings to the stack. `Or` here records that when a
2456                     // binding already exists in this set, it should not result in an error because
2457                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
2458                     bindings.push((PatBoundCtx::Or, Default::default()));
2459                     for p in ps {
2460                         // Now we need to switch back to a product context so that each
2461                         // part of the or-pattern internally rejects already bound names.
2462                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
2463                         bindings.push((PatBoundCtx::Product, Default::default()));
2464                         self.resolve_pattern_inner(p, pat_src, bindings);
2465                         // Move up the non-overlapping bindings to the or-pattern.
2466                         // Existing bindings just get "merged".
2467                         let collected = bindings.pop().unwrap().1;
2468                         bindings.last_mut().unwrap().1.extend(collected);
2469                     }
2470                     // This or-pattern itself can itself be part of a product,
2471                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
2472                     // Both cases bind `a` again in a product pattern and must be rejected.
2473                     let collected = bindings.pop().unwrap().1;
2474                     bindings.last_mut().unwrap().1.extend(collected);
2475
2476                     // Prevent visiting `ps` as we've already done so above.
2477                     return false;
2478                 }
2479                 _ => {}
2480             }
2481             true
2482         });
2483     }
2484
2485     fn fresh_binding(
2486         &mut self,
2487         ident: Ident,
2488         pat_id: NodeId,
2489         pat_src: PatternSource,
2490         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
2491     ) -> Res {
2492         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
2493         // (We must not add it if it's in the bindings map because that breaks the assumptions
2494         // later passes make about or-patterns.)
2495         let ident = ident.normalize_to_macro_rules();
2496
2497         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
2498         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
2499         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
2500         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
2501         // This is *required* for consistency which is checked later.
2502         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
2503
2504         if already_bound_and {
2505             // Overlap in a product pattern somewhere; report an error.
2506             use ResolutionError::*;
2507             let error = match pat_src {
2508                 // `fn f(a: u8, a: u8)`:
2509                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
2510                 // `Variant(a, a)`:
2511                 _ => IdentifierBoundMoreThanOnceInSamePattern,
2512             };
2513             self.report_error(ident.span, error(ident.name));
2514         }
2515
2516         // Record as bound if it's valid:
2517         let ident_valid = ident.name != kw::Empty;
2518         if ident_valid {
2519             bindings.last_mut().unwrap().1.insert(ident);
2520         }
2521
2522         if already_bound_or {
2523             // `Variant1(a) | Variant2(a)`, ok
2524             // Reuse definition from the first `a`.
2525             self.innermost_rib_bindings(ValueNS)[&ident]
2526         } else {
2527             let res = Res::Local(pat_id);
2528             if ident_valid {
2529                 // A completely fresh binding add to the set if it's valid.
2530                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
2531             }
2532             res
2533         }
2534     }
2535
2536     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
2537         &mut self.ribs[ns].last_mut().unwrap().bindings
2538     }
2539
2540     fn try_resolve_as_non_binding(
2541         &mut self,
2542         pat_src: PatternSource,
2543         bm: BindingMode,
2544         ident: Ident,
2545         has_sub: bool,
2546     ) -> Option<Res> {
2547         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
2548         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
2549         // also be interpreted as a path to e.g. a constant, variant, etc.
2550         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
2551
2552         let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
2553         let (res, binding) = match ls_binding {
2554             LexicalScopeBinding::Item(binding)
2555                 if is_syntactic_ambiguity && binding.is_ambiguity() =>
2556             {
2557                 // For ambiguous bindings we don't know all their definitions and cannot check
2558                 // whether they can be shadowed by fresh bindings or not, so force an error.
2559                 // issues/33118#issuecomment-233962221 (see below) still applies here,
2560                 // but we have to ignore it for backward compatibility.
2561                 self.r.record_use(ident, binding, false);
2562                 return None;
2563             }
2564             LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
2565             LexicalScopeBinding::Res(res) => (res, None),
2566         };
2567
2568         match res {
2569             Res::SelfCtor(_) // See #70549.
2570             | Res::Def(
2571                 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
2572                 _,
2573             ) if is_syntactic_ambiguity => {
2574                 // Disambiguate in favor of a unit struct/variant or constant pattern.
