]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late.rs
Rollup merge of #87178 - moxian:rd-use, r=jyn514
[rust.git] / compiler / rustc_resolve / src / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use rustc_ast::ptr::P;
15 use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
16 use rustc_ast::*;
17 use rustc_ast_lowering::ResolverAstLowering;
18 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
19 use rustc_errors::DiagnosticId;
20 use rustc_hir::def::Namespace::{self, *};
21 use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
22 use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
23 use rustc_hir::{PrimTy, TraitCandidate};
24 use rustc_middle::{bug, span_bug};
25 use rustc_session::lint;
26 use rustc_span::symbol::{kw, sym, Ident, Symbol};
27 use rustc_span::Span;
28 use smallvec::{smallvec, SmallVec};
29
30 use rustc_span::source_map::{respan, Spanned};
31 use std::collections::{hash_map::Entry, BTreeSet};
32 use std::mem::{replace, take};
33 use tracing::debug;
34
35 mod diagnostics;
36 crate mod lifetimes;
37
38 type Res = def::Res<NodeId>;
39
40 type IdentMap<T> = FxHashMap<Ident, T>;
41
42 /// Map from the name in a pattern to its binding mode.
43 type BindingMap = IdentMap<BindingInfo>;
44
45 #[derive(Copy, Clone, Debug)]
46 struct BindingInfo {
47     span: Span,
48     binding_mode: BindingMode,
49 }
50
51 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
52 enum PatternSource {
53     Match,
54     Let,
55     For,
56     FnParam,
57 }
58
59 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
60 enum IsRepeatExpr {
61     No,
62     Yes,
63 }
64
65 impl PatternSource {
66     fn descr(self) -> &'static str {
67         match self {
68             PatternSource::Match => "match binding",
69             PatternSource::Let => "let binding",
70             PatternSource::For => "for binding",
71             PatternSource::FnParam => "function parameter",
72         }
73     }
74 }
75
76 /// Denotes whether the context for the set of already bound bindings is a `Product`
77 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
78 /// See those functions for more information.
79 #[derive(PartialEq)]
80 enum PatBoundCtx {
81     /// A product pattern context, e.g., `Variant(a, b)`.
82     Product,
83     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
84     Or,
85 }
86
87 /// Does this the item (from the item rib scope) allow generic parameters?
88 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
89 crate enum HasGenericParams {
90     Yes,
91     No,
92 }
93
94 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
95 crate enum ConstantItemKind {
96     Const,
97     Static,
98 }
99
100 /// The rib kind restricts certain accesses,
101 /// e.g. to a `Res::Local` of an outer item.
102 #[derive(Copy, Clone, Debug)]
103 crate enum RibKind<'a> {
104     /// No restriction needs to be applied.
105     NormalRibKind,
106
107     /// We passed through an impl or trait and are now in one of its
108     /// methods or associated types. Allow references to ty params that impl or trait
109     /// binds. Disallow any other upvars (including other ty params that are
110     /// upvars).
111     AssocItemRibKind,
112
113     /// We passed through a closure. Disallow labels.
114     ClosureOrAsyncRibKind,
115
116     /// We passed through a function definition. Disallow upvars.
117     /// Permit only those const parameters that are specified in the function's generics.
118     FnItemRibKind,
119
120     /// We passed through an item scope. Disallow upvars.
121     ItemRibKind(HasGenericParams),
122
123     /// We're in a constant item. Can't refer to dynamic stuff.
124     ///
125     /// The `bool` indicates if this constant may reference generic parameters
126     /// and is used to only allow generic parameters to be used in trivial constant expressions.
127     ConstantItemRibKind(bool, Option<(Ident, ConstantItemKind)>),
128
129     /// We passed through a module.
130     ModuleRibKind(Module<'a>),
131
132     /// We passed through a `macro_rules!` statement
133     MacroDefinition(DefId),
134
135     /// All bindings in this rib are generic parameters that can't be used
136     /// from the default of a generic parameter because they're not declared
137     /// before said generic parameter. Also see the `visit_generics` override.
138     ForwardGenericParamBanRibKind,
139
140     /// We are inside of the type of a const parameter. Can't refer to any
141     /// parameters.
142     ConstParamTyRibKind,
143 }
144
145 impl RibKind<'_> {
146     /// Whether this rib kind contains generic parameters, as opposed to local
147     /// variables.
148     crate fn contains_params(&self) -> bool {
149         match self {
150             NormalRibKind
151             | ClosureOrAsyncRibKind
152             | FnItemRibKind
153             | ConstantItemRibKind(..)
154             | ModuleRibKind(_)
155             | MacroDefinition(_)
156             | ConstParamTyRibKind => false,
157             AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
158         }
159     }
160 }
161
162 /// A single local scope.
163 ///
164 /// A rib represents a scope names can live in. Note that these appear in many places, not just
165 /// around braces. At any place where the list of accessible names (of the given namespace)
166 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
167 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
168 /// etc.
169 ///
170 /// Different [rib kinds](enum.RibKind) are transparent for different names.
171 ///
172 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
173 /// resolving, the name is looked up from inside out.
174 #[derive(Debug)]
175 crate struct Rib<'a, R = Res> {
176     pub bindings: IdentMap<R>,
177     pub kind: RibKind<'a>,
178 }
179
180 impl<'a, R> Rib<'a, R> {
181     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
182         Rib { bindings: Default::default(), kind }
183     }
184 }
185
186 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
187 crate enum AliasPossibility {
188     No,
189     Maybe,
190 }
191
192 #[derive(Copy, Clone, Debug)]
193 crate enum PathSource<'a> {
194     // Type paths `Path`.
195     Type,
196     // Trait paths in bounds or impls.
197     Trait(AliasPossibility),
198     // Expression paths `path`, with optional parent context.
199     Expr(Option<&'a Expr>),
200     // Paths in path patterns `Path`.
201     Pat,
202     // Paths in struct expressions and patterns `Path { .. }`.
203     Struct,
204     // Paths in tuple struct patterns `Path(..)`.
205     TupleStruct(Span, &'a [Span]),
206     // `m::A::B` in `<T as m::A>::B::C`.
207     TraitItem(Namespace),
208 }
209
210 impl<'a> PathSource<'a> {
211     fn namespace(self) -> Namespace {
212         match self {
213             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
214             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
215             PathSource::TraitItem(ns) => ns,
216         }
217     }
218
219     fn defer_to_typeck(self) -> bool {
220         match self {
221             PathSource::Type
222             | PathSource::Expr(..)
223             | PathSource::Pat
224             | PathSource::Struct
225             | PathSource::TupleStruct(..) => true,
226             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
227         }
228     }
229
230     fn descr_expected(self) -> &'static str {
231         match &self {
232             PathSource::Type => "type",
233             PathSource::Trait(_) => "trait",
234             PathSource::Pat => "unit struct, unit variant or constant",
235             PathSource::Struct => "struct, variant or union type",
236             PathSource::TupleStruct(..) => "tuple struct or tuple variant",
237             PathSource::TraitItem(ns) => match ns {
238                 TypeNS => "associated type",
239                 ValueNS => "method or associated constant",
240                 MacroNS => bug!("associated macro"),
241             },
242             PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
243                 // "function" here means "anything callable" rather than `DefKind::Fn`,
244                 // this is not precise but usually more helpful than just "value".
245                 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
246                     // the case of `::some_crate()`
247                     ExprKind::Path(_, path)
248                         if path.segments.len() == 2
249                             && path.segments[0].ident.name == kw::PathRoot =>
250                     {
251                         "external crate"
252                     }
253                     ExprKind::Path(_, path) => {
254                         let mut msg = "function";
255                         if let Some(segment) = path.segments.iter().last() {
256                             if let Some(c) = segment.ident.to_string().chars().next() {
257                                 if c.is_uppercase() {
258                                     msg = "function, tuple struct or tuple variant";
259                                 }
260                             }
261                         }
262                         msg
263                     }
264                     _ => "function",
265                 },
266                 _ => "value",
267             },
268         }
269     }
270
271     fn is_call(self) -> bool {
272         matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
273     }
274
275     crate fn is_expected(self, res: Res) -> bool {
276         match self {
277             PathSource::Type => matches!(
278                 res,
279                 Res::Def(
280                     DefKind::Struct
281                         | DefKind::Union
282                         | DefKind::Enum
283                         | DefKind::Trait
284                         | DefKind::TraitAlias
285                         | DefKind::TyAlias
286                         | DefKind::AssocTy
287                         | DefKind::TyParam
288                         | DefKind::OpaqueTy
289                         | DefKind::ForeignTy,
290                     _,
291                 ) | Res::PrimTy(..)
292                     | Res::SelfTy(..)
293             ),
294             PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
295             PathSource::Trait(AliasPossibility::Maybe) => {
296                 matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
297             }
298             PathSource::Expr(..) => matches!(
299                 res,
300                 Res::Def(
301                     DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
302                         | DefKind::Const
303                         | DefKind::Static
304                         | DefKind::Fn
305                         | DefKind::AssocFn
306                         | DefKind::AssocConst
307                         | DefKind::ConstParam,
308                     _,
309                 ) | Res::Local(..)
310                     | Res::SelfCtor(..)
311             ),
312             PathSource::Pat => matches!(
313                 res,
314                 Res::Def(
315                     DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
316                     _,
317                 ) | Res::SelfCtor(..)
318             ),
319             PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
320             PathSource::Struct => matches!(
321                 res,
322                 Res::Def(
323                     DefKind::Struct
324                         | DefKind::Union
325                         | DefKind::Variant
326                         | DefKind::TyAlias
327                         | DefKind::AssocTy,
328                     _,
329                 ) | Res::SelfTy(..)
