]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late.rs
Auto merge of #94570 - shampoofactory:reopen-91719, r=workingjubilee
[rust.git] / compiler / rustc_resolve / src / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use rustc_ast::ptr::P;
15 use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
16 use rustc_ast::*;
17 use rustc_ast_lowering::ResolverAstLowering;
18 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
19 use rustc_errors::DiagnosticId;
20 use rustc_hir::def::Namespace::{self, *};
21 use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
22 use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
23 use rustc_hir::{PrimTy, TraitCandidate};
24 use rustc_middle::{bug, span_bug};
25 use rustc_session::lint;
26 use rustc_span::symbol::{kw, sym, Ident, Symbol};
27 use rustc_span::Span;
28 use smallvec::{smallvec, SmallVec};
29
30 use rustc_span::source_map::{respan, Spanned};
31 use std::collections::{hash_map::Entry, BTreeSet};
32 use std::mem::{replace, take};
33 use tracing::debug;
34
35 mod diagnostics;
36 crate mod lifetimes;
37
38 type Res = def::Res<NodeId>;
39
40 type IdentMap<T> = FxHashMap<Ident, T>;
41
42 /// Map from the name in a pattern to its binding mode.
43 type BindingMap = IdentMap<BindingInfo>;
44
45 #[derive(Copy, Clone, Debug)]
46 struct BindingInfo {
47     span: Span,
48     binding_mode: BindingMode,
49 }
50
51 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
52 enum PatternSource {
53     Match,
54     Let,
55     For,
56     FnParam,
57 }
58
59 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
60 enum IsRepeatExpr {
61     No,
62     Yes,
63 }
64
65 impl PatternSource {
66     fn descr(self) -> &'static str {
67         match self {
68             PatternSource::Match => "match binding",
69             PatternSource::Let => "let binding",
70             PatternSource::For => "for binding",
71             PatternSource::FnParam => "function parameter",
72         }
73     }
74 }
75
76 /// Denotes whether the context for the set of already bound bindings is a `Product`
77 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
78 /// See those functions for more information.
79 #[derive(PartialEq)]
80 enum PatBoundCtx {
81     /// A product pattern context, e.g., `Variant(a, b)`.
82     Product,
83     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
84     Or,
85 }
86
87 /// Does this the item (from the item rib scope) allow generic parameters?
88 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
89 crate enum HasGenericParams {
90     Yes,
91     No,
92 }
93
94 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
95 crate enum ConstantItemKind {
96     Const,
97     Static,
98 }
99
100 /// The rib kind restricts certain accesses,
101 /// e.g. to a `Res::Local` of an outer item.
102 #[derive(Copy, Clone, Debug)]
103 crate enum RibKind<'a> {
104     /// No restriction needs to be applied.
105     NormalRibKind,
106
107     /// We passed through an impl or trait and are now in one of its
108     /// methods or associated types. Allow references to ty params that impl or trait
109     /// binds. Disallow any other upvars (including other ty params that are
110     /// upvars).
111     AssocItemRibKind,
112
113     /// We passed through a closure. Disallow labels.
114     ClosureOrAsyncRibKind,
115
116     /// We passed through a function definition. Disallow upvars.
117     /// Permit only those const parameters that are specified in the function's generics.
118     FnItemRibKind,
119
120     /// We passed through an item scope. Disallow upvars.
121     ItemRibKind(HasGenericParams),
122
123     /// We're in a constant item. Can't refer to dynamic stuff.
124     ///
125     /// The `bool` indicates if this constant may reference generic parameters
126     /// and is used to only allow generic parameters to be used in trivial constant expressions.
127     ConstantItemRibKind(bool, Option<(Ident, ConstantItemKind)>),
128
129     /// We passed through a module.
130     ModuleRibKind(Module<'a>),
131
132     /// We passed through a `macro_rules!` statement
133     MacroDefinition(DefId),
134
135     /// All bindings in this rib are generic parameters that can't be used
136     /// from the default of a generic parameter because they're not declared
137     /// before said generic parameter. Also see the `visit_generics` override.
138     ForwardGenericParamBanRibKind,
139
140     /// We are inside of the type of a const parameter. Can't refer to any
141     /// parameters.
142     ConstParamTyRibKind,
143 }
144
145 impl RibKind<'_> {
146     /// Whether this rib kind contains generic parameters, as opposed to local
147     /// variables.
148     crate fn contains_params(&self) -> bool {
149         match self {
150             NormalRibKind
151             | ClosureOrAsyncRibKind
152             | FnItemRibKind
153             | ConstantItemRibKind(..)
154             | ModuleRibKind(_)
155             | MacroDefinition(_)
156             | ConstParamTyRibKind => false,
157             AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
158         }
159     }
160 }
161
162 /// A single local scope.
163 ///
164 /// A rib represents a scope names can live in. Note that these appear in many places, not just
165 /// around braces. At any place where the list of accessible names (of the given namespace)
166 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
167 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
168 /// etc.
169 ///
170 /// Different [rib kinds](enum.RibKind) are transparent for different names.
171 ///
172 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
173 /// resolving, the name is looked up from inside out.
174 #[derive(Debug)]
175 crate struct Rib<'a, R = Res> {
176     pub bindings: IdentMap<R>,
177     pub kind: RibKind<'a>,
178 }
179
180 impl<'a, R> Rib<'a, R> {
181     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
182         Rib { bindings: Default::default(), kind }
183     }
184 }
185
186 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
187 crate enum AliasPossibility {
188     No,
189     Maybe,
190 }
191
192 #[derive(Copy, Clone, Debug)]
193 crate enum PathSource<'a> {
194     // Type paths `Path`.
195     Type,
196     // Trait paths in bounds or impls.
197     Trait(AliasPossibility),
198     // Expression paths `path`, with optional parent context.
199     Expr(Option<&'a Expr>),
200     // Paths in path patterns `Path`.
201     Pat,
202     // Paths in struct expressions and patterns `Path { .. }`.
203     Struct,
204     // Paths in tuple struct patterns `Path(..)`.
205     TupleStruct(Span, &'a [Span]),
206     // `m::A::B` in `<T as m::A>::B::C`.
207     TraitItem(Namespace),
208 }
209
210 impl<'a> PathSource<'a> {
211     fn namespace(self) -> Namespace {
212         match self {
213             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
214             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
215             PathSource::TraitItem(ns) => ns,
216         }
217     }
218
219     fn defer_to_typeck(self) -> bool {
220         match self {
221             PathSource::Type
222             | PathSource::Expr(..)
223             | PathSource::Pat
224             | PathSource::Struct
225             | PathSource::TupleStruct(..) => true,
226             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
227         }
228     }
229
230     fn descr_expected(self) -> &'static str {
231         match &self {
232             PathSource::Type => "type",
233             PathSource::Trait(_) => "trait",
234             PathSource::Pat => "unit struct, unit variant or constant",
235             PathSource::Struct => "struct, variant or union type",
236             PathSource::TupleStruct(..) => "tuple struct or tuple variant",
237             PathSource::TraitItem(ns) => match ns {
238                 TypeNS => "associated type",
239                 ValueNS => "method or associated constant",
240                 MacroNS => bug!("associated macro"),
241             },
242             PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
243                 // "function" here means "anything callable" rather than `DefKind::Fn`,
244                 // this is not precise but usually more helpful than just "value".
245                 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
246                     // the case of `::some_crate()`
247                     ExprKind::Path(_, path)
248                         if path.segments.len() == 2
249                             && path.segments[0].ident.name == kw::PathRoot =>
250                     {
251                         "external crate"
252                     }
253                     ExprKind::Path(_, path) => {
254                         let mut msg = "function";
255                         if let Some(segment) = path.segments.iter().last() {
256                             if let Some(c) = segment.ident.to_string().chars().next() {
257                                 if c.is_uppercase() {
258                                     msg = "function, tuple struct or tuple variant";
259                                 }
260                             }
261                         }
262                         msg
263                     }
264                     _ => "function",
265                 },
266                 _ => "value",
267             },
268         }
269     }
270
271     fn is_call(self) -> bool {
272         matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
273     }
274
275     crate fn is_expected(self, res: Res) -> bool {
276         match self {
277             PathSource::Type => matches!(
278                 res,
279                 Res::Def(
280                     DefKind::Struct
281                         | DefKind::Union
282                         | DefKind::Enum
283                         | DefKind::Trait
284                         | DefKind::TraitAlias
285                         | DefKind::TyAlias
286                         | DefKind::AssocTy
287                         | DefKind::TyParam
288                         | DefKind::OpaqueTy
289                         | DefKind::ForeignTy,
290                     _,
291                 ) | Res::PrimTy(..)
292                     | Res::SelfTy { .. }
293             ),
294             PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
295             PathSource::Trait(AliasPossibility::Maybe) => {
296                 matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
297             }
298             PathSource::Expr(..) => matches!(
299                 res,
300                 Res::Def(
301                     DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
302                         | DefKind::Const
303                         | DefKind::Static
304                         | DefKind::Fn
305                         | DefKind::AssocFn
306                         | DefKind::AssocConst
307                         | DefKind::ConstParam,
308                     _,
309                 ) | Res::Local(..)
310                     | Res::SelfCtor(..)
311             ),
312             PathSource::Pat => matches!(
313                 res,
314                 Res::Def(
315                     DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
316                     _,
317                 ) | Res::SelfCtor(..)
318             ),
319             PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
320             PathSource::Struct => matches!(
321                 res,
322                 Res::Def(
323                     DefKind::Struct
324                         | DefKind::Union
325                         | DefKind::Variant
326                         | DefKind::TyAlias
327                         | DefKind::AssocTy,
328                     _,
329                 ) | Res::SelfTy { .. }
330             ),
331             PathSource::TraitItem(ns) => match res {
332                 Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
333                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
334                 _ => false,
335             },
336         }
337     }
338
339     fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
340         use rustc_errors::error_code;
341         match (self, has_unexpected_resolution) {
342             (PathSource::Trait(_), true) => error_code!(E0404),
343             (PathSource::Trait(_), false) => error_code!(E0405),
344             (PathSource::Type, true) => error_code!(E0573),
345             (PathSource::Type, false) => error_code!(E0412),
346             (PathSource::Struct, true) => error_code!(E0574),
347             (PathSource::Struct, false) => error_code!(E0422),
348             (PathSource::Expr(..), true) => error_code!(E0423),
349             (PathSource::Expr(..), false) => error_code!(E0425),
350             (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
351             (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
352             (PathSource::TraitItem(..), true) => error_code!(E0575),
353             (PathSource::TraitItem(..), false) => error_code!(E0576),
354         }
355     }
356 }
357
358 #[derive(Default)]
359 struct DiagnosticMetadata<'ast> {
360     /// The current trait's associated items' ident, used for diagnostic suggestions.
