]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late.rs
Auto merge of #79134 - ohadravid:nzint-div, r=dtolnay
[rust.git] / compiler / rustc_resolve / src / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use rustc_ast::ptr::P;
15 use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
16 use rustc_ast::*;
17 use rustc_ast::{unwrap_or, walk_list};
18 use rustc_ast_lowering::ResolverAstLowering;
19 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
20 use rustc_errors::DiagnosticId;
21 use rustc_hir::def::Namespace::{self, *};
22 use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
23 use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
24 use rustc_hir::TraitCandidate;
25 use rustc_middle::{bug, span_bug};
26 use rustc_session::lint;
27 use rustc_span::symbol::{kw, sym, Ident, Symbol};
28 use rustc_span::Span;
29 use smallvec::{smallvec, SmallVec};
30
31 use rustc_span::source_map::{respan, Spanned};
32 use std::collections::{hash_map::Entry, BTreeSet};
33 use std::mem::{replace, take};
34 use tracing::debug;
35
36 mod diagnostics;
37 crate mod lifetimes;
38
39 type Res = def::Res<NodeId>;
40
41 type IdentMap<T> = FxHashMap<Ident, T>;
42
43 /// Map from the name in a pattern to its binding mode.
44 type BindingMap = IdentMap<BindingInfo>;
45
46 #[derive(Copy, Clone, Debug)]
47 struct BindingInfo {
48     span: Span,
49     binding_mode: BindingMode,
50 }
51
52 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
53 enum PatternSource {
54     Match,
55     Let,
56     For,
57     FnParam,
58 }
59
60 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
61 enum IsRepeatExpr {
62     No,
63     Yes,
64 }
65
66 impl PatternSource {
67     fn descr(self) -> &'static str {
68         match self {
69             PatternSource::Match => "match binding",
70             PatternSource::Let => "let binding",
71             PatternSource::For => "for binding",
72             PatternSource::FnParam => "function parameter",
73         }
74     }
75 }
76
77 /// Denotes whether the context for the set of already bound bindings is a `Product`
78 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
79 /// See those functions for more information.
80 #[derive(PartialEq)]
81 enum PatBoundCtx {
82     /// A product pattern context, e.g., `Variant(a, b)`.
83     Product,
84     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
85     Or,
86 }
87
88 /// Does this the item (from the item rib scope) allow generic parameters?
89 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
90 crate enum HasGenericParams {
91     Yes,
92     No,
93 }
94
95 /// The rib kind restricts certain accesses,
96 /// e.g. to a `Res::Local` of an outer item.
97 #[derive(Copy, Clone, Debug)]
98 crate enum RibKind<'a> {
99     /// No restriction needs to be applied.
100     NormalRibKind,
101
102     /// We passed through an impl or trait and are now in one of its
103     /// methods or associated types. Allow references to ty params that impl or trait
104     /// binds. Disallow any other upvars (including other ty params that are
105     /// upvars).
106     AssocItemRibKind,
107
108     /// We passed through a closure. Disallow labels.
109     ClosureOrAsyncRibKind,
110
111     /// We passed through a function definition. Disallow upvars.
112     /// Permit only those const parameters that are specified in the function's generics.
113     FnItemRibKind,
114
115     /// We passed through an item scope. Disallow upvars.
116     ItemRibKind(HasGenericParams),
117
118     /// We're in a constant item. Can't refer to dynamic stuff.
119     ///
120     /// The `bool` indicates if this constant may reference generic parameters
121     /// and is used to only allow generic parameters to be used in trivial constant expressions.
122     ConstantItemRibKind(bool),
123
124     /// We passed through a module.
125     ModuleRibKind(Module<'a>),
126
127     /// We passed through a `macro_rules!` statement
128     MacroDefinition(DefId),
129
130     /// All bindings in this rib are type parameters that can't be used
131     /// from the default of a type parameter because they're not declared
132     /// before said type parameter. Also see the `visit_generics` override.
133     ForwardTyParamBanRibKind,
134
135     /// We are inside of the type of a const parameter. Can't refer to any
136     /// parameters.
137     ConstParamTyRibKind,
138 }
139
140 impl RibKind<'_> {
141     /// Whether this rib kind contains generic parameters, as opposed to local
142     /// variables.
143     crate fn contains_params(&self) -> bool {
144         match self {
145             NormalRibKind
146             | ClosureOrAsyncRibKind
147             | FnItemRibKind
148             | ConstantItemRibKind(_)
149             | ModuleRibKind(_)
150             | MacroDefinition(_)
151             | ConstParamTyRibKind => false,
152             AssocItemRibKind | ItemRibKind(_) | ForwardTyParamBanRibKind => true,
153         }
154     }
155 }
156
157 /// A single local scope.
158 ///
159 /// A rib represents a scope names can live in. Note that these appear in many places, not just
160 /// around braces. At any place where the list of accessible names (of the given namespace)
161 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
162 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
163 /// etc.
164 ///
165 /// Different [rib kinds](enum.RibKind) are transparent for different names.
166 ///
167 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
168 /// resolving, the name is looked up from inside out.
169 #[derive(Debug)]
170 crate struct Rib<'a, R = Res> {
171     pub bindings: IdentMap<R>,
172     pub kind: RibKind<'a>,
173 }
174
175 impl<'a, R> Rib<'a, R> {
176     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
177         Rib { bindings: Default::default(), kind }
178     }
179 }
180
181 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
182 crate enum AliasPossibility {
183     No,
184     Maybe,
185 }
186
187 #[derive(Copy, Clone, Debug)]
188 crate enum PathSource<'a> {
189     // Type paths `Path`.
190     Type,
191     // Trait paths in bounds or impls.
192     Trait(AliasPossibility),
193     // Expression paths `path`, with optional parent context.
194     Expr(Option<&'a Expr>),
195     // Paths in path patterns `Path`.
196     Pat,
197     // Paths in struct expressions and patterns `Path { .. }`.
198     Struct,
199     // Paths in tuple struct patterns `Path(..)`.
200     TupleStruct(Span, &'a [Span]),
201     // `m::A::B` in `<T as m::A>::B::C`.
202     TraitItem(Namespace),
203 }
204
205 impl<'a> PathSource<'a> {
206     fn namespace(self) -> Namespace {
207         match self {
208             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
209             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
210             PathSource::TraitItem(ns) => ns,
211         }
212     }
213
214     fn defer_to_typeck(self) -> bool {
215         match self {
216             PathSource::Type
217             | PathSource::Expr(..)
218             | PathSource::Pat
219             | PathSource::Struct
220             | PathSource::TupleStruct(..) => true,
221             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
222         }
223     }
224
225     fn descr_expected(self) -> &'static str {
226         match &self {
227             PathSource::Type => "type",
228             PathSource::Trait(_) => "trait",
229             PathSource::Pat => "unit struct, unit variant or constant",
230             PathSource::Struct => "struct, variant or union type",
231             PathSource::TupleStruct(..) => "tuple struct or tuple variant",
232             PathSource::TraitItem(ns) => match ns {
233                 TypeNS => "associated type",
234                 ValueNS => "method or associated constant",
235                 MacroNS => bug!("associated macro"),
236             },
237             PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
238                 // "function" here means "anything callable" rather than `DefKind::Fn`,
239                 // this is not precise but usually more helpful than just "value".
240                 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
241                     ExprKind::Path(_, path) => {
242                         let mut msg = "function";
243                         if let Some(segment) = path.segments.iter().last() {
244                             if let Some(c) = segment.ident.to_string().chars().next() {
245                                 if c.is_uppercase() {
246                                     msg = "function, tuple struct or tuple variant";
247                                 }
248                             }
249                         }
250                         msg
251                     }
252                     _ => "function",
253                 },
254                 _ => "value",
255             },
256         }
257     }
258
259     fn is_call(self) -> bool {
260         matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
261     }
262
263     crate fn is_expected(self, res: Res) -> bool {
264         match self {
265             PathSource::Type => matches!(res, Res::Def(
266                     DefKind::Struct
267                     | DefKind::Union
268                     | DefKind::Enum
269                     | DefKind::Trait
270                     | DefKind::TraitAlias
271                     | DefKind::TyAlias
272                     | DefKind::AssocTy
273                     | DefKind::TyParam
274                     | DefKind::OpaqueTy
275                     | DefKind::ForeignTy,
276                     _,
277                 )
278                 | Res::PrimTy(..)
279                 | Res::SelfTy(..)),
280             PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
281             PathSource::Trait(AliasPossibility::Maybe) => {
282                 matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
283             }
284             PathSource::Expr(..) => matches!(res, Res::Def(
285                     DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
286                     | DefKind::Const
287                     | DefKind::Static
288                     | DefKind::Fn
289                     | DefKind::AssocFn
290                     | DefKind::AssocConst
291                     | DefKind::ConstParam,
292                     _,
293                 )
294                 | Res::Local(..)
295                 | Res::SelfCtor(..)),
296             PathSource::Pat => matches!(res, Res::Def(
297                     DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
298                     _,
299                 )
300                 | Res::SelfCtor(..)),
301             PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
302             PathSource::Struct => matches!(res, Res::Def(
303                     DefKind::Struct
304                     | DefKind::Union
305                     | DefKind::Variant
306                     | DefKind::TyAlias
307                     | DefKind::AssocTy,
308                     _,
309                 )
310                 | Res::SelfTy(..)),
311             PathSource::TraitItem(ns) => match res {
312                 Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
313                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
314                 _ => false,
315             },
316         }
317     }
318
319     fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
320         use rustc_errors::error_code;
321         match (self, has_unexpected_resolution) {
322             (PathSource::Trait(_), true) => error_code!(E0404),
323             (PathSource::Trait(_), false) => error_code!(E0405),
324             (PathSource::Type, true) => error_code!(E0573),
325             (PathSource::Type, false) => error_code!(E0412),
326             (PathSource::Struct, true) => error_code!(E0574),
327             (PathSource::Struct, false) => error_code!(E0422),
328             (PathSource::Expr(..), true) => error_code!(E0423),
329             (PathSource::Expr(..), false) => error_code!(E0425),
330             (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
331             (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
332             (PathSource::TraitItem(..), true) => error_code!(E0575),
333             (PathSource::TraitItem(..), false) => error_code!(E0576),
334         }
335     }
336 }
337
338 #[derive(Default)]
339 struct DiagnosticMetadata<'ast> {
340     /// The current trait's associated items' ident, used for diagnostic suggestions.