2575                 if let Some(binding) = binding {
2576                     self.r.record_use(ident, binding, false);
2577                 }
2578                 Some(res)
2579             }
2580             Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static(_), _) => {
2581                 // This is unambiguously a fresh binding, either syntactically
2582                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
2583                 // to something unusable as a pattern (e.g., constructor function),
2584                 // but we still conservatively report an error, see
2585                 // issues/33118#issuecomment-233962221 for one reason why.
2586                 let binding = binding.expect("no binding for a ctor or static");
2587                 self.report_error(
2588                     ident.span,
2589                     ResolutionError::BindingShadowsSomethingUnacceptable {
2590                         shadowing_binding_descr: pat_src.descr(),
2591                         name: ident.name,
2592                         participle: if binding.is_import() { "imported" } else { "defined" },
2593                         article: binding.res().article(),
2594                         shadowed_binding_descr: binding.res().descr(),
2595                         shadowed_binding_span: binding.span,
2596                     },
2597                 );
2598                 None
2599             }
2600             Res::Def(DefKind::ConstParam, def_id) => {
2601                 // Same as for DefKind::Const above, but here, `binding` is `None`, so we
2602                 // have to construct the error differently
2603                 self.report_error(
2604                     ident.span,
2605                     ResolutionError::BindingShadowsSomethingUnacceptable {
2606                         shadowing_binding_descr: pat_src.descr(),
2607                         name: ident.name,
2608                         participle: "defined",
2609                         article: res.article(),
2610                         shadowed_binding_descr: res.descr(),
2611                         shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"),
2612                     }
2613                 );
2614                 None
2615             }
2616             Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
2617                 // These entities are explicitly allowed to be shadowed by fresh bindings.
2618                 None
2619             }
2620             Res::SelfCtor(_) => {
2621                 // We resolve `Self` in pattern position as an ident sometimes during recovery,
2622                 // so delay a bug instead of ICEing.
2623                 self.r.session.delay_span_bug(
2624                     ident.span,
2625                     "unexpected `SelfCtor` in pattern, expected identifier"
2626                 );
2627                 None
2628             }
2629             _ => span_bug!(
2630                 ident.span,
2631                 "unexpected resolution for an identifier in pattern: {:?}",
2632                 res,
2633             ),
2634         }
2635     }
2636
2637     // High-level and context dependent path resolution routine.
2638     // Resolves the path and records the resolution into definition map.
2639     // If resolution fails tries several techniques to find likely
2640     // resolution candidates, suggest imports or other help, and report
2641     // errors in user friendly way.
2642     fn smart_resolve_path(
2643         &mut self,
2644         id: NodeId,
2645         qself: Option<&QSelf>,
2646         path: &Path,
2647         source: PathSource<'ast>,
2648     ) {
2649         self.smart_resolve_path_fragment(
2650             qself,
2651             &Segment::from_path(path),
2652             source,
2653             Finalize::new(id, path.span),
2654         );
2655     }
2656
2657     fn smart_resolve_path_fragment(
2658         &mut self,
2659         qself: Option<&QSelf>,
2660         path: &[Segment],
2661         source: PathSource<'ast>,
2662         finalize: Finalize,
2663     ) -> PartialRes {
2664         tracing::debug!(
2665             "smart_resolve_path_fragment(qself={:?}, path={:?}, finalize={:?})",
2666             qself,
2667             path,
2668             finalize,
2669         );
2670         let ns = source.namespace();
2671
2672         let Finalize { node_id, path_span, .. } = finalize;
2673         let report_errors = |this: &mut Self, res: Option<Res>| {
2674             if this.should_report_errs() {
2675                 let (err, candidates) =
2676                     this.smart_resolve_report_errors(path, path_span, source, res);
2677
2678                 let def_id = this.parent_scope.module.nearest_parent_mod();
2679                 let instead = res.is_some();
2680                 let suggestion =
2681                     if res.is_none() { this.report_missing_type_error(path) } else { None };
2682
2683                 this.r.use_injections.push(UseError {
2684                     err,
2685                     candidates,
2686                     def_id,
2687                     instead,
2688                     suggestion,
2689                 });
2690             }
2691
2692             PartialRes::new(Res::Err)
2693         };
2694
2695         // For paths originating from calls (like in `HashMap::new()`), tries
2696         // to enrich the plain `failed to resolve: ...` message with hints
2697         // about possible missing imports.
2698         //
2699         // Similar thing, for types, happens in `report_errors` above.