330             ),
331             PathSource::TraitItem(ns) => match res {
332                 Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
333                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
334                 _ => false,
335             },
336         }
337     }
338
339     fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
340         use rustc_errors::error_code;
341         match (self, has_unexpected_resolution) {
342             (PathSource::Trait(_), true) => error_code!(E0404),
343             (PathSource::Trait(_), false) => error_code!(E0405),
344             (PathSource::Type, true) => error_code!(E0573),
345             (PathSource::Type, false) => error_code!(E0412),
346             (PathSource::Struct, true) => error_code!(E0574),
347             (PathSource::Struct, false) => error_code!(E0422),
348             (PathSource::Expr(..), true) => error_code!(E0423),
349             (PathSource::Expr(..), false) => error_code!(E0425),
350             (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
351             (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
352             (PathSource::TraitItem(..), true) => error_code!(E0575),
353             (PathSource::TraitItem(..), false) => error_code!(E0576),
354         }
355     }
356 }
357
358 #[derive(Default)]
359 struct DiagnosticMetadata<'ast> {
360     /// The current trait's associated items' ident, used for diagnostic suggestions.
361     current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
362
363     /// The current self type if inside an impl (used for better errors).
364     current_self_type: Option<Ty>,
365
366     /// The current self item if inside an ADT (used for better errors).
367     current_self_item: Option<NodeId>,
368
369     /// The current trait (used to suggest).
370     current_item: Option<&'ast Item>,
371
372     /// When processing generics and encountering a type not found, suggest introducing a type
373     /// param.
374     currently_processing_generics: bool,
375
376     /// The current enclosing (non-closure) function (used for better errors).
377     current_function: Option<(FnKind<'ast>, Span)>,
378
379     /// A list of labels as of yet unused. Labels will be removed from this map when
380     /// they are used (in a `break` or `continue` statement)
381     unused_labels: FxHashMap<NodeId, Span>,
382
383     /// Only used for better errors on `fn(): fn()`.
384     current_type_ascription: Vec<Span>,
385
386     /// Only used for better errors on `let <pat>: <expr, not type>;`.
387     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
388
389     /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
390     in_if_condition: Option<&'ast Expr>,
391
392     /// If we are currently in a trait object definition. Used to point at the bounds when
393     /// encountering a struct or enum.
394     current_trait_object: Option<&'ast [ast::GenericBound]>,
395
396     /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
397     current_where_predicate: Option<&'ast WherePredicate>,
398 }
399
400 struct LateResolutionVisitor<'a, 'b, 'ast> {
401     r: &'b mut Resolver<'a>,
402
403     /// The module that represents the current item scope.
404     parent_scope: ParentScope<'a>,
405
406     /// The current set of local scopes for types and values.
407     /// FIXME #4948: Reuse ribs to avoid allocation.
408     ribs: PerNS<Vec<Rib<'a>>>,
409
410     /// The current set of local scopes, for labels.
411     label_ribs: Vec<Rib<'a, NodeId>>,
412
413     /// The trait that the current context can refer to.
414     current_trait_ref: Option<(Module<'a>, TraitRef)>,
415
416     /// Fields used to add information to diagnostic errors.
417     diagnostic_metadata: DiagnosticMetadata<'ast>,
418
419     /// State used to know whether to ignore resolution errors for function bodies.
420     ///
421     /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
422     /// In most cases this will be `None`, in which case errors will always be reported.
423     /// If it is `true`, then it will be updated when entering a nested function or trait body.
424     in_func_body: bool,
425 }
426
427 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
428 impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
429     fn visit_item(&mut self, item: &'ast Item) {
430         let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
431         // Always report errors in items we just entered.
432         let old_ignore = replace(&mut self.in_func_body, false);
433         self.resolve_item(item);
434         self.in_func_body = old_ignore;
435         self.diagnostic_metadata.current_item = prev;
436     }
437     fn visit_arm(&mut self, arm: &'ast Arm) {
438         self.resolve_arm(arm);
439     }
440     fn visit_block(&mut self, block: &'ast Block) {
441         self.resolve_block(block);
442     }
443     fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
444         // We deal with repeat expressions explicitly in `resolve_expr`.
445         self.resolve_anon_const(constant, IsRepeatExpr::No);
446     }
447     fn visit_expr(&mut self, expr: &'ast Expr) {
448         self.resolve_expr(expr, None);
449     }
450     fn visit_local(&mut self, local: &'ast Local) {
451         let local_spans = match local.pat.kind {
452             // We check for this to avoid tuple struct fields.
453             PatKind::Wild => None,
454             _ => Some((
455                 local.pat.span,
456                 local.ty.as_ref().map(|ty| ty.span),
457                 local.init.as_ref().map(|init| init.span),
458             )),
459         };
460         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
461         self.resolve_local(local);
462         self.diagnostic_metadata.current_let_binding = original;
463     }
464     fn visit_ty(&mut self, ty: &'ast Ty) {
465         let prev = self.diagnostic_metadata.current_trait_object;
466         match ty.kind {
467             TyKind::Path(ref qself, ref path) => {
468                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
469             }
470             TyKind::ImplicitSelf => {
471                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
472                 let res = self
473                     .resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
474                     .map_or(Res::Err, |d| d.res());
475                 self.r.record_partial_res(ty.id, PartialRes::new(res));
476             }
477             TyKind::TraitObject(ref bounds, ..) => {
478                 self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
479             }
480             _ => (),
481         }
482         visit::walk_ty(self, ty);
483         self.diagnostic_metadata.current_trait_object = prev;
484     }
485     fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
486         self.smart_resolve_path(
487             tref.trait_ref.ref_id,
488             None,
489             &tref.trait_ref.path,
490             PathSource::Trait(AliasPossibility::Maybe),
491         );
492         visit::walk_poly_trait_ref(self, tref, m);
493     }
494     fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
495         match foreign_item.kind {
496             ForeignItemKind::Fn(box FnKind(_, _, ref generics, _))
497             | ForeignItemKind::TyAlias(box TyAliasKind(_, ref generics, ..)) => {
498                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
499                     visit::walk_foreign_item(this, foreign_item);
500                 });
501             }
502             ForeignItemKind::Static(..) => {
503                 self.with_item_rib(HasGenericParams::No, |this| {
504                     visit::walk_foreign_item(this, foreign_item);
505                 });
506             }
507             ForeignItemKind::MacCall(..) => {
508                 visit::walk_foreign_item(self, foreign_item);
509             }
510         }
511     }
512     fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
513         let rib_kind = match fn_kind {
514             // Bail if there's no body.
515             FnKind::Fn(.., None) => return visit::walk_fn(self, fn_kind, sp),
516             FnKind::Fn(FnCtxt::Free | FnCtxt::Foreign, ..) => FnItemRibKind,
517             FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
518             FnKind::Closure(..) => ClosureOrAsyncRibKind,
519         };
520         let previous_value = self.diagnostic_metadata.current_function;
521         if matches!(fn_kind, FnKind::Fn(..)) {
522             self.diagnostic_metadata.current_function = Some((fn_kind, sp));
523         }
524         debug!("(resolving function) entering function");
525         let declaration = fn_kind.decl();
526
527         // Create a value rib for the function.
528         self.with_rib(ValueNS, rib_kind, |this| {
529             // Create a label rib for the function.
530             this.with_label_rib(rib_kind, |this| {
531                 // Add each argument to the rib.
532                 this.resolve_params(&declaration.inputs);
533
534                 visit::walk_fn_ret_ty(this, &declaration.output);
535
536                 // Ignore errors in function bodies if this is rustdoc
537                 // Be sure not to set this until the function signature has been resolved.
538                 let previous_state = replace(&mut this.in_func_body, true);
539                 // Resolve the function body, potentially inside the body of an async closure
540                 match fn_kind {
541                     FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
542                     FnKind::Closure(_, body) => this.visit_expr(body),
543                 };
544
545                 debug!("(resolving function) leaving function");
546                 this.in_func_body = previous_state;
547             })
548         });
549         self.diagnostic_metadata.current_function = previous_value;
550     }
551
552     fn visit_generics(&mut self, generics: &'ast Generics) {
553         // For type parameter defaults, we have to ban access
554         // to following type parameters, as the InternalSubsts can only
555         // provide previous type parameters as they're built. We
556         // put all the parameters on the ban list and then remove
557         // them one by one as they are processed and become available.
558         let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
559         let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
560         for param in generics.params.iter() {
561             match param.kind {
562                 GenericParamKind::Type { .. } => {
563                     forward_ty_ban_rib
564                         .bindings
565                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
566                 }
567                 GenericParamKind::Const { .. } => {
568                     forward_const_ban_rib
569                         .bindings
570                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
571                 }
572                 GenericParamKind::Lifetime => {}
573             }
574         }
575
576         // rust-lang/rust#61631: The type `Self` is essentially
577         // another type parameter. For ADTs, we consider it
578         // well-defined only after all of the ADT type parameters have
579         // been provided. Therefore, we do not allow use of `Self`
580         // anywhere in ADT type parameter defaults.
581         //
582         // (We however cannot ban `Self` for defaults on *all* generic
583         // lists; e.g. trait generics can usefully refer to `Self`,
584         // such as in the case of `trait Add<Rhs = Self>`.)
585         if self.diagnostic_metadata.current_self_item.is_some() {
586             // (`Some` if + only if we are in ADT's generics.)
587             forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
588         }
589
590         for param in &generics.params {
591             match param.kind {
592                 GenericParamKind::Lifetime => self.visit_generic_param(param),
593                 GenericParamKind::Type { ref default } => {
594                     for bound in &param.bounds {
595                         self.visit_param_bound(bound);
596                     }
597
598                     if let Some(ref ty) = default {
599                         self.ribs[TypeNS].push(forward_ty_ban_rib);
600                         self.ribs[ValueNS].push(forward_const_ban_rib);
601                         self.visit_ty(ty);
602                         forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
603                         forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
604                     }
605
606                     // Allow all following defaults to refer to this type parameter.
607                     forward_ty_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
608                 }
609                 GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
610                     // Const parameters can't have param bounds.