341     current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
342
343     /// The current self type if inside an impl (used for better errors).
344     current_self_type: Option<Ty>,
345
346     /// The current self item if inside an ADT (used for better errors).
347     current_self_item: Option<NodeId>,
348
349     /// The current trait (used to suggest).
350     current_item: Option<&'ast Item>,
351
352     /// When processing generics and encountering a type not found, suggest introducing a type
353     /// param.
354     currently_processing_generics: bool,
355
356     /// The current enclosing (non-closure) function (used for better errors).
357     current_function: Option<(FnKind<'ast>, Span)>,
358
359     /// A list of labels as of yet unused. Labels will be removed from this map when
360     /// they are used (in a `break` or `continue` statement)
361     unused_labels: FxHashMap<NodeId, Span>,
362
363     /// Only used for better errors on `fn(): fn()`.
364     current_type_ascription: Vec<Span>,
365
366     /// Only used for better errors on `let <pat>: <expr, not type>;`.
367     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
368
369     /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
370     in_if_condition: Option<&'ast Expr>,
371
372     /// If we are currently in a trait object definition. Used to point at the bounds when
373     /// encountering a struct or enum.
374     current_trait_object: Option<&'ast [ast::GenericBound]>,
375
376     /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
377     current_where_predicate: Option<&'ast WherePredicate>,
378 }
379
380 struct LateResolutionVisitor<'a, 'b, 'ast> {
381     r: &'b mut Resolver<'a>,
382
383     /// The module that represents the current item scope.
384     parent_scope: ParentScope<'a>,
385
386     /// The current set of local scopes for types and values.
387     /// FIXME #4948: Reuse ribs to avoid allocation.
388     ribs: PerNS<Vec<Rib<'a>>>,
389
390     /// The current set of local scopes, for labels.
391     label_ribs: Vec<Rib<'a, NodeId>>,
392
393     /// The trait that the current context can refer to.
394     current_trait_ref: Option<(Module<'a>, TraitRef)>,
395
396     /// Fields used to add information to diagnostic errors.
397     diagnostic_metadata: DiagnosticMetadata<'ast>,
398
399     /// State used to know whether to ignore resolution errors for function bodies.
400     ///
401     /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
402     /// In most cases this will be `None`, in which case errors will always be reported.
403     /// If it is `true`, then it will be updated when entering a nested function or trait body.
404     in_func_body: bool,
405 }
406
407 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
408 impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
409     fn visit_item(&mut self, item: &'ast Item) {
410         let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
411         // Always report errors in items we just entered.
412         let old_ignore = replace(&mut self.in_func_body, false);
413         self.resolve_item(item);
414         self.in_func_body = old_ignore;
415         self.diagnostic_metadata.current_item = prev;
416     }
417     fn visit_arm(&mut self, arm: &'ast Arm) {
418         self.resolve_arm(arm);
419     }
420     fn visit_block(&mut self, block: &'ast Block) {
421         self.resolve_block(block);
422     }
423     fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
424         // We deal with repeat expressions explicitly in `resolve_expr`.
425         self.resolve_anon_const(constant, IsRepeatExpr::No);
426     }
427     fn visit_expr(&mut self, expr: &'ast Expr) {
428         self.resolve_expr(expr, None);
429     }
430     fn visit_local(&mut self, local: &'ast Local) {
431         let local_spans = match local.pat.kind {
432             // We check for this to avoid tuple struct fields.
433             PatKind::Wild => None,
434             _ => Some((
435                 local.pat.span,
436                 local.ty.as_ref().map(|ty| ty.span),
437                 local.init.as_ref().map(|init| init.span),
438             )),
439         };
440         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
441         self.resolve_local(local);
442         self.diagnostic_metadata.current_let_binding = original;
443     }
444     fn visit_ty(&mut self, ty: &'ast Ty) {
445         let prev = self.diagnostic_metadata.current_trait_object;
446         match ty.kind {
447             TyKind::Path(ref qself, ref path) => {
448                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
449             }
450             TyKind::ImplicitSelf => {
451                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
452                 let res = self
453                     .resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
454                     .map_or(Res::Err, |d| d.res());
455                 self.r.record_partial_res(ty.id, PartialRes::new(res));
456             }
457             TyKind::TraitObject(ref bounds, ..) => {
458                 self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
459             }
460             _ => (),
461         }
462         visit::walk_ty(self, ty);
463         self.diagnostic_metadata.current_trait_object = prev;
464     }
465     fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
466         self.smart_resolve_path(
467             tref.trait_ref.ref_id,
468             None,
469             &tref.trait_ref.path,
470             PathSource::Trait(AliasPossibility::Maybe),
471         );
472         visit::walk_poly_trait_ref(self, tref, m);
473     }
474     fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
475         match foreign_item.kind {
476             ForeignItemKind::Fn(_, _, ref generics, _)
477             | ForeignItemKind::TyAlias(_, ref generics, ..) => {
478                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
479                     visit::walk_foreign_item(this, foreign_item);
480                 });
481             }
482             ForeignItemKind::Static(..) => {
483                 self.with_item_rib(HasGenericParams::No, |this| {
484                     visit::walk_foreign_item(this, foreign_item);
485                 });
486             }
487             ForeignItemKind::MacCall(..) => {
488                 visit::walk_foreign_item(self, foreign_item);
489             }
490         }
491     }
492     fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
493         let rib_kind = match fn_kind {
494             // Bail if there's no body.
495             FnKind::Fn(.., None) => return visit::walk_fn(self, fn_kind, sp),
496             FnKind::Fn(FnCtxt::Free | FnCtxt::Foreign, ..) => FnItemRibKind,
497             FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
498             FnKind::Closure(..) => ClosureOrAsyncRibKind,
499         };
500         let previous_value = self.diagnostic_metadata.current_function;
501         if matches!(fn_kind, FnKind::Fn(..)) {
502             self.diagnostic_metadata.current_function = Some((fn_kind, sp));
503         }
504         debug!("(resolving function) entering function");
505         let declaration = fn_kind.decl();
506
507         // Create a value rib for the function.
508         self.with_rib(ValueNS, rib_kind, |this| {
509             // Create a label rib for the function.
510             this.with_label_rib(rib_kind, |this| {
511                 // Add each argument to the rib.
512                 this.resolve_params(&declaration.inputs);
513
514                 visit::walk_fn_ret_ty(this, &declaration.output);
515
516                 // Ignore errors in function bodies if this is rustdoc
517                 // Be sure not to set this until the function signature has been resolved.
518                 let previous_state = replace(&mut this.in_func_body, true);
519                 // Resolve the function body, potentially inside the body of an async closure
520                 match fn_kind {
521                     FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
522                     FnKind::Closure(_, body) => this.visit_expr(body),
523                 };
524
525                 debug!("(resolving function) leaving function");
526                 this.in_func_body = previous_state;
527             })
528         });
529         self.diagnostic_metadata.current_function = previous_value;
530     }
531
532     fn visit_generics(&mut self, generics: &'ast Generics) {
533         // For type parameter defaults, we have to ban access
534         // to following type parameters, as the InternalSubsts can only
535         // provide previous type parameters as they're built. We
536         // put all the parameters on the ban list and then remove
537         // them one by one as they are processed and become available.
538         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
539         let mut found_default = false;
540         default_ban_rib.bindings.extend(generics.params.iter().filter_map(
541             |param| match param.kind {
542                 GenericParamKind::Const { .. } | GenericParamKind::Lifetime { .. } => None,
543                 GenericParamKind::Type { ref default, .. } => {
544                     found_default |= default.is_some();
545                     found_default.then_some((Ident::with_dummy_span(param.ident.name), Res::Err))
546                 }
547             },
548         ));
549
550         // rust-lang/rust#61631: The type `Self` is essentially
551         // another type parameter. For ADTs, we consider it
552         // well-defined only after all of the ADT type parameters have
553         // been provided. Therefore, we do not allow use of `Self`
554         // anywhere in ADT type parameter defaults.
555         //
556         // (We however cannot ban `Self` for defaults on *all* generic
557         // lists; e.g. trait generics can usefully refer to `Self`,
558         // such as in the case of `trait Add<Rhs = Self>`.)
559         if self.diagnostic_metadata.current_self_item.is_some() {
560             // (`Some` if + only if we are in ADT's generics.)
561             default_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
562         }
563
564         for param in &generics.params {
565             match param.kind {
566                 GenericParamKind::Lifetime => self.visit_generic_param(param),
567                 GenericParamKind::Type { ref default } => {
568                     for bound in &param.bounds {
569                         self.visit_param_bound(bound);
570                     }
571
572                     if let Some(ref ty) = default {
573                         self.ribs[TypeNS].push(default_ban_rib);
574                         self.with_rib(ValueNS, ForwardTyParamBanRibKind, |this| {
575                             // HACK: We use an empty `ForwardTyParamBanRibKind` here which
576                             // is only used to forbid the use of const parameters inside of
577                             // type defaults.