361     current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
362
363     /// The current self type if inside an impl (used for better errors).
364     current_self_type: Option<Ty>,
365
366     /// The current self item if inside an ADT (used for better errors).
367     current_self_item: Option<NodeId>,
368
369     /// The current trait (used to suggest).
370     current_item: Option<&'ast Item>,
371
372     /// When processing generics and encountering a type not found, suggest introducing a type
373     /// param.
374     currently_processing_generics: bool,
375
376     /// The current enclosing (non-closure) function (used for better errors).
377     current_function: Option<(FnKind<'ast>, Span)>,
378
379     /// A list of labels as of yet unused. Labels will be removed from this map when
380     /// they are used (in a `break` or `continue` statement)
381     unused_labels: FxHashMap<NodeId, Span>,
382
383     /// Only used for better errors on `fn(): fn()`.
384     current_type_ascription: Vec<Span>,
385
386     /// Only used for better errors on `let x = { foo: bar };`.
387     /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
388     /// needed for cases where this parses as a correct type ascription.
389     current_block_could_be_bare_struct_literal: Option<Span>,
390
391     /// Only used for better errors on `let <pat>: <expr, not type>;`.
392     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
393
394     /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
395     in_if_condition: Option<&'ast Expr>,
396
397     /// If we are currently in a trait object definition. Used to point at the bounds when
398     /// encountering a struct or enum.
399     current_trait_object: Option<&'ast [ast::GenericBound]>,
400
401     /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
402     current_where_predicate: Option<&'ast WherePredicate>,
403
404     current_type_path: Option<&'ast Ty>,
405 }
406
407 struct LateResolutionVisitor<'a, 'b, 'ast> {
408     r: &'b mut Resolver<'a>,
409
410     /// The module that represents the current item scope.
411     parent_scope: ParentScope<'a>,
412
413     /// The current set of local scopes for types and values.
414     /// FIXME #4948: Reuse ribs to avoid allocation.
415     ribs: PerNS<Vec<Rib<'a>>>,
416
417     /// The current set of local scopes, for labels.
418     label_ribs: Vec<Rib<'a, NodeId>>,
419
420     /// The trait that the current context can refer to.
421     current_trait_ref: Option<(Module<'a>, TraitRef)>,
422
423     /// Fields used to add information to diagnostic errors.
424     diagnostic_metadata: DiagnosticMetadata<'ast>,
425
426     /// State used to know whether to ignore resolution errors for function bodies.
427     ///
428     /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
429     /// In most cases this will be `None`, in which case errors will always be reported.
430     /// If it is `true`, then it will be updated when entering a nested function or trait body.
431     in_func_body: bool,
432 }
433
434 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
435 impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
436     fn visit_attribute(&mut self, _: &'ast Attribute) {
437         // We do not want to resolve expressions that appear in attributes,
438         // as they do not correspond to actual code.
439     }
440     fn visit_item(&mut self, item: &'ast Item) {
441         let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
442         // Always report errors in items we just entered.
443         let old_ignore = replace(&mut self.in_func_body, false);
444         self.resolve_item(item);
445         self.in_func_body = old_ignore;
446         self.diagnostic_metadata.current_item = prev;
447     }
448     fn visit_arm(&mut self, arm: &'ast Arm) {
449         self.resolve_arm(arm);
450     }
451     fn visit_block(&mut self, block: &'ast Block) {
452         self.resolve_block(block);
453     }
454     fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
455         // We deal with repeat expressions explicitly in `resolve_expr`.
456         self.resolve_anon_const(constant, IsRepeatExpr::No);
457     }
458     fn visit_expr(&mut self, expr: &'ast Expr) {
459         self.resolve_expr(expr, None);
460     }
461     fn visit_local(&mut self, local: &'ast Local) {
462         let local_spans = match local.pat.kind {
463             // We check for this to avoid tuple struct fields.
464             PatKind::Wild => None,
465             _ => Some((
466                 local.pat.span,
467                 local.ty.as_ref().map(|ty| ty.span),
468                 local.kind.init().map(|init| init.span),
469             )),
470         };
471         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
472         self.resolve_local(local);
473         self.diagnostic_metadata.current_let_binding = original;
474     }
475     fn visit_ty(&mut self, ty: &'ast Ty) {
476         let prev = self.diagnostic_metadata.current_trait_object;
477         let prev_ty = self.diagnostic_metadata.current_type_path;
478         match ty.kind {
479             TyKind::Path(ref qself, ref path) => {
480                 self.diagnostic_metadata.current_type_path = Some(ty);
481                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
482             }
483             TyKind::ImplicitSelf => {
484                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
485                 let res = self
486                     .resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
487                     .map_or(Res::Err, |d| d.res());
488                 self.r.record_partial_res(ty.id, PartialRes::new(res));
489             }
490             TyKind::TraitObject(ref bounds, ..) => {
491                 self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
492             }
493             _ => (),
494         }
495         visit::walk_ty(self, ty);
496         self.diagnostic_metadata.current_trait_object = prev;
497         self.diagnostic_metadata.current_type_path = prev_ty;
498     }
499     fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
500         self.smart_resolve_path(
501             tref.trait_ref.ref_id,
502             None,
503             &tref.trait_ref.path,
504             PathSource::Trait(AliasPossibility::Maybe),
505         );
506         visit::walk_poly_trait_ref(self, tref, m);
507     }
508     fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
509         match foreign_item.kind {
510             ForeignItemKind::Fn(box Fn { ref generics, .. })
511             | ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
512                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
513                     visit::walk_foreign_item(this, foreign_item);
514                 });
515             }
516             ForeignItemKind::Static(..) => {
517                 self.with_item_rib(HasGenericParams::No, |this| {
518                     visit::walk_foreign_item(this, foreign_item);
519                 });
520             }
521             ForeignItemKind::MacCall(..) => {
522                 visit::walk_foreign_item(self, foreign_item);
523             }
524         }
525     }
526     fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
527         let rib_kind = match fn_kind {
528             // Bail if the function is foreign, and thus cannot validly have
529             // a body, or if there's no body for some other reason.
530             FnKind::Fn(FnCtxt::Foreign, _, sig, ..) | FnKind::Fn(_, _, sig, .., None) => {
531                 // We don't need to deal with patterns in parameters, because
532                 // they are not possible for foreign or bodiless functions.
533                 self.visit_fn_header(&sig.header);
534                 visit::walk_fn_decl(self, &sig.decl);
535                 return;
536             }
537             FnKind::Fn(FnCtxt::Free, ..) => FnItemRibKind,
538             FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
539             FnKind::Closure(..) => ClosureOrAsyncRibKind,
540         };
541         let previous_value = self.diagnostic_metadata.current_function;
542         if matches!(fn_kind, FnKind::Fn(..)) {
543             self.diagnostic_metadata.current_function = Some((fn_kind, sp));
544         }
545         debug!("(resolving function) entering function");
546         let declaration = fn_kind.decl();
547
548         // Create a value rib for the function.
549         self.with_rib(ValueNS, rib_kind, |this| {
550             // Create a label rib for the function.
551             this.with_label_rib(rib_kind, |this| {
552                 // Add each argument to the rib.
553                 this.resolve_params(&declaration.inputs);
554
555                 visit::walk_fn_ret_ty(this, &declaration.output);
556
557                 // Ignore errors in function bodies if this is rustdoc
558                 // Be sure not to set this until the function signature has been resolved.
559                 let previous_state = replace(&mut this.in_func_body, true);
560                 // Resolve the function body, potentially inside the body of an async closure
561                 match fn_kind {
562                     FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
563                     FnKind::Closure(_, body) => this.visit_expr(body),
564                 };
565
566                 debug!("(resolving function) leaving function");
567                 this.in_func_body = previous_state;
568             })
569         });
570         self.diagnostic_metadata.current_function = previous_value;
571     }
572
573     fn visit_generics(&mut self, generics: &'ast Generics) {
574         // For type parameter defaults, we have to ban access
575         // to following type parameters, as the InternalSubsts can only
576         // provide previous type parameters as they're built. We
577         // put all the parameters on the ban list and then remove
578         // them one by one as they are processed and become available.
579         let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
580         let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
581         for param in generics.params.iter() {
582             match param.kind {
583                 GenericParamKind::Type { .. } => {
584                     forward_ty_ban_rib
585                         .bindings
586                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
587                 }
588                 GenericParamKind::Const { .. } => {
589                     forward_const_ban_rib
590                         .bindings
591                         .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
592                 }
593                 GenericParamKind::Lifetime => {}
594             }
595         }
596
597         // rust-lang/rust#61631: The type `Self` is essentially
598         // another type parameter. For ADTs, we consider it
599         // well-defined only after all of the ADT type parameters have
600         // been provided. Therefore, we do not allow use of `Self`
601         // anywhere in ADT type parameter defaults.
602         //
603         // (We however cannot ban `Self` for defaults on *all* generic
604         // lists; e.g. trait generics can usefully refer to `Self`,
605         // such as in the case of `trait Add<Rhs = Self>`.)
606         if self.diagnostic_metadata.current_self_item.is_some() {
607             // (`Some` if + only if we are in ADT's generics.)
608             forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
609         }
610
611         for param in &generics.params {
612             match param.kind {
613                 GenericParamKind::Lifetime => self.visit_generic_param(param),
614                 GenericParamKind::Type { ref default } => {
615                     for bound in &param.bounds {
616                         self.visit_param_bound(bound);
617                     }
618
619                     if let Some(ref ty) = default {
620                         self.ribs[TypeNS].push(forward_ty_ban_rib);
621                         self.ribs[ValueNS].push(forward_const_ban_rib);
622                         self.visit_ty(ty);
623                         forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
624                         forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
625                     }
626
627                     // Allow all following defaults to refer to this type parameter.
628                     forward_ty_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
629                 }
630                 GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
631                     // Const parameters can't have param bounds.
632                     assert!(param.bounds.is_empty());
633
634                     self.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
635                     self.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
636                     self.visit_ty(ty);
637                     self.ribs[TypeNS].pop().unwrap();
638                     self.ribs[ValueNS].pop().unwrap();
639
640                     if let Some(ref expr) = default {
641                         self.ribs[TypeNS].push(forward_ty_ban_rib);
642                         self.ribs[ValueNS].push(forward_const_ban_rib);
643                         self.visit_anon_const(expr);
644                         forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
645                         forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
646                     }
647
648                     // Allow all following defaults to refer to this const parameter.
