]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_resolve/src/late/lifetimes.rs
Do not suggest using a const parameter when there are bounds on an unused type parameter
[rust.git] / compiler / rustc_resolve / src / late / lifetimes.rs
1 // ignore-tidy-filelength
2 //! Name resolution for lifetimes.
3 //!
4 //! Name resolution for lifetimes follows *much* simpler rules than the
5 //! full resolve. For example, lifetime names are never exported or
6 //! used between functions, and they operate in a purely top-down
7 //! way. Therefore, we break lifetime name resolution into a separate pass.
8
9 use crate::late::diagnostics::{ForLifetimeSpanType, MissingLifetimeSpot};
10 use rustc_ast::walk_list;
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
12 use rustc_errors::{struct_span_err, Applicability, Diagnostic};
13 use rustc_hir as hir;
14 use rustc_hir::def::{DefKind, Res};
15 use rustc_hir::def_id::{DefIdMap, LocalDefId};
16 use rustc_hir::hir_id::ItemLocalId;
17 use rustc_hir::intravisit::{self, Visitor};
18 use rustc_hir::{GenericArg, GenericParam, LifetimeName, Node, ParamName, QPath};
19 use rustc_hir::{GenericParamKind, HirIdMap, HirIdSet, LifetimeParamKind};
20 use rustc_middle::hir::map::Map;
21 use rustc_middle::hir::nested_filter;
22 use rustc_middle::middle::resolve_lifetime::*;
23 use rustc_middle::ty::{self, DefIdTree, GenericParamDefKind, TyCtxt};
24 use rustc_middle::{bug, span_bug};
25 use rustc_session::lint;
26 use rustc_span::def_id::DefId;
27 use rustc_span::symbol::{kw, sym, Ident, Symbol};
28 use rustc_span::Span;
29 use std::borrow::Cow;
30 use std::cell::Cell;
31 use std::fmt;
32 use std::mem::take;
33
34 use tracing::{debug, span, Level};
35
36 // This counts the no of times a lifetime is used
37 #[derive(Clone, Copy, Debug)]
38 pub enum LifetimeUseSet<'tcx> {
39     One(&'tcx hir::Lifetime),
40     Many,
41 }
42
43 trait RegionExt {
44     fn early(hir_map: Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (ParamName, Region);
45
46     fn late(index: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (ParamName, Region);
47
48     fn late_anon(named_late_bound_vars: u32, index: &Cell<u32>) -> Region;
49
50     fn id(&self) -> Option<DefId>;
51
52     fn shifted(self, amount: u32) -> Region;
53
54     fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region;
55
56     fn subst<'a, L>(self, params: L, map: &NamedRegionMap) -> Option<Region>
57     where
58         L: Iterator<Item = &'a hir::Lifetime>;
59 }
60
61 impl RegionExt for Region {
62     fn early(hir_map: Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (ParamName, Region) {
63         let i = *index;
64         *index += 1;
65         let def_id = hir_map.local_def_id(param.hir_id);
66         let origin = LifetimeDefOrigin::from_param(param);
67         debug!("Region::early: index={} def_id={:?}", i, def_id);
68         (param.name.normalize_to_macros_2_0(), Region::EarlyBound(i, def_id.to_def_id(), origin))
69     }
70
71     fn late(idx: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (ParamName, Region) {
72         let depth = ty::INNERMOST;
73         let def_id = hir_map.local_def_id(param.hir_id);
74         let origin = LifetimeDefOrigin::from_param(param);
75         debug!(
76             "Region::late: idx={:?}, param={:?} depth={:?} def_id={:?} origin={:?}",
77             idx, param, depth, def_id, origin,
78         );
79         (
80             param.name.normalize_to_macros_2_0(),
81             Region::LateBound(depth, idx, def_id.to_def_id(), origin),
82         )
83     }
84
85     fn late_anon(named_late_bound_vars: u32, index: &Cell<u32>) -> Region {
86         let i = index.get();
87         index.set(i + 1);
88         let depth = ty::INNERMOST;
89         Region::LateBoundAnon(depth, named_late_bound_vars + i, i)
90     }
91
92     fn id(&self) -> Option<DefId> {
93         match *self {
94             Region::Static | Region::LateBoundAnon(..) => None,
95
96             Region::EarlyBound(_, id, _) | Region::LateBound(_, _, id, _) | Region::Free(_, id) => {
97                 Some(id)
98             }
99         }
100     }
101
102     fn shifted(self, amount: u32) -> Region {
103         match self {
104             Region::LateBound(debruijn, idx, id, origin) => {
105                 Region::LateBound(debruijn.shifted_in(amount), idx, id, origin)
106             }
107             Region::LateBoundAnon(debruijn, index, anon_index) => {
108                 Region::LateBoundAnon(debruijn.shifted_in(amount), index, anon_index)
109             }
110             _ => self,
111         }
112     }
113
114     fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region {
115         match self {
116             Region::LateBound(debruijn, index, id, origin) => {
117                 Region::LateBound(debruijn.shifted_out_to_binder(binder), index, id, origin)
118             }
119             Region::LateBoundAnon(debruijn, index, anon_index) => {
120                 Region::LateBoundAnon(debruijn.shifted_out_to_binder(binder), index, anon_index)
121             }
122             _ => self,
123         }
124     }
125
126     fn subst<'a, L>(self, mut params: L, map: &NamedRegionMap) -> Option<Region>
127     where
128         L: Iterator<Item = &'a hir::Lifetime>,
129     {
130         if let Region::EarlyBound(index, _, _) = self {
131             params.nth(index as usize).and_then(|lifetime| map.defs.get(&lifetime.hir_id).cloned())
132         } else {
133             Some(self)
134         }
135     }
136 }
137
138 /// Maps the id of each lifetime reference to the lifetime decl
139 /// that it corresponds to.