578                             //
579                             // While the rib name doesn't really fit here, it does allow us to use the same
580                             // code for both const and type parameters.
581                             this.visit_ty(ty);
582                         });
583                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
584                     }
585
586                     // Allow all following defaults to refer to this type parameter.
587                     default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
588                 }
589                 GenericParamKind::Const { ref ty, kw_span: _ } => {
590                     for bound in &param.bounds {
591                         self.visit_param_bound(bound);
592                     }
593                     self.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
594                     self.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
595                     self.visit_ty(ty);
596                     self.ribs[TypeNS].pop().unwrap();
597                     self.ribs[ValueNS].pop().unwrap();
598                 }
599             }
600         }
601         for p in &generics.where_clause.predicates {
602             self.visit_where_predicate(p);
603         }
604     }
605
606     fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
607         debug!("visit_generic_arg({:?})", arg);
608         let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
609         match arg {
610             GenericArg::Type(ref ty) => {
611                 // We parse const arguments as path types as we cannot distinguish them during
612                 // parsing. We try to resolve that ambiguity by attempting resolution the type
613                 // namespace first, and if that fails we try again in the value namespace. If
614                 // resolution in the value namespace succeeds, we have an generic const argument on
615                 // our hands.
616                 if let TyKind::Path(ref qself, ref path) = ty.kind {
617                     // We cannot disambiguate multi-segment paths right now as that requires type
618                     // checking.
619                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
620                         let mut check_ns = |ns| {
621                             self.resolve_ident_in_lexical_scope(
622                                 path.segments[0].ident,
623                                 ns,
624                                 None,
625                                 path.span,
626                             )
627                             .is_some()
628                         };
629                         if !check_ns(TypeNS) && check_ns(ValueNS) {
630                             // This must be equivalent to `visit_anon_const`, but we cannot call it
631                             // directly due to visitor lifetimes so we have to copy-paste some code.
632                             //
633                             // Note that we might not be inside of an repeat expression here,
634                             // but considering that `IsRepeatExpr` is only relevant for
635                             // non-trivial constants this is doesn't matter.
636                             self.with_constant_rib(IsRepeatExpr::No, true, |this| {
637                                 this.smart_resolve_path(
638                                     ty.id,
639                                     qself.as_ref(),
640                                     path,
641                                     PathSource::Expr(None),
642                                 );
643
644                                 if let Some(ref qself) = *qself {
645                                     this.visit_ty(&qself.ty);
646                                 }
647                                 this.visit_path(path, ty.id);
648                             });
649
650                             self.diagnostic_metadata.currently_processing_generics = prev;
651                             return;
652                         }
653                     }
654                 }
655
656                 self.visit_ty(ty);
657             }
658             GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
659             GenericArg::Const(ct) => self.visit_anon_const(ct),
660         }
661         self.diagnostic_metadata.currently_processing_generics = prev;
662     }
663
664     fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
665         debug!("visit_where_predicate {:?}", p);
666         let previous_value =
667             replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
668         visit::walk_where_predicate(self, p);
669         self.diagnostic_metadata.current_where_predicate = previous_value;
670     }
671 }
672
673 impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
674     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
675         // During late resolution we only track the module component of the parent scope,
676         // although it may be useful to track other components as well for diagnostics.
677         let graph_root = resolver.graph_root;
678         let parent_scope = ParentScope::module(graph_root, resolver);
679         let start_rib_kind = ModuleRibKind(graph_root);
680         LateResolutionVisitor {
681             r: resolver,
682             parent_scope,
683             ribs: PerNS {
684                 value_ns: vec![Rib::new(start_rib_kind)],
685                 type_ns: vec![Rib::new(start_rib_kind)],
686                 macro_ns: vec![Rib::new(start_rib_kind)],
687             },
688             label_ribs: Vec::new(),
689             current_trait_ref: None,
690             diagnostic_metadata: DiagnosticMetadata::default(),
691             // errors at module scope should always be reported
692             in_func_body: false,
693         }
694     }
695
696     fn resolve_ident_in_lexical_scope(
697         &mut self,
698         ident: Ident,
699         ns: Namespace,
700         record_used_id: Option<NodeId>,
701         path_span: Span,
702     ) -> Option<LexicalScopeBinding<'a>> {
703         self.r.resolve_ident_in_lexical_scope(
704             ident,
705             ns,
706             &self.parent_scope,
707             record_used_id,
708             path_span,
709             &self.ribs[ns],
710         )
711     }
712
713     fn resolve_path(
714         &mut self,
715         path: &[Segment],
716         opt_ns: Option<Namespace>, // `None` indicates a module path in import
717         record_used: bool,
718         path_span: Span,
719         crate_lint: CrateLint,
720     ) -> PathResult<'a> {
721         self.r.resolve_path_with_ribs(
722             path,
723             opt_ns,
724             &self.parent_scope,
725             record_used,
726             path_span,
727             crate_lint,
728             Some(&self.ribs),
729         )
730     }
731
732     // AST resolution
733     //
734     // We maintain a list of value ribs and type ribs.
735     //
736     // Simultaneously, we keep track of the current position in the module
737     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
738     // the value or type namespaces, we first look through all the ribs and
739     // then query the module graph. When we resolve a name in the module
740     // namespace, we can skip all the ribs (since nested modules are not
741     // allowed within blocks in Rust) and jump straight to the current module
742     // graph node.
743     //
744     // Named implementations are handled separately. When we find a method
745     // call, we consult the module node to find all of the implementations in
746     // scope. This information is lazily cached in the module node. We then
747     // generate a fake "implementation scope" containing all the
748     // implementations thus found, for compatibility with old resolve pass.
749
750     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
751     fn with_rib<T>(
752         &mut self,
753         ns: Namespace,
754         kind: RibKind<'a>,
755         work: impl FnOnce(&mut Self) -> T,
756     ) -> T {
757         self.ribs[ns].push(Rib::new(kind));
758         let ret = work(self);
759         self.ribs[ns].pop();
760         ret
761     }
762
763     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
764         let id = self.r.local_def_id(id);
765         let module = self.r.module_map.get(&id).cloned(); // clones a reference
766         if let Some(module) = module {
767             // Move down in the graph.
768             let orig_module = replace(&mut self.parent_scope.module, module);
769             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
770                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
771                     let ret = f(this);
772                     this.parent_scope.module = orig_module;
773                     ret
774                 })
775             })
776         } else {
777             f(self)
778         }
779     }
780
781     /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
782     /// label and reports an error if the label is not found or is unreachable.
783     fn resolve_label(&self, mut label: Ident) -> Option<NodeId> {
784         let mut suggestion = None;
785
786         // Preserve the original span so that errors contain "in this macro invocation"
787         // information.
788         let original_span = label.span;
789
790         for i in (0..self.label_ribs.len()).rev() {
791             let rib = &self.label_ribs[i];
792
793             if let MacroDefinition(def) = rib.kind {
794                 // If an invocation of this macro created `ident`, give up on `ident`
795                 // and switch to `ident`'s source from the macro definition.
796                 if def == self.r.macro_def(label.span.ctxt()) {
797                     label.span.remove_mark();
798                 }
799             }
800
801             let ident = label.normalize_to_macro_rules();
802             if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
803                 return if self.is_label_valid_from_rib(i) {
804                     Some(*id)
805                 } else {
806                     self.report_error(
807                         original_span,
808                         ResolutionError::UnreachableLabel {
809                             name: label.name,
810                             definition_span: ident.span,
811                             suggestion,
812                         },
813                     );
814
815                     None
816                 };
817             }
818
819             // Diagnostics: Check if this rib contains a label with a similar name, keep track of
820             // the first such label that is encountered.
821             suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
822         }
823
824         self.report_error(
825             original_span,
826             ResolutionError::UndeclaredLabel { name: label.name, suggestion },
827         );
828         None
829     }
830
831     /// Determine whether or not a label from the `rib_index`th label rib is reachable.
832     fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
833         let ribs = &self.label_ribs[rib_index + 1..];
834
835         for rib in ribs {
836             match rib.kind {
837                 NormalRibKind | MacroDefinition(..) => {
838                     // Nothing to do. Continue.
839                 }
840
841                 AssocItemRibKind
842                 | ClosureOrAsyncRibKind
843                 | FnItemRibKind
844                 | ItemRibKind(..)
845                 | ConstantItemRibKind(_)
846                 | ModuleRibKind(..)
847                 | ForwardTyParamBanRibKind
848                 | ConstParamTyRibKind => {
849                     return false;
850                 }
851             }
852         }
853
854         true
855     }
856
857     fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
858         debug!("resolve_adt");
859         self.with_current_self_item(item, |this| {
860             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
861                 let item_def_id = this.r.local_def_id(item.id).to_def_id();
862                 this.with_self_rib(Res::SelfTy(None, Some((item_def_id, false))), |this| {
863                     visit::walk_item(this, item);
864                 });
865             });
866         });
867     }
868
869     fn future_proof_import(&mut self, use_tree: &UseTree) {
870         let segments = &use_tree.prefix.segments;
871         if !segments.is_empty() {
872             let ident = segments[0].ident;
873             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
874                 return;
875             }
876
877             let nss = match use_tree.kind {
878                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
879                 _ => &[TypeNS],
880             };
881             let report_error = |this: &Self, ns| {
882                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
883                 if this.should_report_errs() {
884                     this.r
885                         .session
886                         .span_err(ident.span, &format!("imports cannot refer to {}", what));
887                 }
888             };
889
890             for &ns in nss {
891                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
892                     Some(LexicalScopeBinding::Res(..)) => {
893                         report_error(self, ns);
894                     }
895                     Some(LexicalScopeBinding::Item(binding)) => {
896                         let orig_unusable_binding =
897                             replace(&mut self.r.unusable_binding, Some(binding));
898                         if let Some(LexicalScopeBinding::Res(..)) = self
899                             .resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
900                         {
901                             report_error(self, ns);
902                         }
903                         self.r.unusable_binding = orig_unusable_binding;
904                     }
905                     None => {}
906                 }
907             }
908         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
909             for (use_tree, _) in use_trees {
910                 self.future_proof_import(use_tree);
911             }
912         }
913     }
914
915     fn resolve_item(&mut self, item: &'ast Item) {
916         let name = item.ident.name;
917         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
918
919         match item.kind {
920             ItemKind::TyAlias(_, ref generics, _, _) | ItemKind::Fn(_, _, ref generics, _) => {
921                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
922                     visit::walk_item(this, item)
923                 });
924             }
925
926             ItemKind::Enum(_, ref generics)
927             | ItemKind::Struct(_, ref generics)
928             | ItemKind::Union(_, ref generics) => {
929                 self.resolve_adt(item, generics);
930             }
931
932             ItemKind::Impl {
933                 ref generics,
934                 ref of_trait,
935                 ref self_ty,
936                 items: ref impl_items,
937                 ..