649                     forward_const_ban_rib
650                         .bindings
651                         .remove(&Ident::with_dummy_span(param.ident.name));
652                 }
653             }
654         }
655         for p in &generics.where_clause.predicates {
656             self.visit_where_predicate(p);
657         }
658     }
659
660     fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
661         debug!("visit_generic_arg({:?})", arg);
662         let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
663         match arg {
664             GenericArg::Type(ref ty) => {
665                 // We parse const arguments as path types as we cannot distinguish them during
666                 // parsing. We try to resolve that ambiguity by attempting resolution the type
667                 // namespace first, and if that fails we try again in the value namespace. If
668                 // resolution in the value namespace succeeds, we have an generic const argument on
669                 // our hands.
670                 if let TyKind::Path(ref qself, ref path) = ty.kind {
671                     // We cannot disambiguate multi-segment paths right now as that requires type
672                     // checking.
673                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
674                         let mut check_ns = |ns| {
675                             self.resolve_ident_in_lexical_scope(
676                                 path.segments[0].ident,
677                                 ns,
678                                 None,
679                                 path.span,
680                             )
681                             .is_some()
682                         };
683                         if !check_ns(TypeNS) && check_ns(ValueNS) {
684                             // This must be equivalent to `visit_anon_const`, but we cannot call it
685                             // directly due to visitor lifetimes so we have to copy-paste some code.
686                             //
687                             // Note that we might not be inside of an repeat expression here,
688                             // but considering that `IsRepeatExpr` is only relevant for
689                             // non-trivial constants this is doesn't matter.
690                             self.with_constant_rib(IsRepeatExpr::No, true, None, |this| {
691                                 this.smart_resolve_path(
692                                     ty.id,
693                                     qself.as_ref(),
694                                     path,
695                                     PathSource::Expr(None),
696                                 );
697
698                                 if let Some(ref qself) = *qself {
699                                     this.visit_ty(&qself.ty);
700                                 }
701                                 this.visit_path(path, ty.id);
702                             });
703
704                             self.diagnostic_metadata.currently_processing_generics = prev;
705                             return;
706                         }
707                     }
708                 }
709
710                 self.visit_ty(ty);
711             }
712             GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
713             GenericArg::Const(ct) => self.visit_anon_const(ct),
714         }
715         self.diagnostic_metadata.currently_processing_generics = prev;
716     }
717
718     fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
719         debug!("visit_where_predicate {:?}", p);
720         let previous_value =
721             replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
722         visit::walk_where_predicate(self, p);
723         self.diagnostic_metadata.current_where_predicate = previous_value;
724     }
725 }
726
727 impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
728     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
729         // During late resolution we only track the module component of the parent scope,
730         // although it may be useful to track other components as well for diagnostics.
731         let graph_root = resolver.graph_root;
732         let parent_scope = ParentScope::module(graph_root, resolver);
733         let start_rib_kind = ModuleRibKind(graph_root);
734         LateResolutionVisitor {
735             r: resolver,
736             parent_scope,
737             ribs: PerNS {
738                 value_ns: vec![Rib::new(start_rib_kind)],
739                 type_ns: vec![Rib::new(start_rib_kind)],
740                 macro_ns: vec![Rib::new(start_rib_kind)],
741             },
742             label_ribs: Vec::new(),
743             current_trait_ref: None,
744             diagnostic_metadata: DiagnosticMetadata::default(),
745             // errors at module scope should always be reported
746             in_func_body: false,
747         }
748     }
749
750     fn resolve_ident_in_lexical_scope(
751         &mut self,
752         ident: Ident,
753         ns: Namespace,
754         record_used_id: Option<NodeId>,
755         path_span: Span,
756     ) -> Option<LexicalScopeBinding<'a>> {
757         self.r.resolve_ident_in_lexical_scope(
758             ident,
759             ns,
760             &self.parent_scope,
761             record_used_id,
762             path_span,
763             &self.ribs[ns],
764         )
765     }
766
767     fn resolve_path(
768         &mut self,
769         path: &[Segment],
770         opt_ns: Option<Namespace>, // `None` indicates a module path in import
771         record_used: bool,
772         path_span: Span,
773         crate_lint: CrateLint,
774     ) -> PathResult<'a> {
775         self.r.resolve_path_with_ribs(
776             path,
777             opt_ns,
778             &self.parent_scope,
779             record_used,
780             path_span,
781             crate_lint,
782             Some(&self.ribs),
783         )
784     }
785
786     // AST resolution
787     //
788     // We maintain a list of value ribs and type ribs.
789     //
790     // Simultaneously, we keep track of the current position in the module
791     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
792     // the value or type namespaces, we first look through all the ribs and
793     // then query the module graph. When we resolve a name in the module
794     // namespace, we can skip all the ribs (since nested modules are not
795     // allowed within blocks in Rust) and jump straight to the current module
796     // graph node.
797     //
798     // Named implementations are handled separately. When we find a method
799     // call, we consult the module node to find all of the implementations in
800     // scope. This information is lazily cached in the module node. We then
801     // generate a fake "implementation scope" containing all the
802     // implementations thus found, for compatibility with old resolve pass.
803
804     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
805     fn with_rib<T>(
806         &mut self,
807         ns: Namespace,
808         kind: RibKind<'a>,
809         work: impl FnOnce(&mut Self) -> T,
810     ) -> T {
811         self.ribs[ns].push(Rib::new(kind));
812         let ret = work(self);
813         self.ribs[ns].pop();
814         ret
815     }
816
817     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
818         if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
819             // Move down in the graph.
820             let orig_module = replace(&mut self.parent_scope.module, module);
821             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
822                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
823                     let ret = f(this);
824                     this.parent_scope.module = orig_module;
825                     ret
826                 })
827             })
828         } else {
829             f(self)
830         }
831     }
832
833     /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
834     /// label and reports an error if the label is not found or is unreachable.
835     fn resolve_label(&self, mut label: Ident) -> Option<NodeId> {
836         let mut suggestion = None;
837
838         // Preserve the original span so that errors contain "in this macro invocation"
839         // information.
840         let original_span = label.span;
841
842         for i in (0..self.label_ribs.len()).rev() {
843             let rib = &self.label_ribs[i];
844
845             if let MacroDefinition(def) = rib.kind {
846                 // If an invocation of this macro created `ident`, give up on `ident`
847                 // and switch to `ident`'s source from the macro definition.
848                 if def == self.r.macro_def(label.span.ctxt()) {
849                     label.span.remove_mark();
850                 }
851             }
852
853             let ident = label.normalize_to_macro_rules();
854             if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
855                 return if self.is_label_valid_from_rib(i) {
856                     Some(*id)
857                 } else {
858                     self.report_error(
859                         original_span,
860                         ResolutionError::UnreachableLabel {
861                             name: label.name,
862                             definition_span: ident.span,
863                             suggestion,
864                         },
865                     );
866
867                     None
868                 };
869             }
870
871             // Diagnostics: Check if this rib contains a label with a similar name, keep track of
872             // the first such label that is encountered.
873             suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
874         }
875
876         self.report_error(
877             original_span,
878             ResolutionError::UndeclaredLabel { name: label.name, suggestion },
879         );
880         None
881     }
882
883     /// Determine whether or not a label from the `rib_index`th label rib is reachable.
884     fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
885         let ribs = &self.label_ribs[rib_index + 1..];
886
887         for rib in ribs {
888             match rib.kind {
889                 NormalRibKind | MacroDefinition(..) => {
890                     // Nothing to do. Continue.
891                 }
892
893                 AssocItemRibKind
894                 | ClosureOrAsyncRibKind
895                 | FnItemRibKind
896                 | ItemRibKind(..)
897                 | ConstantItemRibKind(..)
898                 | ModuleRibKind(..)
899                 | ForwardGenericParamBanRibKind
900                 | ConstParamTyRibKind => {
901                     return false;
902                 }
903             }
904         }
905
906         true
907     }
908
909     fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
910         debug!("resolve_adt");
911         self.with_current_self_item(item, |this| {
912             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
913                 let item_def_id = this.r.local_def_id(item.id).to_def_id();
914                 this.with_self_rib(
915                     Res::SelfTy { trait_: None, alias_to: Some((item_def_id, false)) },
916                     |this| {
917                         visit::walk_item(this, item);
918                     },
919                 );
920             });
921         });
922     }
923
924     fn future_proof_import(&mut self, use_tree: &UseTree) {
925         let segments = &use_tree.prefix.segments;
926         if !segments.is_empty() {
927             let ident = segments[0].ident;
928             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
929                 return;
930             }
931
932             let nss = match use_tree.kind {
933                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
934                 _ => &[TypeNS],
935             };
936             let report_error = |this: &Self, ns| {
937                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
938                 if this.should_report_errs() {
939                     this.r
940                         .session
941                         .span_err(ident.span, &format!("imports cannot refer to {}", what));
942                 }
943             };
944
945             for &ns in nss {
946                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
947                     Some(LexicalScopeBinding::Res(..)) => {
948                         report_error(self, ns);
949                     }
950                     Some(LexicalScopeBinding::Item(binding)) => {
951                         let orig_unusable_binding =
952                             replace(&mut self.r.unusable_binding, Some(binding));
953                         if let Some(LexicalScopeBinding::Res(..)) = self
954                             .resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
955                         {
956                             report_error(self, ns);
957                         }
958                         self.r.unusable_binding = orig_unusable_binding;
959                     }
960                     None => {}
961                 }
962             }
963         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
964             for (use_tree, _) in use_trees {
965                 self.future_proof_import(use_tree);
966             }
967         }
968     }
969
970     fn resolve_item(&mut self, item: &'ast Item) {
971         let name = item.ident.name;
972         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
973
974         match item.kind {
975             ItemKind::TyAlias(box TyAlias { ref generics, .. })
976             | ItemKind::Fn(box Fn { ref generics, .. }) => {
977                 self.compute_num_lifetime_params(item.id, generics);
978                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
979                     visit::walk_item(this, item)
980                 });
981             }
982
983             ItemKind::Enum(_, ref generics)
984             | ItemKind::Struct(_, ref generics)
985             | ItemKind::Union(_, ref generics) => {
986                 self.compute_num_lifetime_params(item.id, generics);
987                 self.resolve_adt(item, generics);
988             }
989
990             ItemKind::Impl(box Impl {
991                 ref generics,
992                 ref of_trait,
993                 ref self_ty,
994                 items: ref impl_items,
995                 ..