2700         let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
2701             if !source.is_call() {
2702                 return Some(parent_err);
2703             }
2704
2705             // Before we start looking for candidates, we have to get our hands
2706             // on the type user is trying to perform invocation on; basically:
2707             // we're transforming `HashMap::new` into just `HashMap`.
2708             let path = match path.split_last() {
2709                 Some((_, path)) if !path.is_empty() => path,
2710                 _ => return Some(parent_err),
2711             };
2712
2713             let (mut err, candidates) =
2714                 this.smart_resolve_report_errors(path, path_span, PathSource::Type, None);
2715
2716             if candidates.is_empty() {
2717                 err.cancel();
2718                 return Some(parent_err);
2719             }
2720
2721             // There are two different error messages user might receive at
2722             // this point:
2723             // - E0412 cannot find type `{}` in this scope
2724             // - E0433 failed to resolve: use of undeclared type or module `{}`
2725             //
2726             // The first one is emitted for paths in type-position, and the
2727             // latter one - for paths in expression-position.
2728             //
2729             // Thus (since we're in expression-position at this point), not to
2730             // confuse the user, we want to keep the *message* from E0432 (so
2731             // `parent_err`), but we want *hints* from E0412 (so `err`).
2732             //
2733             // And that's what happens below - we're just mixing both messages
2734             // into a single one.
2735             let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
2736
2737             err.message = take(&mut parent_err.message);
2738             err.code = take(&mut parent_err.code);
2739             err.children = take(&mut parent_err.children);
2740
2741             parent_err.cancel();
2742
2743             let def_id = this.parent_scope.module.nearest_parent_mod();
2744
2745             if this.should_report_errs() {
2746                 this.r.use_injections.push(UseError {
2747                     err,
2748                     candidates,
2749                     def_id,
2750                     instead: false,
2751                     suggestion: None,
2752                 });
2753             } else {
2754                 err.cancel();
2755             }
2756
2757             // We don't return `Some(parent_err)` here, because the error will
2758             // be already printed as part of the `use` injections
2759             None
2760         };
2761
2762         let partial_res = match self.resolve_qpath_anywhere(
2763             qself,
2764             path,
2765             ns,
2766             path_span,
2767             source.defer_to_typeck(),
2768             finalize,
2769         ) {
2770             Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
2771                 if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
2772                 {
2773                     partial_res
2774                 } else {
2775                     report_errors(self, Some(partial_res.base_res()))
2776                 }
2777             }
2778
2779             Ok(Some(partial_res)) if source.defer_to_typeck() => {
2780                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2781                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2782                 // it needs to be added to the trait map.
2783                 if ns == ValueNS {
2784                     let item_name = path.last().unwrap().ident;
2785                     let traits = self.traits_in_scope(item_name, ns);
2786                     self.r.trait_map.insert(node_id, traits);
2787                 }
2788
2789                 if PrimTy::from_name(path[0].ident.name).is_some() {
2790                     let mut std_path = Vec::with_capacity(1 + path.len());
2791
2792                     std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
2793                     std_path.extend(path);
2794                     if let PathResult::Module(_) | PathResult::NonModule(_) =
2795                         self.resolve_path(&std_path, Some(ns), None)
2796                     {
2797                         // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
2798                         let item_span =
2799                             path.iter().last().map_or(path_span, |segment| segment.ident.span);
2800
2801                         self.r.confused_type_with_std_module.insert(item_span, path_span);
2802                         self.r.confused_type_with_std_module.insert(path_span, path_span);
2803                     }
2804                 }
2805
2806                 partial_res
2807             }
2808
2809             Err(err) => {
2810                 if let Some(err) = report_errors_for_call(self, err) {
2811                     self.report_error(err.span, err.node);
2812                 }
2813
2814                 PartialRes::new(Res::Err)
2815             }
2816
2817             _ => report_errors(self, None),
2818         };
2819
2820         if !matches!(source, PathSource::TraitItem(..)) {
2821             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2822             self.r.record_partial_res(node_id, partial_res);
2823             self.resolve_elided_lifetimes_in_path(node_id, partial_res, path, source, path_span);
2824         }
2825
2826         partial_res
2827     }
2828
2829     fn self_type_is_available(&mut self) -> bool {
2830         let binding = self
2831             .maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
2832         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
2833     }
2834
2835     fn self_value_is_available(&mut self, self_span: Span) -> bool {
2836         let ident = Ident::new(kw::SelfLower, self_span);
2837         let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
2838         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
2839     }
2840
2841     /// A wrapper around [`Resolver::report_error`].
