]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late/lifetimes.rs
Rollup merge of #92778 - tavianator:linux-readdir-no-r, r=joshtriplett
[rust.git] / compiler / rustc_resolve / src / late / lifetimes.rs
1 // ignore-tidy-filelength
2 //! Name resolution for lifetimes.
3 //!
4 //! Name resolution for lifetimes follows *much* simpler rules than the
5 //! full resolve. For example, lifetime names are never exported or
6 //! used between functions, and they operate in a purely top-down
7 //! way. Therefore, we break lifetime name resolution into a separate pass.
8
9 use crate::late::diagnostics::{ForLifetimeSpanType, MissingLifetimeSpot};
10 use rustc_ast::walk_list;
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
12 use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder};
13 use rustc_hir as hir;
14 use rustc_hir::def::{DefKind, Res};
15 use rustc_hir::def_id::{DefIdMap, LocalDefId};
16 use rustc_hir::hir_id::ItemLocalId;
17 use rustc_hir::intravisit::{self, Visitor};
18 use rustc_hir::{GenericArg, GenericParam, LifetimeName, Node, ParamName, QPath};
19 use rustc_hir::{GenericParamKind, HirIdMap, HirIdSet, LifetimeParamKind};
20 use rustc_middle::hir::map::Map;
21 use rustc_middle::hir::nested_filter;
22 use rustc_middle::middle::resolve_lifetime::*;
23 use rustc_middle::ty::{self, DefIdTree, GenericParamDefKind, TyCtxt};
24 use rustc_middle::{bug, span_bug};
25 use rustc_session::lint;
26 use rustc_span::def_id::DefId;
27 use rustc_span::symbol::{kw, sym, Ident, Symbol};
28 use rustc_span::Span;
29 use std::borrow::Cow;
30 use std::cell::Cell;
31 use std::fmt;
32 use std::mem::take;
33
34 use tracing::{debug, span, Level};
35
36 // This counts the no of times a lifetime is used
37 #[derive(Clone, Copy, Debug)]
38 pub enum LifetimeUseSet<'tcx> {
39     One(&'tcx hir::Lifetime),
40     Many,
41 }
42
43 trait RegionExt {
44     fn early(hir_map: &Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (ParamName, Region);
45
46     fn late(index: u32, hir_map: &Map<'_>, param: &GenericParam<'_>) -> (ParamName, Region);
47
48     fn late_anon(named_late_bound_vars: u32, index: &Cell<u32>) -> Region;
49
50     fn id(&self) -> Option<DefId>;
51
52     fn shifted(self, amount: u32) -> Region;
53
54     fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region;
55
56     fn subst<'a, L>(self, params: L, map: &NamedRegionMap) -> Option<Region>
57     where
58         L: Iterator<Item = &'a hir::Lifetime>;
59 }
60
61 impl RegionExt for Region {
62     fn early(hir_map: &Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (ParamName, Region) {
63         let i = *index;
64         *index += 1;
65         let def_id = hir_map.local_def_id(param.hir_id);
66         let origin = LifetimeDefOrigin::from_param(param);
67         debug!("Region::early: index={} def_id={:?}", i, def_id);
68         (param.name.normalize_to_macros_2_0(), Region::EarlyBound(i, def_id.to_def_id(), origin))
69     }
70
71     fn late(idx: u32, hir_map: &Map<'_>, param: &GenericParam<'_>) -> (ParamName, Region) {
72         let depth = ty::INNERMOST;
73         let def_id = hir_map.local_def_id(param.hir_id);
74         let origin = LifetimeDefOrigin::from_param(param);
75         debug!(
76             "Region::late: idx={:?}, param={:?} depth={:?} def_id={:?} origin={:?}",
77             idx, param, depth, def_id, origin,
78         );
79         (
80             param.name.normalize_to_macros_2_0(),
81             Region::LateBound(depth, idx, def_id.to_def_id(), origin),
82         )
83     }
84
85     fn late_anon(named_late_bound_vars: u32, index: &Cell<u32>) -> Region {
86         let i = index.get();
87         index.set(i + 1);
88         let depth = ty::INNERMOST;
89         Region::LateBoundAnon(depth, named_late_bound_vars + i, i)
90     }
91
92     fn id(&self) -> Option<DefId> {
93         match *self {
94             Region::Static | Region::LateBoundAnon(..) => None,
95
96             Region::EarlyBound(_, id, _) | Region::LateBound(_, _, id, _) | Region::Free(_, id) => {
97                 Some(id)
98             }
99         }
100     }
101
102     fn shifted(self, amount: u32) -> Region {
103         match self {
104             Region::LateBound(debruijn, idx, id, origin) => {
105                 Region::LateBound(debruijn.shifted_in(amount), idx, id, origin)
106             }
107             Region::LateBoundAnon(debruijn, index, anon_index) => {
108                 Region::LateBoundAnon(debruijn.shifted_in(amount), index, anon_index)
109             }
110             _ => self,
111         }
112     }
113
114     fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region {
115         match self {
116             Region::LateBound(debruijn, index, id, origin) => {
117                 Region::LateBound(debruijn.shifted_out_to_binder(binder), index, id, origin)
118             }
119             Region::LateBoundAnon(debruijn, index, anon_index) => {
120                 Region::LateBoundAnon(debruijn.shifted_out_to_binder(binder), index, anon_index)
121             }
122             _ => self,
123         }
124     }
125
126     fn subst<'a, L>(self, mut params: L, map: &NamedRegionMap) -> Option<Region>
127     where
128         L: Iterator<Item = &'a hir::Lifetime>,
129     {
130         if let Region::EarlyBound(index, _, _) = self {
131             params.nth(index as usize).and_then(|lifetime| map.defs.get(&lifetime.hir_id).cloned())
132         } else {
133             Some(self)
134         }
135     }
136 }
137
138 /// Maps the id of each lifetime reference to the lifetime decl
139 /// that it corresponds to.
140 ///
141 /// FIXME. This struct gets converted to a `ResolveLifetimes` for
142 /// actual use. It has the same data, but indexed by `LocalDefId`.  This
143 /// is silly.
144 #[derive(Debug, Default)]
145 struct NamedRegionMap {
146     // maps from every use of a named (not anonymous) lifetime to a
147     // `Region` describing how that region is bound
148     defs: HirIdMap<Region>,
149
150     // the set of lifetime def ids that are late-bound; a region can
151     // be late-bound if (a) it does NOT appear in a where-clause and
152     // (b) it DOES appear in the arguments.
153     late_bound: HirIdSet,
154
155     // Maps relevant hir items to the bound vars on them. These include:
156     // - function defs
157     // - function pointers
158     // - closures
159     // - trait refs
160     // - bound types (like `T` in `for<'a> T<'a>: Foo`)
161     late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
162
163     // maps `PathSegment` `HirId`s to lifetime scopes.
164     scope_for_path: Option<FxHashMap<LocalDefId, FxHashMap<ItemLocalId, LifetimeScopeForPath>>>,
165 }
166
167 crate struct LifetimeContext<'a, 'tcx> {
168     crate tcx: TyCtxt<'tcx>,
169     map: &'a mut NamedRegionMap,
170     scope: ScopeRef<'a>,
171
172     /// Used to disallow the use of in-band lifetimes in `fn` or `Fn` syntax.
173     is_in_fn_syntax: bool,
174
175     is_in_const_generic: bool,
176
177     /// Indicates that we only care about the definition of a trait. This should
178     /// be false if the `Item` we are resolving lifetimes for is not a trait or
179     /// we eventually need lifetimes resolve for trait items.
180     trait_definition_only: bool,
181
182     /// List of labels in the function/method currently under analysis.
183     labels_in_fn: Vec<Ident>,
184
185     /// Cache for cross-crate per-definition object lifetime defaults.
186     xcrate_object_lifetime_defaults: DefIdMap<Vec<ObjectLifetimeDefault>>,
187
188     lifetime_uses: &'a mut DefIdMap<LifetimeUseSet<'tcx>>,
189
190     /// When encountering an undefined named lifetime, we will suggest introducing it in these
191     /// places.
192     crate missing_named_lifetime_spots: Vec<MissingLifetimeSpot<'tcx>>,
193 }
194
195 #[derive(Debug)]
196 enum Scope<'a> {
197     /// Declares lifetimes, and each can be early-bound or late-bound.
198     /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
199     /// it should be shifted by the number of `Binder`s in between the
200     /// declaration `Binder` and the location it's referenced from.
201     Binder {
202         /// We use an IndexMap here because we want these lifetimes in order
203         /// for diagnostics.
204         lifetimes: FxIndexMap<hir::ParamName, Region>,
205
206         /// if we extend this scope with another scope, what is the next index
207         /// we should use for an early-bound region?
208         next_early_index: u32,
209
210         /// Flag is set to true if, in this binder, `'_` would be
211         /// equivalent to a "single-use region". This is true on
212         /// impls, but not other kinds of items.
213         track_lifetime_uses: bool,
214
215         /// Whether or not this binder would serve as the parent
216         /// binder for opaque types introduced within. For example:
217         ///
218         /// ```text
219         ///     fn foo<'a>() -> impl for<'b> Trait<Item = impl Trait2<'a>>
220         /// ```
221         ///
222         /// Here, the opaque types we create for the `impl Trait`
223         /// and `impl Trait2` references will both have the `foo` item
224         /// as their parent. When we get to `impl Trait2`, we find
225         /// that it is nested within the `for<>` binder -- this flag
226         /// allows us to skip that when looking for the parent binder
227         /// of the resulting opaque type.
228         opaque_type_parent: bool,
229
230         scope_type: BinderScopeType,
231
232         /// The late bound vars for a given item are stored by `HirId` to be
233         /// queried later. However, if we enter an elision scope, we have to
234         /// later append the elided bound vars to the list and need to know what
235         /// to append to.
236         hir_id: hir::HirId,
237
238         s: ScopeRef<'a>,
239     },
240
241     /// Lifetimes introduced by a fn are scoped to the call-site for that fn,
242     /// if this is a fn body, otherwise the original definitions are used.
243     /// Unspecified lifetimes are inferred, unless an elision scope is nested,
244     /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
245     Body {
246         id: hir::BodyId,
247         s: ScopeRef<'a>,
248     },
249
250     /// A scope which either determines unspecified lifetimes or errors
251     /// on them (e.g., due to ambiguity). For more details, see `Elide`.
252     Elision {
253         elide: Elide,
254         s: ScopeRef<'a>,
255     },
256
257     /// Use a specific lifetime (if `Some`) or leave it unset (to be
258     /// inferred in a function body or potentially error outside one),
259     /// for the default choice of lifetime in a trait object type.
260     ObjectLifetimeDefault {
261         lifetime: Option<Region>,
262         s: ScopeRef<'a>,
263     },
264
265     /// When we have nested trait refs, we concanetate late bound vars for inner
266     /// trait refs from outer ones. But we also need to include any HRTB
267     /// lifetimes encountered when identifying the trait that an associated type
268     /// is declared on.
269     Supertrait {
270         lifetimes: Vec<ty::BoundVariableKind>,
271         s: ScopeRef<'a>,
272     },
273
274     TraitRefBoundary {
275         s: ScopeRef<'a>,
276     },
277
278     Root,
279 }
280
281 #[derive(Copy, Clone, Debug)]
282 enum BinderScopeType {
283     /// Any non-concatenating binder scopes.
284     Normal,
285     /// Within a syntactic trait ref, there may be multiple poly trait refs that
286     /// are nested (under the `associcated_type_bounds` feature). The binders of
287     /// the innner poly trait refs are extended from the outer poly trait refs
288     /// and don't increase the late bound depth. If you had
289     /// `T: for<'a>  Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
290     /// would be `Concatenating`. This also used in trait refs in where clauses
291     /// where we have two binders `for<> T: for<> Foo` (I've intentionally left
292     /// out any lifetimes because they aren't needed to show the two scopes).
293     /// The inner `for<>` has a scope of `Concatenating`.
294     Concatenating,
295 }
296
297 // A helper struct for debugging scopes without printing parent scopes
298 struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
299
300 impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
301     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
302         match self.0 {
303             Scope::Binder {
304                 lifetimes,
305                 next_early_index,
306                 track_lifetime_uses,
307                 opaque_type_parent,
308                 scope_type,
309                 hir_id,
310                 s: _,
311             } => f
312                 .debug_struct("Binder")
313                 .field("lifetimes", lifetimes)
314                 .field("next_early_index", next_early_index)
315                 .field("track_lifetime_uses", track_lifetime_uses)
316                 .field("opaque_type_parent", opaque_type_parent)
317                 .field("scope_type", scope_type)
318                 .field("hir_id", hir_id)
319                 .field("s", &"..")
320                 .finish(),
321             Scope::Body { id, s: _ } => {
322                 f.debug_struct("Body").field("id", id).field("s", &"..").finish()
323             }
324             Scope::Elision { elide, s: _ } => {
325                 f.debug_struct("Elision").field("elide", elide).field("s", &"..").finish()
326             }
327             Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
328                 .debug_struct("ObjectLifetimeDefault")
329                 .field("lifetime", lifetime)
330                 .field("s", &"..")
331                 .finish(),
332             Scope::Supertrait { lifetimes, s: _ } => f
333                 .debug_struct("Supertrait")
334                 .field("lifetimes", lifetimes)
335                 .field("s", &"..")
336                 .finish(),
337             Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
338             Scope::Root => f.debug_struct("Root").finish(),
339         }
340     }
341 }
342
343 #[derive(Clone, Debug)]
344 enum Elide {
345     /// Use a fresh anonymous late-bound lifetime each time, by
346     /// incrementing the counter to generate sequential indices. All
347     /// anonymous lifetimes must start *after* named bound vars.
348     FreshLateAnon(u32, Cell<u32>),
349     /// Always use this one lifetime.
350     Exact(Region),
351     /// Less or more than one lifetime were found, error on unspecified.
352     Error(Vec<ElisionFailureInfo>),
353     /// Forbid lifetime elision inside of a larger scope where it would be
354     /// permitted. For example, in let position impl trait.
355     Forbid,
356 }
357
358 #[derive(Clone, Debug)]
359 crate struct ElisionFailureInfo {
360     /// Where we can find the argument pattern.
361     crate parent: Option<hir::BodyId>,
362     /// The index of the argument in the original definition.
363     crate index: usize,
364     crate lifetime_count: usize,
365     crate have_bound_regions: bool,
366     crate span: Span,
367 }
368
369 type ScopeRef<'a> = &'a Scope<'a>;
370
371 const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root;
372
373 pub fn provide(providers: &mut ty::query::Providers) {
374     *providers = ty::query::Providers {
375         resolve_lifetimes_trait_definition,
376         resolve_lifetimes,
377
378         named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id),
379         is_late_bound_map,
380         object_lifetime_defaults_map: |tcx, id| match tcx.hir().find_by_def_id(id) {
381             Some(Node::Item(item)) => compute_object_lifetime_defaults(tcx, item),
382             _ => None,
383         },
384         late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id),
385         lifetime_scope_map: |tcx, id| {
386             let item_id = item_for(tcx, id);
387             do_resolve(tcx, item_id, false, true).scope_for_path.unwrap().remove(&id)
388         },
389
390         ..*providers
391     };
392 }
393
394 /// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items.
395 /// Also does not generate any diagnostics.
396 ///
397 /// This is ultimately a subset of the `resolve_lifetimes` work. It effectively
398 /// resolves lifetimes only within the trait "header" -- that is, the trait
399 /// and supertrait list. In contrast, `resolve_lifetimes` resolves all the
400 /// lifetimes within the trait and its items. There is room to refactor this,
401 /// for example to resolve lifetimes for each trait item in separate queries,
402 /// but it's convenient to do the entire trait at once because the lifetimes
403 /// from the trait definition are in scope within the trait items as well.
404 ///
405 /// The reason for this separate call is to resolve what would otherwise
406 /// be a cycle. Consider this example:
407 ///
408 /// ```rust
409 /// trait Base<'a> {
410 ///     type BaseItem;
411 /// }
412 /// trait Sub<'b>: for<'a> Base<'a> {
413 ///    type SubItem: Sub<BaseItem = &'b u32>;
414 /// }
415 /// ```
416 ///
417 /// When we resolve `Sub` and all its items, we also have to resolve `Sub<BaseItem = &'b u32>`.
418 /// To figure out the index of `'b`, we have to know about the supertraits
419 /// of `Sub` so that we can determine that the `for<'a>` will be in scope.
420 /// (This is because we -- currently at least -- flatten all the late-bound
421 /// lifetimes into a single binder.) This requires us to resolve the
422 /// *trait definition* of `Sub`; basically just enough lifetime information
423 /// to look at the supertraits.