996             }) => {
997                 self.compute_num_lifetime_params(item.id, generics);
998                 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
999             }
1000
1001             ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
1002                 self.compute_num_lifetime_params(item.id, generics);
1003                 // Create a new rib for the trait-wide type parameters.
1004                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1005                     let def = this.r.local_def_id(item.id).to_def_id();
1006                     this.with_self_rib(Res::SelfTy { trait_: Some(def), alias_to: None }, |this| {
1007                         this.visit_generics(generics);
1008                         walk_list!(this, visit_param_bound, bounds);
1009
1010                         let walk_assoc_item = |this: &mut Self, generics, item| {
1011                             this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
1012                                 visit::walk_assoc_item(this, item, AssocCtxt::Trait)
1013                             });
1014                         };
1015
1016                         this.with_trait_items(items, |this| {
1017                             for item in items {
1018                                 match &item.kind {
1019                                     AssocItemKind::Const(_, ty, default) => {
1020                                         this.visit_ty(ty);
1021                                         // Only impose the restrictions of `ConstRibKind` for an
1022                                         // actual constant expression in a provided default.
1023                                         if let Some(expr) = default {
1024                                             // We allow arbitrary const expressions inside of associated consts,
1025                                             // even if they are potentially not const evaluatable.
1026                                             //
1027                                             // Type parameters can already be used and as associated consts are
1028                                             // not used as part of the type system, this is far less surprising.
1029                                             this.with_constant_rib(
1030                                                 IsRepeatExpr::No,
1031                                                 true,
1032                                                 None,
1033                                                 |this| this.visit_expr(expr),
1034                                             );
1035                                         }
1036                                     }
1037                                     AssocItemKind::Fn(box Fn { generics, .. }) => {
1038                                         walk_assoc_item(this, generics, item);
1039                                     }
1040                                     AssocItemKind::TyAlias(box TyAlias { generics, .. }) => {
1041                                         walk_assoc_item(this, generics, item);
1042                                     }
1043                                     AssocItemKind::MacCall(_) => {
1044                                         panic!("unexpanded macro in resolve!")
1045                                     }
1046                                 };
1047                             }
1048                         });
1049                     });
1050                 });
1051             }
1052
1053             ItemKind::TraitAlias(ref generics, ref bounds) => {
1054                 self.compute_num_lifetime_params(item.id, generics);
1055                 // Create a new rib for the trait-wide type parameters.
1056                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1057                     let def = this.r.local_def_id(item.id).to_def_id();
1058                     this.with_self_rib(Res::SelfTy { trait_: Some(def), alias_to: None }, |this| {
1059                         this.visit_generics(generics);
1060                         walk_list!(this, visit_param_bound, bounds);
1061                     });
1062                 });
1063             }
1064
1065             ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
1066                 self.with_scope(item.id, |this| {
1067                     visit::walk_item(this, item);
1068                 });
1069             }
1070
1071             ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
1072                 self.with_item_rib(HasGenericParams::No, |this| {
1073                     this.visit_ty(ty);
1074                     if let Some(expr) = expr {
1075                         let constant_item_kind = match item.kind {
1076                             ItemKind::Const(..) => ConstantItemKind::Const,
1077                             ItemKind::Static(..) => ConstantItemKind::Static,
1078                             _ => unreachable!(),
1079                         };
1080                         // We already forbid generic params because of the above item rib,
1081                         // so it doesn't matter whether this is a trivial constant.
1082                         this.with_constant_rib(
1083                             IsRepeatExpr::No,
1084                             true,
1085                             Some((item.ident, constant_item_kind)),
1086                             |this| this.visit_expr(expr),
1087                         );
1088                     }
1089                 });
1090             }
1091
1092             ItemKind::Use(ref use_tree) => {
1093                 self.future_proof_import(use_tree);
1094             }
1095
1096             ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => {
1097                 // do nothing, these are just around to be encoded
1098             }
1099
1100             ItemKind::GlobalAsm(_) => {
1101                 visit::walk_item(self, item);
1102             }
1103
1104             ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
1105         }
1106     }
1107
1108     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
1109     where
1110         F: FnOnce(&mut Self),
1111     {
1112         debug!("with_generic_param_rib");
1113         let mut function_type_rib = Rib::new(kind);
1114         let mut function_value_rib = Rib::new(kind);
1115         let mut seen_bindings = FxHashMap::default();
1116
1117         // We also can't shadow bindings from the parent item
1118         if let AssocItemRibKind = kind {
1119             let mut add_bindings_for_ns = |ns| {
1120                 let parent_rib = self.ribs[ns]
1121                     .iter()
1122                     .rfind(|r| matches!(r.kind, ItemRibKind(_)))
1123                     .expect("associated item outside of an item");
1124                 seen_bindings
1125                     .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
1126             };
1127             add_bindings_for_ns(ValueNS);
1128             add_bindings_for_ns(TypeNS);
1129         }
1130
1131         for param in &generics.params {
1132             if let GenericParamKind::Lifetime { .. } = param.kind {
1133                 continue;
1134             }
1135
1136             let ident = param.ident.normalize_to_macros_2_0();
1137             debug!("with_generic_param_rib: {}", param.id);
1138
1139             match seen_bindings.entry(ident) {
1140                 Entry::Occupied(entry) => {
1141                     let span = *entry.get();
1142                     let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
1143                     self.report_error(param.ident.span, err);
1144                 }
1145                 Entry::Vacant(entry) => {
1146                     entry.insert(param.ident.span);
1147                 }
1148             }
1149
1150             // Plain insert (no renaming).
1151             let (rib, def_kind) = match param.kind {
1152                 GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
1153                 GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
1154                 _ => unreachable!(),
1155             };
1156             let res = Res::Def(def_kind, self.r.local_def_id(param.id).to_def_id());
1157             self.r.record_partial_res(param.id, PartialRes::new(res));
1158             rib.bindings.insert(ident, res);
1159         }
1160
1161         self.ribs[ValueNS].push(function_value_rib);
1162         self.ribs[TypeNS].push(function_type_rib);
1163
1164         f(self);
1165
1166         self.ribs[TypeNS].pop();
1167         self.ribs[ValueNS].pop();
1168     }
1169
1170     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
1171         self.label_ribs.push(Rib::new(kind));
1172         f(self);
1173         self.label_ribs.pop();
1174     }
1175
1176     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
1177         let kind = ItemRibKind(has_generic_params);
1178         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
1179     }
1180
1181     // HACK(min_const_generics,const_evaluatable_unchecked): We
1182     // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
1183     // with a future compat lint for now. We do this by adding an
1184     // additional special case for repeat expressions.
1185     //
1186     // Note that we intentionally still forbid `[0; N + 1]` during
1187     // name resolution so that we don't extend the future
1188     // compat lint to new cases.
1189     fn with_constant_rib(
1190         &mut self,
1191         is_repeat: IsRepeatExpr,
1192         is_trivial: bool,
1193         item: Option<(Ident, ConstantItemKind)>,
1194         f: impl FnOnce(&mut Self),
1195     ) {
1196         debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
1197         self.with_rib(ValueNS, ConstantItemRibKind(is_trivial, item), |this| {
1198             this.with_rib(
1199                 TypeNS,
1200                 ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial, item),
1201                 |this| {
1202                     this.with_label_rib(ConstantItemRibKind(is_trivial, item), f);
1203                 },
1204             )
1205         });
1206     }
1207
1208     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
1209         // Handle nested impls (inside fn bodies)
1210         let previous_value =
1211             replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
1212         let result = f(self);
1213         self.diagnostic_metadata.current_self_type = previous_value;
1214         result
1215     }
1216
1217     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
1218         let previous_value =
1219             replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
1220         let result = f(self);
1221         self.diagnostic_metadata.current_self_item = previous_value;
1222         result
1223     }
1224
1225     /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
1226     fn with_trait_items<T>(
1227         &mut self,
1228         trait_items: &'ast [P<AssocItem>],
1229         f: impl FnOnce(&mut Self) -> T,
1230     ) -> T {
1231         let trait_assoc_items =
1232             replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
1233         let result = f(self);
1234         self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
1235         result
1236     }
1237
1238     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
1239     fn with_optional_trait_ref<T>(
1240         &mut self,
1241         opt_trait_ref: Option<&TraitRef>,
1242         f: impl FnOnce(&mut Self, Option<DefId>) -> T,
1243     ) -> T {
1244         let mut new_val = None;
1245         let mut new_id = None;
1246         if let Some(trait_ref) = opt_trait_ref {
1247             let path: Vec<_> = Segment::from_path(&trait_ref.path);
1248             let res = self.smart_resolve_path_fragment(
1249                 trait_ref.ref_id,
1250                 None,
1251                 &path,
1252                 trait_ref.path.span,
1253                 PathSource::Trait(AliasPossibility::No),
1254                 CrateLint::SimplePath(trait_ref.ref_id),
1255             );
1256             let res = res.base_res();
1257             if res != Res::Err {
1258                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
1259                     &path,
1260                     Some(TypeNS),
1261                     true,
1262                     trait_ref.path.span,
1263                     CrateLint::SimplePath(trait_ref.ref_id),
1264                 ) {
1265                     new_id = Some(res.def_id());
1266                     new_val = Some((module, trait_ref.clone()));
1267                 }
1268             }
1269         }
1270         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1271         let result = f(self, new_id);
1272         self.current_trait_ref = original_trait_ref;
1273         result
1274     }
1275
1276     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1277         let mut self_type_rib = Rib::new(NormalRibKind);
1278
1279         // Plain insert (no renaming, since types are not currently hygienic)
1280         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1281         self.ribs[ns].push(self_type_rib);
1282         f(self);
1283         self.ribs[ns].pop();
1284     }
1285
1286     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1287         self.with_self_rib_ns(TypeNS, self_res, f)
1288     }
1289
1290     fn resolve_implementation(
1291         &mut self,
1292         generics: &'ast Generics,
1293         opt_trait_reference: &'ast Option<TraitRef>,
1294         self_type: &'ast Ty,
1295         item_id: NodeId,
1296         impl_items: &'ast [P<AssocItem>],
1297     ) {
1298         debug!("resolve_implementation");
1299         // If applicable, create a rib for the type parameters.
1300         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1301             // Dummy self type for better errors if `Self` is used in the trait path.
1302             this.with_self_rib(Res::SelfTy { trait_: None, alias_to: None }, |this| {
1303                 // Resolve the trait reference, if necessary.