611                     assert!(param.bounds.is_empty());
612
613                     self.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
614                     self.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
615                     self.visit_ty(ty);
616                     self.ribs[TypeNS].pop().unwrap();
617                     self.ribs[ValueNS].pop().unwrap();
618
619                     if let Some(ref expr) = default {
620                         self.ribs[TypeNS].push(forward_ty_ban_rib);
621                         self.ribs[ValueNS].push(forward_const_ban_rib);
622                         self.visit_anon_const(expr);
623                         forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
624                         forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
625                     }
626
627                     // Allow all following defaults to refer to this const parameter.
628                     forward_const_ban_rib
629                         .bindings
630                         .remove(&Ident::with_dummy_span(param.ident.name));
631                 }
632             }
633         }
634         for p in &generics.where_clause.predicates {
635             self.visit_where_predicate(p);
636         }
637     }
638
639     fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
640         debug!("visit_generic_arg({:?})", arg);
641         let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
642         match arg {
643             GenericArg::Type(ref ty) => {
644                 // We parse const arguments as path types as we cannot distinguish them during
645                 // parsing. We try to resolve that ambiguity by attempting resolution the type
646                 // namespace first, and if that fails we try again in the value namespace. If
647                 // resolution in the value namespace succeeds, we have an generic const argument on
648                 // our hands.
649                 if let TyKind::Path(ref qself, ref path) = ty.kind {
650                     // We cannot disambiguate multi-segment paths right now as that requires type
651                     // checking.
652                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
653                         let mut check_ns = |ns| {
654                             self.resolve_ident_in_lexical_scope(
655                                 path.segments[0].ident,
656                                 ns,
657                                 None,
658                                 path.span,
659                             )
660                             .is_some()
661                         };
662                         if !check_ns(TypeNS) && check_ns(ValueNS) {
663                             // This must be equivalent to `visit_anon_const`, but we cannot call it
664                             // directly due to visitor lifetimes so we have to copy-paste some code.
665                             //
666                             // Note that we might not be inside of an repeat expression here,
667                             // but considering that `IsRepeatExpr` is only relevant for
668                             // non-trivial constants this is doesn't matter.
669                             self.with_constant_rib(IsRepeatExpr::No, true, None, |this| {
670                                 this.smart_resolve_path(
671                                     ty.id,
672                                     qself.as_ref(),
673                                     path,
674                                     PathSource::Expr(None),
675                                 );
676
677                                 if let Some(ref qself) = *qself {
678                                     this.visit_ty(&qself.ty);
679                                 }
680                                 this.visit_path(path, ty.id);
681                             });
682
683                             self.diagnostic_metadata.currently_processing_generics = prev;
684                             return;
685                         }
686                     }
687                 }
688
689                 self.visit_ty(ty);
690             }
691             GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
692             GenericArg::Const(ct) => self.visit_anon_const(ct),
693         }
694         self.diagnostic_metadata.currently_processing_generics = prev;
695     }
696
697     fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
698         debug!("visit_where_predicate {:?}", p);
699         let previous_value =
700             replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
701         visit::walk_where_predicate(self, p);
702         self.diagnostic_metadata.current_where_predicate = previous_value;
703     }
704 }
705
706 impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
707     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
708         // During late resolution we only track the module component of the parent scope,
709         // although it may be useful to track other components as well for diagnostics.
710         let graph_root = resolver.graph_root;
711         let parent_scope = ParentScope::module(graph_root, resolver);
712         let start_rib_kind = ModuleRibKind(graph_root);
713         LateResolutionVisitor {
714             r: resolver,
715             parent_scope,
716             ribs: PerNS {
717                 value_ns: vec![Rib::new(start_rib_kind)],
718                 type_ns: vec![Rib::new(start_rib_kind)],
719                 macro_ns: vec![Rib::new(start_rib_kind)],
720             },
721             label_ribs: Vec::new(),
722             current_trait_ref: None,
723             diagnostic_metadata: DiagnosticMetadata::default(),
724             // errors at module scope should always be reported
725             in_func_body: false,
726         }
727     }
728
729     fn resolve_ident_in_lexical_scope(
730         &mut self,
731         ident: Ident,
732         ns: Namespace,
733         record_used_id: Option<NodeId>,
734         path_span: Span,
735     ) -> Option<LexicalScopeBinding<'a>> {
736         self.r.resolve_ident_in_lexical_scope(
737             ident,
738             ns,
739             &self.parent_scope,
740             record_used_id,
741             path_span,
742             &self.ribs[ns],
743         )
744     }
745
746     fn resolve_path(
747         &mut self,
748         path: &[Segment],
749         opt_ns: Option<Namespace>, // `None` indicates a module path in import
750         record_used: bool,
751         path_span: Span,
752         crate_lint: CrateLint,
753     ) -> PathResult<'a> {
754         self.r.resolve_path_with_ribs(
755             path,
756             opt_ns,
757             &self.parent_scope,
758             record_used,
759             path_span,
760             crate_lint,
761             Some(&self.ribs),
762         )
763     }
764
765     // AST resolution
766     //
767     // We maintain a list of value ribs and type ribs.
768     //
769     // Simultaneously, we keep track of the current position in the module
770     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
771     // the value or type namespaces, we first look through all the ribs and
772     // then query the module graph. When we resolve a name in the module
773     // namespace, we can skip all the ribs (since nested modules are not
774     // allowed within blocks in Rust) and jump straight to the current module
775     // graph node.
776     //
777     // Named implementations are handled separately. When we find a method
778     // call, we consult the module node to find all of the implementations in
779     // scope. This information is lazily cached in the module node. We then
780     // generate a fake "implementation scope" containing all the
781     // implementations thus found, for compatibility with old resolve pass.
782
783     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
784     fn with_rib<T>(
785         &mut self,
786         ns: Namespace,
787         kind: RibKind<'a>,
788         work: impl FnOnce(&mut Self) -> T,
789     ) -> T {
790         self.ribs[ns].push(Rib::new(kind));
791         let ret = work(self);
792         self.ribs[ns].pop();
793         ret
794     }
795
796     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
797         let id = self.r.local_def_id(id);
798         let module = self.r.module_map.get(&id).cloned(); // clones a reference
799         if let Some(module) = module {
800             // Move down in the graph.
801             let orig_module = replace(&mut self.parent_scope.module, module);
802             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
803                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
804                     let ret = f(this);
805                     this.parent_scope.module = orig_module;
806                     ret
807                 })
808             })
809         } else {
810             f(self)
811         }
812     }
813
814     /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
815     /// label and reports an error if the label is not found or is unreachable.
816     fn resolve_label(&self, mut label: Ident) -> Option<NodeId> {
817         let mut suggestion = None;
818
819         // Preserve the original span so that errors contain "in this macro invocation"
820         // information.
821         let original_span = label.span;
822
823         for i in (0..self.label_ribs.len()).rev() {
824             let rib = &self.label_ribs[i];
825
826             if let MacroDefinition(def) = rib.kind {
827                 // If an invocation of this macro created `ident`, give up on `ident`
828                 // and switch to `ident`'s source from the macro definition.
829                 if def == self.r.macro_def(label.span.ctxt()) {
830                     label.span.remove_mark();
831                 }
832             }
833
834             let ident = label.normalize_to_macro_rules();
835             if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
836                 return if self.is_label_valid_from_rib(i) {
837                     Some(*id)
838                 } else {
839                     self.report_error(
840                         original_span,
841                         ResolutionError::UnreachableLabel {
842                             name: label.name,
843                             definition_span: ident.span,
844                             suggestion,
845                         },
846                     );
847
848                     None
849                 };
850             }
851
852             // Diagnostics: Check if this rib contains a label with a similar name, keep track of
853             // the first such label that is encountered.
854             suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
855         }
856
857         self.report_error(
858             original_span,
859             ResolutionError::UndeclaredLabel { name: label.name, suggestion },
860         );
861         None
862     }
863
864     /// Determine whether or not a label from the `rib_index`th label rib is reachable.
865     fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
866         let ribs = &self.label_ribs[rib_index + 1..];
867
868         for rib in ribs {
869             match rib.kind {
870                 NormalRibKind | MacroDefinition(..) => {
871                     // Nothing to do. Continue.
872                 }
873
874                 AssocItemRibKind
875                 | ClosureOrAsyncRibKind
876                 | FnItemRibKind
877                 | ItemRibKind(..)
878                 | ConstantItemRibKind(..)
879                 | ModuleRibKind(..)
880                 | ForwardGenericParamBanRibKind
881                 | ConstParamTyRibKind => {
882                     return false;
883                 }
884             }
885         }
886
887         true
888     }
889
890     fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
891         debug!("resolve_adt");
892         self.with_current_self_item(item, |this| {
893             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
894                 let item_def_id = this.r.local_def_id(item.id).to_def_id();
895                 this.with_self_rib(Res::SelfTy(None, Some((item_def_id, false))), |this| {
896                     visit::walk_item(this, item);
897                 });
898             });
899         });
900     }
901
902     fn future_proof_import(&mut self, use_tree: &UseTree) {
903         let segments = &use_tree.prefix.segments;
904         if !segments.is_empty() {
905             let ident = segments[0].ident;
906             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
907                 return;
908             }
909
910             let nss = match use_tree.kind {
911                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
912                 _ => &[TypeNS],
913             };
914             let report_error = |this: &Self, ns| {
915                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
916                 if this.should_report_errs() {
917                     this.r
918                         .session
919                         .span_err(ident.span, &format!("imports cannot refer to {}", what));
920                 }
921             };
922
923             for &ns in nss {
924                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
925                     Some(LexicalScopeBinding::Res(..)) => {
926                         report_error(self, ns);
927                     }
928                     Some(LexicalScopeBinding::Item(binding)) => {
929                         let orig_unusable_binding =
930                             replace(&mut self.r.unusable_binding, Some(binding));
931                         if let Some(LexicalScopeBinding::Res(..)) = self
932                             .resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
933                         {
934                             report_error(self, ns);
935                         }
936                         self.r.unusable_binding = orig_unusable_binding;
937                     }
938                     None => {}
939                 }
940             }
941         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
942             for (use_tree, _) in use_trees {
943                 self.future_proof_import(use_tree);
944             }
945         }
946     }
947
948     fn resolve_item(&mut self, item: &'ast Item) {
949         let name = item.ident.name;
950         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
951
952         match item.kind {
953             ItemKind::TyAlias(box TyAliasKind(_, ref generics, _, _))
954             | ItemKind::Fn(box FnKind(_, _, ref generics, _)) => {
955                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
956                     visit::walk_item(this, item)
957                 });
958             }
959
960             ItemKind::Enum(_, ref generics)
961             | ItemKind::Struct(_, ref generics)
962             | ItemKind::Union(_, ref generics) => {
963                 self.resolve_adt(item, generics);
964             }
965
966             ItemKind::Impl(box ImplKind {
967                 ref generics,
968                 ref of_trait,
969                 ref self_ty,
970                 items: ref impl_items,
971                 ..