424 #[tracing::instrument(level = "debug", skip(tcx))]
425 fn resolve_lifetimes_trait_definition(
426     tcx: TyCtxt<'_>,
427     local_def_id: LocalDefId,
428 ) -> ResolveLifetimes {
429     convert_named_region_map(do_resolve(tcx, local_def_id, true, false))
430 }
431
432 /// Computes the `ResolveLifetimes` map that contains data for an entire `Item`.
433 /// You should not read the result of this query directly, but rather use
434 /// `named_region_map`, `is_late_bound_map`, etc.
435 #[tracing::instrument(level = "debug", skip(tcx))]
436 fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes {
437     convert_named_region_map(do_resolve(tcx, local_def_id, false, false))
438 }
439
440 fn do_resolve(
441     tcx: TyCtxt<'_>,
442     local_def_id: LocalDefId,
443     trait_definition_only: bool,
444     with_scope_for_path: bool,
445 ) -> NamedRegionMap {
446     let item = tcx.hir().expect_item(local_def_id);
447     let mut named_region_map = NamedRegionMap {
448         defs: Default::default(),
449         late_bound: Default::default(),
450         late_bound_vars: Default::default(),
451         scope_for_path: with_scope_for_path.then(|| Default::default()),
452     };
453     let mut visitor = LifetimeContext {
454         tcx,
455         map: &mut named_region_map,
456         scope: ROOT_SCOPE,
457         is_in_fn_syntax: false,
458         is_in_const_generic: false,
459         trait_definition_only,
460         labels_in_fn: vec![],
461         xcrate_object_lifetime_defaults: Default::default(),
462         lifetime_uses: &mut Default::default(),
463         missing_named_lifetime_spots: vec![],
464     };
465     visitor.visit_item(item);
466
467     named_region_map
468 }
469
470 fn convert_named_region_map(named_region_map: NamedRegionMap) -> ResolveLifetimes {
471     let mut rl = ResolveLifetimes::default();
472
473     for (hir_id, v) in named_region_map.defs {
474         let map = rl.defs.entry(hir_id.owner).or_default();
475         map.insert(hir_id.local_id, v);
476     }
477     for hir_id in named_region_map.late_bound {
478         let map = rl.late_bound.entry(hir_id.owner).or_default();
479         map.insert(hir_id.local_id);
480     }
481     for (hir_id, v) in named_region_map.late_bound_vars {
482         let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
483         map.insert(hir_id.local_id, v);
484     }
485
486     debug!(?rl.defs);
487     rl
488 }
489
490 /// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution.
491 /// There are two important things this does.
492 /// First, we have to resolve lifetimes for
493 /// the entire *`Item`* that contains this owner, because that's the largest "scope"
494 /// where we can have relevant lifetimes.
495 /// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition`
496 /// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics.
497 /// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner
498 /// other than the trait itself (like the trait methods or associated types), then we just use the regular
499 /// `resolve_lifetimes`.
500 fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx ResolveLifetimes {
501     let item_id = item_for(tcx, def_id);
502     if item_id == def_id {
503         let item = tcx.hir().item(hir::ItemId { def_id: item_id });
504         match item.kind {
505             hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(item_id),
506             _ => tcx.resolve_lifetimes(item_id),
507         }
508     } else {
509         tcx.resolve_lifetimes(item_id)
510     }
511 }
512
513 /// Finds the `Item` that contains the given `LocalDefId`
514 fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> LocalDefId {
515     match tcx.hir().find_by_def_id(local_def_id) {
516         Some(Node::Item(item)) => {
517             return item.def_id;
518         }
519         _ => {}
520     }
521     let item = {
522         let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id);
523         let mut parent_iter = tcx.hir().parent_iter(hir_id);
524         loop {
525             let node = parent_iter.next().map(|n| n.1);
526             match node {
527                 Some(hir::Node::Item(item)) => break item.def_id,
528                 Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."),
529                 _ => {}
530             }
531         }
532     };
533     item
534 }
535
536 fn is_late_bound_map<'tcx>(
537     tcx: TyCtxt<'tcx>,
538     def_id: LocalDefId,
539 ) -> Option<(LocalDefId, &'tcx FxHashSet<ItemLocalId>)> {
540     match tcx.def_kind(def_id) {
541         DefKind::AnonConst | DefKind::InlineConst => {
542             let mut def_id = tcx
543                 .parent(def_id.to_def_id())
544                 .unwrap_or_else(|| bug!("anon const or closure without a parent"));
545             // We search for the next outer anon const or fn here
546             // while skipping closures.
547             //
548             // Note that for `AnonConst` we still just recurse until we
549             // find a function body, but who cares :shrug:
550             while tcx.is_closure(def_id) {
551                 def_id = tcx
552                     .parent(def_id)
553                     .unwrap_or_else(|| bug!("anon const or closure without a parent"));
554             }
555
556             tcx.is_late_bound_map(def_id.expect_local())
557         }
558         _ => resolve_lifetimes_for(tcx, def_id).late_bound.get(&def_id).map(|lt| (def_id, lt)),
559     }
560 }
561
562 /// In traits, there is an implicit `Self` type parameter which comes before the generics.
563 /// We have to account for this when computing the index of the other generic parameters.
564 /// This function returns whether there is such an implicit parameter defined on the given item.
565 fn sub_items_have_self_param(node: &hir::ItemKind<'_>) -> bool {
566     matches!(*node, hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..))
567 }
568
569 fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind {
570     match region {
571         Region::LateBound(_, _, def_id, _) => {
572             let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
573             ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
574         }
575         Region::LateBoundAnon(_, _, anon_idx) => {
576             ty::BoundVariableKind::Region(ty::BrAnon(*anon_idx))
577         }
578         _ => bug!("{:?} is not a late region", region),
579     }
580 }
581
582 #[tracing::instrument(level = "debug")]
583 fn get_lifetime_scopes_for_path(mut scope: &Scope<'_>) -> LifetimeScopeForPath {
584     let mut available_lifetimes = vec![];
585     loop {
586         match scope {
587             Scope::Binder { lifetimes, s, .. } => {
588                 available_lifetimes.extend(lifetimes.keys().filter_map(|p| match p {
589                     hir::ParamName::Plain(ident) => Some(ident.name.to_string()),
590                     _ => None,
591                 }));
592                 scope = s;
593             }
594             Scope::Body { s, .. } => {
595                 scope = s;
596             }
597             Scope::Elision { elide, s } => {
598                 if let Elide::Exact(_) = elide {
599                     return LifetimeScopeForPath::Elided;
600                 } else {
601                     scope = s;
602                 }
603             }
604             Scope::ObjectLifetimeDefault { s, .. } => {
605                 scope = s;
606             }
607             Scope::Root => {
608                 return LifetimeScopeForPath::NonElided(available_lifetimes);
609             }
610             Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
611                 scope = s;
612             }
613         }
614     }
615 }
616
617 impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
618     /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
619     fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
620         let mut scope = self.scope;
621         let mut supertrait_lifetimes = vec![];
622         loop {
623             match scope {
624                 Scope::Body { .. } | Scope::Root => {
625                     break (vec![], BinderScopeType::Normal);
626                 }
627
628                 Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => {
629                     scope = s;
630                 }
631
632                 Scope::Supertrait { s, lifetimes } => {
633                     supertrait_lifetimes = lifetimes.clone();
634                     scope = s;
635                 }
636
637                 Scope::TraitRefBoundary { .. } => {
638                     // We should only see super trait lifetimes if there is a `Binder` above
639                     assert!(supertrait_lifetimes.is_empty());
640                     break (vec![], BinderScopeType::Normal);
641                 }
642
643                 Scope::Binder { hir_id, .. } => {
644                     // Nested poly trait refs have the binders concatenated
645                     let mut full_binders =
646                         self.map.late_bound_vars.entry(*hir_id).or_default().clone();
647                     full_binders.extend(supertrait_lifetimes.into_iter());
648                     break (full_binders, BinderScopeType::Concatenating);
649                 }
650             }
651         }
652     }
653 }
654 impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> {
655     type NestedFilter = nested_filter::All;
656
657     fn nested_visit_map(&mut self) -> Self::Map {
658         self.tcx.hir()
659     }
660
661     // We want to nest trait/impl items in their parent, but nothing else.
662     fn visit_nested_item(&mut self, _: hir::ItemId) {}
663
664     fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) {
665         if !self.trait_definition_only {
666             intravisit::walk_trait_item_ref(self, ii)
667         }
668     }
669
670     fn visit_nested_body(&mut self, body: hir::BodyId) {
671         // Each body has their own set of labels, save labels.
672         let saved = take(&mut self.labels_in_fn);
673         let body = self.tcx.hir().body(body);
674         extract_labels(self, body);
675         self.with(Scope::Body { id: body.id(), s: self.scope }, |_, this| {
676             this.visit_body(body);
677         });
678         self.labels_in_fn = saved;
679     }
680
681     fn visit_fn(
682         &mut self,
683         fk: intravisit::FnKind<'tcx>,
684         fd: &'tcx hir::FnDecl<'tcx>,
685         b: hir::BodyId,
686         s: rustc_span::Span,
687         hir_id: hir::HirId,
688     ) {
689         let name = match fk {
690             intravisit::FnKind::ItemFn(id, _, _, _) => id.name,
691             intravisit::FnKind::Method(id, _, _) => id.name,
692             intravisit::FnKind::Closure => sym::closure,
693         };
694         let name = name.as_str();
695         let span = span!(Level::DEBUG, "visit_fn", name);
696         let _enter = span.enter();
697         match fk {
698             // Any `Binders` are handled elsewhere
699             intravisit::FnKind::ItemFn(..) | intravisit::FnKind::Method(..) => {
700                 intravisit::walk_fn(self, fk, fd, b, s, hir_id)
701             }
702             intravisit::FnKind::Closure => {
703                 self.map.late_bound_vars.insert(hir_id, vec![]);
704                 let scope = Scope::Binder {
705                     hir_id,
706                     lifetimes: FxIndexMap::default(),
707                     next_early_index: self.next_early_index(),
708                     s: self.scope,
709                     track_lifetime_uses: true,
710                     opaque_type_parent: false,
711                     scope_type: BinderScopeType::Normal,
712                 };
713                 self.with(scope, move |_old_scope, this| {
714                     intravisit::walk_fn(this, fk, fd, b, s, hir_id)
715                 });
716             }
717         }
718     }
719
720     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
721         match &item.kind {
722             hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
723                 if let Some(of_trait) = of_trait {
724                     self.map.late_bound_vars.insert(of_trait.hir_ref_id, Vec::default());
725                 }
726             }
727             _ => {}
728         }
729         match item.kind {
730             hir::ItemKind::Fn(ref sig, ref generics, _) => {
731                 self.missing_named_lifetime_spots.push(generics.into());
732                 self.visit_early_late(None, item.hir_id(), &sig.decl, generics, |this| {
733                     intravisit::walk_item(this, item);
734                 });
735                 self.missing_named_lifetime_spots.pop();
736             }
737
738             hir::ItemKind::ExternCrate(_)
739             | hir::ItemKind::Use(..)
740             | hir::ItemKind::Macro(..)
741             | hir::ItemKind::Mod(..)
742             | hir::ItemKind::ForeignMod { .. }
743             | hir::ItemKind::GlobalAsm(..) => {
744                 // These sorts of items have no lifetime parameters at all.
745                 intravisit::walk_item(self, item);
746             }
747             hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
748                 // No lifetime parameters, but implied 'static.
749                 let scope = Scope::Elision { elide: Elide::Exact(Region::Static), s: ROOT_SCOPE };
750                 self.with(scope, |_, this| intravisit::walk_item(this, item));
751             }
752             hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => {
753                 // Opaque types are visited when we visit the
754                 // `TyKind::OpaqueDef`, so that they have the lifetimes from
755                 // their parent opaque_ty in scope.
756                 //
757                 // The core idea here is that since OpaqueTys are generated with the impl Trait as
758                 // their owner, we can keep going until we find the Item that owns that. We then
759                 // conservatively add all resolved lifetimes. Otherwise we run into problems in
760                 // cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
761                 for (_hir_id, node) in
762                     self.tcx.hir().parent_iter(self.tcx.hir().local_def_id_to_hir_id(item.def_id))
763                 {
764                     match node {
765                         hir::Node::Item(parent_item) => {
766                             let resolved_lifetimes: &ResolveLifetimes =
767                                 self.tcx.resolve_lifetimes(item_for(self.tcx, parent_item.def_id));
768                             // We need to add *all* deps, since opaque tys may want them from *us*
769                             for (&owner, defs) in resolved_lifetimes.defs.iter() {
770                                 defs.iter().for_each(|(&local_id, region)| {
771                                     self.map.defs.insert(hir::HirId { owner, local_id }, *region);
772                                 });
773                             }
774                             for (&owner, late_bound) in resolved_lifetimes.late_bound.iter() {
775                                 late_bound.iter().for_each(|&local_id| {
776                                     self.map.late_bound.insert(hir::HirId { owner, local_id });
777                                 });
778                             }
779                             for (&owner, late_bound_vars) in
780                                 resolved_lifetimes.late_bound_vars.iter()
781                             {
782                                 late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
783                                     self.map.late_bound_vars.insert(
784                                         hir::HirId { owner, local_id },
785                                         late_bound_vars.clone(),
786                                     );
787                                 });
788                             }
789                             break;
790                         }
791                         hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"),
792                         _ => {}
793                     }
794                 }
795             }
796             hir::ItemKind::TyAlias(_, ref generics)
797             | hir::ItemKind::Enum(_, ref generics)
798             | hir::ItemKind::Struct(_, ref generics)
799             | hir::ItemKind::Union(_, ref generics)
800             | hir::ItemKind::Trait(_, _, ref generics, ..)
801             | hir::ItemKind::TraitAlias(ref generics, ..)
802             | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
803                 self.missing_named_lifetime_spots.push(generics.into());
804
805                 // Impls permit `'_` to be used and it is equivalent to "some fresh lifetime name".
806                 // This is not true for other kinds of items.
807                 let track_lifetime_uses = matches!(item.kind, hir::ItemKind::Impl { .. });
808                 // These kinds of items have only early-bound lifetime parameters.
809                 let mut index = if sub_items_have_self_param(&item.kind) {
810                     1 // Self comes before lifetimes
811                 } else {
812                     0
813                 };
814                 let mut non_lifetime_count = 0;
815                 let lifetimes = generics
816                     .params
817                     .iter()
818                     .filter_map(|param| match param.kind {
819                         GenericParamKind::Lifetime { .. } => {
820                             Some(Region::early(&self.tcx.hir(), &mut index, param))
821                         }
822                         GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
823                             non_lifetime_count += 1;
824                             None
825                         }
826                     })
827                     .collect();
828                 self.map.late_bound_vars.insert(item.hir_id(), vec![]);
829                 let scope = Scope::Binder {
830                     hir_id: item.hir_id(),
831                     lifetimes,
832                     next_early_index: index + non_lifetime_count,
833                     opaque_type_parent: true,
834                     track_lifetime_uses,
835                     scope_type: BinderScopeType::Normal,
836                     s: ROOT_SCOPE,
837                 };
838                 self.with(scope, |old_scope, this| {
839                     this.check_lifetime_params(old_scope, &generics.params);
840                     let scope = Scope::TraitRefBoundary { s: this.scope };
841                     this.with(scope, |_, this| {
842                         intravisit::walk_item(this, item);
843                     });
844                 });
845                 self.missing_named_lifetime_spots.pop();
846             }
847         }
848     }
849
850     fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
851         match item.kind {
852             hir::ForeignItemKind::Fn(ref decl, _, ref generics) => {
853                 self.visit_early_late(None, item.hir_id(), decl, generics, |this| {
854                     intravisit::walk_foreign_item(this, item);
855                 })
856             }
857             hir::ForeignItemKind::Static(..) => {
858                 intravisit::walk_foreign_item(self, item);
859             }
860             hir::ForeignItemKind::Type => {
861                 intravisit::walk_foreign_item(self, item);
862             }
863         }
864     }
865
866     #[tracing::instrument(level = "debug", skip(self))]
867     fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
868         match ty.kind {
869             hir::TyKind::BareFn(ref c) => {
870                 let next_early_index = self.next_early_index();
871                 let was_in_fn_syntax = self.is_in_fn_syntax;
872                 self.is_in_fn_syntax = true;
873                 let lifetime_span: Option<Span> =
874                     c.generic_params.iter().rev().find_map(|param| match param.kind {
875                         GenericParamKind::Lifetime { .. } => Some(param.span),
876                         _ => None,
877                     });
878                 let (span, span_type) = if let Some(span) = lifetime_span {
879                     (span.shrink_to_hi(), ForLifetimeSpanType::TypeTail)
880                 } else {
881                     (ty.span.shrink_to_lo(), ForLifetimeSpanType::TypeEmpty)
882                 };
883                 self.missing_named_lifetime_spots
884                     .push(MissingLifetimeSpot::HigherRanked { span, span_type });
885                 let (lifetimes, binders): (FxIndexMap<hir::ParamName, Region>, Vec<_>) = c
886                     .generic_params
887                     .iter()
888                     .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
889                     .enumerate()
890                     .map(|(late_bound_idx, param)| {
891                         let pair = Region::late(late_bound_idx as u32, &self.tcx.hir(), param);
892                         let r = late_region_as_bound_region(self.tcx, &pair.1);
893                         (pair, r)
894                     })
895                     .unzip();
896                 self.map.late_bound_vars.insert(ty.hir_id, binders);
897                 let scope = Scope::Binder {
898                     hir_id: ty.hir_id,
899                     lifetimes,
900                     s: self.scope,
901                     next_early_index,
902                     track_lifetime_uses: true,
903                     opaque_type_parent: false,
904                     scope_type: BinderScopeType::Normal,
905                 };
906                 self.with(scope, |old_scope, this| {
907                     // a bare fn has no bounds, so everything
908                     // contained within is scoped within its binder.