938             } => {
939                 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
940             }
941
942             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
943                 // Create a new rib for the trait-wide type parameters.
944                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
945                     let local_def_id = this.r.local_def_id(item.id).to_def_id();
946                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
947                         this.visit_generics(generics);
948                         walk_list!(this, visit_param_bound, bounds);
949
950                         let walk_assoc_item = |this: &mut Self, generics, item| {
951                             this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
952                                 visit::walk_assoc_item(this, item, AssocCtxt::Trait)
953                             });
954                         };
955
956                         this.with_trait_items(trait_items, |this| {
957                             for item in trait_items {
958                                 match &item.kind {
959                                     AssocItemKind::Const(_, ty, default) => {
960                                         this.visit_ty(ty);
961                                         // Only impose the restrictions of `ConstRibKind` for an
962                                         // actual constant expression in a provided default.
963                                         if let Some(expr) = default {
964                                             // We allow arbitrary const expressions inside of associated consts,
965                                             // even if they are potentially not const evaluatable.
966                                             //
967                                             // Type parameters can already be used and as associated consts are
968                                             // not used as part of the type system, this is far less surprising.
969                                             this.with_constant_rib(
970                                                 IsRepeatExpr::No,
971                                                 true,
972                                                 |this| this.visit_expr(expr),
973                                             );
974                                         }
975                                     }
976                                     AssocItemKind::Fn(_, _, generics, _) => {
977                                         walk_assoc_item(this, generics, item);
978                                     }
979                                     AssocItemKind::TyAlias(_, generics, _, _) => {
980                                         walk_assoc_item(this, generics, item);
981                                     }
982                                     AssocItemKind::MacCall(_) => {
983                                         panic!("unexpanded macro in resolve!")
984                                     }
985                                 };
986                             }
987                         });
988                     });
989                 });
990             }
991
992             ItemKind::TraitAlias(ref generics, ref bounds) => {
993                 // Create a new rib for the trait-wide type parameters.
994                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
995                     let local_def_id = this.r.local_def_id(item.id).to_def_id();
996                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
997                         this.visit_generics(generics);
998                         walk_list!(this, visit_param_bound, bounds);
999                     });
1000                 });
1001             }
1002
1003             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
1004                 self.with_scope(item.id, |this| {
1005                     visit::walk_item(this, item);
1006                 });
1007             }
1008
1009             ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
1010                 debug!("resolve_item ItemKind::Const");
1011                 self.with_item_rib(HasGenericParams::No, |this| {
1012                     this.visit_ty(ty);
1013                     if let Some(expr) = expr {
1014                         // We already forbid generic params because of the above item rib,
1015                         // so it doesn't matter whether this is a trivial constant.
1016                         this.with_constant_rib(IsRepeatExpr::No, true, |this| {
1017                             this.visit_expr(expr)
1018                         });
1019                     }
1020                 });
1021             }
1022
1023             ItemKind::Use(ref use_tree) => {
1024                 self.future_proof_import(use_tree);
1025             }
1026
1027             ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
1028                 // do nothing, these are just around to be encoded
1029             }
1030
1031             ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
1032         }
1033     }
1034
1035     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
1036     where
1037         F: FnOnce(&mut Self),
1038     {
1039         debug!("with_generic_param_rib");
1040         let mut function_type_rib = Rib::new(kind);
1041         let mut function_value_rib = Rib::new(kind);
1042         let mut seen_bindings = FxHashMap::default();
1043
1044         // We also can't shadow bindings from the parent item
1045         if let AssocItemRibKind = kind {
1046             let mut add_bindings_for_ns = |ns| {
1047                 let parent_rib = self.ribs[ns]
1048                     .iter()
1049                     .rfind(|r| matches!(r.kind, ItemRibKind(_)))
1050                     .expect("associated item outside of an item");
1051                 seen_bindings
1052                     .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
1053             };
1054             add_bindings_for_ns(ValueNS);
1055             add_bindings_for_ns(TypeNS);
1056         }
1057
1058         for param in &generics.params {
1059             if let GenericParamKind::Lifetime { .. } = param.kind {
1060                 continue;
1061             }
1062
1063             let ident = param.ident.normalize_to_macros_2_0();
1064             debug!("with_generic_param_rib: {}", param.id);
1065
1066             match seen_bindings.entry(ident) {
1067                 Entry::Occupied(entry) => {
1068                     let span = *entry.get();
1069                     let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
1070                     self.report_error(param.ident.span, err);
1071                 }
1072                 Entry::Vacant(entry) => {
1073                     entry.insert(param.ident.span);
1074                 }
1075             }
1076
1077             // Plain insert (no renaming).
1078             let (rib, def_kind) = match param.kind {
1079                 GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
1080                 GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
1081                 _ => unreachable!(),
1082             };
1083             let res = Res::Def(def_kind, self.r.local_def_id(param.id).to_def_id());
1084             self.r.record_partial_res(param.id, PartialRes::new(res));
1085             rib.bindings.insert(ident, res);
1086         }
1087
1088         self.ribs[ValueNS].push(function_value_rib);
1089         self.ribs[TypeNS].push(function_type_rib);
1090
1091         f(self);
1092
1093         self.ribs[TypeNS].pop();
1094         self.ribs[ValueNS].pop();
1095     }
1096
1097     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
1098         self.label_ribs.push(Rib::new(kind));
1099         f(self);
1100         self.label_ribs.pop();
1101     }
1102
1103     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
1104         let kind = ItemRibKind(has_generic_params);
1105         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
1106     }
1107
1108     // HACK(min_const_generics,const_evaluatable_unchecked): We
1109     // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
1110     // with a future compat lint for now. We do this by adding an
1111     // additional special case for repeat expressions.
1112     //
1113     // Note that we intentionally still forbid `[0; N + 1]` during
1114     // name resolution so that we don't extend the future
1115     // compat lint to new cases.
1116     fn with_constant_rib(
1117         &mut self,
1118         is_repeat: IsRepeatExpr,
1119         is_trivial: bool,
1120         f: impl FnOnce(&mut Self),
1121     ) {
1122         debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
1123         self.with_rib(ValueNS, ConstantItemRibKind(is_trivial), |this| {
1124             this.with_rib(
1125                 TypeNS,
1126                 ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial),
1127                 |this| {
1128                     this.with_label_rib(ConstantItemRibKind(is_trivial), f);
1129                 },
1130             )
1131         });
1132     }
1133
1134     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
1135         // Handle nested impls (inside fn bodies)
1136         let previous_value =
1137             replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
1138         let result = f(self);
1139         self.diagnostic_metadata.current_self_type = previous_value;
1140         result
1141     }
1142
1143     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
1144         let previous_value =
1145             replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
1146         let result = f(self);
1147         self.diagnostic_metadata.current_self_item = previous_value;
1148         result
1149     }
1150
1151     /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
1152     fn with_trait_items<T>(
1153         &mut self,
1154         trait_items: &'ast Vec<P<AssocItem>>,
1155         f: impl FnOnce(&mut Self) -> T,
1156     ) -> T {
1157         let trait_assoc_items = replace(
1158             &mut self.diagnostic_metadata.current_trait_assoc_items,
1159             Some(&trait_items[..]),
1160         );
1161         let result = f(self);
1162         self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
1163         result
1164     }
1165
1166     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
1167     fn with_optional_trait_ref<T>(
1168         &mut self,
1169         opt_trait_ref: Option<&TraitRef>,
1170         f: impl FnOnce(&mut Self, Option<DefId>) -> T,
1171     ) -> T {
1172         let mut new_val = None;
1173         let mut new_id = None;
1174         if let Some(trait_ref) = opt_trait_ref {
1175             let path: Vec<_> = Segment::from_path(&trait_ref.path);
1176             let res = self.smart_resolve_path_fragment(
1177                 trait_ref.ref_id,
1178                 None,
1179                 &path,
1180                 trait_ref.path.span,
1181                 PathSource::Trait(AliasPossibility::No),
1182                 CrateLint::SimplePath(trait_ref.ref_id),
1183             );
1184             let res = res.base_res();
1185             if res != Res::Err {
1186                 new_id = Some(res.def_id());
1187                 let span = trait_ref.path.span;
1188                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
1189                     &path,
1190                     Some(TypeNS),
1191                     false,
1192                     span,
1193                     CrateLint::SimplePath(trait_ref.ref_id),
1194                 ) {
1195                     new_val = Some((module, trait_ref.clone()));
1196                 }
1197             }
1198         }
1199         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1200         let result = f(self, new_id);
1201         self.current_trait_ref = original_trait_ref;
1202         result
1203     }
1204
1205     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1206         let mut self_type_rib = Rib::new(NormalRibKind);
1207
1208         // Plain insert (no renaming, since types are not currently hygienic)
1209         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1210         self.ribs[ns].push(self_type_rib);
1211         f(self);
1212         self.ribs[ns].pop();
1213     }
1214
1215     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1216         self.with_self_rib_ns(TypeNS, self_res, f)
1217     }
1218
1219     fn resolve_implementation(
1220         &mut self,
1221         generics: &'ast Generics,
1222         opt_trait_reference: &'ast Option<TraitRef>,
1223         self_type: &'ast Ty,
1224         item_id: NodeId,
1225         impl_items: &'ast [P<AssocItem>],
1226     ) {
1227         debug!("resolve_implementation");
1228         // If applicable, create a rib for the type parameters.