972             }) => {
973                 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
974             }
975
976             ItemKind::Trait(box TraitKind(.., ref generics, ref bounds, ref trait_items)) => {
977                 // Create a new rib for the trait-wide type parameters.
978                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
979                     let local_def_id = this.r.local_def_id(item.id).to_def_id();
980                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
981                         this.visit_generics(generics);
982                         walk_list!(this, visit_param_bound, bounds);
983
984                         let walk_assoc_item = |this: &mut Self, generics, item| {
985                             this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
986                                 visit::walk_assoc_item(this, item, AssocCtxt::Trait)
987                             });
988                         };
989
990                         this.with_trait_items(trait_items, |this| {
991                             for item in trait_items {
992                                 match &item.kind {
993                                     AssocItemKind::Const(_, ty, default) => {
994                                         this.visit_ty(ty);
995                                         // Only impose the restrictions of `ConstRibKind` for an
996                                         // actual constant expression in a provided default.
997                                         if let Some(expr) = default {
998                                             // We allow arbitrary const expressions inside of associated consts,
999                                             // even if they are potentially not const evaluatable.
1000                                             //
1001                                             // Type parameters can already be used and as associated consts are
1002                                             // not used as part of the type system, this is far less surprising.
1003                                             this.with_constant_rib(
1004                                                 IsRepeatExpr::No,
1005                                                 true,
1006                                                 None,
1007                                                 |this| this.visit_expr(expr),
1008                                             );
1009                                         }
1010                                     }
1011                                     AssocItemKind::Fn(box FnKind(_, _, generics, _)) => {
1012                                         walk_assoc_item(this, generics, item);
1013                                     }
1014                                     AssocItemKind::TyAlias(box TyAliasKind(_, generics, _, _)) => {
1015                                         walk_assoc_item(this, generics, item);
1016                                     }
1017                                     AssocItemKind::MacCall(_) => {
1018                                         panic!("unexpanded macro in resolve!")
1019                                     }
1020                                 };
1021                             }
1022                         });
1023                     });
1024                 });
1025             }
1026
1027             ItemKind::TraitAlias(ref generics, ref bounds) => {
1028                 // Create a new rib for the trait-wide type parameters.
1029                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1030                     let local_def_id = this.r.local_def_id(item.id).to_def_id();
1031                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
1032                         this.visit_generics(generics);
1033                         walk_list!(this, visit_param_bound, bounds);
1034                     });
1035                 });
1036             }
1037
1038             ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
1039                 self.with_scope(item.id, |this| {
1040                     visit::walk_item(this, item);
1041                 });
1042             }
1043
1044             ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
1045                 self.with_item_rib(HasGenericParams::No, |this| {
1046                     this.visit_ty(ty);
1047                     if let Some(expr) = expr {
1048                         let constant_item_kind = match item.kind {
1049                             ItemKind::Const(..) => ConstantItemKind::Const,
1050                             ItemKind::Static(..) => ConstantItemKind::Static,
1051                             _ => unreachable!(),
1052                         };
1053                         // We already forbid generic params because of the above item rib,
1054                         // so it doesn't matter whether this is a trivial constant.
1055                         this.with_constant_rib(
1056                             IsRepeatExpr::No,
1057                             true,
1058                             Some((item.ident, constant_item_kind)),
1059                             |this| this.visit_expr(expr),
1060                         );
1061                     }
1062                 });
1063             }
1064
1065             ItemKind::Use(ref use_tree) => {
1066                 self.future_proof_import(use_tree);
1067             }
1068
1069             ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => {
1070                 // do nothing, these are just around to be encoded
1071             }
1072
1073             ItemKind::GlobalAsm(_) => {
1074                 visit::walk_item(self, item);
1075             }
1076
1077             ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
1078         }
1079     }
1080
1081     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
1082     where
1083         F: FnOnce(&mut Self),
1084     {
1085         debug!("with_generic_param_rib");
1086         let mut function_type_rib = Rib::new(kind);
1087         let mut function_value_rib = Rib::new(kind);
1088         let mut seen_bindings = FxHashMap::default();
1089
1090         // We also can't shadow bindings from the parent item
1091         if let AssocItemRibKind = kind {
1092             let mut add_bindings_for_ns = |ns| {
1093                 let parent_rib = self.ribs[ns]
1094                     .iter()
1095                     .rfind(|r| matches!(r.kind, ItemRibKind(_)))
1096                     .expect("associated item outside of an item");
1097                 seen_bindings
1098                     .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
1099             };
1100             add_bindings_for_ns(ValueNS);
1101             add_bindings_for_ns(TypeNS);
1102         }
1103
1104         for param in &generics.params {
1105             if let GenericParamKind::Lifetime { .. } = param.kind {
1106                 continue;
1107             }
1108
1109             let ident = param.ident.normalize_to_macros_2_0();
1110             debug!("with_generic_param_rib: {}", param.id);
1111
1112             match seen_bindings.entry(ident) {
1113                 Entry::Occupied(entry) => {
1114                     let span = *entry.get();
1115                     let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
1116                     self.report_error(param.ident.span, err);
1117                 }
1118                 Entry::Vacant(entry) => {
1119                     entry.insert(param.ident.span);
1120                 }
1121             }
1122
1123             // Plain insert (no renaming).
1124             let (rib, def_kind) = match param.kind {
1125                 GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
1126                 GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
1127                 _ => unreachable!(),
1128             };
1129             let res = Res::Def(def_kind, self.r.local_def_id(param.id).to_def_id());
1130             self.r.record_partial_res(param.id, PartialRes::new(res));
1131             rib.bindings.insert(ident, res);
1132         }
1133
1134         self.ribs[ValueNS].push(function_value_rib);
1135         self.ribs[TypeNS].push(function_type_rib);
1136
1137         f(self);
1138
1139         self.ribs[TypeNS].pop();
1140         self.ribs[ValueNS].pop();
1141     }
1142
1143     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
1144         self.label_ribs.push(Rib::new(kind));
1145         f(self);
1146         self.label_ribs.pop();
1147     }
1148
1149     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
1150         let kind = ItemRibKind(has_generic_params);
1151         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
1152     }
1153
1154     // HACK(min_const_generics,const_evaluatable_unchecked): We
1155     // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
1156     // with a future compat lint for now. We do this by adding an
1157     // additional special case for repeat expressions.
1158     //
1159     // Note that we intentionally still forbid `[0; N + 1]` during
1160     // name resolution so that we don't extend the future
1161     // compat lint to new cases.
1162     fn with_constant_rib(
1163         &mut self,
1164         is_repeat: IsRepeatExpr,
1165         is_trivial: bool,
1166         item: Option<(Ident, ConstantItemKind)>,
1167         f: impl FnOnce(&mut Self),
1168     ) {
1169         debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
1170         self.with_rib(ValueNS, ConstantItemRibKind(is_trivial, item), |this| {
1171             this.with_rib(
1172                 TypeNS,
1173                 ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial, item),
1174                 |this| {
1175                     this.with_label_rib(ConstantItemRibKind(is_trivial, item), f);
1176                 },
1177             )
1178         });
1179     }
1180
1181     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
1182         // Handle nested impls (inside fn bodies)
1183         let previous_value =
1184             replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
1185         let result = f(self);
1186         self.diagnostic_metadata.current_self_type = previous_value;
1187         result
1188     }
1189
1190     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
1191         let previous_value =
1192             replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
1193         let result = f(self);
1194         self.diagnostic_metadata.current_self_item = previous_value;
1195         result
1196     }
1197
1198     /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
1199     fn with_trait_items<T>(
1200         &mut self,
1201         trait_items: &'ast [P<AssocItem>],
1202         f: impl FnOnce(&mut Self) -> T,
1203     ) -> T {
1204         let trait_assoc_items =
1205             replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
1206         let result = f(self);
1207         self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
1208         result
1209     }
1210
1211     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
1212     fn with_optional_trait_ref<T>(
1213         &mut self,
1214         opt_trait_ref: Option<&TraitRef>,
1215         f: impl FnOnce(&mut Self, Option<DefId>) -> T,
1216     ) -> T {
1217         let mut new_val = None;
1218         let mut new_id = None;
1219         if let Some(trait_ref) = opt_trait_ref {
1220             let path: Vec<_> = Segment::from_path(&trait_ref.path);
1221             let res = self.smart_resolve_path_fragment(
1222                 trait_ref.ref_id,
1223                 None,
1224                 &path,
1225                 trait_ref.path.span,
1226                 PathSource::Trait(AliasPossibility::No),
1227                 CrateLint::SimplePath(trait_ref.ref_id),
1228             );
1229             let res = res.base_res();
1230             if res != Res::Err {
1231                 new_id = Some(res.def_id());
1232                 let span = trait_ref.path.span;
1233                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
1234                     &path,
1235                     Some(TypeNS),
1236                     false,
1237                     span,
1238                     CrateLint::SimplePath(trait_ref.ref_id),
1239                 ) {
1240                     new_val = Some((module, trait_ref.clone()));
1241                 }
1242             }
1243         }
1244         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1245         let result = f(self, new_id);
1246         self.current_trait_ref = original_trait_ref;
1247         result
1248     }
1249
1250     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1251         let mut self_type_rib = Rib::new(NormalRibKind);
1252
1253         // Plain insert (no renaming, since types are not currently hygienic)
1254         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1255         self.ribs[ns].push(self_type_rib);
1256         f(self);
1257         self.ribs[ns].pop();
1258     }
1259
1260     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1261         self.with_self_rib_ns(TypeNS, self_res, f)
1262     }
1263
1264     fn resolve_implementation(
1265         &mut self,
1266         generics: &'ast Generics,
1267         opt_trait_reference: &'ast Option<TraitRef>,
1268         self_type: &'ast Ty,
1269         item_id: NodeId,
1270         impl_items: &'ast [P<AssocItem>],
1271     ) {
1272         debug!("resolve_implementation");
1273         // If applicable, create a rib for the type parameters.