909                     this.check_lifetime_params(old_scope, &c.generic_params);
910                     intravisit::walk_ty(this, ty);
911                 });
912                 self.missing_named_lifetime_spots.pop();
913                 self.is_in_fn_syntax = was_in_fn_syntax;
914             }
915             hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
916                 debug!(?bounds, ?lifetime, "TraitObject");
917                 let scope = Scope::TraitRefBoundary { s: self.scope };
918                 self.with(scope, |_, this| {
919                     for bound in bounds {
920                         this.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
921                     }
922                 });
923                 match lifetime.name {
924                     LifetimeName::Implicit(_) => {
925                         // For types like `dyn Foo`, we should
926                         // generate a special form of elided.
927                         span_bug!(ty.span, "object-lifetime-default expected, not implicit",);
928                     }
929                     LifetimeName::ImplicitObjectLifetimeDefault => {
930                         // If the user does not write *anything*, we
931                         // use the object lifetime defaulting
932                         // rules. So e.g., `Box<dyn Debug>` becomes
933                         // `Box<dyn Debug + 'static>`.
934                         self.resolve_object_lifetime_default(lifetime)
935                     }
936                     LifetimeName::Underscore => {
937                         // If the user writes `'_`, we use the *ordinary* elision
938                         // rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
939                         // resolved the same as the `'_` in `&'_ Foo`.
940                         //
941                         // cc #48468
942                         self.resolve_elided_lifetimes(&[lifetime])
943                     }
944                     LifetimeName::Param(_) | LifetimeName::Static => {
945                         // If the user wrote an explicit name, use that.
946                         self.visit_lifetime(lifetime);
947                     }
948                     LifetimeName::Error => {}
949                 }
950             }
951             hir::TyKind::Rptr(ref lifetime_ref, ref mt) => {
952                 self.visit_lifetime(lifetime_ref);
953                 let scope = Scope::ObjectLifetimeDefault {
954                     lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
955                     s: self.scope,
956                 };
957                 self.with(scope, |_, this| this.visit_ty(&mt.ty));
958             }
959             hir::TyKind::OpaqueDef(item_id, lifetimes) => {
960                 // Resolve the lifetimes in the bounds to the lifetime defs in the generics.
961                 // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
962                 // `type MyAnonTy<'b> = impl MyTrait<'b>;`
963                 //                 ^                  ^ this gets resolved in the scope of
964                 //                                      the opaque_ty generics
965                 let opaque_ty = self.tcx.hir().item(item_id);
966                 let (generics, bounds) = match opaque_ty.kind {
967                     // Named opaque `impl Trait` types are reached via `TyKind::Path`.
968                     // This arm is for `impl Trait` in the types of statics, constants and locals.
969                     hir::ItemKind::OpaqueTy(hir::OpaqueTy {
970                         origin: hir::OpaqueTyOrigin::TyAlias,
971                         ..
972                     }) => {
973                         intravisit::walk_ty(self, ty);
974
975                         // Elided lifetimes are not allowed in non-return
976                         // position impl Trait
977                         let scope = Scope::TraitRefBoundary { s: self.scope };
978                         self.with(scope, |_, this| {
979                             let scope = Scope::Elision { elide: Elide::Forbid, s: this.scope };
980                             this.with(scope, |_, this| {
981                                 intravisit::walk_item(this, opaque_ty);
982                             })
983                         });
984
985                         return;
986                     }
987                     // RPIT (return position impl trait)
988                     hir::ItemKind::OpaqueTy(hir::OpaqueTy {
989                         origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
990                         ref generics,
991                         bounds,
992                         ..
993                     }) => (generics, bounds),
994                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
995                 };
996
997                 // Resolve the lifetimes that are applied to the opaque type.
998                 // These are resolved in the current scope.
999                 // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
1000                 // `fn foo<'a>() -> MyAnonTy<'a> { ... }`
1001                 //          ^                 ^this gets resolved in the current scope
1002                 for lifetime in lifetimes {
1003                     let hir::GenericArg::Lifetime(lifetime) = lifetime else {
1004                         continue
1005                     };
1006                     self.visit_lifetime(lifetime);
1007
1008                     // Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
1009                     // and ban them. Type variables instantiated inside binders aren't
1010                     // well-supported at the moment, so this doesn't work.
1011                     // In the future, this should be fixed and this error should be removed.
1012                     let def = self.map.defs.get(&lifetime.hir_id).cloned();
1013                     let Some(Region::LateBound(_, _, def_id, _)) = def else {
1014                         continue
1015                     };
1016                     let Some(def_id) = def_id.as_local() else {
1017                         continue
1018                     };
1019                     let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1020                     // Ensure that the parent of the def is an item, not HRTB
1021                     let parent_id = self.tcx.hir().get_parent_node(hir_id);
1022                     // FIXME(cjgillot) Can this check be replaced by
1023                     // `let parent_is_item = parent_id.is_owner();`?
1024                     let parent_is_item = if let Some(parent_def_id) = parent_id.as_owner() {
1025                         matches!(self.tcx.hir().krate().owners.get(parent_def_id), Some(Some(_)),)
1026                     } else {
1027                         false
1028                     };
1029
1030                     if !parent_is_item {
1031                         if !self.trait_definition_only {
1032                             struct_span_err!(
1033                                 self.tcx.sess,
1034                                 lifetime.span,
1035                                 E0657,
1036                                 "`impl Trait` can only capture lifetimes \
1037                                     bound at the fn or impl level"
1038                             )
1039                             .emit();
1040                         }
1041                         self.uninsert_lifetime_on_error(lifetime, def.unwrap());
1042                     }
1043                 }
1044
1045                 // We want to start our early-bound indices at the end of the parent scope,
1046                 // not including any parent `impl Trait`s.
1047                 let mut index = self.next_early_index_for_opaque_type();
1048                 debug!(?index);
1049
1050                 let mut elision = None;
1051                 let mut lifetimes = FxIndexMap::default();
1052                 let mut non_lifetime_count = 0;
1053                 for param in generics.params {
1054                     match param.kind {
1055                         GenericParamKind::Lifetime { .. } => {
1056                             let (name, reg) = Region::early(&self.tcx.hir(), &mut index, &param);
1057                             let Region::EarlyBound(_, def_id, _) = reg else {
1058                                 bug!();
1059                             };
1060                             // We cannot predict what lifetimes are unused in opaque type.
1061                             self.lifetime_uses.insert(def_id, LifetimeUseSet::Many);
1062                             if let hir::ParamName::Plain(Ident {
1063                                 name: kw::UnderscoreLifetime,
1064                                 ..
1065                             }) = name
1066                             {
1067                                 // Pick the elided lifetime "definition" if one exists
1068                                 // and use it to make an elision scope.
1069                                 elision = Some(reg);
1070                             } else {
1071                                 lifetimes.insert(name, reg);
1072                             }
1073                         }
1074                         GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1075                             non_lifetime_count += 1;
1076                         }
1077                     }
1078                 }
1079                 let next_early_index = index + non_lifetime_count;
1080                 self.map.late_bound_vars.insert(ty.hir_id, vec![]);
1081
1082                 if let Some(elision_region) = elision {
1083                     let scope =
1084                         Scope::Elision { elide: Elide::Exact(elision_region), s: self.scope };
1085                     self.with(scope, |_old_scope, this| {
1086                         let scope = Scope::Binder {
1087                             hir_id: ty.hir_id,
1088                             lifetimes,
1089                             next_early_index,
1090                             s: this.scope,
1091                             track_lifetime_uses: true,
1092                             opaque_type_parent: false,
1093                             scope_type: BinderScopeType::Normal,
1094                         };
1095                         this.with(scope, |_old_scope, this| {
1096                             this.visit_generics(generics);
1097                             let scope = Scope::TraitRefBoundary { s: this.scope };
1098                             this.with(scope, |_, this| {
1099                                 for bound in bounds {
1100                                     this.visit_param_bound(bound);
1101                                 }
1102                             })
1103                         });
1104                     });
1105                 } else {
1106                     let scope = Scope::Binder {
1107                         hir_id: ty.hir_id,
1108                         lifetimes,
1109                         next_early_index,
1110                         s: self.scope,
1111                         track_lifetime_uses: true,
1112                         opaque_type_parent: false,
1113                         scope_type: BinderScopeType::Normal,
1114                     };
1115                     self.with(scope, |_old_scope, this| {
1116                         let scope = Scope::TraitRefBoundary { s: this.scope };
1117                         this.with(scope, |_, this| {
1118                             this.visit_generics(generics);
1119                             for bound in bounds {
1120                                 this.visit_param_bound(bound);
1121                             }
1122                         })
1123                     });
1124                 }
1125             }
1126             _ => intravisit::walk_ty(self, ty),
1127         }
1128     }
1129
1130     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
1131         use self::hir::TraitItemKind::*;
1132         match trait_item.kind {
1133             Fn(ref sig, _) => {
1134                 self.missing_named_lifetime_spots.push((&trait_item.generics).into());
1135                 let tcx = self.tcx;
1136                 self.visit_early_late(
1137                     Some(tcx.hir().get_parent_item(trait_item.hir_id())),
1138                     trait_item.hir_id(),
1139                     &sig.decl,
1140                     &trait_item.generics,
1141                     |this| intravisit::walk_trait_item(this, trait_item),
1142                 );
1143                 self.missing_named_lifetime_spots.pop();
1144             }
1145             Type(bounds, ref ty) => {
1146                 self.missing_named_lifetime_spots.push((&trait_item.generics).into());
1147                 let generics = &trait_item.generics;
1148                 let mut index = self.next_early_index();
1149                 debug!("visit_ty: index = {}", index);
1150                 let mut non_lifetime_count = 0;
1151                 let lifetimes = generics
1152                     .params
1153                     .iter()
1154                     .filter_map(|param| match param.kind {
1155                         GenericParamKind::Lifetime { .. } => {
1156                             Some(Region::early(&self.tcx.hir(), &mut index, param))
1157                         }
1158                         GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1159                             non_lifetime_count += 1;
1160                             None
1161                         }
1162                     })
1163                     .collect();
1164                 self.map.late_bound_vars.insert(trait_item.hir_id(), vec![]);
1165                 let scope = Scope::Binder {
1166                     hir_id: trait_item.hir_id(),
1167                     lifetimes,
1168                     next_early_index: index + non_lifetime_count,
1169                     s: self.scope,
1170                     track_lifetime_uses: true,
1171                     opaque_type_parent: true,
1172                     scope_type: BinderScopeType::Normal,
1173                 };
1174                 self.with(scope, |old_scope, this| {
1175                     this.check_lifetime_params(old_scope, &generics.params);
1176                     let scope = Scope::TraitRefBoundary { s: this.scope };
1177                     this.with(scope, |_, this| {
1178                         this.visit_generics(generics);
1179                         for bound in bounds {
1180                             this.visit_param_bound(bound);
1181                         }
1182                         if let Some(ty) = ty {
1183                             this.visit_ty(ty);
1184                         }
1185                     })
1186                 });
1187                 self.missing_named_lifetime_spots.pop();
1188             }
1189             Const(_, _) => {
1190                 // Only methods and types support generics.
1191                 assert!(trait_item.generics.params.is_empty());
1192                 self.missing_named_lifetime_spots.push(MissingLifetimeSpot::Static);
1193                 intravisit::walk_trait_item(self, trait_item);
1194                 self.missing_named_lifetime_spots.pop();
1195             }
1196         }
1197     }
1198
1199     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
1200         use self::hir::ImplItemKind::*;
1201         match impl_item.kind {
1202             Fn(ref sig, _) => {
1203                 self.missing_named_lifetime_spots.push((&impl_item.generics).into());
1204                 let tcx = self.tcx;
1205                 self.visit_early_late(
1206                     Some(tcx.hir().get_parent_item(impl_item.hir_id())),
1207                     impl_item.hir_id(),
1208                     &sig.decl,
1209                     &impl_item.generics,
1210                     |this| intravisit::walk_impl_item(this, impl_item),
1211                 );
1212                 self.missing_named_lifetime_spots.pop();
1213             }
1214             TyAlias(ref ty) => {
1215                 let generics = &impl_item.generics;
1216                 self.missing_named_lifetime_spots.push(generics.into());
1217                 let mut index = self.next_early_index();
1218                 let mut non_lifetime_count = 0;
1219                 debug!("visit_ty: index = {}", index);
1220                 let lifetimes: FxIndexMap<hir::ParamName, Region> = generics
1221                     .params
1222                     .iter()
1223                     .filter_map(|param| match param.kind {
1224                         GenericParamKind::Lifetime { .. } => {
1225                             Some(Region::early(&self.tcx.hir(), &mut index, param))
1226                         }
1227                         GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => {
1228                             non_lifetime_count += 1;
1229                             None
1230                         }
1231                     })
1232                     .collect();
1233                 self.map.late_bound_vars.insert(ty.hir_id, vec![]);
1234                 let scope = Scope::Binder {
1235                     hir_id: ty.hir_id,
1236                     lifetimes,
1237                     next_early_index: index + non_lifetime_count,
1238                     s: self.scope,
1239                     track_lifetime_uses: true,
1240                     opaque_type_parent: true,
1241                     scope_type: BinderScopeType::Normal,
1242                 };
1243                 self.with(scope, |old_scope, this| {
1244                     this.check_lifetime_params(old_scope, &generics.params);
1245                     let scope = Scope::TraitRefBoundary { s: this.scope };
1246                     this.with(scope, |_, this| {
1247                         this.visit_generics(generics);
1248                         this.visit_ty(ty);
1249                     })
1250                 });
1251                 self.missing_named_lifetime_spots.pop();
1252             }
1253             Const(_, _) => {
1254                 // Only methods and types support generics.
1255                 assert!(impl_item.generics.params.is_empty());
1256                 self.missing_named_lifetime_spots.push(MissingLifetimeSpot::Static);
1257                 intravisit::walk_impl_item(self, impl_item);
1258                 self.missing_named_lifetime_spots.pop();
1259             }
1260         }
1261     }
1262
1263     #[tracing::instrument(level = "debug", skip(self))]
1264     fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
1265         if lifetime_ref.is_elided() {
1266             self.resolve_elided_lifetimes(&[lifetime_ref]);
1267             return;
1268         }
1269         if lifetime_ref.is_static() {
1270             self.insert_lifetime(lifetime_ref, Region::Static);
1271             return;
1272         }
1273         if self.is_in_const_generic && lifetime_ref.name != LifetimeName::Error {
1274             self.emit_non_static_lt_in_const_generic_error(lifetime_ref);
1275             return;
1276         }
1277         self.resolve_lifetime_ref(lifetime_ref);
1278     }
1279
1280     fn visit_assoc_type_binding(&mut self, type_binding: &'tcx hir::TypeBinding<'_>) {
1281         let scope = self.scope;
1282         if let Some(scope_for_path) = self.map.scope_for_path.as_mut() {
1283             // We add lifetime scope information for `Ident`s in associated type bindings and use
1284             // the `HirId` of the type binding as the key in `LifetimeMap`
1285             let lifetime_scope = get_lifetime_scopes_for_path(scope);
1286             let map = scope_for_path.entry(type_binding.hir_id.owner).or_default();
1287             map.insert(type_binding.hir_id.local_id, lifetime_scope);
1288         }
1289         hir::intravisit::walk_assoc_type_binding(self, type_binding);
1290     }
1291
1292     fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) {
1293         for (i, segment) in path.segments.iter().enumerate() {
1294             let depth = path.segments.len() - i - 1;
1295             if let Some(ref args) = segment.args {
1296                 self.visit_segment_args(path.res, depth, args);
1297             }
1298
1299             let scope = self.scope;
1300             if let Some(scope_for_path) = self.map.scope_for_path.as_mut() {
1301                 // Add lifetime scope information to path segment. Note we cannot call `visit_path_segment`
1302                 // here because that call would yield to resolution problems due to `walk_path_segment`
1303                 // being called, which processes the path segments generic args, which we have already
1304                 // processed using `visit_segment_args`.