1229         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1230             // Dummy self type for better errors if `Self` is used in the trait path.
1231             this.with_self_rib(Res::SelfTy(None, None), |this| {
1232                 // Resolve the trait reference, if necessary.
1233                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1234                     let item_def_id = this.r.local_def_id(item_id).to_def_id();
1235                     this.with_self_rib(Res::SelfTy(trait_id, Some((item_def_id, false))), |this| {
1236                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1237                             // Resolve type arguments in the trait path.
1238                             visit::walk_trait_ref(this, trait_ref);
1239                         }
1240                         // Resolve the self type.
1241                         this.visit_ty(self_type);
1242                         // Resolve the generic parameters.
1243                         this.visit_generics(generics);
1244                         // Resolve the items within the impl.
1245                         this.with_current_self_type(self_type, |this| {
1246                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1247                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1248                                 for item in impl_items {
1249                                     use crate::ResolutionError::*;
1250                                     match &item.kind {
1251                                         AssocItemKind::Const(_default, _ty, _expr) => {
1252                                             debug!("resolve_implementation AssocItemKind::Const",);
1253                                             // If this is a trait impl, ensure the const
1254                                             // exists in trait
1255                                             this.check_trait_item(
1256                                                 item.ident,
1257                                                 ValueNS,
1258                                                 item.span,
1259                                                 |n, s| ConstNotMemberOfTrait(n, s),
1260                                             );
1261
1262                                             // We allow arbitrary const expressions inside of associated consts,
1263                                             // even if they are potentially not const evaluatable.
1264                                             //
1265                                             // Type parameters can already be used and as associated consts are
1266                                             // not used as part of the type system, this is far less surprising.
1267                                             this.with_constant_rib(
1268                                                 IsRepeatExpr::No,
1269                                                 true,
1270                                                 |this| {
1271                                                     visit::walk_assoc_item(
1272                                                         this,
1273                                                         item,
1274                                                         AssocCtxt::Impl,
1275                                                     )
1276                                                 },
1277                                             );
1278                                         }
1279                                         AssocItemKind::Fn(_, _, generics, _) => {
1280                                             // We also need a new scope for the impl item type parameters.
1281                                             this.with_generic_param_rib(
1282                                                 generics,
1283                                                 AssocItemRibKind,
1284                                                 |this| {
1285                                                     // If this is a trait impl, ensure the method
1286                                                     // exists in trait
1287                                                     this.check_trait_item(
1288                                                         item.ident,
1289                                                         ValueNS,
1290                                                         item.span,
1291                                                         |n, s| MethodNotMemberOfTrait(n, s),
1292                                                     );
1293
1294                                                     visit::walk_assoc_item(
1295                                                         this,
1296                                                         item,
1297                                                         AssocCtxt::Impl,
1298                                                     )
1299                                                 },
1300                                             );
1301                                         }
1302                                         AssocItemKind::TyAlias(_, generics, _, _) => {
1303                                             // We also need a new scope for the impl item type parameters.
1304                                             this.with_generic_param_rib(
1305                                                 generics,
1306                                                 AssocItemRibKind,
1307                                                 |this| {
1308                                                     // If this is a trait impl, ensure the type
1309                                                     // exists in trait
1310                                                     this.check_trait_item(
1311                                                         item.ident,
1312                                                         TypeNS,
1313                                                         item.span,
1314                                                         |n, s| TypeNotMemberOfTrait(n, s),
1315                                                     );
1316
1317                                                     visit::walk_assoc_item(
1318                                                         this,
1319                                                         item,
1320                                                         AssocCtxt::Impl,
1321                                                     )
1322                                                 },
1323                                             );
1324                                         }
1325                                         AssocItemKind::MacCall(_) => {
1326                                             panic!("unexpanded macro in resolve!")
1327                                         }
1328                                     }
1329                                 }
1330                             });
1331                         });
1332                     });
1333                 });
1334             });
1335         });
1336     }
1337
1338     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1339     where
1340         F: FnOnce(Symbol, &str) -> ResolutionError<'_>,
1341     {
1342         // If there is a TraitRef in scope for an impl, then the method must be in the
1343         // trait.
1344         if let Some((module, _)) = self.current_trait_ref {
1345             if self
1346                 .r
1347                 .resolve_ident_in_module(
1348                     ModuleOrUniformRoot::Module(module),
1349                     ident,
1350                     ns,
1351                     &self.parent_scope,
1352                     false,
1353                     span,
1354                 )
1355                 .is_err()
1356             {
1357                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1358                 self.report_error(span, err(ident.name, &path_names_to_string(path)));
1359             }
1360         }
1361     }
1362
1363     fn resolve_params(&mut self, params: &'ast [Param]) {
1364         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1365         for Param { pat, ty, .. } in params {
1366             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1367             self.visit_ty(ty);
1368             debug!("(resolving function / closure) recorded parameter");
1369         }
1370     }
1371
1372     fn resolve_local(&mut self, local: &'ast Local) {
1373         debug!("resolving local ({:?})", local);
1374         // Resolve the type.
1375         walk_list!(self, visit_ty, &local.ty);
1376
1377         // Resolve the initializer.
1378         walk_list!(self, visit_expr, &local.init);
1379
1380         // Resolve the pattern.
1381         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1382     }
1383
1384     /// build a map from pattern identifiers to binding-info's.
1385     /// this is done hygienically. This could arise for a macro
1386     /// that expands into an or-pattern where one 'x' was from the
1387     /// user and one 'x' came from the macro.
1388     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1389         let mut binding_map = FxHashMap::default();
1390
1391         pat.walk(&mut |pat| {
1392             match pat.kind {
1393                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1394                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1395                 {
1396                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1397                 }
1398                 PatKind::Or(ref ps) => {
1399                     // Check the consistency of this or-pattern and
1400                     // then add all bindings to the larger map.
1401                     for bm in self.check_consistent_bindings(ps) {
1402                         binding_map.extend(bm);
1403                     }
1404                     return false;
1405                 }
1406                 _ => {}
1407             }
1408
1409             true
1410         });
1411
1412         binding_map
1413     }
1414
1415     fn is_base_res_local(&self, nid: NodeId) -> bool {
1416         matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
1417     }
1418
1419     /// Checks that all of the arms in an or-pattern have exactly the
1420     /// same set of bindings, with the same binding modes for each.
1421     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1422         let mut missing_vars = FxHashMap::default();
1423         let mut inconsistent_vars = FxHashMap::default();
1424
1425         // 1) Compute the binding maps of all arms.
1426         let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
1427
1428         // 2) Record any missing bindings or binding mode inconsistencies.
1429         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1430             // Check against all arms except for the same pattern which is always self-consistent.
1431             let inners = pats
1432                 .iter()
1433                 .enumerate()
1434                 .filter(|(_, pat)| pat.id != pat_outer.id)
1435                 .flat_map(|(idx, _)| maps[idx].iter())
1436                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1437
1438             for (name, info, &binding_inner) in inners {
1439                 match info {
1440                     None => {
1441                         // The inner binding is missing in the outer.
1442                         let binding_error =
1443                             missing_vars.entry(name).or_insert_with(|| BindingError {
1444                                 name,
1445                                 origin: BTreeSet::new(),
1446                                 target: BTreeSet::new(),
1447                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1448                             });
1449                         binding_error.origin.insert(binding_inner.span);
1450                         binding_error.target.insert(pat_outer.span);
1451                     }
1452                     Some(binding_outer) => {
1453                         if binding_outer.binding_mode != binding_inner.binding_mode {
1454                             // The binding modes in the outer and inner bindings differ.
1455                             inconsistent_vars
1456                                 .entry(name)
1457                                 .or_insert((binding_inner.span, binding_outer.span));
1458                         }
1459                     }
1460                 }
1461             }
1462         }
1463
1464         // 3) Report all missing variables we found.
1465         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1466         missing_vars.sort_by_key(|(sym, _err)| sym.as_str());
1467
1468         for (name, mut v) in missing_vars {
1469             if inconsistent_vars.contains_key(name) {
1470                 v.could_be_path = false;
1471             }
1472             self.report_error(
1473                 *v.origin.iter().next().unwrap(),
1474                 ResolutionError::VariableNotBoundInPattern(v),
1475             );
1476         }
1477
1478         // 4) Report all inconsistencies in binding modes we found.
1479         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1480         inconsistent_vars.sort();
1481         for (name, v) in inconsistent_vars {
1482             self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1483         }
1484
1485         // 5) Finally bubble up all the binding maps.
1486         maps
1487     }
1488
1489     /// Check the consistency of the outermost or-patterns.