1274         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1275             // Dummy self type for better errors if `Self` is used in the trait path.
1276             this.with_self_rib(Res::SelfTy(None, None), |this| {
1277                 // Resolve the trait reference, if necessary.
1278                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1279                     let item_def_id = this.r.local_def_id(item_id).to_def_id();
1280                     this.with_self_rib(Res::SelfTy(trait_id, Some((item_def_id, false))), |this| {
1281                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1282                             // Resolve type arguments in the trait path.
1283                             visit::walk_trait_ref(this, trait_ref);
1284                         }
1285                         // Resolve the self type.
1286                         this.visit_ty(self_type);
1287                         // Resolve the generic parameters.
1288                         this.visit_generics(generics);
1289                         // Resolve the items within the impl.
1290                         this.with_current_self_type(self_type, |this| {
1291                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1292                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1293                                 for item in impl_items {
1294                                     use crate::ResolutionError::*;
1295                                     match &item.kind {
1296                                         AssocItemKind::Const(_default, _ty, _expr) => {
1297                                             debug!("resolve_implementation AssocItemKind::Const",);
1298                                             // If this is a trait impl, ensure the const
1299                                             // exists in trait
1300                                             this.check_trait_item(
1301                                                 item.ident,
1302                                                 ValueNS,
1303                                                 item.span,
1304                                                 |n, s| ConstNotMemberOfTrait(n, s),
1305                                             );
1306
1307                                             // We allow arbitrary const expressions inside of associated consts,
1308                                             // even if they are potentially not const evaluatable.
1309                                             //
1310                                             // Type parameters can already be used and as associated consts are
1311                                             // not used as part of the type system, this is far less surprising.
1312                                             this.with_constant_rib(
1313                                                 IsRepeatExpr::No,
1314                                                 true,
1315                                                 None,
1316                                                 |this| {
1317                                                     visit::walk_assoc_item(
1318                                                         this,
1319                                                         item,
1320                                                         AssocCtxt::Impl,
1321                                                     )
1322                                                 },
1323                                             );
1324                                         }
1325                                         AssocItemKind::Fn(box FnKind(.., generics, _)) => {
1326                                             // We also need a new scope for the impl item type parameters.
1327                                             this.with_generic_param_rib(
1328                                                 generics,
1329                                                 AssocItemRibKind,
1330                                                 |this| {
1331                                                     // If this is a trait impl, ensure the method
1332                                                     // exists in trait
1333                                                     this.check_trait_item(
1334                                                         item.ident,
1335                                                         ValueNS,
1336                                                         item.span,
1337                                                         |n, s| MethodNotMemberOfTrait(n, s),
1338                                                     );
1339
1340                                                     visit::walk_assoc_item(
1341                                                         this,
1342                                                         item,
1343                                                         AssocCtxt::Impl,
1344                                                     )
1345                                                 },
1346                                             );
1347                                         }
1348                                         AssocItemKind::TyAlias(box TyAliasKind(
1349                                             _,
1350                                             generics,
1351                                             _,
1352                                             _,
1353                                         )) => {
1354                                             // We also need a new scope for the impl item type parameters.
1355                                             this.with_generic_param_rib(
1356                                                 generics,
1357                                                 AssocItemRibKind,
1358                                                 |this| {
1359                                                     // If this is a trait impl, ensure the type
1360                                                     // exists in trait
1361                                                     this.check_trait_item(
1362                                                         item.ident,
1363                                                         TypeNS,
1364                                                         item.span,
1365                                                         |n, s| TypeNotMemberOfTrait(n, s),
1366                                                     );
1367
1368                                                     visit::walk_assoc_item(
1369                                                         this,
1370                                                         item,
1371                                                         AssocCtxt::Impl,
1372                                                     )
1373                                                 },
1374                                             );
1375                                         }
1376                                         AssocItemKind::MacCall(_) => {
1377                                             panic!("unexpanded macro in resolve!")
1378                                         }
1379                                     }
1380                                 }
1381                             });
1382                         });
1383                     });
1384                 });
1385             });
1386         });
1387     }
1388
1389     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1390     where
1391         F: FnOnce(Symbol, &str) -> ResolutionError<'_>,
1392     {
1393         // If there is a TraitRef in scope for an impl, then the method must be in the
1394         // trait.
1395         if let Some((module, _)) = self.current_trait_ref {
1396             if self
1397                 .r
1398                 .resolve_ident_in_module(
1399                     ModuleOrUniformRoot::Module(module),
1400                     ident,
1401                     ns,
1402                     &self.parent_scope,
1403                     false,
1404                     span,
1405                 )
1406                 .is_err()
1407             {
1408                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1409                 self.report_error(span, err(ident.name, &path_names_to_string(path)));
1410             }
1411         }
1412     }
1413
1414     fn resolve_params(&mut self, params: &'ast [Param]) {
1415         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1416         for Param { pat, ty, .. } in params {
1417             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1418             self.visit_ty(ty);
1419             debug!("(resolving function / closure) recorded parameter");
1420         }
1421     }
1422
1423     fn resolve_local(&mut self, local: &'ast Local) {
1424         debug!("resolving local ({:?})", local);
1425         // Resolve the type.
1426         walk_list!(self, visit_ty, &local.ty);
1427
1428         // Resolve the initializer.
1429         walk_list!(self, visit_expr, &local.init);
1430
1431         // Resolve the pattern.
1432         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1433     }
1434
1435     /// build a map from pattern identifiers to binding-info's.
1436     /// this is done hygienically. This could arise for a macro
1437     /// that expands into an or-pattern where one 'x' was from the
1438     /// user and one 'x' came from the macro.
1439     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1440         let mut binding_map = FxHashMap::default();
1441
1442         pat.walk(&mut |pat| {
1443             match pat.kind {
1444                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1445                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1446                 {
1447                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1448                 }
1449                 PatKind::Or(ref ps) => {
1450                     // Check the consistency of this or-pattern and
1451                     // then add all bindings to the larger map.
1452                     for bm in self.check_consistent_bindings(ps) {
1453                         binding_map.extend(bm);
1454                     }
1455                     return false;
1456                 }
1457                 _ => {}
1458             }
1459
1460             true
1461         });
1462
1463         binding_map
1464     }
1465
1466     fn is_base_res_local(&self, nid: NodeId) -> bool {
1467         matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
1468     }
1469
1470     /// Checks that all of the arms in an or-pattern have exactly the
1471     /// same set of bindings, with the same binding modes for each.
1472     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1473         let mut missing_vars = FxHashMap::default();
1474         let mut inconsistent_vars = FxHashMap::default();
1475
1476         // 1) Compute the binding maps of all arms.
1477         let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
1478
1479         // 2) Record any missing bindings or binding mode inconsistencies.
1480         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1481             // Check against all arms except for the same pattern which is always self-consistent.
1482             let inners = pats
1483                 .iter()
1484                 .enumerate()
1485                 .filter(|(_, pat)| pat.id != pat_outer.id)
1486                 .flat_map(|(idx, _)| maps[idx].iter())
1487                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1488
1489             for (name, info, &binding_inner) in inners {
1490                 match info {
1491                     None => {
1492                         // The inner binding is missing in the outer.
1493                         let binding_error =
1494                             missing_vars.entry(name).or_insert_with(|| BindingError {
1495                                 name,
1496                                 origin: BTreeSet::new(),
1497                                 target: BTreeSet::new(),
1498                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1499                             });
1500                         binding_error.origin.insert(binding_inner.span);
1501                         binding_error.target.insert(pat_outer.span);
1502                     }
1503                     Some(binding_outer) => {
1504                         if binding_outer.binding_mode != binding_inner.binding_mode {
1505                             // The binding modes in the outer and inner bindings differ.
1506                             inconsistent_vars
1507                                 .entry(name)
1508                                 .or_insert((binding_inner.span, binding_outer.span));
1509                         }
1510                     }
1511                 }
1512             }
1513         }
1514
1515         // 3) Report all missing variables we found.
1516         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1517         missing_vars.sort_by_key(|(sym, _err)| sym.as_str());
1518
1519         for (name, mut v) in missing_vars {
1520             if inconsistent_vars.contains_key(name) {
1521                 v.could_be_path = false;
1522             }
1523             self.report_error(
1524                 *v.origin.iter().next().unwrap(),
1525                 ResolutionError::VariableNotBoundInPattern(v),
1526             );
1527         }
1528
1529         // 4) Report all inconsistencies in binding modes we found.
1530         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1531         inconsistent_vars.sort();
1532         for (name, v) in inconsistent_vars {
1533             self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1534         }
1535
1536         // 5) Finally bubble up all the binding maps.
1537         maps
1538     }
1539
1540     /// Check the consistency of the outermost or-patterns.