1305                 let lifetime_scope = get_lifetime_scopes_for_path(scope);
1306                 if let Some(hir_id) = segment.hir_id {
1307                     let map = scope_for_path.entry(hir_id.owner).or_default();
1308                     map.insert(hir_id.local_id, lifetime_scope);
1309                 }
1310             }
1311         }
1312     }
1313
1314     fn visit_path_segment(&mut self, path_span: Span, path_segment: &'tcx hir::PathSegment<'tcx>) {
1315         let scope = self.scope;
1316         if let Some(scope_for_path) = self.map.scope_for_path.as_mut() {
1317             let lifetime_scope = get_lifetime_scopes_for_path(scope);
1318             if let Some(hir_id) = path_segment.hir_id {
1319                 let map = scope_for_path.entry(hir_id.owner).or_default();
1320                 map.insert(hir_id.local_id, lifetime_scope);
1321             }
1322         }
1323
1324         intravisit::walk_path_segment(self, path_span, path_segment);
1325     }
1326
1327     fn visit_fn_decl(&mut self, fd: &'tcx hir::FnDecl<'tcx>) {
1328         let output = match fd.output {
1329             hir::FnRetTy::DefaultReturn(_) => None,
1330             hir::FnRetTy::Return(ref ty) => Some(&**ty),
1331         };
1332         self.visit_fn_like_elision(&fd.inputs, output);
1333     }
1334
1335     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
1336         if !self.trait_definition_only {
1337             check_mixed_explicit_and_in_band_defs(self.tcx, &generics.params);
1338         }
1339         let scope = Scope::TraitRefBoundary { s: self.scope };
1340         self.with(scope, |_, this| {
1341             for param in generics.params {
1342                 match param.kind {
1343                     GenericParamKind::Lifetime { .. } => {}
1344                     GenericParamKind::Type { ref default, .. } => {
1345                         walk_list!(this, visit_param_bound, param.bounds);
1346                         if let Some(ref ty) = default {
1347                             this.visit_ty(&ty);
1348                         }
1349                     }
1350                     GenericParamKind::Const { ref ty, .. } => {
1351                         let was_in_const_generic = this.is_in_const_generic;
1352                         this.is_in_const_generic = true;
1353                         walk_list!(this, visit_param_bound, param.bounds);
1354                         this.visit_ty(&ty);
1355                         this.is_in_const_generic = was_in_const_generic;
1356                     }
1357                 }
1358             }
1359             for predicate in generics.where_clause.predicates {
1360                 match predicate {
1361                     &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
1362                         ref bounded_ty,
1363                         bounds,
1364                         ref bound_generic_params,
1365                         ..
1366                     }) => {
1367                         let (lifetimes, binders): (FxIndexMap<hir::ParamName, Region>, Vec<_>) =
1368                             bound_generic_params
1369                                 .iter()
1370                                 .filter(|param| {
1371                                     matches!(param.kind, GenericParamKind::Lifetime { .. })
1372                                 })
1373                                 .enumerate()
1374                                 .map(|(late_bound_idx, param)| {
1375                                     let pair =
1376                                         Region::late(late_bound_idx as u32, &this.tcx.hir(), param);
1377                                     let r = late_region_as_bound_region(this.tcx, &pair.1);
1378                                     (pair, r)
1379                                 })
1380                                 .unzip();
1381                         this.map.late_bound_vars.insert(bounded_ty.hir_id, binders.clone());
1382                         let next_early_index = this.next_early_index();
1383                         // Even if there are no lifetimes defined here, we still wrap it in a binder
1384                         // scope. If there happens to be a nested poly trait ref (an error), that
1385                         // will be `Concatenating` anyways, so we don't have to worry about the depth
1386                         // being wrong.
1387                         let scope = Scope::Binder {
1388                             hir_id: bounded_ty.hir_id,
1389                             lifetimes,
1390                             s: this.scope,
1391                             next_early_index,
1392                             track_lifetime_uses: true,
1393                             opaque_type_parent: false,
1394                             scope_type: BinderScopeType::Normal,
1395                         };
1396                         this.with(scope, |old_scope, this| {
1397                             this.check_lifetime_params(old_scope, &bound_generic_params);
1398                             this.visit_ty(&bounded_ty);
1399                             walk_list!(this, visit_param_bound, bounds);
1400                         })
1401                     }
1402                     &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
1403                         ref lifetime,
1404                         bounds,
1405                         ..
1406                     }) => {
1407                         this.visit_lifetime(lifetime);
1408                         walk_list!(this, visit_param_bound, bounds);
1409                     }
1410                     &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
1411                         ref lhs_ty,
1412                         ref rhs_ty,
1413                         ..
1414                     }) => {
1415                         this.visit_ty(lhs_ty);
1416                         this.visit_ty(rhs_ty);
1417                     }
1418                 }
1419             }
1420         })
1421     }
1422
1423     fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
1424         match bound {
1425             hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
1426                 // FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
1427                 // through the regular poly trait ref code, so we don't get another
1428                 // chance to introduce a binder. For now, I'm keeping the existing logic
1429                 // of "if there isn't a Binder scope above us, add one", but I
1430                 // imagine there's a better way to go about this.
1431                 let (binders, scope_type) = self.poly_trait_ref_binder_info();
1432
1433                 self.map.late_bound_vars.insert(*hir_id, binders);
1434                 let scope = Scope::Binder {
1435                     hir_id: *hir_id,
1436                     lifetimes: FxIndexMap::default(),
1437                     s: self.scope,
1438                     next_early_index: self.next_early_index(),
1439                     track_lifetime_uses: true,
1440                     opaque_type_parent: false,
1441                     scope_type,
1442                 };
1443                 self.with(scope, |_, this| {
1444                     intravisit::walk_param_bound(this, bound);
1445                 });
1446             }
1447             _ => intravisit::walk_param_bound(self, bound),
1448         }
1449     }
1450
1451     fn visit_poly_trait_ref(
1452         &mut self,
1453         trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
1454         _modifier: hir::TraitBoundModifier,
1455     ) {
1456         debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
1457
1458         let should_pop_missing_lt = self.is_trait_ref_fn_scope(trait_ref);
1459
1460         let next_early_index = self.next_early_index();
1461         let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
1462
1463         let initial_bound_vars = binders.len() as u32;
1464         let mut lifetimes: FxIndexMap<hir::ParamName, Region> = FxIndexMap::default();
1465         let binders_iter = trait_ref
1466             .bound_generic_params
1467             .iter()
1468             .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
1469             .enumerate()
1470             .map(|(late_bound_idx, param)| {
1471                 let pair = Region::late(
1472                     initial_bound_vars + late_bound_idx as u32,
1473                     &self.tcx.hir(),
1474                     param,
1475                 );
1476                 let r = late_region_as_bound_region(self.tcx, &pair.1);
1477                 lifetimes.insert(pair.0, pair.1);
1478                 r
1479             });
1480         binders.extend(binders_iter);
1481
1482         debug!(?binders);
1483         self.map.late_bound_vars.insert(trait_ref.trait_ref.hir_ref_id, binders);
1484
1485         // Always introduce a scope here, even if this is in a where clause and
1486         // we introduced the binders around the bounded Ty. In that case, we
1487         // just reuse the concatenation functionality also present in nested trait
1488         // refs.
1489         let scope = Scope::Binder {
1490             hir_id: trait_ref.trait_ref.hir_ref_id,
1491             lifetimes,
1492             s: self.scope,
1493             next_early_index,
1494             track_lifetime_uses: true,
1495             opaque_type_parent: false,
1496             scope_type,
1497         };
1498         self.with(scope, |old_scope, this| {
1499             this.check_lifetime_params(old_scope, &trait_ref.bound_generic_params);
1500             walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
1501             this.visit_trait_ref(&trait_ref.trait_ref);
1502         });
1503
1504         if should_pop_missing_lt {
1505             self.missing_named_lifetime_spots.pop();
1506         }
1507     }
1508 }
1509
1510 #[derive(Copy, Clone, PartialEq)]
1511 enum ShadowKind {
1512     Label,
1513     Lifetime,
1514 }
1515 struct Original {
1516     kind: ShadowKind,
1517     span: Span,
1518 }
1519 struct Shadower {
1520     kind: ShadowKind,
1521     span: Span,
1522 }
1523
1524 fn original_label(span: Span) -> Original {
1525     Original { kind: ShadowKind::Label, span }
1526 }
1527 fn shadower_label(span: Span) -> Shadower {
1528     Shadower { kind: ShadowKind::Label, span }
1529 }
1530 fn original_lifetime(span: Span) -> Original {
1531     Original { kind: ShadowKind::Lifetime, span }
1532 }
1533 fn shadower_lifetime(param: &hir::GenericParam<'_>) -> Shadower {
1534     Shadower { kind: ShadowKind::Lifetime, span: param.span }
1535 }
1536
1537 impl ShadowKind {
1538     fn desc(&self) -> &'static str {
1539         match *self {
1540             ShadowKind::Label => "label",
1541             ShadowKind::Lifetime => "lifetime",
1542         }
1543     }
1544 }
1545
1546 fn check_mixed_explicit_and_in_band_defs(tcx: TyCtxt<'_>, params: &[hir::GenericParam<'_>]) {
1547     let lifetime_params: Vec<_> = params
1548         .iter()
1549         .filter_map(|param| match param.kind {
1550             GenericParamKind::Lifetime { kind, .. } => Some((kind, param.span)),
1551             _ => None,
1552         })
1553         .collect();
1554     let explicit = lifetime_params.iter().find(|(kind, _)| *kind == LifetimeParamKind::Explicit);
1555     let in_band = lifetime_params.iter().find(|(kind, _)| *kind == LifetimeParamKind::InBand);
1556
1557     if let (Some((_, explicit_span)), Some((_, in_band_span))) = (explicit, in_band) {
1558         struct_span_err!(
1559             tcx.sess,
1560             *in_band_span,
1561             E0688,
1562             "cannot mix in-band and explicit lifetime definitions"
1563         )
1564         .span_label(*in_band_span, "in-band lifetime definition here")
1565         .span_label(*explicit_span, "explicit lifetime definition here")
1566         .emit();
1567     }
1568 }
1569
1570 fn signal_shadowing_problem(tcx: TyCtxt<'_>, name: Symbol, orig: Original, shadower: Shadower) {
1571     let mut err = if let (ShadowKind::Lifetime, ShadowKind::Lifetime) = (orig.kind, shadower.kind) {
1572         // lifetime/lifetime shadowing is an error
1573         struct_span_err!(
1574             tcx.sess,
1575             shadower.span,
1576             E0496,
1577             "{} name `{}` shadows a \
1578              {} name that is already in scope",
1579             shadower.kind.desc(),
1580             name,
1581             orig.kind.desc()
1582         )
1583     } else {
1584         // shadowing involving a label is only a warning, due to issues with
1585         // labels and lifetimes not being macro-hygienic.
1586         tcx.sess.struct_span_warn(
1587             shadower.span,
1588             &format!(
1589                 "{} name `{}` shadows a \
1590                  {} name that is already in scope",
1591                 shadower.kind.desc(),
1592                 name,
1593                 orig.kind.desc()
1594             ),
1595         )
1596     };
1597     err.span_label(orig.span, "first declared here");
1598     err.span_label(shadower.span, format!("{} `{}` already in scope", orig.kind.desc(), name));
1599     err.emit();
1600 }
1601
1602 // Adds all labels in `b` to `ctxt.labels_in_fn`, signalling a warning
1603 // if one of the label shadows a lifetime or another label.
1604 fn extract_labels(ctxt: &mut LifetimeContext<'_, '_>, body: &hir::Body<'_>) {
1605     struct GatherLabels<'a, 'tcx> {
1606         tcx: TyCtxt<'tcx>,
1607         scope: ScopeRef<'a>,
1608         labels_in_fn: &'a mut Vec<Ident>,
1609     }
1610
1611     let mut gather =
1612         GatherLabels { tcx: ctxt.tcx, scope: ctxt.scope, labels_in_fn: &mut ctxt.labels_in_fn };
1613     gather.visit_body(body);
1614
1615     impl<'v, 'a, 'tcx> Visitor<'v> for GatherLabels<'a, 'tcx> {
1616         fn visit_expr(&mut self, ex: &hir::Expr<'_>) {
1617             if let Some(label) = expression_label(ex) {
1618                 for prior_label in &self.labels_in_fn[..] {
1619                     // FIXME (#24278): non-hygienic comparison
1620                     if label.name == prior_label.name {
1621                         signal_shadowing_problem(
1622                             self.tcx,
1623                             label.name,
1624                             original_label(prior_label.span),
1625                             shadower_label(label.span),
1626                         );
1627                     }
1628                 }
1629
1630                 check_if_label_shadows_lifetime(self.tcx, self.scope, label);
1631
1632                 self.labels_in_fn.push(label);
1633             }
1634             intravisit::walk_expr(self, ex)
1635         }
1636     }
1637
1638     fn expression_label(ex: &hir::Expr<'_>) -> Option<Ident> {
1639         match ex.kind {
1640             hir::ExprKind::Loop(_, Some(label), ..) => Some(label.ident),
1641             hir::ExprKind::Block(_, Some(label)) => Some(label.ident),
1642             _ => None,
1643         }
1644     }
1645
1646     fn check_if_label_shadows_lifetime(tcx: TyCtxt<'_>, mut scope: ScopeRef<'_>, label: Ident) {
1647         loop {
1648             match *scope {
1649                 Scope::Body { s, .. }
1650                 | Scope::Elision { s, .. }
1651                 | Scope::ObjectLifetimeDefault { s, .. }
1652                 | Scope::Supertrait { s, .. }
1653                 | Scope::TraitRefBoundary { s, .. } => {
1654                     scope = s;
1655                 }
1656
1657                 Scope::Root => {
1658                     return;
1659                 }
1660
1661                 Scope::Binder { ref lifetimes, s, .. } => {
1662                     // FIXME (#24278): non-hygienic comparison
1663                     if let Some(def) =
1664                         lifetimes.get(&hir::ParamName::Plain(label.normalize_to_macros_2_0()))
1665                     {
1666                         signal_shadowing_problem(
1667                             tcx,
1668                             label.name,
1669                             original_lifetime(tcx.def_span(def.id().unwrap().expect_local())),
1670                             shadower_label(label.span),
1671                         );
1672                         return;
1673                     }
1674                     scope = s;
1675                 }
1676             }
1677         }
1678     }
1679 }
1680
1681 fn compute_object_lifetime_defaults(
1682     tcx: TyCtxt<'_>,
1683     item: &hir::Item<'_>,
1684 ) -> Option<Vec<ObjectLifetimeDefault>> {
1685     match item.kind {
1686         hir::ItemKind::Struct(_, ref generics)
1687         | hir::ItemKind::Union(_, ref generics)
1688         | hir::ItemKind::Enum(_, ref generics)
1689         | hir::ItemKind::OpaqueTy(hir::OpaqueTy {
1690             ref generics,
1691             origin: hir::OpaqueTyOrigin::TyAlias,
1692             ..
1693         })
1694         | hir::ItemKind::TyAlias(_, ref generics)
1695         | hir::ItemKind::Trait(_, _, ref generics, ..) => {
1696             let result = object_lifetime_defaults_for_item(tcx, generics);
1697
1698             // Debugging aid.
1699             let attrs = tcx.hir().attrs(item.hir_id());
1700             if tcx.sess.contains_name(attrs, sym::rustc_object_lifetime_default) {
1701                 let object_lifetime_default_reprs: String = result
1702                     .iter()
1703                     .map(|set| match *set {
1704                         Set1::Empty => "BaseDefault".into(),
1705                         Set1::One(Region::Static) => "'static".into(),
1706                         Set1::One(Region::EarlyBound(mut i, _, _)) => generics
1707                             .params
1708                             .iter()
1709                             .find_map(|param| match param.kind {
1710                                 GenericParamKind::Lifetime { .. } => {
1711                                     if i == 0 {
1712                                         return Some(param.name.ident().to_string().into());
1713                                     }
1714                                     i -= 1;
1715                                     None
1716                                 }
1717                                 _ => None,
1718                             })
1719                             .unwrap(),
1720                         Set1::One(_) => bug!(),
1721                         Set1::Many => "Ambiguous".into(),
1722                     })
1723                     .collect::<Vec<Cow<'static, str>>>()
1724                     .join(",");
1725                 tcx.sess.span_err(item.span, &object_lifetime_default_reprs);
1726             }
1727
1728             Some(result)
1729         }
1730         _ => None,
1731     }
1732 }
1733
1734 /// Scan the bounds and where-clauses on parameters to extract bounds
1735 /// of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
1736 /// for each type parameter.