2842     ///
2843     /// This doesn't emit errors for function bodies if this is rustdoc.
2844     fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'a>) {
2845         if self.should_report_errs() {
2846             self.r.report_error(span, resolution_error);
2847         }
2848     }
2849
2850     #[inline]
2851     /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
2852     fn should_report_errs(&self) -> bool {
2853         !(self.r.session.opts.actually_rustdoc && self.in_func_body)
2854     }
2855
2856     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2857     fn resolve_qpath_anywhere(
2858         &mut self,
2859         qself: Option<&QSelf>,
2860         path: &[Segment],
2861         primary_ns: Namespace,
2862         span: Span,
2863         defer_to_typeck: bool,
2864         finalize: Finalize,
2865     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2866         let mut fin_res = None;
2867
2868         for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
2869             if i == 0 || ns != primary_ns {
2870                 match self.resolve_qpath(qself, path, ns, finalize)? {
2871                     Some(partial_res)
2872                         if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
2873                     {
2874                         return Ok(Some(partial_res));
2875                     }
2876                     partial_res => {
2877                         if fin_res.is_none() {
2878                             fin_res = partial_res;
2879                         }
2880                     }
2881                 }
2882             }
2883         }
2884
2885         assert!(primary_ns != MacroNS);
2886
2887         if qself.is_none() {
2888             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
2889             let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
2890             if let Ok((_, res)) =
2891                 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
2892             {
2893                 return Ok(Some(PartialRes::new(res)));
2894             }
2895         }
2896
2897         Ok(fin_res)
2898     }
2899
2900     /// Handles paths that may refer to associated items.
2901     fn resolve_qpath(
2902         &mut self,
2903         qself: Option<&QSelf>,
2904         path: &[Segment],
2905         ns: Namespace,
2906         finalize: Finalize,
2907     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2908         debug!(
2909             "resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
2910             qself, path, ns, finalize,
2911         );
2912
2913         if let Some(qself) = qself {
2914             if qself.position == 0 {
2915                 // This is a case like `<T>::B`, where there is no
2916                 // trait to resolve.  In that case, we leave the `B`
2917                 // segment to be resolved by type-check.
2918                 return Ok(Some(PartialRes::with_unresolved_segments(
2919                     Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
2920                     path.len(),
2921                 )));
2922             }
2923
2924             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
2925             //
2926             // Currently, `path` names the full item (`A::B::C`, in
2927             // our example).  so we extract the prefix of that that is
2928             // the trait (the slice upto and including
2929             // `qself.position`). And then we recursively resolve that,
2930             // but with `qself` set to `None`.
2931             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2932             let partial_res = self.smart_resolve_path_fragment(
2933                 None,
2934                 &path[..=qself.position],
2935                 PathSource::TraitItem(ns),
2936                 Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
2937             );
2938
2939             // The remaining segments (the `C` in our example) will
2940             // have to be resolved by type-check, since that requires doing
2941             // trait resolution.
2942             return Ok(Some(PartialRes::with_unresolved_segments(
2943                 partial_res.base_res(),
2944                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
2945             )));
2946         }
2947
2948         let result = match self.resolve_path(&path, Some(ns), Some(finalize)) {
2949             PathResult::NonModule(path_res) => path_res,
2950             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
2951                 PartialRes::new(module.res().unwrap())
2952             }
2953             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2954             // don't report an error right away, but try to fallback to a primitive type.
2955             // So, we are still able to successfully resolve something like
2956             //
2957             // use std::u8; // bring module u8 in scope
2958             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2959             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2960             //                     // not to non-existent std::u8::max_value
2961             // }
2962             //
2963             // Such behavior is required for backward compatibility.
2964             // The same fallback is used when `a` resolves to nothing.