1490     fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
1491         pat.walk(&mut |pat| match pat.kind {
1492             PatKind::Or(ref ps) => {
1493                 self.check_consistent_bindings(ps);
1494                 false
1495             }
1496             _ => true,
1497         })
1498     }
1499
1500     fn resolve_arm(&mut self, arm: &'ast Arm) {
1501         self.with_rib(ValueNS, NormalRibKind, |this| {
1502             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1503             walk_list!(this, visit_expr, &arm.guard);
1504             this.visit_expr(&arm.body);
1505         });
1506     }
1507
1508     /// Arising from `source`, resolve a top level pattern.
1509     fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
1510         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1511         self.resolve_pattern(pat, pat_src, &mut bindings);
1512     }
1513
1514     fn resolve_pattern(
1515         &mut self,
1516         pat: &'ast Pat,
1517         pat_src: PatternSource,
1518         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1519     ) {
1520         self.resolve_pattern_inner(pat, pat_src, bindings);
1521         // This has to happen *after* we determine which pat_idents are variants:
1522         self.check_consistent_bindings_top(pat);
1523         visit::walk_pat(self, pat);
1524     }
1525
1526     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1527     ///
1528     /// ### `bindings`
1529     ///
1530     /// A stack of sets of bindings accumulated.
1531     ///
1532     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1533     /// be interpreted as re-binding an already bound binding. This results in an error.
1534     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1535     /// in reusing this binding rather than creating a fresh one.
1536     ///
1537     /// When called at the top level, the stack must have a single element
1538     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1539     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1540     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1541     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1542     /// When a whole or-pattern has been dealt with, the thing happens.
1543     ///
1544     /// See the implementation and `fresh_binding` for more details.
1545     fn resolve_pattern_inner(
1546         &mut self,
1547         pat: &Pat,
1548         pat_src: PatternSource,
1549         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1550     ) {
1551         // Visit all direct subpatterns of this pattern.
1552         pat.walk(&mut |pat| {
1553             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1554             match pat.kind {
1555                 PatKind::Ident(bmode, ident, ref sub) => {
1556                     // First try to resolve the identifier as some existing entity,
1557                     // then fall back to a fresh binding.
1558                     let has_sub = sub.is_some();
1559                     let res = self
1560                         .try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1561                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1562                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1563                 }
1564                 PatKind::TupleStruct(ref path, ref sub_patterns) => {
1565                     self.smart_resolve_path(
1566                         pat.id,
1567                         None,
1568                         path,
1569                         PathSource::TupleStruct(
1570                             pat.span,
1571                             self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
1572                         ),
1573                     );
1574                 }
1575                 PatKind::Path(ref qself, ref path) => {
1576                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1577                 }
1578                 PatKind::Struct(ref path, ..) => {
1579                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1580                 }
1581                 PatKind::Or(ref ps) => {
1582                     // Add a new set of bindings to the stack. `Or` here records that when a
1583                     // binding already exists in this set, it should not result in an error because
1584                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1585                     bindings.push((PatBoundCtx::Or, Default::default()));
1586                     for p in ps {
1587                         // Now we need to switch back to a product context so that each
1588                         // part of the or-pattern internally rejects already bound names.
1589                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1590                         bindings.push((PatBoundCtx::Product, Default::default()));
1591                         self.resolve_pattern_inner(p, pat_src, bindings);
1592                         // Move up the non-overlapping bindings to the or-pattern.
1593                         // Existing bindings just get "merged".
1594                         let collected = bindings.pop().unwrap().1;
1595                         bindings.last_mut().unwrap().1.extend(collected);
1596                     }
1597                     // This or-pattern itself can itself be part of a product,
1598                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1599                     // Both cases bind `a` again in a product pattern and must be rejected.
1600                     let collected = bindings.pop().unwrap().1;
1601                     bindings.last_mut().unwrap().1.extend(collected);
1602
1603                     // Prevent visiting `ps` as we've already done so above.
1604                     return false;
1605                 }
1606                 _ => {}
1607             }
1608             true
1609         });
1610     }
1611
1612     fn fresh_binding(
1613         &mut self,
1614         ident: Ident,
1615         pat_id: NodeId,
1616         pat_src: PatternSource,
1617         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1618     ) -> Res {
1619         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1620         // (We must not add it if it's in the bindings map because that breaks the assumptions
1621         // later passes make about or-patterns.)
1622         let ident = ident.normalize_to_macro_rules();
1623
1624         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
1625         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
1626         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
1627         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
1628         // This is *required* for consistency which is checked later.
1629         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
1630
1631         if already_bound_and {
1632             // Overlap in a product pattern somewhere; report an error.
1633             use ResolutionError::*;
1634             let error = match pat_src {
1635                 // `fn f(a: u8, a: u8)`:
1636                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1637                 // `Variant(a, a)`:
1638                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1639             };
1640             self.report_error(ident.span, error(ident.name));
1641         }
1642
1643         // Record as bound if it's valid:
1644         let ident_valid = ident.name != kw::Invalid;
1645         if ident_valid {
1646             bindings.last_mut().unwrap().1.insert(ident);
1647         }
1648
1649         if already_bound_or {
1650             // `Variant1(a) | Variant2(a)`, ok
1651             // Reuse definition from the first `a`.
1652             self.innermost_rib_bindings(ValueNS)[&ident]
1653         } else {
1654             let res = Res::Local(pat_id);
1655             if ident_valid {
1656                 // A completely fresh binding add to the set if it's valid.
1657                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1658             }
1659             res
1660         }
1661     }
1662
1663     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1664         &mut self.ribs[ns].last_mut().unwrap().bindings
1665     }
1666
1667     fn try_resolve_as_non_binding(
1668         &mut self,
1669         pat_src: PatternSource,
1670         pat: &Pat,
1671         bm: BindingMode,
1672         ident: Ident,
1673         has_sub: bool,
1674     ) -> Option<Res> {
1675         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1676         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1677         // also be interpreted as a path to e.g. a constant, variant, etc.
1678         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
1679
1680         let ls_binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?;
1681         let (res, binding) = match ls_binding {
1682             LexicalScopeBinding::Item(binding)
1683                 if is_syntactic_ambiguity && binding.is_ambiguity() =>
1684             {
1685                 // For ambiguous bindings we don't know all their definitions and cannot check
1686                 // whether they can be shadowed by fresh bindings or not, so force an error.
1687                 // issues/33118#issuecomment-233962221 (see below) still applies here,
1688                 // but we have to ignore it for backward compatibility.
1689                 self.r.record_use(ident, ValueNS, binding, false);
1690                 return None;
1691             }
1692             LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
1693             LexicalScopeBinding::Res(res) => (res, None),
1694         };
1695
1696         match res {
1697             Res::SelfCtor(_) // See #70549.
1698             | Res::Def(
1699                 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
1700                 _,
1701             ) if is_syntactic_ambiguity => {
1702                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1703                 if let Some(binding) = binding {
1704                     self.r.record_use(ident, ValueNS, binding, false);
1705                 }
1706                 Some(res)
1707             }
1708             Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static, _) => {
1709                 // This is unambiguously a fresh binding, either syntactically
1710                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1711                 // to something unusable as a pattern (e.g., constructor function),
1712                 // but we still conservatively report an error, see
1713                 // issues/33118#issuecomment-233962221 for one reason why.
1714                 self.report_error(
1715                     ident.span,
1716                     ResolutionError::BindingShadowsSomethingUnacceptable(
1717                         pat_src.descr(),
1718                         ident.name,
1719                         binding.expect("no binding for a ctor or static"),
1720                     ),
1721                 );
1722                 None
1723             }
1724             Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
1725                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1726                 None
1727             }
1728             _ => span_bug!(
1729                 ident.span,
1730                 "unexpected resolution for an identifier in pattern: {:?}",
1731                 res,
1732             ),
1733         }
1734     }
1735
1736     // High-level and context dependent path resolution routine.
1737     // Resolves the path and records the resolution into definition map.
1738     // If resolution fails tries several techniques to find likely
1739     // resolution candidates, suggest imports or other help, and report
1740     // errors in user friendly way.
1741     fn smart_resolve_path(
1742         &mut self,
1743         id: NodeId,
1744         qself: Option<&QSelf>,
1745         path: &Path,
1746         source: PathSource<'ast>,
1747     ) {
1748         self.smart_resolve_path_fragment(
1749             id,
1750             qself,
1751             &Segment::from_path(path),
1752             path.span,
1753             source,
1754             CrateLint::SimplePath(id),
1755         );
1756     }
1757
1758     fn smart_resolve_path_fragment(
1759         &mut self,
1760         id: NodeId,
1761         qself: Option<&QSelf>,
1762         path: &[Segment],
1763         span: Span,
1764         source: PathSource<'ast>,
1765         crate_lint: CrateLint,
1766     ) -> PartialRes {
1767         tracing::debug!(
1768             "smart_resolve_path_fragment(id={:?},qself={:?},path={:?}",
1769             id,
1770             qself,
1771             path
1772         );
1773         let ns = source.namespace();
1774
1775         let report_errors = |this: &mut Self, res: Option<Res>| {
1776             if this.should_report_errs() {
1777                 let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1778
1779                 let def_id = this.parent_scope.module.normal_ancestor_id;
1780                 let instead = res.is_some();
1781                 let suggestion =
1782                     if res.is_none() { this.report_missing_type_error(path) } else { None };
1783
1784                 this.r.use_injections.push(UseError {
1785                     err,
1786                     candidates,
1787                     def_id,
1788                     instead,
1789                     suggestion,
1790                 });
1791             }
1792
1793             PartialRes::new(Res::Err)
1794         };
1795
1796         // For paths originating from calls (like in `HashMap::new()`), tries
1797         // to enrich the plain `failed to resolve: ...` message with hints
1798         // about possible missing imports.
1799         //
1800         // Similar thing, for types, happens in `report_errors` above.