1737 fn object_lifetime_defaults_for_item(
1738     tcx: TyCtxt<'_>,
1739     generics: &hir::Generics<'_>,
1740 ) -> Vec<ObjectLifetimeDefault> {
1741     fn add_bounds(set: &mut Set1<hir::LifetimeName>, bounds: &[hir::GenericBound<'_>]) {
1742         for bound in bounds {
1743             if let hir::GenericBound::Outlives(ref lifetime) = *bound {
1744                 set.insert(lifetime.name.normalize_to_macros_2_0());
1745             }
1746         }
1747     }
1748
1749     generics
1750         .params
1751         .iter()
1752         .filter_map(|param| match param.kind {
1753             GenericParamKind::Lifetime { .. } => None,
1754             GenericParamKind::Type { .. } => {
1755                 let mut set = Set1::Empty;
1756
1757                 add_bounds(&mut set, &param.bounds);
1758
1759                 let param_def_id = tcx.hir().local_def_id(param.hir_id);
1760                 for predicate in generics.where_clause.predicates {
1761                     // Look for `type: ...` where clauses.
1762                     let data = match *predicate {
1763                         hir::WherePredicate::BoundPredicate(ref data) => data,
1764                         _ => continue,
1765                     };
1766
1767                     // Ignore `for<'a> type: ...` as they can change what
1768                     // lifetimes mean (although we could "just" handle it).
1769                     if !data.bound_generic_params.is_empty() {
1770                         continue;
1771                     }
1772
1773                     let res = match data.bounded_ty.kind {
1774                         hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => path.res,
1775                         _ => continue,
1776                     };
1777
1778                     if res == Res::Def(DefKind::TyParam, param_def_id.to_def_id()) {
1779                         add_bounds(&mut set, &data.bounds);
1780                     }
1781                 }
1782
1783                 Some(match set {
1784                     Set1::Empty => Set1::Empty,
1785                     Set1::One(name) => {
1786                         if name == hir::LifetimeName::Static {
1787                             Set1::One(Region::Static)
1788                         } else {
1789                             generics
1790                                 .params
1791                                 .iter()
1792                                 .filter_map(|param| match param.kind {
1793                                     GenericParamKind::Lifetime { .. } => Some((
1794                                         param.hir_id,
1795                                         hir::LifetimeName::Param(param.name),
1796                                         LifetimeDefOrigin::from_param(param),
1797                                     )),
1798                                     _ => None,
1799                                 })
1800                                 .enumerate()
1801                                 .find(|&(_, (_, lt_name, _))| lt_name == name)
1802                                 .map_or(Set1::Many, |(i, (id, _, origin))| {
1803                                     let def_id = tcx.hir().local_def_id(id);
1804                                     Set1::One(Region::EarlyBound(
1805                                         i as u32,
1806                                         def_id.to_def_id(),
1807                                         origin,
1808                                     ))
1809                                 })
1810                         }
1811                     }
1812                     Set1::Many => Set1::Many,
1813                 })
1814             }
1815             GenericParamKind::Const { .. } => {
1816                 // Generic consts don't impose any constraints.
1817                 //
1818                 // We still store a dummy value here to allow generic parameters
1819                 // in an arbitrary order.
1820                 Some(Set1::Empty)
1821             }
1822         })
1823         .collect()
1824 }
1825
1826 impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
1827     fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
1828     where
1829         F: for<'b> FnOnce(ScopeRef<'_>, &mut LifetimeContext<'b, 'tcx>),
1830     {
1831         let LifetimeContext { tcx, map, lifetime_uses, .. } = self;
1832         let labels_in_fn = take(&mut self.labels_in_fn);
1833         let xcrate_object_lifetime_defaults = take(&mut self.xcrate_object_lifetime_defaults);
1834         let missing_named_lifetime_spots = take(&mut self.missing_named_lifetime_spots);
1835         let mut this = LifetimeContext {
1836             tcx: *tcx,
1837             map,
1838             scope: &wrap_scope,
1839             is_in_fn_syntax: self.is_in_fn_syntax,
1840             is_in_const_generic: self.is_in_const_generic,
1841             trait_definition_only: self.trait_definition_only,
1842             labels_in_fn,
1843             xcrate_object_lifetime_defaults,
1844             lifetime_uses,
1845             missing_named_lifetime_spots,
1846         };
1847         let span = tracing::debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope));
1848         {
1849             let _enter = span.enter();
1850             f(self.scope, &mut this);
1851             if !self.trait_definition_only {
1852                 this.check_uses_for_lifetimes_defined_by_scope();
1853             }
1854         }
1855         self.labels_in_fn = this.labels_in_fn;
1856         self.xcrate_object_lifetime_defaults = this.xcrate_object_lifetime_defaults;
1857         self.missing_named_lifetime_spots = this.missing_named_lifetime_spots;
1858     }
1859
1860     /// helper method to determine the span to remove when suggesting the
1861     /// deletion of a lifetime
1862     fn lifetime_deletion_span(&self, name: Ident, generics: &hir::Generics<'_>) -> Option<Span> {
1863         generics.params.iter().enumerate().find_map(|(i, param)| {
1864             if param.name.ident() == name {
1865                 let in_band = matches!(
1866                     param.kind,
1867                     hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::InBand }
1868                 );
1869                 if in_band {
1870                     Some(param.span)
1871                 } else if generics.params.len() == 1 {
1872                     // if sole lifetime, remove the entire `<>` brackets
1873                     Some(generics.span)
1874                 } else {
1875                     // if removing within `<>` brackets, we also want to
1876                     // delete a leading or trailing comma as appropriate
1877                     if i >= generics.params.len() - 1 {
1878                         Some(generics.params[i - 1].span.shrink_to_hi().to(param.span))
1879                     } else {
1880                         Some(param.span.to(generics.params[i + 1].span.shrink_to_lo()))
1881                     }
1882                 }
1883             } else {
1884                 None
1885             }
1886         })
1887     }
1888
1889     // helper method to issue suggestions from `fn rah<'a>(&'a T)` to `fn rah(&T)`
1890     // or from `fn rah<'a>(T<'a>)` to `fn rah(T<'_>)`
1891     fn suggest_eliding_single_use_lifetime(
1892         &self,
1893         err: &mut DiagnosticBuilder<'_>,
1894         def_id: DefId,
1895         lifetime: &hir::Lifetime,
1896     ) {
1897         let name = lifetime.name.ident();
1898         let remove_decl = self
1899             .tcx
1900             .parent(def_id)
1901             .and_then(|parent_def_id| parent_def_id.as_local())
1902             .and_then(|parent_def_id| self.tcx.hir().get_generics(parent_def_id))
1903             .and_then(|generics| self.lifetime_deletion_span(name, generics));
1904
1905         let mut remove_use = None;
1906         let mut elide_use = None;
1907         let mut find_arg_use_span = |inputs: &[hir::Ty<'_>]| {
1908             for input in inputs {
1909                 match input.kind {
1910                     hir::TyKind::Rptr(lt, _) => {
1911                         if lt.name.ident() == name {
1912                             // include the trailing whitespace between the lifetime and type names
1913                             let lt_through_ty_span = lifetime.span.to(input.span.shrink_to_hi());
1914                             remove_use = Some(
1915                                 self.tcx
1916                                     .sess
1917                                     .source_map()
1918                                     .span_until_non_whitespace(lt_through_ty_span),
1919                             );
1920                             break;
1921                         }
1922                     }
1923                     hir::TyKind::Path(QPath::Resolved(_, path)) => {
1924                         let last_segment = &path.segments[path.segments.len() - 1];
1925                         let generics = last_segment.args();
1926                         for arg in generics.args.iter() {
1927                             if let GenericArg::Lifetime(lt) = arg {
1928                                 if lt.name.ident() == name {
1929                                     elide_use = Some(lt.span);
1930                                     break;
1931                                 }
1932                             }
1933                         }
1934                         break;
1935                     }
1936                     _ => {}
1937                 }
1938             }
1939         };
1940         if let Node::Lifetime(hir_lifetime) = self.tcx.hir().get(lifetime.hir_id) {
1941             if let Some(parent) =
1942                 self.tcx.hir().find_by_def_id(self.tcx.hir().get_parent_item(hir_lifetime.hir_id))
1943             {
1944                 match parent {
1945                     Node::Item(item) => {
1946                         if let hir::ItemKind::Fn(sig, _, _) = &item.kind {
1947                             find_arg_use_span(sig.decl.inputs);
1948                         }
1949                     }
1950                     Node::ImplItem(impl_item) => {
1951                         if let hir::ImplItemKind::Fn(sig, _) = &impl_item.kind {
1952                             find_arg_use_span(sig.decl.inputs);
1953                         }
1954                     }
1955                     _ => {}
1956                 }
1957             }
1958         }
1959
1960         let msg = "elide the single-use lifetime";
1961         match (remove_decl, remove_use, elide_use) {
1962             (Some(decl_span), Some(use_span), None) => {
1963                 // if both declaration and use deletion spans start at the same
1964                 // place ("start at" because the latter includes trailing
1965                 // whitespace), then this is an in-band lifetime
1966                 if decl_span.shrink_to_lo() == use_span.shrink_to_lo() {
1967                     err.span_suggestion(
1968                         use_span,
1969                         msg,
1970                         String::new(),
1971                         Applicability::MachineApplicable,
1972                     );
1973                 } else {
1974                     err.multipart_suggestion(
1975                         msg,
1976                         vec![(decl_span, String::new()), (use_span, String::new())],
1977                         Applicability::MachineApplicable,
1978                     );
1979                 }
1980             }
1981             (Some(decl_span), None, Some(use_span)) => {
1982                 err.multipart_suggestion(
1983                     msg,
1984                     vec![(decl_span, String::new()), (use_span, "'_".to_owned())],
1985                     Applicability::MachineApplicable,
1986                 );
1987             }
1988             _ => {}
1989         }
1990     }
1991
1992     fn check_uses_for_lifetimes_defined_by_scope(&mut self) {
1993         let defined_by = match self.scope {
1994             Scope::Binder { lifetimes, .. } => lifetimes,
1995             _ => {
1996                 debug!("check_uses_for_lifetimes_defined_by_scope: not in a binder scope");
1997                 return;
1998             }
1999         };
2000
2001         let def_ids: Vec<_> = defined_by
2002             .values()
2003             .flat_map(|region| match region {
2004                 Region::EarlyBound(_, def_id, _)
2005                 | Region::LateBound(_, _, def_id, _)
2006                 | Region::Free(_, def_id) => Some(*def_id),
2007
2008                 Region::LateBoundAnon(..) | Region::Static => None,
2009             })
2010             .collect();
2011
2012         'lifetimes: for def_id in def_ids {
2013             debug!("check_uses_for_lifetimes_defined_by_scope: def_id = {:?}", def_id);
2014
2015             let lifetimeuseset = self.lifetime_uses.remove(&def_id);
2016
2017             debug!(
2018                 "check_uses_for_lifetimes_defined_by_scope: lifetimeuseset = {:?}",
2019                 lifetimeuseset
2020             );
2021
2022             match lifetimeuseset {
2023                 Some(LifetimeUseSet::One(lifetime)) => {
2024                     debug!(?def_id);
2025                     if let Some((id, span, name)) =
2026                         match self.tcx.hir().get_by_def_id(def_id.expect_local()) {
2027                             Node::Lifetime(hir_lifetime) => Some((
2028                                 hir_lifetime.hir_id,
2029                                 hir_lifetime.span,
2030                                 hir_lifetime.name.ident(),
2031                             )),
2032                             Node::GenericParam(param) => {
2033                                 Some((param.hir_id, param.span, param.name.ident()))
2034                             }
2035                             _ => None,
2036                         }
2037                     {
2038                         debug!("id = {:?} span = {:?} name = {:?}", id, span, name);
2039                         if name.name == kw::UnderscoreLifetime {
2040                             continue;
2041                         }
2042
2043                         if let Some(parent_def_id) = self.tcx.parent(def_id) {
2044                             if let Some(def_id) = parent_def_id.as_local() {
2045                                 // lifetimes in `derive` expansions don't count (Issue #53738)
2046                                 if self
2047                                     .tcx
2048                                     .get_attrs(def_id.to_def_id())
2049                                     .iter()
2050                                     .any(|attr| attr.has_name(sym::automatically_derived))
2051                                 {
2052                                     continue;
2053                                 }
2054
2055                                 // opaque types generated when desugaring an async function can have a single
2056                                 // use lifetime even if it is explicitly denied (Issue #77175)
2057                                 if let hir::Node::Item(hir::Item {
2058                                     kind: hir::ItemKind::OpaqueTy(ref opaque),
2059                                     ..
2060                                 }) = self.tcx.hir().get_by_def_id(def_id)
2061                                 {
2062                                     if !matches!(opaque.origin, hir::OpaqueTyOrigin::AsyncFn(..)) {
2063                                         continue 'lifetimes;
2064                                     }
2065                                     // We want to do this only if the liftime identifier is already defined
2066                                     // in the async function that generated this. Otherwise it could be
2067                                     // an opaque type defined by the developer and we still want this
2068                                     // lint to fail compilation
2069                                     for p in opaque.generics.params {
2070                                         if defined_by.contains_key(&p.name) {
2071                                             continue 'lifetimes;
2072                                         }
2073                                     }
2074                                 }
2075                             }
2076                         }
2077
2078                         self.tcx.struct_span_lint_hir(
2079                             lint::builtin::SINGLE_USE_LIFETIMES,
2080                             id,
2081                             span,
2082                             |lint| {
2083                                 let mut err = lint.build(&format!(
2084                                     "lifetime parameter `{}` only used once",
2085                                     name
2086                                 ));
2087                                 if span == lifetime.span {
2088                                     // spans are the same for in-band lifetime declarations
2089                                     err.span_label(span, "this lifetime is only used here");
2090                                 } else {
2091                                     err.span_label(span, "this lifetime...");
2092                                     err.span_label(lifetime.span, "...is used only here");
2093                                 }
2094                                 self.suggest_eliding_single_use_lifetime(
2095                                     &mut err, def_id, lifetime,
2096                                 );
2097                                 err.emit();
2098                             },
2099                         );
2100                     }
2101                 }
2102                 Some(LifetimeUseSet::Many) => {
2103                     debug!("not one use lifetime");
2104                 }
2105                 None => {
2106                     if let Some((id, span, name)) =
2107                         match self.tcx.hir().get_by_def_id(def_id.expect_local()) {
2108                             Node::Lifetime(hir_lifetime) => Some((
2109                                 hir_lifetime.hir_id,
2110                                 hir_lifetime.span,
2111                                 hir_lifetime.name.ident(),
2112                             )),
2113                             Node::GenericParam(param) => {
2114                                 Some((param.hir_id, param.span, param.name.ident()))
2115                             }
2116                             _ => None,
2117                         }
2118                     {
2119                         debug!("id ={:?} span = {:?} name = {:?}", id, span, name);
2120                         self.tcx.struct_span_lint_hir(
2121                             lint::builtin::UNUSED_LIFETIMES,
2122                             id,
2123                             span,
2124                             |lint| {
2125                                 let mut err = lint
2126                                     .build(&format!("lifetime parameter `{}` never used", name));
2127                                 if let Some(parent_def_id) = self.tcx.parent(def_id) {
2128                                     if let Some(generics) =
2129                                         self.tcx.hir().get_generics(parent_def_id.expect_local())
2130                                     {
2131                                         let unused_lt_span =
2132                                             self.lifetime_deletion_span(name, generics);
2133                                         if let Some(span) = unused_lt_span {
2134                                             err.span_suggestion(
2135                                                 span,
2136                                                 "elide the unused lifetime",
2137                                                 String::new(),
2138                                                 Applicability::MachineApplicable,
2139                                             );
2140                                         }
2141                                     }
2142                                 }
2143                                 err.emit();
2144                             },
2145                         );
2146                     }
2147                 }
2148             }
2149         }
2150     }
2151
2152     /// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
2153     ///
2154     /// Handles visiting fns and methods. These are a bit complicated because we must distinguish
2155     /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
2156     /// within type bounds; those are early bound lifetimes, and the rest are late bound.