2965             PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
2966                 if (ns == TypeNS || path.len() > 1)
2967                     && PrimTy::from_name(path[0].ident.name).is_some() =>
2968             {
2969                 let prim = PrimTy::from_name(path[0].ident.name).unwrap();
2970                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
2971             }
2972             PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2973                 PartialRes::new(module.res().unwrap())
2974             }
2975             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
2976                 return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
2977             }
2978             PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
2979             PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
2980         };
2981
2982         if path.len() > 1
2983             && result.base_res() != Res::Err
2984             && path[0].ident.name != kw::PathRoot
2985             && path[0].ident.name != kw::DollarCrate
2986         {
2987             let unqualified_result = {
2988                 match self.resolve_path(&[*path.last().unwrap()], Some(ns), None) {
2989                     PathResult::NonModule(path_res) => path_res.base_res(),
2990                     PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2991                         module.res().unwrap()
2992                     }
2993                     _ => return Ok(Some(result)),
2994                 }
2995             };
2996             if result.base_res() == unqualified_result {
2997                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2998                 self.r.lint_buffer.buffer_lint(
2999                     lint,
3000                     finalize.node_id,
3001                     finalize.path_span,
3002                     "unnecessary qualification",
3003                 )
3004             }
3005         }
3006
3007         Ok(Some(result))
3008     }
3009
3010     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
3011         if let Some(label) = label {
3012             if label.ident.as_str().as_bytes()[1] != b'_' {
3013                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
3014             }
3015             self.with_label_rib(NormalRibKind, |this| {
3016                 let ident = label.ident.normalize_to_macro_rules();
3017                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
3018                 f(this);
3019             });
3020         } else {
3021             f(self);
3022         }
3023     }
3024
3025     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
3026         self.with_resolved_label(label, id, |this| this.visit_block(block));
3027     }
3028
3029     fn resolve_block(&mut self, block: &'ast Block) {
3030         debug!("(resolving block) entering block");
3031         // Move down in the graph, if there's an anonymous module rooted here.
3032         let orig_module = self.parent_scope.module;
3033         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
3034
3035         let mut num_macro_definition_ribs = 0;
3036         if let Some(anonymous_module) = anonymous_module {
3037             debug!("(resolving block) found anonymous module, moving down");
3038             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
3039             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
3040             self.parent_scope.module = anonymous_module;
3041         } else {
3042             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
3043         }
3044
3045         let prev = self.diagnostic_metadata.current_block_could_be_bare_struct_literal.take();
3046         if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
3047             (block.could_be_bare_literal, &block.stmts[..])
3048             && let ExprKind::Type(..) = expr.kind
3049         {
3050             self.diagnostic_metadata.current_block_could_be_bare_struct_literal =
3051             Some(block.span);
3052         }
3053         // Descend into the block.
3054         for stmt in &block.stmts {
3055             if let StmtKind::Item(ref item) = stmt.kind
3056                 && let ItemKind::MacroDef(..) = item.kind {
3057                 num_macro_definition_ribs += 1;
3058                 let res = self.r.local_def_id(item.id).to_def_id();
3059                 self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
3060                 self.label_ribs.push(Rib::new(MacroDefinition(res)));
3061             }
3062
3063             self.visit_stmt(stmt);
3064         }
3065         self.diagnostic_metadata.current_block_could_be_bare_struct_literal = prev;
3066
3067         // Move back up.
3068         self.parent_scope.module = orig_module;
3069         for _ in 0..num_macro_definition_ribs {
3070             self.ribs[ValueNS].pop();
3071             self.label_ribs.pop();
3072         }
3073         self.ribs[ValueNS].pop();
3074         if anonymous_module.is_some() {
3075             self.ribs[TypeNS].pop();
3076         }
3077         debug!("(resolving block) leaving block");
3078     }
3079
3080     fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
3081         debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
3082         self.with_constant_rib(
3083             is_repeat,
3084             constant.value.is_potential_trivial_const_param(),
3085             None,
3086             |this| visit::walk_anon_const(this, constant),
3087         );
3088     }
3089
3090     fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
3091         // First, record candidate traits for this expression if it could
3092         // result in the invocation of a method call.
3093
3094         self.record_candidate_traits_for_expr_if_necessary(expr);
3095
3096         // Next, resolve the node.
3097         match expr.kind {
3098             ExprKind::Path(ref qself, ref path) => {
3099                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
3100                 visit::walk_expr(self, expr);
3101             }
3102
3103             ExprKind::Struct(ref se) => {
3104                 self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct);
3105                 visit::walk_expr(self, expr);
3106             }
3107
3108             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
3109                 if let Some(node_id) = self.resolve_label(label.ident) {
3110                     // Since this res is a label, it is never read.