1304                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1305                     let item_def_id = this.r.local_def_id(item_id);
1306
1307                     // Register the trait definitions from here.
1308                     if let Some(trait_id) = trait_id {
1309                         this.r.trait_impls.entry(trait_id).or_default().push(item_def_id);
1310                     }
1311
1312                     let item_def_id = item_def_id.to_def_id();
1313                     let res =
1314                         Res::SelfTy { trait_: trait_id, alias_to: Some((item_def_id, false)) };
1315                     this.with_self_rib(res, |this| {
1316                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1317                             // Resolve type arguments in the trait path.
1318                             visit::walk_trait_ref(this, trait_ref);
1319                         }
1320                         // Resolve the self type.
1321                         this.visit_ty(self_type);
1322                         // Resolve the generic parameters.
1323                         this.visit_generics(generics);
1324                         // Resolve the items within the impl.
1325                         this.with_current_self_type(self_type, |this| {
1326                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1327                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1328                                 for item in impl_items {
1329                                     use crate::ResolutionError::*;
1330                                     match &item.kind {
1331                                         AssocItemKind::Const(_default, _ty, _expr) => {
1332                                             debug!("resolve_implementation AssocItemKind::Const");
1333                                             // If this is a trait impl, ensure the const
1334                                             // exists in trait
1335                                             this.check_trait_item(
1336                                                 item.id,
1337                                                 item.ident,
1338                                                 &item.kind,
1339                                                 ValueNS,
1340                                                 item.span,
1341                                                 |i, s, c| ConstNotMemberOfTrait(i, s, c),
1342                                             );
1343
1344                                             // We allow arbitrary const expressions inside of associated consts,
1345                                             // even if they are potentially not const evaluatable.
1346                                             //
1347                                             // Type parameters can already be used and as associated consts are
1348                                             // not used as part of the type system, this is far less surprising.
1349                                             this.with_constant_rib(
1350                                                 IsRepeatExpr::No,
1351                                                 true,
1352                                                 None,
1353                                                 |this| {
1354                                                     visit::walk_assoc_item(
1355                                                         this,
1356                                                         item,
1357                                                         AssocCtxt::Impl,
1358                                                     )
1359                                                 },
1360                                             );
1361                                         }
1362                                         AssocItemKind::Fn(box Fn { generics, .. }) => {
1363                                             debug!("resolve_implementation AssocItemKind::Fn");
1364                                             // We also need a new scope for the impl item type parameters.
1365                                             this.with_generic_param_rib(
1366                                                 generics,
1367                                                 AssocItemRibKind,
1368                                                 |this| {
1369                                                     // If this is a trait impl, ensure the method
1370                                                     // exists in trait
1371                                                     this.check_trait_item(
1372                                                         item.id,
1373                                                         item.ident,
1374                                                         &item.kind,
1375                                                         ValueNS,
1376                                                         item.span,
1377                                                         |i, s, c| MethodNotMemberOfTrait(i, s, c),
1378                                                     );
1379
1380                                                     visit::walk_assoc_item(
1381                                                         this,
1382                                                         item,
1383                                                         AssocCtxt::Impl,
1384                                                     )
1385                                                 },
1386                                             );
1387                                         }
1388                                         AssocItemKind::TyAlias(box TyAlias {
1389                                             generics, ..
1390                                         }) => {
1391                                             debug!("resolve_implementation AssocItemKind::TyAlias");
1392                                             // We also need a new scope for the impl item type parameters.
1393                                             this.with_generic_param_rib(
1394                                                 generics,
1395                                                 AssocItemRibKind,
1396                                                 |this| {
1397                                                     // If this is a trait impl, ensure the type
1398                                                     // exists in trait
1399                                                     this.check_trait_item(
1400                                                         item.id,
1401                                                         item.ident,
1402                                                         &item.kind,
1403                                                         TypeNS,
1404                                                         item.span,
1405                                                         |i, s, c| TypeNotMemberOfTrait(i, s, c),
1406                                                     );
1407
1408                                                     visit::walk_assoc_item(
1409                                                         this,
1410                                                         item,
1411                                                         AssocCtxt::Impl,
1412                                                     )
1413                                                 },
1414                                             );
1415                                         }
1416                                         AssocItemKind::MacCall(_) => {
1417                                             panic!("unexpanded macro in resolve!")
1418                                         }
1419                                     }
1420                                 }
1421                             });
1422                         });
1423                     });
1424                 });
1425             });
1426         });
1427     }
1428
1429     fn check_trait_item<F>(
1430         &mut self,
1431         id: NodeId,
1432         mut ident: Ident,
1433         kind: &AssocItemKind,
1434         ns: Namespace,
1435         span: Span,
1436         err: F,
1437     ) where
1438         F: FnOnce(Ident, &str, Option<Symbol>) -> ResolutionError<'_>,
1439     {
1440         // If there is a TraitRef in scope for an impl, then the method must be in the trait.
1441         let Some((module, _)) = &self.current_trait_ref else { return; };
1442         ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
1443         let key = self.r.new_key(ident, ns);
1444         let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
1445         debug!(?binding);
1446         if binding.is_none() {
1447             // We could not find the trait item in the correct namespace.
1448             // Check the other namespace to report an error.
1449             let ns = match ns {
1450                 ValueNS => TypeNS,
1451                 TypeNS => ValueNS,
1452                 _ => ns,
1453             };
1454             let key = self.r.new_key(ident, ns);
1455             binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
1456             debug!(?binding);
1457         }
1458         let Some(binding) = binding else {
1459             // We could not find the method: report an error.
1460             let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
1461             let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1462             self.report_error(span, err(ident, &path_names_to_string(path), candidate));
1463             return;
1464         };
1465
1466         let res = binding.res();
1467         let Res::Def(def_kind, _) = res else { bug!() };
1468         match (def_kind, kind) {
1469             (DefKind::AssocTy, AssocItemKind::TyAlias(..))
1470             | (DefKind::AssocFn, AssocItemKind::Fn(..))
1471             | (DefKind::AssocConst, AssocItemKind::Const(..)) => {
1472                 self.r.record_partial_res(id, PartialRes::new(res));
1473                 return;
1474             }
1475             _ => {}
1476         }
1477
1478         // The method kind does not correspond to what appeared in the trait, report.
1479         let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1480         let (code, kind) = match kind {
1481             AssocItemKind::Const(..) => (rustc_errors::error_code!(E0323), "const"),
1482             AssocItemKind::Fn(..) => (rustc_errors::error_code!(E0324), "method"),
1483             AssocItemKind::TyAlias(..) => (rustc_errors::error_code!(E0325), "type"),
1484             AssocItemKind::MacCall(..) => span_bug!(span, "unexpanded macro"),
1485         };
1486         self.report_error(
1487             span,
1488             ResolutionError::TraitImplMismatch {
1489                 name: ident.name,
1490                 kind,
1491                 code,
1492                 trait_path: path_names_to_string(path),
1493                 trait_item_span: binding.span,
1494             },
1495         );
1496     }
1497
1498     fn resolve_params(&mut self, params: &'ast [Param]) {
1499         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1500         for Param { pat, ty, .. } in params {
1501             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1502             self.visit_ty(ty);
1503             debug!("(resolving function / closure) recorded parameter");
1504         }
1505     }
1506
1507     fn resolve_local(&mut self, local: &'ast Local) {
1508         debug!("resolving local ({:?})", local);
1509         // Resolve the type.
1510         walk_list!(self, visit_ty, &local.ty);
1511
1512         // Resolve the initializer.
1513         if let Some((init, els)) = local.kind.init_else_opt() {
1514             self.visit_expr(init);
1515
1516             // Resolve the `else` block
1517             if let Some(els) = els {
1518                 self.visit_block(els);
1519             }
1520         }
1521
1522         // Resolve the pattern.
1523         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1524     }
1525
1526     /// build a map from pattern identifiers to binding-info's.
1527     /// this is done hygienically. This could arise for a macro
1528     /// that expands into an or-pattern where one 'x' was from the
1529     /// user and one 'x' came from the macro.
1530     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1531         let mut binding_map = FxHashMap::default();
1532
1533         pat.walk(&mut |pat| {
1534             match pat.kind {
1535                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1536                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1537                 {
1538                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1539                 }
1540                 PatKind::Or(ref ps) => {
1541                     // Check the consistency of this or-pattern and
1542                     // then add all bindings to the larger map.
1543                     for bm in self.check_consistent_bindings(ps) {
1544                         binding_map.extend(bm);
1545                     }
1546                     return false;
1547                 }
1548                 _ => {}
1549             }
1550
1551             true
1552         });
1553
1554         binding_map
1555     }
1556
1557     fn is_base_res_local(&self, nid: NodeId) -> bool {
1558         matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
1559     }
1560
1561     /// Checks that all of the arms in an or-pattern have exactly the
1562     /// same set of bindings, with the same binding modes for each.
1563     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1564         let mut missing_vars = FxHashMap::default();
1565         let mut inconsistent_vars = FxHashMap::default();
1566
1567         // 1) Compute the binding maps of all arms.
1568         let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
1569
1570         // 2) Record any missing bindings or binding mode inconsistencies.
1571         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1572             // Check against all arms except for the same pattern which is always self-consistent.
1573             let inners = pats
1574                 .iter()
1575                 .enumerate()
1576                 .filter(|(_, pat)| pat.id != pat_outer.id)
1577                 .flat_map(|(idx, _)| maps[idx].iter())
1578                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1579
1580             for (name, info, &binding_inner) in inners {
1581                 match info {
1582                     None => {
1583                         // The inner binding is missing in the outer.
1584                         let binding_error =
1585                             missing_vars.entry(name).or_insert_with(|| BindingError {
1586                                 name,
1587                                 origin: BTreeSet::new(),
1588                                 target: BTreeSet::new(),
1589                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1590                             });
1591                         binding_error.origin.insert(binding_inner.span);
1592                         binding_error.target.insert(pat_outer.span);
1593                     }
1594                     Some(binding_outer) => {
1595                         if binding_outer.binding_mode != binding_inner.binding_mode {
1596                             // The binding modes in the outer and inner bindings differ.
1597                             inconsistent_vars
1598                                 .entry(name)
1599                                 .or_insert((binding_inner.span, binding_outer.span));
1600                         }
1601                     }
1602                 }
1603             }
1604         }
1605
1606         // 3) Report all missing variables we found.