2157     ///
2158     /// For example:
2159     ///
2160     ///    fn foo<'a,'b,'c,T:Trait<'b>>(...)
2161     ///
2162     /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
2163     /// lifetimes may be interspersed together.
2164     ///
2165     /// If early bound lifetimes are present, we separate them into their own list (and likewise
2166     /// for late bound). They will be numbered sequentially, starting from the lowest index that is
2167     /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
2168     /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
2169     /// ordering is not important there.
2170     fn visit_early_late<F>(
2171         &mut self,
2172         parent_id: Option<LocalDefId>,
2173         hir_id: hir::HirId,
2174         decl: &'tcx hir::FnDecl<'tcx>,
2175         generics: &'tcx hir::Generics<'tcx>,
2176         walk: F,
2177     ) where
2178         F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>),
2179     {
2180         insert_late_bound_lifetimes(self.map, decl, generics);
2181
2182         // Find the start of nested early scopes, e.g., in methods.
2183         let mut next_early_index = 0;
2184         if let Some(parent_id) = parent_id {
2185             let parent = self.tcx.hir().expect_item(parent_id);
2186             if sub_items_have_self_param(&parent.kind) {
2187                 next_early_index += 1; // Self comes before lifetimes
2188             }
2189             match parent.kind {
2190                 hir::ItemKind::Trait(_, _, ref generics, ..)
2191                 | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
2192                     next_early_index += generics.params.len() as u32;
2193                 }
2194                 _ => {}
2195             }
2196         }
2197
2198         let mut non_lifetime_count = 0;
2199         let mut named_late_bound_vars = 0;
2200         let lifetimes: FxIndexMap<hir::ParamName, Region> = generics
2201             .params
2202             .iter()
2203             .filter_map(|param| match param.kind {
2204                 GenericParamKind::Lifetime { .. } => {
2205                     if self.map.late_bound.contains(&param.hir_id) {
2206                         let late_bound_idx = named_late_bound_vars;
2207                         named_late_bound_vars += 1;
2208                         Some(Region::late(late_bound_idx, &self.tcx.hir(), param))
2209                     } else {
2210                         Some(Region::early(&self.tcx.hir(), &mut next_early_index, param))
2211                     }
2212                 }
2213                 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
2214                     non_lifetime_count += 1;
2215                     None
2216                 }
2217             })
2218             .collect();
2219         let next_early_index = next_early_index + non_lifetime_count;
2220
2221         let binders: Vec<_> = generics
2222             .params
2223             .iter()
2224             .filter(|param| {
2225                 matches!(param.kind, GenericParamKind::Lifetime { .. })
2226                     && self.map.late_bound.contains(&param.hir_id)
2227             })
2228             .enumerate()
2229             .map(|(late_bound_idx, param)| {
2230                 let pair = Region::late(late_bound_idx as u32, &self.tcx.hir(), param);
2231                 late_region_as_bound_region(self.tcx, &pair.1)
2232             })
2233             .collect();
2234         self.map.late_bound_vars.insert(hir_id, binders);
2235         let scope = Scope::Binder {
2236             hir_id,
2237             lifetimes,
2238             next_early_index,
2239             s: self.scope,
2240             opaque_type_parent: true,
2241             track_lifetime_uses: false,
2242             scope_type: BinderScopeType::Normal,
2243         };
2244         self.with(scope, move |old_scope, this| {
2245             this.check_lifetime_params(old_scope, &generics.params);
2246             walk(this);
2247         });
2248     }
2249
2250     fn next_early_index_helper(&self, only_opaque_type_parent: bool) -> u32 {
2251         let mut scope = self.scope;
2252         loop {
2253             match *scope {
2254                 Scope::Root => return 0,
2255
2256                 Scope::Binder { next_early_index, opaque_type_parent, .. }
2257                     if (!only_opaque_type_parent || opaque_type_parent) =>
2258                 {
2259                     return next_early_index;
2260                 }
2261
2262                 Scope::Binder { s, .. }
2263                 | Scope::Body { s, .. }
2264                 | Scope::Elision { s, .. }
2265                 | Scope::ObjectLifetimeDefault { s, .. }
2266                 | Scope::Supertrait { s, .. }
2267                 | Scope::TraitRefBoundary { s, .. } => scope = s,
2268             }
2269         }
2270     }
2271
2272     /// Returns the next index one would use for an early-bound-region
2273     /// if extending the current scope.
2274     fn next_early_index(&self) -> u32 {
2275         self.next_early_index_helper(true)
2276     }
2277
2278     /// Returns the next index one would use for an `impl Trait` that
2279     /// is being converted into an opaque type alias `impl Trait`. This will be the
2280     /// next early index from the enclosing item, for the most
2281     /// part. See the `opaque_type_parent` field for more info.
2282     fn next_early_index_for_opaque_type(&self) -> u32 {
2283         self.next_early_index_helper(false)
2284     }
2285
2286     fn resolve_lifetime_ref(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
2287         debug!("resolve_lifetime_ref(lifetime_ref={:?})", lifetime_ref);
2288
2289         // If we've already reported an error, just ignore `lifetime_ref`.
2290         if let LifetimeName::Error = lifetime_ref.name {
2291             return;
2292         }
2293
2294         // Walk up the scope chain, tracking the number of fn scopes
2295         // that we pass through, until we find a lifetime with the
2296         // given name or we run out of scopes.
2297         // search.
2298         let mut late_depth = 0;
2299         let mut scope = self.scope;
2300         let mut outermost_body = None;
2301         let result = loop {
2302             match *scope {
2303                 Scope::Body { id, s } => {
2304                     // Non-static lifetimes are prohibited in anonymous constants without
2305                     // `generic_const_exprs`.
2306                     self.maybe_emit_forbidden_non_static_lifetime_error(id, lifetime_ref);
2307
2308                     outermost_body = Some(id);
2309                     scope = s;
2310                 }
2311
2312                 Scope::Root => {
2313                     break None;
2314                 }
2315
2316                 Scope::Binder { ref lifetimes, scope_type, s, .. } => {
2317                     match lifetime_ref.name {
2318                         LifetimeName::Param(param_name) => {
2319                             if let Some(&def) = lifetimes.get(&param_name.normalize_to_macros_2_0())
2320                             {
2321                                 break Some(def.shifted(late_depth));
2322                             }
2323                         }
2324                         _ => bug!("expected LifetimeName::Param"),
2325                     }
2326                     match scope_type {
2327                         BinderScopeType::Normal => late_depth += 1,
2328                         BinderScopeType::Concatenating => {}
2329                     }
2330                     scope = s;
2331                 }
2332
2333                 Scope::Elision { s, .. }
2334                 | Scope::ObjectLifetimeDefault { s, .. }
2335                 | Scope::Supertrait { s, .. }
2336                 | Scope::TraitRefBoundary { s, .. } => {
2337                     scope = s;
2338                 }
2339             }
2340         };
2341
2342         if let Some(mut def) = result {
2343             if let Region::EarlyBound(..) = def {
2344                 // Do not free early-bound regions, only late-bound ones.
2345             } else if let Some(body_id) = outermost_body {
2346                 let fn_id = self.tcx.hir().body_owner(body_id);
2347                 match self.tcx.hir().get(fn_id) {
2348                     Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. })
2349                     | Node::TraitItem(&hir::TraitItem {
2350                         kind: hir::TraitItemKind::Fn(..), ..
2351                     })
2352                     | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => {
2353                         let scope = self.tcx.hir().local_def_id(fn_id);
2354                         def = Region::Free(scope.to_def_id(), def.id().unwrap());
2355                     }
2356                     _ => {}
2357                 }
2358             }
2359
2360             // Check for fn-syntax conflicts with in-band lifetime definitions
2361             if !self.trait_definition_only && self.is_in_fn_syntax {
2362                 match def {
2363                     Region::EarlyBound(_, _, LifetimeDefOrigin::InBand)
2364                     | Region::LateBound(_, _, _, LifetimeDefOrigin::InBand) => {
2365                         struct_span_err!(
2366                             self.tcx.sess,
2367                             lifetime_ref.span,
2368                             E0687,
2369                             "lifetimes used in `fn` or `Fn` syntax must be \
2370                              explicitly declared using `<...>` binders"
2371                         )
2372                         .span_label(lifetime_ref.span, "in-band lifetime definition")
2373                         .emit();
2374                     }
2375
2376                     Region::Static
2377                     | Region::EarlyBound(
2378                         _,
2379                         _,
2380                         LifetimeDefOrigin::ExplicitOrElided | LifetimeDefOrigin::Error,
2381                     )
2382                     | Region::LateBound(
2383                         _,
2384                         _,
2385                         _,
2386                         LifetimeDefOrigin::ExplicitOrElided | LifetimeDefOrigin::Error,
2387                     )
2388                     | Region::LateBoundAnon(..)
2389                     | Region::Free(..) => {}
2390                 }
2391             }
2392
2393             self.insert_lifetime(lifetime_ref, def);
2394         } else {
2395             self.emit_undeclared_lifetime_error(lifetime_ref);
2396         }
2397     }
2398
2399     fn visit_segment_args(
2400         &mut self,
2401         res: Res,
2402         depth: usize,
2403         generic_args: &'tcx hir::GenericArgs<'tcx>,
2404     ) {
2405         debug!(
2406             "visit_segment_args(res={:?}, depth={:?}, generic_args={:?})",
2407             res, depth, generic_args,
2408         );
2409
2410         if generic_args.parenthesized {
2411             let was_in_fn_syntax = self.is_in_fn_syntax;
2412             self.is_in_fn_syntax = true;
2413             self.visit_fn_like_elision(generic_args.inputs(), Some(generic_args.bindings[0].ty()));
2414             self.is_in_fn_syntax = was_in_fn_syntax;
2415             return;
2416         }
2417
2418         let mut elide_lifetimes = true;
2419         let lifetimes: Vec<_> = generic_args
2420             .args
2421             .iter()
2422             .filter_map(|arg| match arg {
2423                 hir::GenericArg::Lifetime(lt) => {
2424                     if !lt.is_elided() {
2425                         elide_lifetimes = false;
2426                     }
2427                     Some(lt)
2428                 }
2429                 _ => None,
2430             })
2431             .collect();
2432         // We short-circuit here if all are elided in order to pluralize
2433         // possible errors
2434         if elide_lifetimes {
2435             self.resolve_elided_lifetimes(&lifetimes);
2436         } else {
2437             lifetimes.iter().for_each(|lt| self.visit_lifetime(lt));
2438         }
2439
2440         // Figure out if this is a type/trait segment,
2441         // which requires object lifetime defaults.
2442         let parent_def_id = |this: &mut Self, def_id: DefId| {
2443             let def_key = this.tcx.def_key(def_id);
2444             DefId { krate: def_id.krate, index: def_key.parent.expect("missing parent") }
2445         };
2446         let type_def_id = match res {
2447             Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(parent_def_id(self, def_id)),
2448             Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(parent_def_id(self, def_id)),
2449             Res::Def(
2450                 DefKind::Struct
2451                 | DefKind::Union
2452                 | DefKind::Enum
2453                 | DefKind::TyAlias
2454                 | DefKind::Trait,
2455                 def_id,
2456             ) if depth == 0 => Some(def_id),
2457             _ => None,
2458         };
2459
2460         debug!("visit_segment_args: type_def_id={:?}", type_def_id);
2461
2462         // Compute a vector of defaults, one for each type parameter,
2463         // per the rules given in RFCs 599 and 1156. Example:
2464         //
2465         // ```rust
2466         // struct Foo<'a, T: 'a, U> { }
2467         // ```
2468         //
2469         // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
2470         // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
2471         // and `dyn Baz` to `dyn Baz + 'static` (because there is no
2472         // such bound).
2473         //
2474         // Therefore, we would compute `object_lifetime_defaults` to a
2475         // vector like `['x, 'static]`. Note that the vector only
2476         // includes type parameters.
2477         let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
2478             let in_body = {
2479                 let mut scope = self.scope;
2480                 loop {
2481                     match *scope {
2482                         Scope::Root => break false,
2483
2484                         Scope::Body { .. } => break true,
2485
2486                         Scope::Binder { s, .. }
2487                         | Scope::Elision { s, .. }
2488                         | Scope::ObjectLifetimeDefault { s, .. }
2489                         | Scope::Supertrait { s, .. }
2490                         | Scope::TraitRefBoundary { s, .. } => {
2491                             scope = s;
2492                         }
2493                     }
2494                 }
2495             };
2496
2497             let map = &self.map;
2498             let set_to_region = |set: &ObjectLifetimeDefault| match *set {
2499                 Set1::Empty => {
2500                     if in_body {
2501                         None
2502                     } else {
2503                         Some(Region::Static)
2504                     }
2505                 }
2506                 Set1::One(r) => {
2507                     let lifetimes = generic_args.args.iter().filter_map(|arg| match arg {
2508                         GenericArg::Lifetime(lt) => Some(lt),
2509                         _ => None,
2510                     });
2511                     r.subst(lifetimes, map)
2512                 }
2513                 Set1::Many => None,
2514             };
2515             if let Some(def_id) = def_id.as_local() {
2516                 let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
2517                 self.tcx.object_lifetime_defaults(id).unwrap().iter().map(set_to_region).collect()
2518             } else {
2519                 let tcx = self.tcx;
2520                 self.xcrate_object_lifetime_defaults
2521                     .entry(def_id)
2522                     .or_insert_with(|| {
2523                         tcx.generics_of(def_id)
2524                             .params
2525                             .iter()
2526                             .filter_map(|param| match param.kind {
2527                                 GenericParamDefKind::Type { object_lifetime_default, .. } => {
2528                                     Some(object_lifetime_default)
2529                                 }
2530                                 GenericParamDefKind::Const { .. } => Some(Set1::Empty),
2531                                 GenericParamDefKind::Lifetime => None,
2532                             })
2533                             .collect()
2534                     })
2535                     .iter()
2536                     .map(set_to_region)
2537                     .collect()
2538             }
2539         });
2540
2541         debug!("visit_segment_args: object_lifetime_defaults={:?}", object_lifetime_defaults);
2542
2543         let mut i = 0;
2544         for arg in generic_args.args {
2545             match arg {
2546                 GenericArg::Lifetime(_) => {}
2547                 GenericArg::Type(ty) => {
2548                     if let Some(&lt) = object_lifetime_defaults.get(i) {
2549                         let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
2550                         self.with(scope, |_, this| this.visit_ty(ty));
2551                     } else {
2552                         self.visit_ty(ty);
2553                     }
2554                     i += 1;
2555                 }
2556                 GenericArg::Const(ct) => {
2557                     self.visit_anon_const(&ct.value);
2558                     i += 1;
2559                 }
2560                 GenericArg::Infer(inf) => {
2561                     self.visit_id(inf.hir_id);
2562                     i += 1;
2563                 }
2564             }
2565         }
2566
2567         // Hack: when resolving the type `XX` in binding like `dyn
2568         // Foo<'b, Item = XX>`, the current object-lifetime default
2569         // would be to examine the trait `Foo` to check whether it has
2570         // a lifetime bound declared on `Item`. e.g., if `Foo` is
2571         // declared like so, then the default object lifetime bound in
2572         // `XX` should be `'b`:
2573         //
2574         // ```rust
2575         // trait Foo<'a> {
2576         //   type Item: 'a;
2577         // }
2578         // ```
2579         //
2580         // but if we just have `type Item;`, then it would be
2581         // `'static`. However, we don't get all of this logic correct.
2582         //
2583         // Instead, we do something hacky: if there are no lifetime parameters
2584         // to the trait, then we simply use a default object lifetime
2585         // bound of `'static`, because there is no other possibility. On the other hand,
2586         // if there ARE lifetime parameters, then we require the user to give an
2587         // explicit bound for now.
2588         //
2589         // This is intended to leave room for us to implement the
2590         // correct behavior in the future.
2591         let has_lifetime_parameter =
2592             generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));
2593
2594         // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
2595         // in the trait ref `YY<...>` in `Item: YY<...>`.
2596         for binding in generic_args.bindings {
2597             let scope = Scope::ObjectLifetimeDefault {
2598                 lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) },
2599                 s: self.scope,
2600             };
2601             if let Some(type_def_id) = type_def_id {
2602                 let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes(
2603                     self.tcx,
2604                     type_def_id,
2605                     binding.ident,
2606                 );
2607                 self.with(scope, |_, this| {
2608                     let scope = Scope::Supertrait {
2609                         lifetimes: lifetimes.unwrap_or_default(),
2610                         s: this.scope,
2611                     };
2612                     this.with(scope, |_, this| this.visit_assoc_type_binding(binding));
2613                 });
2614             } else {
2615                 self.with(scope, |_, this| this.visit_assoc_type_binding(binding));
2616             }
2617         }
2618     }
2619
2620     /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
2621     /// associated type name and starting trait.