1541     fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
1542         pat.walk(&mut |pat| match pat.kind {
1543             PatKind::Or(ref ps) => {
1544                 self.check_consistent_bindings(ps);
1545                 false
1546             }
1547             _ => true,
1548         })
1549     }
1550
1551     fn resolve_arm(&mut self, arm: &'ast Arm) {
1552         self.with_rib(ValueNS, NormalRibKind, |this| {
1553             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1554             walk_list!(this, visit_expr, &arm.guard);
1555             this.visit_expr(&arm.body);
1556         });
1557     }
1558
1559     /// Arising from `source`, resolve a top level pattern.
1560     fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
1561         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1562         self.resolve_pattern(pat, pat_src, &mut bindings);
1563     }
1564
1565     fn resolve_pattern(
1566         &mut self,
1567         pat: &'ast Pat,
1568         pat_src: PatternSource,
1569         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1570     ) {
1571         self.resolve_pattern_inner(pat, pat_src, bindings);
1572         // This has to happen *after* we determine which pat_idents are variants:
1573         self.check_consistent_bindings_top(pat);
1574         visit::walk_pat(self, pat);
1575     }
1576
1577     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1578     ///
1579     /// ### `bindings`
1580     ///
1581     /// A stack of sets of bindings accumulated.
1582     ///
1583     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1584     /// be interpreted as re-binding an already bound binding. This results in an error.
1585     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1586     /// in reusing this binding rather than creating a fresh one.
1587     ///
1588     /// When called at the top level, the stack must have a single element
1589     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1590     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1591     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1592     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1593     /// When a whole or-pattern has been dealt with, the thing happens.
1594     ///
1595     /// See the implementation and `fresh_binding` for more details.
1596     fn resolve_pattern_inner(
1597         &mut self,
1598         pat: &Pat,
1599         pat_src: PatternSource,
1600         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1601     ) {
1602         // Visit all direct subpatterns of this pattern.
1603         pat.walk(&mut |pat| {
1604             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1605             match pat.kind {
1606                 PatKind::Ident(bmode, ident, ref sub) => {
1607                     // First try to resolve the identifier as some existing entity,
1608                     // then fall back to a fresh binding.
1609                     let has_sub = sub.is_some();
1610                     let res = self
1611                         .try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1612                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1613                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1614                     self.r.record_pat_span(pat.id, pat.span);
1615                 }
1616                 PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
1617                     self.smart_resolve_path(
1618                         pat.id,
1619                         qself.as_ref(),
1620                         path,
1621                         PathSource::TupleStruct(
1622                             pat.span,
1623                             self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
1624                         ),
1625                     );
1626                 }
1627                 PatKind::Path(ref qself, ref path) => {
1628                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1629                 }
1630                 PatKind::Struct(ref qself, ref path, ..) => {
1631                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct);
1632                 }
1633                 PatKind::Or(ref ps) => {
1634                     // Add a new set of bindings to the stack. `Or` here records that when a
1635                     // binding already exists in this set, it should not result in an error because
1636                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1637                     bindings.push((PatBoundCtx::Or, Default::default()));
1638                     for p in ps {
1639                         // Now we need to switch back to a product context so that each
1640                         // part of the or-pattern internally rejects already bound names.
1641                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1642                         bindings.push((PatBoundCtx::Product, Default::default()));
1643                         self.resolve_pattern_inner(p, pat_src, bindings);
1644                         // Move up the non-overlapping bindings to the or-pattern.
1645                         // Existing bindings just get "merged".
1646                         let collected = bindings.pop().unwrap().1;
1647                         bindings.last_mut().unwrap().1.extend(collected);
1648                     }
1649                     // This or-pattern itself can itself be part of a product,
1650                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1651                     // Both cases bind `a` again in a product pattern and must be rejected.
1652                     let collected = bindings.pop().unwrap().1;
1653                     bindings.last_mut().unwrap().1.extend(collected);
1654
1655                     // Prevent visiting `ps` as we've already done so above.
1656                     return false;
1657                 }
1658                 _ => {}
1659             }
1660             true
1661         });
1662     }
1663
1664     fn fresh_binding(
1665         &mut self,
1666         ident: Ident,
1667         pat_id: NodeId,
1668         pat_src: PatternSource,
1669         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1670     ) -> Res {
1671         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1672         // (We must not add it if it's in the bindings map because that breaks the assumptions
1673         // later passes make about or-patterns.)
1674         let ident = ident.normalize_to_macro_rules();
1675
1676         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
1677         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
1678         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
1679         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
1680         // This is *required* for consistency which is checked later.
1681         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
1682
1683         if already_bound_and {
1684             // Overlap in a product pattern somewhere; report an error.
1685             use ResolutionError::*;
1686             let error = match pat_src {
1687                 // `fn f(a: u8, a: u8)`:
1688                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1689                 // `Variant(a, a)`:
1690                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1691             };
1692             self.report_error(ident.span, error(ident.name));
1693         }
1694
1695         // Record as bound if it's valid:
1696         let ident_valid = ident.name != kw::Empty;
1697         if ident_valid {
1698             bindings.last_mut().unwrap().1.insert(ident);
1699         }
1700
1701         if already_bound_or {
1702             // `Variant1(a) | Variant2(a)`, ok
1703             // Reuse definition from the first `a`.
1704             self.innermost_rib_bindings(ValueNS)[&ident]
1705         } else {
1706             let res = Res::Local(pat_id);
1707             if ident_valid {
1708                 // A completely fresh binding add to the set if it's valid.
1709                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1710             }
1711             res
1712         }
1713     }
1714
1715     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1716         &mut self.ribs[ns].last_mut().unwrap().bindings
1717     }
1718
1719     fn try_resolve_as_non_binding(
1720         &mut self,
1721         pat_src: PatternSource,
1722         pat: &Pat,
1723         bm: BindingMode,
1724         ident: Ident,
1725         has_sub: bool,
1726     ) -> Option<Res> {
1727         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1728         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1729         // also be interpreted as a path to e.g. a constant, variant, etc.
1730         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
1731
1732         let ls_binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?;
1733         let (res, binding) = match ls_binding {
1734             LexicalScopeBinding::Item(binding)
1735                 if is_syntactic_ambiguity && binding.is_ambiguity() =>
1736             {
1737                 // For ambiguous bindings we don't know all their definitions and cannot check
1738                 // whether they can be shadowed by fresh bindings or not, so force an error.
1739                 // issues/33118#issuecomment-233962221 (see below) still applies here,
1740                 // but we have to ignore it for backward compatibility.
1741                 self.r.record_use(ident, ValueNS, binding, false);
1742                 return None;
1743             }
1744             LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
1745             LexicalScopeBinding::Res(res) => (res, None),
1746         };
1747
1748         match res {
1749             Res::SelfCtor(_) // See #70549.
1750             | Res::Def(
1751                 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
1752                 _,
1753             ) if is_syntactic_ambiguity => {
1754                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1755                 if let Some(binding) = binding {
1756                     self.r.record_use(ident, ValueNS, binding, false);
1757                 }
1758                 Some(res)
1759             }
1760             Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static, _) => {
1761                 // This is unambiguously a fresh binding, either syntactically
1762                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1763                 // to something unusable as a pattern (e.g., constructor function),
1764                 // but we still conservatively report an error, see
1765                 // issues/33118#issuecomment-233962221 for one reason why.
1766                 let binding = binding.expect("no binding for a ctor or static");
1767                 self.report_error(
1768                     ident.span,
1769                     ResolutionError::BindingShadowsSomethingUnacceptable {
1770                         shadowing_binding_descr: pat_src.descr(),
1771                         name: ident.name,
1772                         participle: if binding.is_import() { "imported" } else { "defined" },
1773                         article: binding.res().article(),
1774                         shadowed_binding_descr: binding.res().descr(),
1775                         shadowed_binding_span: binding.span,
1776                     },
1777                 );
1778                 None
1779             }
1780             Res::Def(DefKind::ConstParam, def_id) => {
1781                 // Same as for DefKind::Const above, but here, `binding` is `None`, so we
1782                 // have to construct the error differently
1783                 self.report_error(
1784                     ident.span,
1785                     ResolutionError::BindingShadowsSomethingUnacceptable {
1786                         shadowing_binding_descr: pat_src.descr(),
1787                         name: ident.name,
1788                         participle: "defined",
1789                         article: res.article(),
1790                         shadowed_binding_descr: res.descr(),
1791                         shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"),
1792                     }
1793                 );
1794                 None
1795             }
1796             Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
1797                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1798                 None
1799             }
1800             _ => span_bug!(
1801                 ident.span,
1802                 "unexpected resolution for an identifier in pattern: {:?}",
1803                 res,
1804             ),
1805         }
1806     }
1807
1808     // High-level and context dependent path resolution routine.
1809     // Resolves the path and records the resolution into definition map.
1810     // If resolution fails tries several techniques to find likely
1811     // resolution candidates, suggest imports or other help, and report
1812     // errors in user friendly way.
1813     fn smart_resolve_path(
1814         &mut self,
1815         id: NodeId,
1816         qself: Option<&QSelf>,
1817         path: &Path,
1818         source: PathSource<'ast>,
1819     ) {
1820         self.smart_resolve_path_fragment(
1821             id,
1822             qself,
1823             &Segment::from_path(path),
1824             path.span,
1825             source,
1826             CrateLint::SimplePath(id),
1827         );
1828     }
1829
1830     fn smart_resolve_path_fragment(
1831         &mut self,
1832         id: NodeId,
1833         qself: Option<&QSelf>,
1834         path: &[Segment],
1835         span: Span,
1836         source: PathSource<'ast>,
1837         crate_lint: CrateLint,
1838     ) -> PartialRes {
1839         tracing::debug!(
1840             "smart_resolve_path_fragment(id={:?}, qself={:?}, path={:?})",
1841             id,
1842             qself,
1843             path
1844         );
1845         let ns = source.namespace();
1846
1847         let report_errors = |this: &mut Self, res: Option<Res>| {
1848             if this.should_report_errs() {
1849                 let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1850
1851                 let def_id = this.parent_scope.module.nearest_parent_mod;
1852                 let instead = res.is_some();
1853                 let suggestion =
1854                     if res.is_none() { this.report_missing_type_error(path) } else { None };
1855
1856                 this.r.use_injections.push(UseError {
1857                     err,
1858                     candidates,
1859                     def_id,
1860                     instead,
1861                     suggestion,
1862                 });
1863             }
1864
1865             PartialRes::new(Res::Err)
1866         };
1867
1868         // For paths originating from calls (like in `HashMap::new()`), tries
1869         // to enrich the plain `failed to resolve: ...` message with hints
1870         // about possible missing imports.