1607         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1608         missing_vars.sort_by_key(|(sym, _err)| sym.as_str());
1609
1610         for (name, mut v) in missing_vars {
1611             if inconsistent_vars.contains_key(name) {
1612                 v.could_be_path = false;
1613             }
1614             self.report_error(
1615                 *v.origin.iter().next().unwrap(),
1616                 ResolutionError::VariableNotBoundInPattern(v),
1617             );
1618         }
1619
1620         // 4) Report all inconsistencies in binding modes we found.
1621         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1622         inconsistent_vars.sort();
1623         for (name, v) in inconsistent_vars {
1624             self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1625         }
1626
1627         // 5) Finally bubble up all the binding maps.
1628         maps
1629     }
1630
1631     /// Check the consistency of the outermost or-patterns.
1632     fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
1633         pat.walk(&mut |pat| match pat.kind {
1634             PatKind::Or(ref ps) => {
1635                 self.check_consistent_bindings(ps);
1636                 false
1637             }
1638             _ => true,
1639         })
1640     }
1641
1642     fn resolve_arm(&mut self, arm: &'ast Arm) {
1643         self.with_rib(ValueNS, NormalRibKind, |this| {
1644             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1645             walk_list!(this, visit_expr, &arm.guard);
1646             this.visit_expr(&arm.body);
1647         });
1648     }
1649
1650     /// Arising from `source`, resolve a top level pattern.
1651     fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
1652         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1653         self.resolve_pattern(pat, pat_src, &mut bindings);
1654     }
1655
1656     fn resolve_pattern(
1657         &mut self,
1658         pat: &'ast Pat,
1659         pat_src: PatternSource,
1660         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1661     ) {
1662         // We walk the pattern before declaring the pattern's inner bindings,
1663         // so that we avoid resolving a literal expression to a binding defined
1664         // by the pattern.
1665         visit::walk_pat(self, pat);
1666         self.resolve_pattern_inner(pat, pat_src, bindings);
1667         // This has to happen *after* we determine which pat_idents are variants:
1668         self.check_consistent_bindings_top(pat);
1669     }
1670
1671     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1672     ///
1673     /// ### `bindings`
1674     ///
1675     /// A stack of sets of bindings accumulated.
1676     ///
1677     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1678     /// be interpreted as re-binding an already bound binding. This results in an error.
1679     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1680     /// in reusing this binding rather than creating a fresh one.
1681     ///
1682     /// When called at the top level, the stack must have a single element
1683     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1684     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1685     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1686     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1687     /// When a whole or-pattern has been dealt with, the thing happens.
1688     ///
1689     /// See the implementation and `fresh_binding` for more details.
1690     fn resolve_pattern_inner(
1691         &mut self,
1692         pat: &Pat,
1693         pat_src: PatternSource,
1694         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1695     ) {
1696         // Visit all direct subpatterns of this pattern.
1697         pat.walk(&mut |pat| {
1698             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1699             match pat.kind {
1700                 PatKind::Ident(bmode, ident, ref sub) => {
1701                     // First try to resolve the identifier as some existing entity,
1702                     // then fall back to a fresh binding.
1703                     let has_sub = sub.is_some();
1704                     let res = self
1705                         .try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1706                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1707                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1708                     self.r.record_pat_span(pat.id, pat.span);
1709                 }
1710                 PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
1711                     self.smart_resolve_path(
1712                         pat.id,
1713                         qself.as_ref(),
1714                         path,
1715                         PathSource::TupleStruct(
1716                             pat.span,
1717                             self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
1718                         ),
1719                     );
1720                 }
1721                 PatKind::Path(ref qself, ref path) => {
1722                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1723                 }
1724                 PatKind::Struct(ref qself, ref path, ..) => {
1725                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct);
1726                 }
1727                 PatKind::Or(ref ps) => {
1728                     // Add a new set of bindings to the stack. `Or` here records that when a
1729                     // binding already exists in this set, it should not result in an error because
1730                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1731                     bindings.push((PatBoundCtx::Or, Default::default()));
1732                     for p in ps {
1733                         // Now we need to switch back to a product context so that each
1734                         // part of the or-pattern internally rejects already bound names.
1735                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1736                         bindings.push((PatBoundCtx::Product, Default::default()));
1737                         self.resolve_pattern_inner(p, pat_src, bindings);
1738                         // Move up the non-overlapping bindings to the or-pattern.
1739                         // Existing bindings just get "merged".
1740                         let collected = bindings.pop().unwrap().1;
1741                         bindings.last_mut().unwrap().1.extend(collected);
1742                     }
1743                     // This or-pattern itself can itself be part of a product,
1744                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1745                     // Both cases bind `a` again in a product pattern and must be rejected.
1746                     let collected = bindings.pop().unwrap().1;
1747                     bindings.last_mut().unwrap().1.extend(collected);
1748
1749                     // Prevent visiting `ps` as we've already done so above.
1750                     return false;
1751                 }
1752                 _ => {}
1753             }
1754             true
1755         });
1756     }
1757
1758     fn fresh_binding(
1759         &mut self,
1760         ident: Ident,
1761         pat_id: NodeId,
1762         pat_src: PatternSource,
1763         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1764     ) -> Res {
1765         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1766         // (We must not add it if it's in the bindings map because that breaks the assumptions
1767         // later passes make about or-patterns.)
1768         let ident = ident.normalize_to_macro_rules();
1769
1770         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
1771         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
1772         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
1773         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
1774         // This is *required* for consistency which is checked later.
1775         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
1776
1777         if already_bound_and {
1778             // Overlap in a product pattern somewhere; report an error.
1779             use ResolutionError::*;
1780             let error = match pat_src {
1781                 // `fn f(a: u8, a: u8)`:
1782                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1783                 // `Variant(a, a)`:
1784                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1785             };
1786             self.report_error(ident.span, error(ident.name));
1787         }
1788
1789         // Record as bound if it's valid:
1790         let ident_valid = ident.name != kw::Empty;
1791         if ident_valid {
1792             bindings.last_mut().unwrap().1.insert(ident);
1793         }
1794
1795         if already_bound_or {
1796             // `Variant1(a) | Variant2(a)`, ok
1797             // Reuse definition from the first `a`.
1798             self.innermost_rib_bindings(ValueNS)[&ident]
1799         } else {
1800             let res = Res::Local(pat_id);
1801             if ident_valid {
1802                 // A completely fresh binding add to the set if it's valid.
1803                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1804             }
1805             res
1806         }
1807     }
1808
1809     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1810         &mut self.ribs[ns].last_mut().unwrap().bindings
1811     }
1812
1813     fn try_resolve_as_non_binding(
1814         &mut self,
1815         pat_src: PatternSource,
1816         pat: &Pat,
1817         bm: BindingMode,
1818         ident: Ident,
1819         has_sub: bool,
1820     ) -> Option<Res> {
1821         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1822         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1823         // also be interpreted as a path to e.g. a constant, variant, etc.
1824         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
1825
1826         let ls_binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?;
1827         let (res, binding) = match ls_binding {
1828             LexicalScopeBinding::Item(binding)
1829                 if is_syntactic_ambiguity && binding.is_ambiguity() =>
1830             {
1831                 // For ambiguous bindings we don't know all their definitions and cannot check
1832                 // whether they can be shadowed by fresh bindings or not, so force an error.
1833                 // issues/33118#issuecomment-233962221 (see below) still applies here,
1834                 // but we have to ignore it for backward compatibility.
1835                 self.r.record_use(ident, binding, false);
1836                 return None;
1837             }
1838             LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
1839             LexicalScopeBinding::Res(res) => (res, None),
1840         };
1841
1842         match res {
1843             Res::SelfCtor(_) // See #70549.
1844             | Res::Def(
1845                 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
1846                 _,
1847             ) if is_syntactic_ambiguity => {
1848                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1849                 if let Some(binding) = binding {
1850                     self.r.record_use(ident, binding, false);
1851                 }
1852                 Some(res)
1853             }
1854             Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static, _) => {
1855                 // This is unambiguously a fresh binding, either syntactically
1856                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1857                 // to something unusable as a pattern (e.g., constructor function),
1858                 // but we still conservatively report an error, see
1859                 // issues/33118#issuecomment-233962221 for one reason why.
1860                 let binding = binding.expect("no binding for a ctor or static");
1861                 self.report_error(
1862                     ident.span,
1863                     ResolutionError::BindingShadowsSomethingUnacceptable {
1864                         shadowing_binding_descr: pat_src.descr(),
1865                         name: ident.name,
1866                         participle: if binding.is_import() { "imported" } else { "defined" },
1867                         article: binding.res().article(),
1868                         shadowed_binding_descr: binding.res().descr(),
1869                         shadowed_binding_span: binding.span,
1870                     },
1871                 );
1872                 None
1873             }
1874             Res::Def(DefKind::ConstParam, def_id) => {
1875                 // Same as for DefKind::Const above, but here, `binding` is `None`, so we
1876                 // have to construct the error differently
1877                 self.report_error(
1878                     ident.span,
1879                     ResolutionError::BindingShadowsSomethingUnacceptable {
1880                         shadowing_binding_descr: pat_src.descr(),
1881                         name: ident.name,
1882                         participle: "defined",
1883                         article: res.article(),
1884                         shadowed_binding_descr: res.descr(),
1885                         shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"),
1886                     }
1887                 );
1888                 None
1889             }
1890             Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
1891                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1892                 None
1893             }
1894             _ => span_bug!(
1895                 ident.span,
1896                 "unexpected resolution for an identifier in pattern: {:?}",
1897                 res,
1898             ),
1899         }
1900     }
1901
1902     // High-level and context dependent path resolution routine.
1903     // Resolves the path and records the resolution into definition map.
1904     // If resolution fails tries several techniques to find likely
1905     // resolution candidates, suggest imports or other help, and report
1906     // errors in user friendly way.