2622     /// For example, imagine we have
2623     /// ```rust
2624     /// trait Foo<'a, 'b> {
2625     ///   type As;
2626     /// }
2627     /// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
2628     /// trait Bar: for<'b> Bar<'b> {}
2629     /// ```
2630     /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
2631     /// the starting trait `Bar`, we would return `Some(['b, 'a])`.
2632     fn supertrait_hrtb_lifetimes(
2633         tcx: TyCtxt<'tcx>,
2634         def_id: DefId,
2635         assoc_name: Ident,
2636     ) -> Option<Vec<ty::BoundVariableKind>> {
2637         let trait_defines_associated_type_named = |trait_def_id: DefId| {
2638             tcx.associated_items(trait_def_id)
2639                 .find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id)
2640                 .is_some()
2641         };
2642
2643         use smallvec::{smallvec, SmallVec};
2644         let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
2645             smallvec![(def_id, smallvec![])];
2646         let mut visited: FxHashSet<DefId> = FxHashSet::default();
2647         loop {
2648             let (def_id, bound_vars) = match stack.pop() {
2649                 Some(next) => next,
2650                 None => break None,
2651             };
2652             // See issue #83753. If someone writes an associated type on a non-trait, just treat it as
2653             // there being no supertrait HRTBs.
2654             match tcx.def_kind(def_id) {
2655                 DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {}
2656                 _ => break None,
2657             }
2658
2659             if trait_defines_associated_type_named(def_id) {
2660                 break Some(bound_vars.into_iter().collect());
2661             }
2662             let predicates =
2663                 tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name)));
2664             let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| {
2665                 let bound_predicate = pred.kind();
2666                 match bound_predicate.skip_binder() {
2667                     ty::PredicateKind::Trait(data) => {
2668                         // The order here needs to match what we would get from `subst_supertrait`
2669                         let pred_bound_vars = bound_predicate.bound_vars();
2670                         let mut all_bound_vars = bound_vars.clone();
2671                         all_bound_vars.extend(pred_bound_vars.iter());
2672                         let super_def_id = data.trait_ref.def_id;
2673                         Some((super_def_id, all_bound_vars))
2674                     }
2675                     _ => None,
2676                 }
2677             });
2678
2679             let obligations = obligations.filter(|o| visited.insert(o.0));
2680             stack.extend(obligations);
2681         }
2682     }
2683
2684     #[tracing::instrument(level = "debug", skip(self))]
2685     fn visit_fn_like_elision(
2686         &mut self,
2687         inputs: &'tcx [hir::Ty<'tcx>],
2688         output: Option<&'tcx hir::Ty<'tcx>>,
2689     ) {
2690         debug!("visit_fn_like_elision: enter");
2691         let mut scope = &*self.scope;
2692         let hir_id = loop {
2693             match scope {
2694                 Scope::Binder { hir_id, .. } => {
2695                     break *hir_id;
2696                 }
2697                 Scope::ObjectLifetimeDefault { ref s, .. }
2698                 | Scope::Elision { ref s, .. }
2699                 | Scope::Supertrait { ref s, .. }
2700                 | Scope::TraitRefBoundary { ref s, .. } => {
2701                     scope = *s;
2702                 }
2703                 Scope::Root | Scope::Body { .. } => {
2704                     // See issues #83907 and #83693. Just bail out from looking inside.
2705                     self.tcx.sess.delay_span_bug(
2706                         rustc_span::DUMMY_SP,
2707                         "In fn_like_elision without appropriate scope above",
2708                     );
2709                     return;
2710                 }
2711             }
2712         };
2713         // While not strictly necessary, we gather anon lifetimes *before* actually
2714         // visiting the argument types.
2715         let mut gather = GatherAnonLifetimes { anon_count: 0 };
2716         for input in inputs {
2717             gather.visit_ty(input);
2718         }
2719         trace!(?gather.anon_count);
2720         let late_bound_vars = self.map.late_bound_vars.entry(hir_id).or_default();
2721         let named_late_bound_vars = late_bound_vars.len() as u32;
2722         late_bound_vars.extend(
2723             (0..gather.anon_count).map(|var| ty::BoundVariableKind::Region(ty::BrAnon(var))),
2724         );
2725         let arg_scope = Scope::Elision {
2726             elide: Elide::FreshLateAnon(named_late_bound_vars, Cell::new(0)),
2727             s: self.scope,
2728         };
2729         self.with(arg_scope, |_, this| {
2730             for input in inputs {
2731                 this.visit_ty(input);
2732             }
2733         });
2734
2735         let output = match output {
2736             Some(ty) => ty,
2737             None => return,
2738         };
2739
2740         debug!("determine output");
2741
2742         // Figure out if there's a body we can get argument names from,
2743         // and whether there's a `self` argument (treated specially).
2744         let mut assoc_item_kind = None;
2745         let mut impl_self = None;
2746         let parent = self.tcx.hir().get_parent_node(output.hir_id);
2747         let body = match self.tcx.hir().get(parent) {
2748             // `fn` definitions and methods.
2749             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(.., body), .. }) => Some(body),
2750
2751             Node::TraitItem(&hir::TraitItem { kind: hir::TraitItemKind::Fn(_, ref m), .. }) => {
2752                 if let hir::ItemKind::Trait(.., ref trait_items) =
2753                     self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(parent)).kind
2754                 {
2755                     assoc_item_kind =
2756                         trait_items.iter().find(|ti| ti.id.hir_id() == parent).map(|ti| ti.kind);
2757                 }
2758                 match *m {
2759                     hir::TraitFn::Required(_) => None,
2760                     hir::TraitFn::Provided(body) => Some(body),
2761                 }
2762             }
2763
2764             Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body), .. }) => {
2765                 if let hir::ItemKind::Impl(hir::Impl { ref self_ty, ref items, .. }) =
2766                     self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(parent)).kind
2767                 {
2768                     impl_self = Some(self_ty);
2769                     assoc_item_kind =
2770                         items.iter().find(|ii| ii.id.hir_id() == parent).map(|ii| ii.kind);
2771                 }
2772                 Some(body)
2773             }
2774
2775             // Foreign functions, `fn(...) -> R` and `Trait(...) -> R` (both types and bounds).
2776             Node::ForeignItem(_) | Node::Ty(_) | Node::TraitRef(_) => None,
2777             // Everything else (only closures?) doesn't
2778             // actually enjoy elision in return types.
2779             _ => {
2780                 self.visit_ty(output);
2781                 return;
2782             }
2783         };
2784
2785         let has_self = match assoc_item_kind {
2786             Some(hir::AssocItemKind::Fn { has_self }) => has_self,
2787             _ => false,
2788         };
2789
2790         // In accordance with the rules for lifetime elision, we can determine
2791         // what region to use for elision in the output type in two ways.
2792         // First (determined here), if `self` is by-reference, then the
2793         // implied output region is the region of the self parameter.
2794         if has_self {
2795             struct SelfVisitor<'a> {
2796                 map: &'a NamedRegionMap,
2797                 impl_self: Option<&'a hir::TyKind<'a>>,
2798                 lifetime: Set1<Region>,
2799             }
2800
2801             impl SelfVisitor<'_> {
2802                 // Look for `self: &'a Self` - also desugared from `&'a self`,
2803                 // and if that matches, use it for elision and return early.
2804                 fn is_self_ty(&self, res: Res) -> bool {
2805                     if let Res::SelfTy(..) = res {
2806                         return true;
2807                     }
2808
2809                     // Can't always rely on literal (or implied) `Self` due
2810                     // to the way elision rules were originally specified.
2811                     if let Some(&hir::TyKind::Path(hir::QPath::Resolved(None, ref path))) =
2812                         self.impl_self
2813                     {
2814                         match path.res {
2815                             // Permit the types that unambiguously always
2816                             // result in the same type constructor being used
2817                             // (it can't differ between `Self` and `self`).
2818                             Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _)
2819                             | Res::PrimTy(_) => return res == path.res,
2820                             _ => {}
2821                         }
2822                     }
2823
2824                     false
2825                 }
2826             }
2827
2828             impl<'a> Visitor<'a> for SelfVisitor<'a> {
2829                 fn visit_ty(&mut self, ty: &'a hir::Ty<'a>) {
2830                     if let hir::TyKind::Rptr(lifetime_ref, ref mt) = ty.kind {
2831                         if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = mt.ty.kind
2832                         {
2833                             if self.is_self_ty(path.res) {
2834                                 if let Some(lifetime) = self.map.defs.get(&lifetime_ref.hir_id) {
2835                                     self.lifetime.insert(*lifetime);
2836                                 }
2837                             }
2838                         }
2839                     }
2840                     intravisit::walk_ty(self, ty)
2841                 }
2842             }
2843
2844             let mut visitor = SelfVisitor {
2845                 map: self.map,
2846                 impl_self: impl_self.map(|ty| &ty.kind),
2847                 lifetime: Set1::Empty,
2848             };
2849             visitor.visit_ty(&inputs[0]);
2850             if let Set1::One(lifetime) = visitor.lifetime {
2851                 let scope = Scope::Elision { elide: Elide::Exact(lifetime), s: self.scope };
2852                 self.with(scope, |_, this| this.visit_ty(output));
2853                 return;
2854             }
2855         }
2856
2857         // Second, if there was exactly one lifetime (either a substitution or a
2858         // reference) in the arguments, then any anonymous regions in the output
2859         // have that lifetime.
2860         let mut possible_implied_output_region = None;
2861         let mut lifetime_count = 0;
2862         let arg_lifetimes = inputs
2863             .iter()
2864             .enumerate()
2865             .skip(has_self as usize)
2866             .map(|(i, input)| {
2867                 let mut gather = GatherLifetimes {
2868                     map: self.map,
2869                     outer_index: ty::INNERMOST,
2870                     have_bound_regions: false,
2871                     lifetimes: Default::default(),
2872                 };
2873                 gather.visit_ty(input);
2874
2875                 lifetime_count += gather.lifetimes.len();
2876
2877                 if lifetime_count == 1 && gather.lifetimes.len() == 1 {
2878                     // there's a chance that the unique lifetime of this
2879                     // iteration will be the appropriate lifetime for output
2880                     // parameters, so lets store it.
2881                     possible_implied_output_region = gather.lifetimes.iter().cloned().next();
2882                 }
2883
2884                 ElisionFailureInfo {
2885                     parent: body,
2886                     index: i,
2887                     lifetime_count: gather.lifetimes.len(),
2888                     have_bound_regions: gather.have_bound_regions,
2889                     span: input.span,
2890                 }
2891             })
2892             .collect();
2893
2894         let elide = if lifetime_count == 1 {
2895             Elide::Exact(possible_implied_output_region.unwrap())
2896         } else {
2897             Elide::Error(arg_lifetimes)
2898         };
2899
2900         debug!(?elide);
2901
2902         let scope = Scope::Elision { elide, s: self.scope };
2903         self.with(scope, |_, this| this.visit_ty(output));
2904
2905         struct GatherLifetimes<'a> {
2906             map: &'a NamedRegionMap,
2907             outer_index: ty::DebruijnIndex,
2908             have_bound_regions: bool,
2909             lifetimes: FxHashSet<Region>,
2910         }
2911
2912         impl<'v, 'a> Visitor<'v> for GatherLifetimes<'a> {
2913             fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2914                 if let hir::TyKind::BareFn(_) = ty.kind {
2915                     self.outer_index.shift_in(1);
2916                 }
2917                 match ty.kind {
2918                     hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
2919                         for bound in bounds {
2920                             self.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
2921                         }
2922
2923                         // Stay on the safe side and don't include the object
2924                         // lifetime default (which may not end up being used).
2925                         if !lifetime.is_elided() {
2926                             self.visit_lifetime(lifetime);
2927                         }
2928                     }
2929                     _ => {
2930                         intravisit::walk_ty(self, ty);
2931                     }
2932                 }
2933                 if let hir::TyKind::BareFn(_) = ty.kind {
2934                     self.outer_index.shift_out(1);
2935                 }
2936             }
2937
2938             fn visit_generic_param(&mut self, param: &hir::GenericParam<'_>) {
2939                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
2940                     // FIXME(eddyb) Do we want this? It only makes a difference
2941                     // if this `for<'a>` lifetime parameter is never used.
2942                     self.have_bound_regions = true;
2943                 }
2944
2945                 intravisit::walk_generic_param(self, param);
2946             }
2947
2948             fn visit_poly_trait_ref(
2949                 &mut self,
2950                 trait_ref: &hir::PolyTraitRef<'_>,
2951                 modifier: hir::TraitBoundModifier,
2952             ) {
2953                 self.outer_index.shift_in(1);
2954                 intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
2955                 self.outer_index.shift_out(1);
2956             }
2957
2958             fn visit_param_bound(&mut self, bound: &hir::GenericBound<'_>) {
2959                 if let hir::GenericBound::LangItemTrait { .. } = bound {
2960                     self.outer_index.shift_in(1);
2961                     intravisit::walk_param_bound(self, bound);
2962                     self.outer_index.shift_out(1);
2963                 } else {
2964                     intravisit::walk_param_bound(self, bound);
2965                 }
2966             }
2967
2968             fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
2969                 if let Some(&lifetime) = self.map.defs.get(&lifetime_ref.hir_id) {
2970                     match lifetime {
2971                         Region::LateBound(debruijn, _, _, _)
2972                         | Region::LateBoundAnon(debruijn, _, _)
2973                             if debruijn < self.outer_index =>
2974                         {
2975                             self.have_bound_regions = true;
2976                         }
2977                         _ => {
2978                             // FIXME(jackh726): nested trait refs?
2979                             self.lifetimes.insert(lifetime.shifted_out_to_binder(self.outer_index));
2980                         }
2981                     }
2982                 }
2983             }
2984         }
2985
2986         struct GatherAnonLifetimes {
2987             anon_count: u32,
2988         }
2989         impl<'v> Visitor<'v> for GatherAnonLifetimes {
2990             #[instrument(skip(self), level = "trace")]
2991             fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2992                 // If we enter a `BareFn`, then we enter a *new* binding scope
2993                 if let hir::TyKind::BareFn(_) = ty.kind {
2994                     return;
2995                 }
2996                 intravisit::walk_ty(self, ty);
2997             }
2998
2999             fn visit_generic_args(
3000                 &mut self,
3001                 path_span: Span,
3002                 generic_args: &'v hir::GenericArgs<'v>,
3003             ) {
3004                 // parenthesized args enter a new elison scope
3005                 if generic_args.parenthesized {
3006                     return;
3007                 }
3008                 intravisit::walk_generic_args(self, path_span, generic_args)
3009             }
3010
3011             #[instrument(skip(self), level = "trace")]
3012             fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
3013                 if lifetime_ref.is_elided() {
3014                     self.anon_count += 1;
3015                 }
3016             }
3017         }
3018     }
3019
3020     fn resolve_elided_lifetimes(&mut self, lifetime_refs: &[&'tcx hir::Lifetime]) {
3021         debug!("resolve_elided_lifetimes(lifetime_refs={:?})", lifetime_refs);
3022
3023         if lifetime_refs.is_empty() {
3024             return;
3025         }
3026
3027         let mut late_depth = 0;
3028         let mut scope = self.scope;
3029         let mut lifetime_names = FxHashSet::default();
3030         let mut lifetime_spans = vec![];
3031         let error = loop {
3032             match *scope {
3033                 // Do not assign any resolution, it will be inferred.
3034                 Scope::Body { .. } => break Ok(()),
3035
3036                 Scope::Root => break Err(None),
3037
3038                 Scope::Binder { s, ref lifetimes, scope_type, .. } => {
3039                     // collect named lifetimes for suggestions
3040                     for name in lifetimes.keys() {
3041                         if let hir::ParamName::Plain(name) = name {
3042                             lifetime_names.insert(name.name);
3043                             lifetime_spans.push(name.span);
3044                         }
3045                     }
3046                     match scope_type {
3047                         BinderScopeType::Normal => late_depth += 1,
3048                         BinderScopeType::Concatenating => {}
3049                     }
3050                     scope = s;
3051                 }
3052
3053                 Scope::Elision {
3054                     elide: Elide::FreshLateAnon(named_late_bound_vars, ref counter),
3055                     ..