1801         let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
1802             if !source.is_call() {
1803                 return Some(parent_err);
1804             }
1805
1806             // Before we start looking for candidates, we have to get our hands
1807             // on the type user is trying to perform invocation on; basically:
1808             // we're transforming `HashMap::new` into just `HashMap`
1809             let path = if let Some((_, path)) = path.split_last() {
1810                 path
1811             } else {
1812                 return Some(parent_err);
1813             };
1814
1815             let (mut err, candidates) =
1816                 this.smart_resolve_report_errors(path, span, PathSource::Type, None);
1817
1818             if candidates.is_empty() {
1819                 err.cancel();
1820                 return Some(parent_err);
1821             }
1822
1823             // There are two different error messages user might receive at
1824             // this point:
1825             // - E0412 cannot find type `{}` in this scope
1826             // - E0433 failed to resolve: use of undeclared type or module `{}`
1827             //
1828             // The first one is emitted for paths in type-position, and the
1829             // latter one - for paths in expression-position.
1830             //
1831             // Thus (since we're in expression-position at this point), not to
1832             // confuse the user, we want to keep the *message* from E0432 (so
1833             // `parent_err`), but we want *hints* from E0412 (so `err`).
1834             //
1835             // And that's what happens below - we're just mixing both messages
1836             // into a single one.
1837             let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
1838
1839             parent_err.cancel();
1840
1841             err.message = take(&mut parent_err.message);
1842             err.code = take(&mut parent_err.code);
1843             err.children = take(&mut parent_err.children);
1844
1845             drop(parent_err);
1846
1847             let def_id = this.parent_scope.module.normal_ancestor_id;
1848
1849             if this.should_report_errs() {
1850                 this.r.use_injections.push(UseError {
1851                     err,
1852                     candidates,
1853                     def_id,
1854                     instead: false,
1855                     suggestion: None,
1856                 });
1857             } else {
1858                 err.cancel();
1859             }
1860
1861             // We don't return `Some(parent_err)` here, because the error will
1862             // be already printed as part of the `use` injections
1863             None
1864         };
1865
1866         let partial_res = match self.resolve_qpath_anywhere(
1867             id,
1868             qself,
1869             path,
1870             ns,
1871             span,
1872             source.defer_to_typeck(),
1873             crate_lint,
1874         ) {
1875             Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
1876                 if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
1877                 {
1878                     partial_res
1879                 } else {
1880                     report_errors(self, Some(partial_res.base_res()))
1881                 }
1882             }
1883
1884             Ok(Some(partial_res)) if source.defer_to_typeck() => {
1885                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1886                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1887                 // it needs to be added to the trait map.
1888                 if ns == ValueNS {
1889                     let item_name = path.last().unwrap().ident;
1890                     let traits = self.get_traits_containing_item(item_name, ns);
1891                     self.r.trait_map.insert(id, traits);
1892                 }
1893
1894                 if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
1895                     let mut std_path = Vec::with_capacity(1 + path.len());
1896
1897                     std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
1898                     std_path.extend(path);
1899                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1900                         self.resolve_path(&std_path, Some(ns), false, span, CrateLint::No)
1901                     {
1902                         // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1903                         let item_span =
1904                             path.iter().last().map(|segment| segment.ident.span).unwrap_or(span);
1905
1906                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1907                         hm.insert(item_span, span);
1908                         hm.insert(span, span);
1909                     }
1910                 }
1911
1912                 partial_res
1913             }
1914
1915             Err(err) => {
1916                 if let Some(err) = report_errors_for_call(self, err) {
1917                     self.report_error(err.span, err.node);
1918                 }
1919
1920                 PartialRes::new(Res::Err)
1921             }
1922
1923             _ => report_errors(self, None),
1924         };
1925
1926         if let PathSource::TraitItem(..) = source {
1927         } else {
1928             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1929             self.r.record_partial_res(id, partial_res);
1930         }
1931
1932         partial_res
1933     }
1934
1935     fn self_type_is_available(&mut self, span: Span) -> bool {
1936         let binding = self.resolve_ident_in_lexical_scope(
1937             Ident::with_dummy_span(kw::SelfUpper),
1938             TypeNS,
1939             None,
1940             span,
1941         );
1942         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1943     }
1944
1945     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1946         let ident = Ident::new(kw::SelfLower, self_span);
1947         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1948         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1949     }
1950
1951     /// A wrapper around [`Resolver::report_error`].
1952     ///
1953     /// This doesn't emit errors for function bodies if this is rustdoc.
1954     fn report_error(&self, span: Span, resolution_error: ResolutionError<'_>) {
1955         if self.should_report_errs() {
1956             self.r.report_error(span, resolution_error);
1957         }
1958     }
1959
1960     #[inline]
1961     /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
1962     fn should_report_errs(&self) -> bool {
1963         !(self.r.session.opts.actually_rustdoc && self.in_func_body)
1964     }
1965
1966     // Resolve in alternative namespaces if resolution in the primary namespace fails.
1967     fn resolve_qpath_anywhere(
1968         &mut self,
1969         id: NodeId,
1970         qself: Option<&QSelf>,
1971         path: &[Segment],
1972         primary_ns: Namespace,
1973         span: Span,
1974         defer_to_typeck: bool,
1975         crate_lint: CrateLint,
1976     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
1977         let mut fin_res = None;
1978
1979         for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
1980             if i == 0 || ns != primary_ns {
1981                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint)? {
1982                     Some(partial_res)
1983                         if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
1984                     {
1985                         return Ok(Some(partial_res));
1986                     }
1987                     partial_res => {
1988                         if fin_res.is_none() {
1989                             fin_res = partial_res;
1990                         }
1991                     }
1992                 }
1993             }
1994         }
1995
1996         assert!(primary_ns != MacroNS);
1997
1998         if qself.is_none() {
1999             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
2000             let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
2001             if let Ok((_, res)) =
2002                 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
2003             {
2004                 return Ok(Some(PartialRes::new(res)));
2005             }
2006         }
2007
2008         Ok(fin_res)
2009     }
2010
2011     /// Handles paths that may refer to associated items.
2012     fn resolve_qpath(
2013         &mut self,
2014         id: NodeId,
2015         qself: Option<&QSelf>,
2016         path: &[Segment],
2017         ns: Namespace,
2018         span: Span,
2019         crate_lint: CrateLint,
2020     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2021         debug!(
2022             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
2023             id, qself, path, ns, span,
2024         );
2025
2026         if let Some(qself) = qself {
2027             if qself.position == 0 {
2028                 // This is a case like `<T>::B`, where there is no
2029                 // trait to resolve.  In that case, we leave the `B`
2030                 // segment to be resolved by type-check.
2031                 return Ok(Some(PartialRes::with_unresolved_segments(
2032                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
2033                     path.len(),
2034                 )));
2035             }
2036
2037             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
2038             //
2039             // Currently, `path` names the full item (`A::B::C`, in
2040             // our example).  so we extract the prefix of that that is
2041             // the trait (the slice upto and including
2042             // `qself.position`). And then we recursively resolve that,
2043             // but with `qself` set to `None`.
2044             //
2045             // However, setting `qself` to none (but not changing the
2046             // span) loses the information about where this path
2047             // *actually* appears, so for the purposes of the crate
2048             // lint we pass along information that this is the trait
2049             // name from a fully qualified path, and this also
2050             // contains the full span (the `CrateLint::QPathTrait`).
2051             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2052             let partial_res = self.smart_resolve_path_fragment(
2053                 id,
2054                 None,
2055                 &path[..=qself.position],
2056                 span,
2057                 PathSource::TraitItem(ns),
2058                 CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
2059             );
2060
2061             // The remaining segments (the `C` in our example) will
2062             // have to be resolved by type-check, since that requires doing
2063             // trait resolution.
2064             return Ok(Some(PartialRes::with_unresolved_segments(
2065                 partial_res.base_res(),
2066                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
2067             )));
2068         }
2069
2070         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
2071             PathResult::NonModule(path_res) => path_res,
2072             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
2073                 PartialRes::new(module.res().unwrap())
2074             }
2075             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2076             // don't report an error right away, but try to fallback to a primitive type.
2077             // So, we are still able to successfully resolve something like
2078             //
2079             // use std::u8; // bring module u8 in scope
2080             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2081             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2082             //                     // not to non-existent std::u8::max_value
2083             // }
2084             //
2085             // Such behavior is required for backward compatibility.
2086             // The same fallback is used when `a` resolves to nothing.
2087             PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
2088                 if (ns == TypeNS || path.len() > 1)
2089                     && self
2090                         .r
2091                         .primitive_type_table
2092                         .primitive_types
2093                         .contains_key(&path[0].ident.name) =>
2094             {
2095                 let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
2096                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
2097             }
2098             PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2099                 PartialRes::new(module.res().unwrap())
2100             }
2101             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
2102                 return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
2103             }
2104             PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
2105             PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
2106         };
2107
2108         if path.len() > 1
2109             && result.base_res() != Res::Err
2110             && path[0].ident.name != kw::PathRoot
2111             && path[0].ident.name != kw::DollarCrate
2112         {
2113             let unqualified_result = {
2114                 match self.resolve_path(
2115                     &[*path.last().unwrap()],
2116                     Some(ns),
2117                     false,
2118                     span,
2119                     CrateLint::No,
2120                 ) {
2121                     PathResult::NonModule(path_res) => path_res.base_res(),
2122                     PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2123                         module.res().unwrap()
2124                     }
2125                     _ => return Ok(Some(result)),
2126                 }
2127             };
2128             if result.base_res() == unqualified_result {
2129                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2130                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
2131             }
2132         }
2133
2134         Ok(Some(result))
2135     }
2136
2137     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
2138         if let Some(label) = label {
2139             if label.ident.as_str().as_bytes()[1] != b'_' {
2140                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
2141             }
2142             self.with_label_rib(NormalRibKind, |this| {
2143                 let ident = label.ident.normalize_to_macro_rules();
2144                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
2145                 f(this);
2146             });
2147         } else {
2148             f(self);
2149         }
2150     }
2151
2152     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
2153         self.with_resolved_label(label, id, |this| this.visit_block(block));
2154     }
2155
2156     fn resolve_block(&mut self, block: &'ast Block) {
2157         debug!("(resolving block) entering block");
2158         // Move down in the graph, if there's an anonymous module rooted here.