1907     fn smart_resolve_path(
1908         &mut self,
1909         id: NodeId,
1910         qself: Option<&QSelf>,
1911         path: &Path,
1912         source: PathSource<'ast>,
1913     ) {
1914         self.smart_resolve_path_fragment(
1915             id,
1916             qself,
1917             &Segment::from_path(path),
1918             path.span,
1919             source,
1920             CrateLint::SimplePath(id),
1921         );
1922     }
1923
1924     fn smart_resolve_path_fragment(
1925         &mut self,
1926         id: NodeId,
1927         qself: Option<&QSelf>,
1928         path: &[Segment],
1929         span: Span,
1930         source: PathSource<'ast>,
1931         crate_lint: CrateLint,
1932     ) -> PartialRes {
1933         tracing::debug!(
1934             "smart_resolve_path_fragment(id={:?}, qself={:?}, path={:?})",
1935             id,
1936             qself,
1937             path
1938         );
1939         let ns = source.namespace();
1940
1941         let report_errors = |this: &mut Self, res: Option<Res>| {
1942             if this.should_report_errs() {
1943                 let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1944
1945                 let def_id = this.parent_scope.module.nearest_parent_mod();
1946                 let instead = res.is_some();
1947                 let suggestion =
1948                     if res.is_none() { this.report_missing_type_error(path) } else { None };
1949
1950                 this.r.use_injections.push(UseError {
1951                     err,
1952                     candidates,
1953                     def_id,
1954                     instead,
1955                     suggestion,
1956                 });
1957             }
1958
1959             PartialRes::new(Res::Err)
1960         };
1961
1962         // For paths originating from calls (like in `HashMap::new()`), tries
1963         // to enrich the plain `failed to resolve: ...` message with hints
1964         // about possible missing imports.
1965         //
1966         // Similar thing, for types, happens in `report_errors` above.
1967         let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
1968             if !source.is_call() {
1969                 return Some(parent_err);
1970             }
1971
1972             // Before we start looking for candidates, we have to get our hands
1973             // on the type user is trying to perform invocation on; basically:
1974             // we're transforming `HashMap::new` into just `HashMap`.
1975             let path = match path.split_last() {
1976                 Some((_, path)) if !path.is_empty() => path,
1977                 _ => return Some(parent_err),
1978             };
1979
1980             let (mut err, candidates) =
1981                 this.smart_resolve_report_errors(path, span, PathSource::Type, None);
1982
1983             if candidates.is_empty() {
1984                 err.cancel();
1985                 return Some(parent_err);
1986             }
1987
1988             // There are two different error messages user might receive at
1989             // this point:
1990             // - E0412 cannot find type `{}` in this scope
1991             // - E0433 failed to resolve: use of undeclared type or module `{}`
1992             //
1993             // The first one is emitted for paths in type-position, and the
1994             // latter one - for paths in expression-position.
1995             //
1996             // Thus (since we're in expression-position at this point), not to
1997             // confuse the user, we want to keep the *message* from E0432 (so
1998             // `parent_err`), but we want *hints* from E0412 (so `err`).
1999             //
2000             // And that's what happens below - we're just mixing both messages
2001             // into a single one.
2002             let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
2003
2004             err.message = take(&mut parent_err.message);
2005             err.code = take(&mut parent_err.code);
2006             err.children = take(&mut parent_err.children);
2007
2008             parent_err.cancel();
2009
2010             let def_id = this.parent_scope.module.nearest_parent_mod();
2011
2012             if this.should_report_errs() {
2013                 this.r.use_injections.push(UseError {
2014                     err,
2015                     candidates,
2016                     def_id,
2017                     instead: false,
2018                     suggestion: None,
2019                 });
2020             } else {
2021                 err.cancel();
2022             }
2023
2024             // We don't return `Some(parent_err)` here, because the error will
2025             // be already printed as part of the `use` injections
2026             None
2027         };
2028
2029         let partial_res = match self.resolve_qpath_anywhere(
2030             id,
2031             qself,
2032             path,
2033             ns,
2034             span,
2035             source.defer_to_typeck(),
2036             crate_lint,
2037         ) {
2038             Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
2039                 if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
2040                 {
2041                     partial_res
2042                 } else {
2043                     report_errors(self, Some(partial_res.base_res()))
2044                 }
2045             }
2046
2047             Ok(Some(partial_res)) if source.defer_to_typeck() => {
2048                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
2049                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
2050                 // it needs to be added to the trait map.
2051                 if ns == ValueNS {
2052                     let item_name = path.last().unwrap().ident;
2053                     let traits = self.traits_in_scope(item_name, ns);
2054                     self.r.trait_map.insert(id, traits);
2055                 }
2056
2057                 if PrimTy::from_name(path[0].ident.name).is_some() {
2058                     let mut std_path = Vec::with_capacity(1 + path.len());
2059
2060                     std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
2061                     std_path.extend(path);
2062                     if let PathResult::Module(_) | PathResult::NonModule(_) =
2063                         self.resolve_path(&std_path, Some(ns), false, span, CrateLint::No)
2064                     {
2065                         // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
2066                         let item_span =
2067                             path.iter().last().map_or(span, |segment| segment.ident.span);
2068
2069                         self.r.confused_type_with_std_module.insert(item_span, span);
2070                         self.r.confused_type_with_std_module.insert(span, span);
2071                     }
2072                 }
2073
2074                 partial_res
2075             }
2076
2077             Err(err) => {
2078                 if let Some(err) = report_errors_for_call(self, err) {
2079                     self.report_error(err.span, err.node);
2080                 }
2081
2082                 PartialRes::new(Res::Err)
2083             }
2084
2085             _ => report_errors(self, None),
2086         };
2087
2088         if !matches!(source, PathSource::TraitItem(..)) {
2089             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
2090             self.r.record_partial_res(id, partial_res);
2091         }
2092
2093         partial_res
2094     }
2095
2096     fn self_type_is_available(&mut self, span: Span) -> bool {
2097         let binding = self.resolve_ident_in_lexical_scope(
2098             Ident::with_dummy_span(kw::SelfUpper),
2099             TypeNS,
2100             None,
2101             span,
2102         );
2103         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
2104     }
2105
2106     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
2107         let ident = Ident::new(kw::SelfLower, self_span);
2108         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
2109         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
2110     }
2111
2112     /// A wrapper around [`Resolver::report_error`].
2113     ///
2114     /// This doesn't emit errors for function bodies if this is rustdoc.
2115     fn report_error(&self, span: Span, resolution_error: ResolutionError<'_>) {
2116         if self.should_report_errs() {
2117             self.r.report_error(span, resolution_error);
2118         }
2119     }
2120
2121     #[inline]
2122     /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
2123     fn should_report_errs(&self) -> bool {
2124         !(self.r.session.opts.actually_rustdoc && self.in_func_body)
2125     }
2126
2127     // Resolve in alternative namespaces if resolution in the primary namespace fails.
2128     fn resolve_qpath_anywhere(
2129         &mut self,
2130         id: NodeId,
2131         qself: Option<&QSelf>,
2132         path: &[Segment],
2133         primary_ns: Namespace,
2134         span: Span,
2135         defer_to_typeck: bool,
2136         crate_lint: CrateLint,
2137     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2138         let mut fin_res = None;
2139
2140         for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
2141             if i == 0 || ns != primary_ns {
2142                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint)? {
2143                     Some(partial_res)
2144                         if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
2145                     {
2146                         return Ok(Some(partial_res));
2147                     }
2148                     partial_res => {
2149                         if fin_res.is_none() {
2150                             fin_res = partial_res;
2151                         }
2152                     }
2153                 }
2154             }
2155         }
2156
2157         assert!(primary_ns != MacroNS);
2158
2159         if qself.is_none() {
2160             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
2161             let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
2162             if let Ok((_, res)) =
2163                 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
2164             {
2165                 return Ok(Some(PartialRes::new(res)));
2166             }
2167         }
2168
2169         Ok(fin_res)
2170     }
2171
2172     /// Handles paths that may refer to associated items.
2173     fn resolve_qpath(
2174         &mut self,
2175         id: NodeId,
2176         qself: Option<&QSelf>,
2177         path: &[Segment],
2178         ns: Namespace,
2179         span: Span,
2180         crate_lint: CrateLint,
2181     ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
2182         debug!(
2183             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
2184             id, qself, path, ns, span,
2185         );
2186
2187         if let Some(qself) = qself {
2188             if qself.position == 0 {
2189                 // This is a case like `<T>::B`, where there is no
2190                 // trait to resolve.  In that case, we leave the `B`
2191                 // segment to be resolved by type-check.
2192                 return Ok(Some(PartialRes::with_unresolved_segments(
2193                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
2194                     path.len(),
2195                 )));
2196             }
2197
2198             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
2199             //
2200             // Currently, `path` names the full item (`A::B::C`, in
2201             // our example).  so we extract the prefix of that that is
2202             // the trait (the slice upto and including
2203             // `qself.position`). And then we recursively resolve that,
2204             // but with `qself` set to `None`.
2205             //
2206             // However, setting `qself` to none (but not changing the
2207             // span) loses the information about where this path
2208             // *actually* appears, so for the purposes of the crate
2209             // lint we pass along information that this is the trait
2210             // name from a fully qualified path, and this also
2211             // contains the full span (the `CrateLint::QPathTrait`).
2212             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2213             let partial_res = self.smart_resolve_path_fragment(
2214                 id,
2215                 None,
2216                 &path[..=qself.position],
2217                 span,
2218                 PathSource::TraitItem(ns),
2219                 CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
2220             );
2221
2222             // The remaining segments (the `C` in our example) will
2223             // have to be resolved by type-check, since that requires doing
2224             // trait resolution.
2225             return Ok(Some(PartialRes::with_unresolved_segments(
2226                 partial_res.base_res(),
2227                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
2228             )));
2229         }
2230
2231         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
2232             PathResult::NonModule(path_res) => path_res,
2233             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
2234                 PartialRes::new(module.res().unwrap())
2235             }
2236             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2237             // don't report an error right away, but try to fallback to a primitive type.
2238             // So, we are still able to successfully resolve something like
2239             //
2240             // use std::u8; // bring module u8 in scope
2241             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2242             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
2243             //                     // not to non-existent std::u8::max_value
2244             // }
2245             //
2246             // Such behavior is required for backward compatibility.
2247             // The same fallback is used when `a` resolves to nothing.