3111                     self.r.label_res_map.insert(expr.id, node_id);
3112                     self.diagnostic_metadata.unused_labels.remove(&node_id);
3113                 }
3114
3115                 // visit `break` argument if any
3116                 visit::walk_expr(self, expr);
3117             }
3118
3119             ExprKind::Break(None, Some(ref e)) => {
3120                 // We use this instead of `visit::walk_expr` to keep the parent expr around for
3121                 // better diagnostics.
3122                 self.resolve_expr(e, Some(&expr));
3123             }
3124
3125             ExprKind::Let(ref pat, ref scrutinee, _) => {
3126                 self.visit_expr(scrutinee);
3127                 self.resolve_pattern_top(pat, PatternSource::Let);
3128             }
3129
3130             ExprKind::If(ref cond, ref then, ref opt_else) => {
3131                 self.with_rib(ValueNS, NormalRibKind, |this| {
3132                     let old = this.diagnostic_metadata.in_if_condition.replace(cond);
3133                     this.visit_expr(cond);
3134                     this.diagnostic_metadata.in_if_condition = old;
3135                     this.visit_block(then);
3136                 });
3137                 if let Some(expr) = opt_else {
3138                     self.visit_expr(expr);
3139                 }
3140             }
3141
3142             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
3143
3144             ExprKind::While(ref cond, ref block, label) => {
3145                 self.with_resolved_label(label, expr.id, |this| {
3146                     this.with_rib(ValueNS, NormalRibKind, |this| {
3147                         let old = this.diagnostic_metadata.in_if_condition.replace(cond);
3148                         this.visit_expr(cond);
3149                         this.diagnostic_metadata.in_if_condition = old;
3150                         this.visit_block(block);
3151                     })
3152                 });
3153             }
3154
3155             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
3156                 self.visit_expr(iter_expr);
3157                 self.with_rib(ValueNS, NormalRibKind, |this| {
3158                     this.resolve_pattern_top(pat, PatternSource::For);
3159                     this.resolve_labeled_block(label, expr.id, block);
3160                 });
3161             }
3162
3163             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
3164
3165             // Equivalent to `visit::walk_expr` + passing some context to children.
3166             ExprKind::Field(ref subexpression, _) => {
3167                 self.resolve_expr(subexpression, Some(expr));
3168             }
3169             ExprKind::MethodCall(ref segment, ref arguments, _) => {
3170                 let mut arguments = arguments.iter();
3171                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
3172                 for argument in arguments {
3173                     self.resolve_expr(argument, None);
3174                 }
3175                 self.visit_path_segment(expr.span, segment);
3176             }
3177
3178             ExprKind::Call(ref callee, ref arguments) => {
3179                 self.resolve_expr(callee, Some(expr));
3180                 let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
3181                 for (idx, argument) in arguments.iter().enumerate() {
3182                     // Constant arguments need to be treated as AnonConst since
3183                     // that is how they will be later lowered to HIR.
3184                     if const_args.contains(&idx) {
3185                         self.with_constant_rib(
3186                             IsRepeatExpr::No,
3187                             argument.is_potential_trivial_const_param(),
3188                             None,
3189                             |this| {
3190                                 this.resolve_expr(argument, None);
3191                             },
3192                         );
3193                     } else {
3194                         self.resolve_expr(argument, None);
3195                     }
3196                 }
3197             }
3198             ExprKind::Type(ref type_expr, ref ty) => {
3199                 // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
3200                 // type ascription. Here we are trying to retrieve the span of the colon token as
3201                 // well, but only if it's written without spaces `expr:Ty` and therefore confusable
3202                 // with `expr::Ty`, only in this case it will match the span from
3203                 // `type_ascription_path_suggestions`.
3204                 self.diagnostic_metadata
3205                     .current_type_ascription
3206                     .push(type_expr.span.between(ty.span));
3207                 visit::walk_expr(self, expr);
3208                 self.diagnostic_metadata.current_type_ascription.pop();
3209             }
3210             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
3211             // resolve the arguments within the proper scopes so that usages of them inside the
3212             // closure are detected as upvars rather than normal closure arg usages.
3213             ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
3214                 self.with_rib(ValueNS, NormalRibKind, |this| {
3215                     this.with_label_rib(ClosureOrAsyncRibKind, |this| {
3216                         // Resolve arguments:
3217                         this.resolve_params(&fn_decl.inputs);
3218                         // No need to resolve return type --
3219                         // the outer closure return type is `FnRetTy::Default`.