1871         //
1872         // Similar thing, for types, happens in `report_errors` above.
1873         let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
1874             if !source.is_call() {
1875                 return Some(parent_err);
1876             }
1877
1878             // Before we start looking for candidates, we have to get our hands
1879             // on the type user is trying to perform invocation on; basically:
1880             // we're transforming `HashMap::new` into just `HashMap`.
1881             let path = match path.split_last() {
1882                 Some((_, path)) if !path.is_empty() => path,
1883                 _ => return Some(parent_err),
1884             };
1885
1886             let (mut err, candidates) =
1887                 this.smart_resolve_report_errors(path, span, PathSource::Type, None);
1888
1889             if candidates.is_empty() {
1890                 err.cancel();
1891                 return Some(parent_err);
1892             }
1893
1894             // There are two different error messages user might receive at
1895             // this point:
1896             // - E0412 cannot find type `{}` in this scope
1897             // - E0433 failed to resolve: use of undeclared type or module `{}`
1898             //
1899             // The first one is emitted for paths in type-position, and the
1900             // latter one - for paths in expression-position.
1901             //
1902             // Thus (since we're in expression-position at this point), not to
1903             // confuse the user, we want to keep the *message* from E0432 (so
1904             // `parent_err`), but we want *hints* from E0412 (so `err`).
1905             //
1906             // And that's what happens below - we're just mixing both messages
1907             // into a single one.
1908             let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
1909
1910             parent_err.cancel();
1911
1912             err.message = take(&mut parent_err.message);
1913             err.code = take(&mut parent_err.code);
1914             err.children = take(&mut parent_err.children);
1915
1916             drop(parent_err);
1917
1918             let def_id = this.parent_scope.module.nearest_parent_mod;
1919
1920             if this.should_report_errs() {
1921                 this.r.use_injections.push(UseError {
1922                     err,
1923                     candidates,
1924                     def_id,
1925                     instead: false,
1926                     suggestion: None,
1927                 });
1928             } else {
1929                 err.cancel();
1930             }
1931
1932             // We don't return `Some(parent_err)` here, because the error will
1933             // be already printed as part of the `use` injections
1934             None
1935         };
1936
1937         let partial_res = match self.resolve_qpath_anywhere(
1938             id,
1939             qself,
1940             path,
1941             ns,
1942             span,
1943             source.defer_to_typeck(),
1944             crate_lint,
1945         ) {
1946             Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
1947                 if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
1948                 {
1949                     partial_res
1950                 } else {
1951                     report_errors(self, Some(partial_res.base_res()))
1952                 }
1953             }
1954
1955             Ok(Some(partial_res)) if source.defer_to_typeck() => {
1956                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1957                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1958                 // it needs to be added to the trait map.
1959                 if ns == ValueNS {
1960                     let item_name = path.last().unwrap().ident;
1961                     let traits = self.traits_in_scope(item_name, ns);
1962                     self.r.trait_map.as_mut().unwrap().insert(id, traits);
1963                 }
1964
1965                 if PrimTy::from_name(path[0].ident.name).is_some() {
1966                     let mut std_path = Vec::with_capacity(1 + path.len());
1967
1968                     std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
1969                     std_path.extend(path);
1970                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1971                         self.resolve_path(&std_path, Some(ns), false, span, CrateLint::No)
1972                     {
1973                         // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1974                         let item_span =
1975                             path.iter().last().map_or(span, |segment| segment.ident.span);
1976
1977                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1978                         hm.insert(item_span, span);
1979                         hm.insert(span, span);
1980                     }
1981                 }
1982
1983                 partial_res
1984             }
1985
1986             Err(err) => {
1987                 if let Some(err) = report_errors_for_call(self, err) {
1988                     self.report_error(err.span, err.node);
1989                 }
1990
1991                 PartialRes::new(Res::Err)
1992             }
1993
1994             _ => report_errors(self, None),
1995         };
1996
1997         if !matches!(source, PathSource::TraitItem(..)) {
1998             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1999             self.r.record_partial_res(id, partial_res);
2000         }
2001
2002         partial_res
2003     }
2004
2005     fn self_type_is_available(&mut self, span: Span) -> bool {
2006         let binding = self.resolve_ident_in_lexical_scope(
2007             Ident::with_dummy_span(kw::SelfUpper),
2008             TypeNS,
2009             None,
2010             span,
2011         );
2012         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
2013     }
2014
2015     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
2016         let ident = Ident::new(kw::SelfLower, self_span);
2017         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
2018         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
2019     }
2020
2021     /// A wrapper around [`Resolver::report_error`].
2022     ///
2023     /// This doesn't emit errors for function bodies if this is rustdoc.
2024     fn report_error(&self, span: Span, resolution_error: ResolutionError<'_>) {
2025         if self.should_report_errs() {
2026             self.r.report_error(span, resolution_error);
2027         }
2028     }
2029
2030     #[inline]
2031     /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
2032     fn should_report_errs(&self) -> bool {
2033         !(self.r.session.opts.actually_rustdoc && self.in_func_body)
2034     }
2035
2036     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2037     fn resolve_qpath_anywhere(
2038         &mut self,
2039         id: NodeId,
2040         qself: Option<&QSelf>,
2041         path: &[Segment],
2042         primary_ns: Namespace,
2043         span: Span,
2044         defer_to_typeck: bool,
2045         crate_lint: CrateLint,
2046     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2047         let mut fin_res = None;
2048
2049         for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
2050             if i == 0 || ns != primary_ns {
2051                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint)? {
2052                     Some(partial_res)
2053                         if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
2054                     {
2055                         return Ok(Some(partial_res));
2056                     }
2057                     partial_res => {
2058                         if fin_res.is_none() {
2059                             fin_res = partial_res;
2060                         }
2061                     }
2062                 }
2063             }
2064         }
2065
2066         assert!(primary_ns != MacroNS);
2067
2068         if qself.is_none() {
2069             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
2070             let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
2071             if let Ok((_, res)) =
2072                 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
2073             {
2074                 return Ok(Some(PartialRes::new(res)));
2075             }
2076         }
2077
2078         Ok(fin_res)
2079     }
2080
2081     /// Handles paths that may refer to associated items.
2082     fn resolve_qpath(
2083         &mut self,
2084         id: NodeId,
2085         qself: Option<&QSelf>,
2086         path: &[Segment],
2087         ns: Namespace,
2088         span: Span,
2089         crate_lint: CrateLint,
2090     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2091         debug!(
2092             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
2093             id, qself, path, ns, span,
2094         );
2095
2096         if let Some(qself) = qself {
2097             if qself.position == 0 {
2098                 // This is a case like `<T>::B`, where there is no
2099                 // trait to resolve.  In that case, we leave the `B`
2100                 // segment to be resolved by type-check.
2101                 return Ok(Some(PartialRes::with_unresolved_segments(
2102                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
2103                     path.len(),
2104                 )));
2105             }
2106
2107             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
2108             //
2109             // Currently, `path` names the full item (`A::B::C`, in
2110             // our example).  so we extract the prefix of that that is
2111             // the trait (the slice upto and including
2112             // `qself.position`). And then we recursively resolve that,
2113             // but with `qself` set to `None`.
2114             //
2115             // However, setting `qself` to none (but not changing the
2116             // span) loses the information about where this path
2117             // *actually* appears, so for the purposes of the crate
2118             // lint we pass along information that this is the trait
2119             // name from a fully qualified path, and this also
2120             // contains the full span (the `CrateLint::QPathTrait`).
2121             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2122             let partial_res = self.smart_resolve_path_fragment(
2123                 id,
2124                 None,
2125                 &path[..=qself.position],
2126                 span,
2127                 PathSource::TraitItem(ns),
2128                 CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
2129             );
2130
2131             // The remaining segments (the `C` in our example) will
2132             // have to be resolved by type-check, since that requires doing
2133             // trait resolution.
2134             return Ok(Some(PartialRes::with_unresolved_segments(
2135                 partial_res.base_res(),
2136                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
2137             )));
2138         }
2139
2140         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
2141             PathResult::NonModule(path_res) => path_res,
2142             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
2143                 PartialRes::new(module.res().unwrap())
2144             }
2145             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2146             // don't report an error right away, but try to fallback to a primitive type.
2147             // So, we are still able to successfully resolve something like
2148             //
2149             // use std::u8; // bring module u8 in scope
2150             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2151             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2152             //                     // not to non-existent std::u8::max_value
2153             // }
2154             //
2155             // Such behavior is required for backward compatibility.
2156             // The same fallback is used when `a` resolves to nothing.