3056                 } => {
3057                     for lifetime_ref in lifetime_refs {
3058                         let lifetime =
3059                             Region::late_anon(named_late_bound_vars, counter).shifted(late_depth);
3060
3061                         self.insert_lifetime(lifetime_ref, lifetime);
3062                     }
3063                     break Ok(());
3064                 }
3065
3066                 Scope::Elision { elide: Elide::Exact(l), .. } => {
3067                     let lifetime = l.shifted(late_depth);
3068                     for lifetime_ref in lifetime_refs {
3069                         self.insert_lifetime(lifetime_ref, lifetime);
3070                     }
3071                     break Ok(());
3072                 }
3073
3074                 Scope::Elision { elide: Elide::Error(ref e), ref s, .. } => {
3075                     let mut scope = s;
3076                     loop {
3077                         match scope {
3078                             Scope::Binder { ref lifetimes, s, .. } => {
3079                                 // Collect named lifetimes for suggestions.
3080                                 for name in lifetimes.keys() {
3081                                     if let hir::ParamName::Plain(name) = name {
3082                                         lifetime_names.insert(name.name);
3083                                         lifetime_spans.push(name.span);
3084                                     }
3085                                 }
3086                                 scope = s;
3087                             }
3088                             Scope::ObjectLifetimeDefault { ref s, .. }
3089                             | Scope::Elision { ref s, .. }
3090                             | Scope::TraitRefBoundary { ref s, .. } => {
3091                                 scope = s;
3092                             }
3093                             _ => break,
3094                         }
3095                     }
3096                     break Err(Some(&e[..]));
3097                 }
3098
3099                 Scope::Elision { elide: Elide::Forbid, .. } => break Err(None),
3100
3101                 Scope::ObjectLifetimeDefault { s, .. }
3102                 | Scope::Supertrait { s, .. }
3103                 | Scope::TraitRefBoundary { s, .. } => {
3104                     scope = s;
3105                 }
3106             }
3107         };
3108
3109         let error = match error {
3110             Ok(()) => {
3111                 self.report_elided_lifetime_in_ty(lifetime_refs);
3112                 return;
3113             }
3114             Err(error) => error,
3115         };
3116
3117         // If we specifically need the `scope_for_path` map, then we're in the
3118         // diagnostic pass and we don't want to emit more errors.
3119         if self.map.scope_for_path.is_some() {
3120             self.tcx.sess.delay_span_bug(
3121                 rustc_span::DUMMY_SP,
3122                 "Encountered unexpected errors during diagnostics related part",
3123             );
3124             return;
3125         }
3126
3127         let mut spans: Vec<_> = lifetime_refs.iter().map(|lt| lt.span).collect();
3128         spans.sort();
3129         let mut spans_dedup = spans.clone();
3130         spans_dedup.dedup();
3131         let spans_with_counts: Vec<_> = spans_dedup
3132             .into_iter()
3133             .map(|sp| (sp, spans.iter().filter(|nsp| *nsp == &sp).count()))
3134             .collect();
3135
3136         let mut err = self.report_missing_lifetime_specifiers(spans.clone(), lifetime_refs.len());
3137
3138         if let Some(params) = error {
3139             // If there's no lifetime available, suggest `'static`.
3140             if self.report_elision_failure(&mut err, params) && lifetime_names.is_empty() {
3141                 lifetime_names.insert(kw::StaticLifetime);
3142             }
3143         }
3144
3145         self.add_missing_lifetime_specifiers_label(
3146             &mut err,
3147             spans_with_counts,
3148             &lifetime_names,
3149             lifetime_spans,
3150             error.unwrap_or(&[]),
3151         );
3152         err.emit();
3153     }
3154
3155     fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
3156         debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref);
3157         let mut late_depth = 0;
3158         let mut scope = self.scope;
3159         let lifetime = loop {
3160             match *scope {
3161                 Scope::Binder { s, scope_type, .. } => {
3162                     match scope_type {
3163                         BinderScopeType::Normal => late_depth += 1,
3164                         BinderScopeType::Concatenating => {}
3165                     }
3166                     scope = s;
3167                 }
3168
3169                 Scope::Root | Scope::Elision { .. } => break Region::Static,
3170
3171                 Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,
3172
3173                 Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,
3174
3175                 Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
3176                     scope = s;
3177                 }
3178             }
3179         };
3180         self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
3181     }
3182
3183     fn check_lifetime_params(
3184         &mut self,
3185         old_scope: ScopeRef<'_>,
3186         params: &'tcx [hir::GenericParam<'tcx>],
3187     ) {
3188         let lifetimes: Vec<_> = params
3189             .iter()
3190             .filter_map(|param| match param.kind {
3191                 GenericParamKind::Lifetime { .. } => {
3192                     Some((param, param.name.normalize_to_macros_2_0()))
3193                 }
3194                 _ => None,
3195             })
3196             .collect();
3197         for (i, (lifetime_i, lifetime_i_name)) in lifetimes.iter().enumerate() {
3198             if let hir::ParamName::Plain(_) = lifetime_i_name {
3199                 let name = lifetime_i_name.ident().name;
3200                 if name == kw::UnderscoreLifetime || name == kw::StaticLifetime {
3201                     let mut err = struct_span_err!(
3202                         self.tcx.sess,
3203                         lifetime_i.span,
3204                         E0262,
3205                         "invalid lifetime parameter name: `{}`",
3206                         lifetime_i.name.ident(),
3207                     );
3208                     err.span_label(
3209                         lifetime_i.span,
3210                         format!("{} is a reserved lifetime name", name),
3211                     );
3212                     err.emit();
3213                 }
3214             }
3215
3216             // It is a hard error to shadow a lifetime within the same scope.
3217             for (lifetime_j, lifetime_j_name) in lifetimes.iter().skip(i + 1) {
3218                 if lifetime_i_name == lifetime_j_name {
3219                     struct_span_err!(
3220                         self.tcx.sess,
3221                         lifetime_j.span,
3222                         E0263,
3223                         "lifetime name `{}` declared twice in the same scope",
3224                         lifetime_j.name.ident()
3225                     )
3226                     .span_label(lifetime_j.span, "declared twice")
3227                     .span_label(lifetime_i.span, "previous declaration here")
3228                     .emit();
3229                 }
3230             }
3231
3232             // It is a soft error to shadow a lifetime within a parent scope.
3233             self.check_lifetime_param_for_shadowing(old_scope, &lifetime_i);
3234
3235             for bound in lifetime_i.bounds {
3236                 match bound {
3237                     hir::GenericBound::Outlives(ref lt) => match lt.name {
3238                         hir::LifetimeName::Underscore => self.tcx.sess.delay_span_bug(
3239                             lt.span,
3240                             "use of `'_` in illegal place, but not caught by lowering",
3241                         ),
3242                         hir::LifetimeName::Static => {
3243                             self.insert_lifetime(lt, Region::Static);
3244                             self.tcx
3245                                 .sess
3246                                 .struct_span_warn(
3247                                     lifetime_i.span.to(lt.span),
3248                                     &format!(
3249                                         "unnecessary lifetime parameter `{}`",
3250                                         lifetime_i.name.ident(),
3251                                     ),
3252                                 )
3253                                 .help(&format!(
3254                                     "you can use the `'static` lifetime directly, in place of `{}`",
3255                                     lifetime_i.name.ident(),
3256                                 ))
3257                                 .emit();
3258                         }
3259                         hir::LifetimeName::Param(_) | hir::LifetimeName::Implicit(_) => {
3260                             self.resolve_lifetime_ref(lt);
3261                         }
3262                         hir::LifetimeName::ImplicitObjectLifetimeDefault => {
3263                             self.tcx.sess.delay_span_bug(
3264                                 lt.span,
3265                                 "lowering generated `ImplicitObjectLifetimeDefault` \
3266                                  outside of an object type",
3267                             )
3268                         }
3269                         hir::LifetimeName::Error => {
3270                             // No need to do anything, error already reported.
3271                         }
3272                     },
3273                     _ => bug!(),
3274                 }
3275             }
3276         }
3277     }
3278
3279     fn check_lifetime_param_for_shadowing(
3280         &self,
3281         mut old_scope: ScopeRef<'_>,
3282         param: &'tcx hir::GenericParam<'tcx>,
3283     ) {
3284         for label in &self.labels_in_fn {
3285             // FIXME (#24278): non-hygienic comparison
3286             if param.name.ident().name == label.name {
3287                 signal_shadowing_problem(
3288                     self.tcx,
3289                     label.name,
3290                     original_label(label.span),
3291                     shadower_lifetime(&param),
3292                 );
3293                 return;
3294             }
3295         }
3296
3297         loop {
3298             match *old_scope {
3299                 Scope::Body { s, .. }
3300                 | Scope::Elision { s, .. }
3301                 | Scope::ObjectLifetimeDefault { s, .. }
3302                 | Scope::Supertrait { s, .. }
3303                 | Scope::TraitRefBoundary { s, .. } => {
3304                     old_scope = s;
3305                 }
3306
3307                 Scope::Root => {
3308                     return;
3309                 }
3310
3311                 Scope::Binder { ref lifetimes, s, .. } => {
3312                     if let Some(&def) = lifetimes.get(&param.name.normalize_to_macros_2_0()) {
3313                         signal_shadowing_problem(
3314                             self.tcx,
3315                             param.name.ident().name,
3316                             original_lifetime(self.tcx.def_span(def.id().unwrap())),
3317                             shadower_lifetime(&param),
3318                         );
3319                         return;
3320                     }
3321
3322                     old_scope = s;
3323                 }
3324             }
3325         }
3326     }
3327
3328     /// Returns `true` if, in the current scope, replacing `'_` would be
3329     /// equivalent to a single-use lifetime.
3330     fn track_lifetime_uses(&self) -> bool {
3331         let mut scope = self.scope;
3332         loop {
3333             match *scope {
3334                 Scope::Root => break false,
3335
3336                 // Inside of items, it depends on the kind of item.
3337                 Scope::Binder { track_lifetime_uses, .. } => break track_lifetime_uses,
3338
3339                 // Inside a body, `'_` will use an inference variable,
3340                 // should be fine.
3341                 Scope::Body { .. } => break true,
3342
3343                 // A lifetime only used in a fn argument could as well
3344                 // be replaced with `'_`, as that would generate a
3345                 // fresh name, too.
3346                 Scope::Elision { elide: Elide::FreshLateAnon(..), .. } => break true,
3347
3348                 // In the return type or other such place, `'_` is not
3349                 // going to make a fresh name, so we cannot
3350                 // necessarily replace a single-use lifetime with
3351                 // `'_`.
3352                 Scope::Elision {
3353                     elide: Elide::Exact(_) | Elide::Error(_) | Elide::Forbid, ..
3354                 } => break false,
3355
3356                 Scope::ObjectLifetimeDefault { s, .. }
3357                 | Scope::Supertrait { s, .. }
3358                 | Scope::TraitRefBoundary { s, .. } => scope = s,
3359             }
3360         }
3361     }
3362
3363     #[tracing::instrument(level = "debug", skip(self))]
3364     fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) {
3365         debug!(
3366             node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id),
3367             span = ?self.tcx.sess.source_map().span_to_diagnostic_string(lifetime_ref.span)
3368         );
3369         self.map.defs.insert(lifetime_ref.hir_id, def);
3370
3371         match def {
3372             Region::LateBoundAnon(..) | Region::Static => {
3373                 // These are anonymous lifetimes or lifetimes that are not declared.
3374             }
3375
3376             Region::Free(_, def_id)
3377             | Region::LateBound(_, _, def_id, _)
3378             | Region::EarlyBound(_, def_id, _) => {
3379                 // A lifetime declared by the user.
3380                 let track_lifetime_uses = self.track_lifetime_uses();
3381                 debug!(?track_lifetime_uses);
3382                 if track_lifetime_uses && !self.lifetime_uses.contains_key(&def_id) {
3383                     debug!("first use of {:?}", def_id);
3384                     self.lifetime_uses.insert(def_id, LifetimeUseSet::One(lifetime_ref));
3385                 } else {
3386                     debug!("many uses of {:?}", def_id);
3387                     self.lifetime_uses.insert(def_id, LifetimeUseSet::Many);
3388                 }
3389             }
3390         }
3391     }
3392
3393     /// Sometimes we resolve a lifetime, but later find that it is an
3394     /// error (esp. around impl trait). In that case, we remove the
3395     /// entry into `map.defs` so as not to confuse later code.
3396     fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) {
3397         let old_value = self.map.defs.remove(&lifetime_ref.hir_id);
3398         assert_eq!(old_value, Some(bad_def));
3399     }
3400 }
3401
3402 /// Detects late-bound lifetimes and inserts them into
3403 /// `map.late_bound`.
3404 ///
3405 /// A region declared on a fn is **late-bound** if:
3406 /// - it is constrained by an argument type;
3407 /// - it does not appear in a where-clause.
3408 ///
3409 /// "Constrained" basically means that it appears in any type but
3410 /// not amongst the inputs to a projection. In other words, `<&'a
3411 /// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
3412 #[tracing::instrument(level = "debug", skip(map))]
3413 fn insert_late_bound_lifetimes(
3414     map: &mut NamedRegionMap,
3415     decl: &hir::FnDecl<'_>,
3416     generics: &hir::Generics<'_>,
3417 ) {
3418     let mut constrained_by_input = ConstrainedCollector::default();
3419     for arg_ty in decl.inputs {
3420         constrained_by_input.visit_ty(arg_ty);
3421     }
3422
3423     let mut appears_in_output = AllCollector::default();
3424     intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
3425
3426     debug!(?constrained_by_input.regions);
3427
3428     // Walk the lifetimes that appear in where clauses.
3429     //
3430     // Subtle point: because we disallow nested bindings, we can just
3431     // ignore binders here and scrape up all names we see.
3432     let mut appears_in_where_clause = AllCollector::default();
3433     appears_in_where_clause.visit_generics(generics);
3434
3435     for param in generics.params {
3436         if let hir::GenericParamKind::Lifetime { .. } = param.kind {
3437             if !param.bounds.is_empty() {
3438                 // `'a: 'b` means both `'a` and `'b` are referenced
3439                 appears_in_where_clause
3440                     .regions
3441                     .insert(hir::LifetimeName::Param(param.name.normalize_to_macros_2_0()));
3442             }
3443         }
3444     }
3445
3446     debug!(?appears_in_where_clause.regions);
3447
3448     // Late bound regions are those that:
3449     // - appear in the inputs
3450     // - do not appear in the where-clauses
3451     // - are not implicitly captured by `impl Trait`
3452     for param in generics.params {
3453         match param.kind {
3454             hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }
3455
3456             // Neither types nor consts are late-bound.
3457             hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
3458         }
3459
3460         let lt_name = hir::LifetimeName::Param(param.name.normalize_to_macros_2_0());
3461         // appears in the where clauses? early-bound.
3462         if appears_in_where_clause.regions.contains(&lt_name) {
3463             continue;
3464         }
3465
3466         // does not appear in the inputs, but appears in the return type? early-bound.
3467         if !constrained_by_input.regions.contains(&lt_name)
3468             && appears_in_output.regions.contains(&lt_name)
3469         {
3470             continue;
3471         }
3472
3473         debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id);
3474
3475         let inserted = map.late_bound.insert(param.hir_id);
3476         assert!(inserted, "visited lifetime {:?} twice", param.hir_id);
3477     }
3478
3479     return;
3480
3481     #[derive(Default)]
3482     struct ConstrainedCollector {
3483         regions: FxHashSet<hir::LifetimeName>,
3484     }
3485
3486     impl<'v> Visitor<'v> for ConstrainedCollector {
3487         fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
3488             match ty.kind {
3489                 hir::TyKind::Path(
3490                     hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
3491                 ) => {
3492                     // ignore lifetimes appearing in associated type
3493                     // projections, as they are not *constrained*
3494                     // (defined above)
3495                 }
3496
3497                 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
3498                     // consider only the lifetimes on the final
3499                     // segment; I am not sure it's even currently
3500                     // valid to have them elsewhere, but even if it
3501                     // is, those would be potentially inputs to
3502                     // projections
3503                     if let Some(last_segment) = path.segments.last() {
3504                         self.visit_path_segment(path.span, last_segment);
3505                     }
3506                 }
3507
3508                 _ => {
3509                     intravisit::walk_ty(self, ty);
3510                 }
3511             }
3512         }
3513
3514         fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
3515             self.regions.insert(lifetime_ref.name.normalize_to_macros_2_0());
3516         }
3517     }
3518
3519     #[derive(Default)]
3520     struct AllCollector {
3521         regions: FxHashSet<hir::LifetimeName>,
3522     }
3523
3524     impl<'v> Visitor<'v> for AllCollector {
3525         fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
3526             self.regions.insert(lifetime_ref.name.normalize_to_macros_2_0());
3527         }
3528     }
3529 }