2159         let orig_module = self.parent_scope.module;
2160         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
2161
2162         let mut num_macro_definition_ribs = 0;
2163         if let Some(anonymous_module) = anonymous_module {
2164             debug!("(resolving block) found anonymous module, moving down");
2165             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2166             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2167             self.parent_scope.module = anonymous_module;
2168         } else {
2169             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2170         }
2171
2172         // Descend into the block.
2173         for stmt in &block.stmts {
2174             if let StmtKind::Item(ref item) = stmt.kind {
2175                 if let ItemKind::MacroDef(..) = item.kind {
2176                     num_macro_definition_ribs += 1;
2177                     let res = self.r.local_def_id(item.id).to_def_id();
2178                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
2179                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
2180                 }
2181             }
2182
2183             self.visit_stmt(stmt);
2184         }
2185
2186         // Move back up.
2187         self.parent_scope.module = orig_module;
2188         for _ in 0..num_macro_definition_ribs {
2189             self.ribs[ValueNS].pop();
2190             self.label_ribs.pop();
2191         }
2192         self.ribs[ValueNS].pop();
2193         if anonymous_module.is_some() {
2194             self.ribs[TypeNS].pop();
2195         }
2196         debug!("(resolving block) leaving block");
2197     }
2198
2199     fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
2200         debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
2201         self.with_constant_rib(
2202             is_repeat,
2203             constant.value.is_potential_trivial_const_param(),
2204             |this| {
2205                 visit::walk_anon_const(this, constant);
2206             },
2207         );
2208     }
2209
2210     fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
2211         // First, record candidate traits for this expression if it could
2212         // result in the invocation of a method call.
2213
2214         self.record_candidate_traits_for_expr_if_necessary(expr);
2215
2216         // Next, resolve the node.
2217         match expr.kind {
2218             ExprKind::Path(ref qself, ref path) => {
2219                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2220                 visit::walk_expr(self, expr);
2221             }
2222
2223             ExprKind::Struct(ref path, ..) => {
2224                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
2225                 visit::walk_expr(self, expr);
2226             }
2227
2228             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
2229                 if let Some(node_id) = self.resolve_label(label.ident) {
2230                     // Since this res is a label, it is never read.
2231                     self.r.label_res_map.insert(expr.id, node_id);
2232                     self.diagnostic_metadata.unused_labels.remove(&node_id);
2233                 }
2234
2235                 // visit `break` argument if any
2236                 visit::walk_expr(self, expr);
2237             }
2238
2239             ExprKind::Let(ref pat, ref scrutinee) => {
2240                 self.visit_expr(scrutinee);
2241                 self.resolve_pattern_top(pat, PatternSource::Let);
2242             }
2243
2244             ExprKind::If(ref cond, ref then, ref opt_else) => {
2245                 self.with_rib(ValueNS, NormalRibKind, |this| {
2246                     let old = this.diagnostic_metadata.in_if_condition.replace(cond);
2247                     this.visit_expr(cond);
2248                     this.diagnostic_metadata.in_if_condition = old;
2249                     this.visit_block(then);
2250                 });
2251                 if let Some(expr) = opt_else {
2252                     self.visit_expr(expr);
2253                 }
2254             }
2255
2256             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
2257
2258             ExprKind::While(ref cond, ref block, label) => {
2259                 self.with_resolved_label(label, expr.id, |this| {
2260                     this.with_rib(ValueNS, NormalRibKind, |this| {
2261                         this.visit_expr(cond);
2262                         this.visit_block(block);
2263                     })
2264                 });
2265             }
2266
2267             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
2268                 self.visit_expr(iter_expr);
2269                 self.with_rib(ValueNS, NormalRibKind, |this| {
2270                     this.resolve_pattern_top(pat, PatternSource::For);
2271                     this.resolve_labeled_block(label, expr.id, block);
2272                 });
2273             }
2274
2275             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
2276
2277             // Equivalent to `visit::walk_expr` + passing some context to children.
2278             ExprKind::Field(ref subexpression, _) => {
2279                 self.resolve_expr(subexpression, Some(expr));
2280             }
2281             ExprKind::MethodCall(ref segment, ref arguments, _) => {
2282                 let mut arguments = arguments.iter();
2283                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
2284                 for argument in arguments {
2285                     self.resolve_expr(argument, None);
2286                 }
2287                 self.visit_path_segment(expr.span, segment);
2288             }
2289
2290             ExprKind::Call(ref callee, ref arguments) => {
2291                 self.resolve_expr(callee, Some(expr));
2292                 for argument in arguments {
2293                     self.resolve_expr(argument, None);
2294                 }
2295             }
2296             ExprKind::Type(ref type_expr, ref ty) => {
2297                 // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
2298                 // type ascription. Here we are trying to retrieve the span of the colon token as
2299                 // well, but only if it's written without spaces `expr:Ty` and therefore confusable
2300                 // with `expr::Ty`, only in this case it will match the span from
2301                 // `type_ascription_path_suggestions`.
2302                 self.diagnostic_metadata
2303                     .current_type_ascription
2304                     .push(type_expr.span.between(ty.span));
2305                 visit::walk_expr(self, expr);
2306                 self.diagnostic_metadata.current_type_ascription.pop();
2307             }
2308             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
2309             // resolve the arguments within the proper scopes so that usages of them inside the
2310             // closure are detected as upvars rather than normal closure arg usages.
2311             ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
2312                 self.with_rib(ValueNS, NormalRibKind, |this| {
2313                     this.with_label_rib(ClosureOrAsyncRibKind, |this| {
2314                         // Resolve arguments:
2315                         this.resolve_params(&fn_decl.inputs);
2316                         // No need to resolve return type --
2317                         // the outer closure return type is `FnRetTy::Default`.
2318
2319                         // Now resolve the inner closure
2320                         {
2321                             // No need to resolve arguments: the inner closure has none.
2322                             // Resolve the return type:
2323                             visit::walk_fn_ret_ty(this, &fn_decl.output);
2324                             // Resolve the body
2325                             this.visit_expr(body);
2326                         }
2327                     })
2328                 });
2329             }
2330             ExprKind::Async(..) | ExprKind::Closure(..) => {
2331                 self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
2332             }
2333             ExprKind::Repeat(ref elem, ref ct) => {
2334                 self.visit_expr(elem);
2335                 self.resolve_anon_const(ct, IsRepeatExpr::Yes);
2336             }
2337             _ => {
2338                 visit::walk_expr(self, expr);
2339             }
2340         }
2341     }
2342
2343     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
2344         match expr.kind {
2345             ExprKind::Field(_, ident) => {
2346                 // FIXME(#6890): Even though you can't treat a method like a
2347                 // field, we need to add any trait methods we find that match
2348                 // the field name so that we can do some nice error reporting
2349                 // later on in typeck.
2350                 let traits = self.get_traits_containing_item(ident, ValueNS);
2351                 self.r.trait_map.insert(expr.id, traits);
2352             }
2353             ExprKind::MethodCall(ref segment, ..) => {
2354                 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
2355                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
2356                 self.r.trait_map.insert(expr.id, traits);
2357             }
2358             _ => {
2359                 // Nothing to do.
2360             }
2361         }
2362     }
2363
2364     fn get_traits_containing_item(
2365         &mut self,
2366         mut ident: Ident,
2367         ns: Namespace,
2368     ) -> Vec<TraitCandidate> {
2369         debug!("(getting traits containing item) looking for '{}'", ident.name);
2370
2371         let mut found_traits = Vec::new();
2372         // Look for the current trait.
2373         if let Some((module, _)) = self.current_trait_ref {
2374             if self
2375                 .r
2376                 .resolve_ident_in_module(
2377                     ModuleOrUniformRoot::Module(module),
2378                     ident,
2379                     ns,
2380                     &self.parent_scope,
2381                     false,
2382                     module.span,
2383                 )
2384                 .is_ok()
2385             {
2386                 let def_id = module.def_id().unwrap();
2387                 found_traits.push(TraitCandidate { def_id, import_ids: smallvec![] });
2388             }
2389         }
2390
2391         ident.span = ident.span.normalize_to_macros_2_0();
2392         let mut search_module = self.parent_scope.module;
2393         loop {
2394             self.r.get_traits_in_module_containing_item(
2395                 ident,
2396                 ns,
2397                 search_module,
2398                 &mut found_traits,
2399                 &self.parent_scope,
2400             );
2401             search_module =
2402                 unwrap_or!(self.r.hygienic_lexical_parent(search_module, &mut ident.span), break);
2403         }
2404
2405         if let Some(prelude) = self.r.prelude {
2406             if !search_module.no_implicit_prelude {
2407                 self.r.get_traits_in_module_containing_item(
2408                     ident,
2409                     ns,
2410                     prelude,
2411                     &mut found_traits,
2412                     &self.parent_scope,
2413                 );
2414             }
2415         }
2416
2417         found_traits
2418     }
2419 }
2420
2421 impl<'a> Resolver<'a> {
2422     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2423         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2424         visit::walk_crate(&mut late_resolution_visitor, krate);
2425         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2426             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2427         }
2428     }
2429 }