2157             PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
2158                 if (ns == TypeNS || path.len() > 1)
2159                     && PrimTy::from_name(path[0].ident.name).is_some() =>
2160             {
2161                 let prim = PrimTy::from_name(path[0].ident.name).unwrap();
2162                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
2163             }
2164             PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2165                 PartialRes::new(module.res().unwrap())
2166             }
2167             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
2168                 return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
2169             }
2170             PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
2171             PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
2172         };
2173
2174         if path.len() > 1
2175             && result.base_res() != Res::Err
2176             && path[0].ident.name != kw::PathRoot
2177             && path[0].ident.name != kw::DollarCrate
2178         {
2179             let unqualified_result = {
2180                 match self.resolve_path(
2181                     &[*path.last().unwrap()],
2182                     Some(ns),
2183                     false,
2184                     span,
2185                     CrateLint::No,
2186                 ) {
2187                     PathResult::NonModule(path_res) => path_res.base_res(),
2188                     PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2189                         module.res().unwrap()
2190                     }
2191                     _ => return Ok(Some(result)),
2192                 }
2193             };
2194             if result.base_res() == unqualified_result {
2195                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2196                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
2197             }
2198         }
2199
2200         Ok(Some(result))
2201     }
2202
2203     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
2204         if let Some(label) = label {
2205             if label.ident.as_str().as_bytes()[1] != b'_' {
2206                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
2207             }
2208             self.with_label_rib(NormalRibKind, |this| {
2209                 let ident = label.ident.normalize_to_macro_rules();
2210                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
2211                 f(this);
2212             });
2213         } else {
2214             f(self);
2215         }
2216     }
2217
2218     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
2219         self.with_resolved_label(label, id, |this| this.visit_block(block));
2220     }
2221
2222     fn resolve_block(&mut self, block: &'ast Block) {
2223         debug!("(resolving block) entering block");
2224         // Move down in the graph, if there's an anonymous module rooted here.
2225         let orig_module = self.parent_scope.module;
2226         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
2227
2228         let mut num_macro_definition_ribs = 0;
2229         if let Some(anonymous_module) = anonymous_module {
2230             debug!("(resolving block) found anonymous module, moving down");
2231             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2232             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2233             self.parent_scope.module = anonymous_module;
2234         } else {
2235             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2236         }
2237
2238         // Descend into the block.
2239         for stmt in &block.stmts {
2240             if let StmtKind::Item(ref item) = stmt.kind {
2241                 if let ItemKind::MacroDef(..) = item.kind {
2242                     num_macro_definition_ribs += 1;
2243                     let res = self.r.local_def_id(item.id).to_def_id();
2244                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
2245                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
2246                 }
2247             }
2248
2249             self.visit_stmt(stmt);
2250         }
2251
2252         // Move back up.
2253         self.parent_scope.module = orig_module;
2254         for _ in 0..num_macro_definition_ribs {
2255             self.ribs[ValueNS].pop();
2256             self.label_ribs.pop();
2257         }
2258         self.ribs[ValueNS].pop();
2259         if anonymous_module.is_some() {
2260             self.ribs[TypeNS].pop();
2261         }
2262         debug!("(resolving block) leaving block");
2263     }
2264
2265     fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
2266         debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
2267         self.with_constant_rib(
2268             is_repeat,
2269             constant.value.is_potential_trivial_const_param(),
2270             None,
2271             |this| {
2272                 visit::walk_anon_const(this, constant);
2273             },
2274         );
2275     }
2276
2277     fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
2278         // First, record candidate traits for this expression if it could
2279         // result in the invocation of a method call.
2280
2281         self.record_candidate_traits_for_expr_if_necessary(expr);
2282
2283         // Next, resolve the node.
2284         match expr.kind {
2285             ExprKind::Path(ref qself, ref path) => {
2286                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2287                 visit::walk_expr(self, expr);
2288             }
2289
2290             ExprKind::Struct(ref se) => {
2291                 self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct);
2292                 visit::walk_expr(self, expr);
2293             }
2294
2295             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
2296                 if let Some(node_id) = self.resolve_label(label.ident) {
2297                     // Since this res is a label, it is never read.
2298                     self.r.label_res_map.insert(expr.id, node_id);
2299                     self.diagnostic_metadata.unused_labels.remove(&node_id);
2300                 }
2301
2302                 // visit `break` argument if any
2303                 visit::walk_expr(self, expr);
2304             }
2305
2306             ExprKind::Break(None, Some(ref e)) => {
2307                 // We use this instead of `visit::walk_expr` to keep the parent expr around for
2308                 // better diagnostics.
2309                 self.resolve_expr(e, Some(&expr));
2310             }
2311
2312             ExprKind::Let(ref pat, ref scrutinee, _) => {
2313                 self.visit_expr(scrutinee);
2314                 self.resolve_pattern_top(pat, PatternSource::Let);
2315             }
2316
2317             ExprKind::If(ref cond, ref then, ref opt_else) => {
2318                 self.with_rib(ValueNS, NormalRibKind, |this| {
2319                     let old = this.diagnostic_metadata.in_if_condition.replace(cond);
2320                     this.visit_expr(cond);
2321                     this.diagnostic_metadata.in_if_condition = old;
2322                     this.visit_block(then);
2323                 });
2324                 if let Some(expr) = opt_else {
2325                     self.visit_expr(expr);
2326                 }
2327             }
2328
2329             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
2330
2331             ExprKind::While(ref cond, ref block, label) => {
2332                 self.with_resolved_label(label, expr.id, |this| {
2333                     this.with_rib(ValueNS, NormalRibKind, |this| {
2334                         this.visit_expr(cond);
2335                         this.visit_block(block);
2336                     })
2337                 });
2338             }
2339
2340             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
2341                 self.visit_expr(iter_expr);
2342                 self.with_rib(ValueNS, NormalRibKind, |this| {
2343                     this.resolve_pattern_top(pat, PatternSource::For);
2344                     this.resolve_labeled_block(label, expr.id, block);
2345                 });
2346             }
2347
2348             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
2349
2350             // Equivalent to `visit::walk_expr` + passing some context to children.
2351             ExprKind::Field(ref subexpression, _) => {
2352                 self.resolve_expr(subexpression, Some(expr));
2353             }
2354             ExprKind::MethodCall(ref segment, ref arguments, _) => {
2355                 let mut arguments = arguments.iter();
2356                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
2357                 for argument in arguments {
2358                     self.resolve_expr(argument, None);
2359                 }
2360                 self.visit_path_segment(expr.span, segment);
2361             }
2362
2363             ExprKind::Call(ref callee, ref arguments) => {
2364                 self.resolve_expr(callee, Some(expr));
2365                 let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
2366                 for (idx, argument) in arguments.iter().enumerate() {
2367                     // Constant arguments need to be treated as AnonConst since
2368                     // that is how they will be later lowered to HIR.
2369                     if const_args.contains(&idx) {
2370                         self.with_constant_rib(
2371                             IsRepeatExpr::No,
2372                             argument.is_potential_trivial_const_param(),
2373                             None,
2374                             |this| {
2375                                 this.resolve_expr(argument, None);
2376                             },
2377                         );
2378                     } else {
2379                         self.resolve_expr(argument, None);
2380                     }
2381                 }
2382             }
2383             ExprKind::Type(ref type_expr, ref ty) => {
2384                 // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
2385                 // type ascription. Here we are trying to retrieve the span of the colon token as
2386                 // well, but only if it's written without spaces `expr:Ty` and therefore confusable
2387                 // with `expr::Ty`, only in this case it will match the span from
2388                 // `type_ascription_path_suggestions`.
2389                 self.diagnostic_metadata
2390                     .current_type_ascription
2391                     .push(type_expr.span.between(ty.span));
2392                 visit::walk_expr(self, expr);
2393                 self.diagnostic_metadata.current_type_ascription.pop();
2394             }
2395             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
2396             // resolve the arguments within the proper scopes so that usages of them inside the
2397             // closure are detected as upvars rather than normal closure arg usages.
2398             ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
2399                 self.with_rib(ValueNS, NormalRibKind, |this| {
2400                     this.with_label_rib(ClosureOrAsyncRibKind, |this| {
2401                         // Resolve arguments:
2402                         this.resolve_params(&fn_decl.inputs);
2403                         // No need to resolve return type --
2404                         // the outer closure return type is `FnRetTy::Default`.
2405
2406                         // Now resolve the inner closure
2407                         {
2408                             // No need to resolve arguments: the inner closure has none.
2409                             // Resolve the return type:
2410                             visit::walk_fn_ret_ty(this, &fn_decl.output);
2411                             // Resolve the body
2412                             this.visit_expr(body);
2413                         }
2414                     })
2415                 });
2416             }
2417             ExprKind::Async(..) | ExprKind::Closure(..) => {
2418                 self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
2419             }
2420             ExprKind::Repeat(ref elem, ref ct) => {
2421                 self.visit_expr(elem);
2422                 self.resolve_anon_const(ct, IsRepeatExpr::Yes);
2423             }
2424             _ => {
2425                 visit::walk_expr(self, expr);
2426             }
2427         }
2428     }
2429
2430     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
2431         match expr.kind {
2432             ExprKind::Field(_, ident) => {
2433                 // FIXME(#6890): Even though you can't treat a method like a
2434                 // field, we need to add any trait methods we find that match
2435                 // the field name so that we can do some nice error reporting
2436                 // later on in typeck.
2437                 let traits = self.traits_in_scope(ident, ValueNS);
2438                 self.r.trait_map.as_mut().unwrap().insert(expr.id, traits);
2439             }
2440             ExprKind::MethodCall(ref segment, ..) => {
2441                 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
2442                 let traits = self.traits_in_scope(segment.ident, ValueNS);
2443                 self.r.trait_map.as_mut().unwrap().insert(expr.id, traits);
2444             }
2445             _ => {
2446                 // Nothing to do.
2447             }
2448         }
2449     }
2450
2451     fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
2452         self.r.traits_in_scope(
2453             self.current_trait_ref.as_ref().map(|(module, _)| *module),
2454             &self.parent_scope,
2455             ident.span.ctxt(),
2456             Some((ident.name, ns)),
2457         )
2458     }
2459 }
2460
2461 impl<'a> Resolver<'a> {
2462     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2463         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2464         visit::walk_crate(&mut late_resolution_visitor, krate);
2465         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2466             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2467         }
2468     }
2469 }