3220
3221                         // Now resolve the inner closure
3222                         {
3223                             // No need to resolve arguments: the inner closure has none.
3224                             // Resolve the return type:
3225                             visit::walk_fn_ret_ty(this, &fn_decl.output);
3226                             // Resolve the body
3227                             this.visit_expr(body);
3228                         }
3229                     })
3230                 });
3231             }
3232             ExprKind::Async(..) | ExprKind::Closure(..) => {
3233                 self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
3234             }
3235             ExprKind::Repeat(ref elem, ref ct) => {
3236                 self.visit_expr(elem);
3237                 self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| {
3238                     this.resolve_anon_const(ct, IsRepeatExpr::Yes)
3239                 });
3240             }
3241             ExprKind::ConstBlock(ref ct) => {
3242                 self.resolve_anon_const(ct, IsRepeatExpr::No);
3243             }
3244             ExprKind::Index(ref elem, ref idx) => {
3245                 self.resolve_expr(elem, Some(expr));
3246                 self.visit_expr(idx);
3247             }
3248             _ => {
3249                 visit::walk_expr(self, expr);
3250             }
3251         }
3252     }
3253
3254     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
3255         match expr.kind {
3256             ExprKind::Field(_, ident) => {
3257                 // FIXME(#6890): Even though you can't treat a method like a
3258                 // field, we need to add any trait methods we find that match
3259                 // the field name so that we can do some nice error reporting
3260                 // later on in typeck.
3261                 let traits = self.traits_in_scope(ident, ValueNS);
3262                 self.r.trait_map.insert(expr.id, traits);
3263             }
3264             ExprKind::MethodCall(ref segment, ..) => {
3265                 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
3266                 let traits = self.traits_in_scope(segment.ident, ValueNS);
3267                 self.r.trait_map.insert(expr.id, traits);
3268             }
3269             _ => {
3270                 // Nothing to do.
3271             }
3272         }
3273     }
3274
3275     fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
3276         self.r.traits_in_scope(
3277             self.current_trait_ref.as_ref().map(|(module, _)| *module),
3278             &self.parent_scope,
3279             ident.span.ctxt(),
3280             Some((ident.name, ns)),
3281         )
3282     }
3283 }
3284
3285 struct LifetimeCountVisitor<'a, 'b> {
3286     r: &'b mut Resolver<'a>,
3287 }
3288
3289 /// Walks the whole crate in DFS order, visiting each item, counting the declared number of
3290 /// lifetime generic parameters.
3291 impl<'ast> Visitor<'ast> for LifetimeCountVisitor<'_, '_> {
3292     fn visit_item(&mut self, item: &'ast Item) {
3293         match &item.kind {
3294             ItemKind::TyAlias(box TyAlias { ref generics, .. })
3295             | ItemKind::Fn(box Fn { ref generics, .. })
3296             | ItemKind::Enum(_, ref generics)
3297             | ItemKind::Struct(_, ref generics)
3298             | ItemKind::Union(_, ref generics)
3299             | ItemKind::Impl(box Impl { ref generics, .. })
3300             | ItemKind::Trait(box Trait { ref generics, .. })
3301             | ItemKind::TraitAlias(ref generics, _) => {
3302                 let def_id = self.r.local_def_id(item.id);
3303                 let count = generics
3304                     .params
3305                     .iter()
3306                     .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
3307                     .count();
3308                 self.r.item_generics_num_lifetimes.insert(def_id, count);
3309             }
3310
3311             ItemKind::Mod(..)
3312             | ItemKind::ForeignMod(..)
3313             | ItemKind::Static(..)
3314             | ItemKind::Const(..)
3315             | ItemKind::Use(..)
3316             | ItemKind::ExternCrate(..)
3317             | ItemKind::MacroDef(..)
3318             | ItemKind::GlobalAsm(..)
3319             | ItemKind::MacCall(..) => {}
3320         }
3321         visit::walk_item(self, item)
3322     }
3323 }
3324
3325 impl<'a> Resolver<'a> {
3326     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
3327         visit::walk_crate(&mut LifetimeCountVisitor { r: self }, krate);
3328         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
3329         visit::walk_crate(&mut late_resolution_visitor, krate);
3330         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
3331             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
3332         }
3333     }
3334 }