2248             PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
2249                 if (ns == TypeNS || path.len() > 1)
2250                     && PrimTy::from_name(path[0].ident.name).is_some() =>
2251             {
2252                 let prim = PrimTy::from_name(path[0].ident.name).unwrap();
2253                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
2254             }
2255             PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2256                 PartialRes::new(module.res().unwrap())
2257             }
2258             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
2259                 return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
2260             }
2261             PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
2262             PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
2263         };
2264
2265         if path.len() > 1
2266             && result.base_res() != Res::Err
2267             && path[0].ident.name != kw::PathRoot
2268             && path[0].ident.name != kw::DollarCrate
2269         {
2270             let unqualified_result = {
2271                 match self.resolve_path(
2272                     &[*path.last().unwrap()],
2273                     Some(ns),
2274                     false,
2275                     span,
2276                     CrateLint::No,
2277                 ) {
2278                     PathResult::NonModule(path_res) => path_res.base_res(),
2279                     PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2280                         module.res().unwrap()
2281                     }
2282                     _ => return Ok(Some(result)),
2283                 }
2284             };
2285             if result.base_res() == unqualified_result {
2286                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
2287                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
2288             }
2289         }
2290
2291         Ok(Some(result))
2292     }
2293
2294     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
2295         if let Some(label) = label {
2296             if label.ident.as_str().as_bytes()[1] != b'_' {
2297                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
2298             }
2299             self.with_label_rib(NormalRibKind, |this| {
2300                 let ident = label.ident.normalize_to_macro_rules();
2301                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
2302                 f(this);
2303             });
2304         } else {
2305             f(self);
2306         }
2307     }
2308
2309     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
2310         self.with_resolved_label(label, id, |this| this.visit_block(block));
2311     }
2312
2313     fn resolve_block(&mut self, block: &'ast Block) {
2314         debug!("(resolving block) entering block");
2315         // Move down in the graph, if there's an anonymous module rooted here.
2316         let orig_module = self.parent_scope.module;
2317         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
2318
2319         let mut num_macro_definition_ribs = 0;
2320         if let Some(anonymous_module) = anonymous_module {
2321             debug!("(resolving block) found anonymous module, moving down");
2322             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2323             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2324             self.parent_scope.module = anonymous_module;
2325         } else {
2326             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2327         }
2328
2329         let prev = self.diagnostic_metadata.current_block_could_be_bare_struct_literal.take();
2330         if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
2331             (block.could_be_bare_literal, &block.stmts[..])
2332         {
2333             if let ExprKind::Type(..) = expr.kind {
2334                 self.diagnostic_metadata.current_block_could_be_bare_struct_literal =
2335                     Some(block.span);
2336             }
2337         }
2338         // Descend into the block.
2339         for stmt in &block.stmts {
2340             if let StmtKind::Item(ref item) = stmt.kind {
2341                 if let ItemKind::MacroDef(..) = item.kind {
2342                     num_macro_definition_ribs += 1;
2343                     let res = self.r.local_def_id(item.id).to_def_id();
2344                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
2345                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
2346                 }
2347             }
2348
2349             self.visit_stmt(stmt);
2350         }
2351         self.diagnostic_metadata.current_block_could_be_bare_struct_literal = prev;
2352
2353         // Move back up.
2354         self.parent_scope.module = orig_module;
2355         for _ in 0..num_macro_definition_ribs {
2356             self.ribs[ValueNS].pop();
2357             self.label_ribs.pop();
2358         }
2359         self.ribs[ValueNS].pop();
2360         if anonymous_module.is_some() {
2361             self.ribs[TypeNS].pop();
2362         }
2363         debug!("(resolving block) leaving block");
2364     }
2365
2366     fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
2367         debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
2368         self.with_constant_rib(
2369             is_repeat,
2370             constant.value.is_potential_trivial_const_param(),
2371             None,
2372             |this| {
2373                 visit::walk_anon_const(this, constant);
2374             },
2375         );
2376     }
2377
2378     fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
2379         // First, record candidate traits for this expression if it could
2380         // result in the invocation of a method call.
2381
2382         self.record_candidate_traits_for_expr_if_necessary(expr);
2383
2384         // Next, resolve the node.
2385         match expr.kind {
2386             ExprKind::Path(ref qself, ref path) => {
2387                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2388                 visit::walk_expr(self, expr);
2389             }
2390
2391             ExprKind::Struct(ref se) => {
2392                 self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct);
2393                 visit::walk_expr(self, expr);
2394             }
2395
2396             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
2397                 if let Some(node_id) = self.resolve_label(label.ident) {
2398                     // Since this res is a label, it is never read.
2399                     self.r.label_res_map.insert(expr.id, node_id);
2400                     self.diagnostic_metadata.unused_labels.remove(&node_id);
2401                 }
2402
2403                 // visit `break` argument if any
2404                 visit::walk_expr(self, expr);
2405             }
2406
2407             ExprKind::Break(None, Some(ref e)) => {
2408                 // We use this instead of `visit::walk_expr` to keep the parent expr around for
2409                 // better diagnostics.
2410                 self.resolve_expr(e, Some(&expr));
2411             }
2412
2413             ExprKind::Let(ref pat, ref scrutinee, _) => {
2414                 self.visit_expr(scrutinee);
2415                 self.resolve_pattern_top(pat, PatternSource::Let);
2416             }
2417
2418             ExprKind::If(ref cond, ref then, ref opt_else) => {
2419                 self.with_rib(ValueNS, NormalRibKind, |this| {
2420                     let old = this.diagnostic_metadata.in_if_condition.replace(cond);
2421                     this.visit_expr(cond);
2422                     this.diagnostic_metadata.in_if_condition = old;
2423                     this.visit_block(then);
2424                 });
2425                 if let Some(expr) = opt_else {
2426                     self.visit_expr(expr);
2427                 }
2428             }
2429
2430             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
2431
2432             ExprKind::While(ref cond, ref block, label) => {
2433                 self.with_resolved_label(label, expr.id, |this| {
2434                     this.with_rib(ValueNS, NormalRibKind, |this| {
2435                         let old = this.diagnostic_metadata.in_if_condition.replace(cond);
2436                         this.visit_expr(cond);
2437                         this.diagnostic_metadata.in_if_condition = old;
2438                         this.visit_block(block);
2439                     })
2440                 });
2441             }
2442
2443             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
2444                 self.visit_expr(iter_expr);
2445                 self.with_rib(ValueNS, NormalRibKind, |this| {
2446                     this.resolve_pattern_top(pat, PatternSource::For);
2447                     this.resolve_labeled_block(label, expr.id, block);
2448                 });
2449             }
2450
2451             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
2452
2453             // Equivalent to `visit::walk_expr` + passing some context to children.
2454             ExprKind::Field(ref subexpression, _) => {
2455                 self.resolve_expr(subexpression, Some(expr));
2456             }
2457             ExprKind::MethodCall(ref segment, ref arguments, _) => {
2458                 let mut arguments = arguments.iter();
2459                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
2460                 for argument in arguments {
2461                     self.resolve_expr(argument, None);
2462                 }
2463                 self.visit_path_segment(expr.span, segment);
2464             }
2465
2466             ExprKind::Call(ref callee, ref arguments) => {
2467                 self.resolve_expr(callee, Some(expr));
2468                 let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
2469                 for (idx, argument) in arguments.iter().enumerate() {
2470                     // Constant arguments need to be treated as AnonConst since
2471                     // that is how they will be later lowered to HIR.
2472                     if const_args.contains(&idx) {
2473                         self.with_constant_rib(
2474                             IsRepeatExpr::No,
2475                             argument.is_potential_trivial_const_param(),
2476                             None,
2477                             |this| {
2478                                 this.resolve_expr(argument, None);
2479                             },
2480                         );
2481                     } else {
2482                         self.resolve_expr(argument, None);
2483                     }
2484                 }
2485             }
2486             ExprKind::Type(ref type_expr, ref ty) => {
2487                 // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
2488                 // type ascription. Here we are trying to retrieve the span of the colon token as
2489                 // well, but only if it's written without spaces `expr:Ty` and therefore confusable
2490                 // with `expr::Ty`, only in this case it will match the span from
2491                 // `type_ascription_path_suggestions`.
2492                 self.diagnostic_metadata
2493                     .current_type_ascription
2494                     .push(type_expr.span.between(ty.span));
2495                 visit::walk_expr(self, expr);
2496                 self.diagnostic_metadata.current_type_ascription.pop();
2497             }
2498             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
2499             // resolve the arguments within the proper scopes so that usages of them inside the
2500             // closure are detected as upvars rather than normal closure arg usages.
2501             ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
2502                 self.with_rib(ValueNS, NormalRibKind, |this| {
2503                     this.with_label_rib(ClosureOrAsyncRibKind, |this| {
2504                         // Resolve arguments:
2505                         this.resolve_params(&fn_decl.inputs);
2506                         // No need to resolve return type --
2507                         // the outer closure return type is `FnRetTy::Default`.
2508
2509                         // Now resolve the inner closure
2510                         {
2511                             // No need to resolve arguments: the inner closure has none.
2512                             // Resolve the return type:
2513                             visit::walk_fn_ret_ty(this, &fn_decl.output);
2514                             // Resolve the body
2515                             this.visit_expr(body);
2516                         }
2517                     })
2518                 });
2519             }
2520             ExprKind::Async(..) | ExprKind::Closure(..) => {
2521                 self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
2522             }
2523             ExprKind::Repeat(ref elem, ref ct) => {
2524                 self.visit_expr(elem);
2525                 self.resolve_anon_const(ct, IsRepeatExpr::Yes);
2526             }
2527             ExprKind::Index(ref elem, ref idx) => {
2528                 self.resolve_expr(elem, Some(expr));
2529                 self.visit_expr(idx);
2530             }
2531             _ => {
2532                 visit::walk_expr(self, expr);
2533             }
2534         }
2535     }
2536
2537     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
2538         match expr.kind {
2539             ExprKind::Field(_, ident) => {
2540                 // FIXME(#6890): Even though you can't treat a method like a
2541                 // field, we need to add any trait methods we find that match
2542                 // the field name so that we can do some nice error reporting
2543                 // later on in typeck.
2544                 let traits = self.traits_in_scope(ident, ValueNS);
2545                 self.r.trait_map.insert(expr.id, traits);
2546             }
2547             ExprKind::MethodCall(ref segment, ..) => {
2548                 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
2549                 let traits = self.traits_in_scope(segment.ident, ValueNS);
2550                 self.r.trait_map.insert(expr.id, traits);
2551             }
2552             _ => {
2553                 // Nothing to do.
2554             }
2555         }
2556     }
2557
2558     fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
2559         self.r.traits_in_scope(
2560             self.current_trait_ref.as_ref().map(|(module, _)| *module),
2561             &self.parent_scope,
2562             ident.span.ctxt(),
2563             Some((ident.name, ns)),
2564         )
2565     }
2566
2567     fn compute_num_lifetime_params(&mut self, id: NodeId, generics: &Generics) {
2568         let def_id = self.r.local_def_id(id);
2569         let count = generics
2570             .params
2571             .iter()
2572             .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
2573             .count();
2574         self.r.item_generics_num_lifetimes.insert(def_id, count);
2575     }
2576 }
2577
2578 impl<'a> Resolver<'a> {
2579     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2580         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2581         visit::walk_crate(&mut late_resolution_visitor, krate);
2582         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2583             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2584         }
2585     }
2586 }