140 ///
141 /// FIXME. This struct gets converted to a `ResolveLifetimes` for
142 /// actual use. It has the same data, but indexed by `LocalDefId`.  This
143 /// is silly.
144 #[derive(Debug, Default)]
145 struct NamedRegionMap {
146     // maps from every use of a named (not anonymous) lifetime to a
147     // `Region` describing how that region is bound
148     defs: HirIdMap<Region>,
149
150     // the set of lifetime def ids that are late-bound; a region can
151     // be late-bound if (a) it does NOT appear in a where-clause and
152     // (b) it DOES appear in the arguments.
153     late_bound: HirIdSet,
154
155     // Maps relevant hir items to the bound vars on them. These include:
156     // - function defs
157     // - function pointers
158     // - closures
159     // - trait refs
160     // - bound types (like `T` in `for<'a> T<'a>: Foo`)
161     late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
162
163     // maps `PathSegment` `HirId`s to lifetime scopes.
164     scope_for_path: Option<FxHashMap<LocalDefId, FxHashMap<ItemLocalId, LifetimeScopeForPath>>>,
165 }
166
167 crate struct LifetimeContext<'a, 'tcx> {
168     crate tcx: TyCtxt<'tcx>,
169     map: &'a mut NamedRegionMap,
170     scope: ScopeRef<'a>,
171
172     /// Used to disallow the use of in-band lifetimes in `fn` or `Fn` syntax.
173     is_in_fn_syntax: bool,
174
175     is_in_const_generic: bool,
176
177     /// Indicates that we only care about the definition of a trait. This should
178     /// be false if the `Item` we are resolving lifetimes for is not a trait or
179     /// we eventually need lifetimes resolve for trait items.
180     trait_definition_only: bool,
181
182     /// List of labels in the function/method currently under analysis.
183     labels_in_fn: Vec<Ident>,
184
185     /// Cache for cross-crate per-definition object lifetime defaults.
186     xcrate_object_lifetime_defaults: DefIdMap<Vec<ObjectLifetimeDefault>>,
187
188     lifetime_uses: &'a mut DefIdMap<LifetimeUseSet<'tcx>>,
189
190     /// When encountering an undefined named lifetime, we will suggest introducing it in these
191     /// places.
192     crate missing_named_lifetime_spots: Vec<MissingLifetimeSpot<'tcx>>,
193 }
194
195 #[derive(Debug)]
196 enum Scope<'a> {
197     /// Declares lifetimes, and each can be early-bound or late-bound.
198     /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
199     /// it should be shifted by the number of `Binder`s in between the
200     /// declaration `Binder` and the location it's referenced from.
201     Binder {
202         /// We use an IndexMap here because we want these lifetimes in order
203         /// for diagnostics.
204         lifetimes: FxIndexMap<hir::ParamName, Region>,
205
206         /// if we extend this scope with another scope, what is the next index
207         /// we should use for an early-bound region?
208         next_early_index: u32,
209
210         /// Flag is set to true if, in this binder, `'_` would be
211         /// equivalent to a "single-use region". This is true on
212         /// impls, but not other kinds of items.
213         track_lifetime_uses: bool,
214
215         /// Whether or not this binder would serve as the parent
216         /// binder for opaque types introduced within. For example:
217         ///
218         /// ```text
219         ///     fn foo<'a>() -> impl for<'b> Trait<Item = impl Trait2<'a>>
220         /// ```
221         ///
222         /// Here, the opaque types we create for the `impl Trait`
223         /// and `impl Trait2` references will both have the `foo` item
224         /// as their parent. When we get to `impl Trait2`, we find
225         /// that it is nested within the `for<>` binder -- this flag
226         /// allows us to skip that when looking for the parent binder
227         /// of the resulting opaque type.
228         opaque_type_parent: bool,
229
230         scope_type: BinderScopeType,
231
232         /// The late bound vars for a given item are stored by `HirId` to be
233         /// queried later. However, if we enter an elision scope, we have to
234         /// later append the elided bound vars to the list and need to know what
235         /// to append to.
236         hir_id: hir::HirId,
237
238         s: ScopeRef<'a>,
239     },
240
241     /// Lifetimes introduced by a fn are scoped to the call-site for that fn,
242     /// if this is a fn body, otherwise the original definitions are used.
243     /// Unspecified lifetimes are inferred, unless an elision scope is nested,
244     /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
245     Body {
246         id: hir::BodyId,
247         s: ScopeRef<'a>,
248     },
249
250     /// A scope which either determines unspecified lifetimes or errors
251     /// on them (e.g., due to ambiguity). For more details, see `Elide`.
252     Elision {
253         elide: Elide,
254         s: ScopeRef<'a>,
255     },
256
257     /// Use a specific lifetime (if `Some`) or leave it unset (to be
258     /// inferred in a function body or potentially error outside one),
259     /// for the default choice of lifetime in a trait object type.
260     ObjectLifetimeDefault {
261         lifetime: Option<Region>,
262         s: ScopeRef<'a>,
263     },
264
265     /// When we have nested trait refs, we concanetate late bound vars for inner
266     /// trait refs from outer ones. But we also need to include any HRTB
267     /// lifetimes encountered when identifying the trait that an associated type
268     /// is declared on.
269     Supertrait {
270         lifetimes: Vec<ty::BoundVariableKind>,
271         s: ScopeRef<'a>,
272     },
273
274     TraitRefBoundary {
275         s: ScopeRef<'a>,
276     },
277
278     Root,
279 }
280
281 #[derive(Copy, Clone, Debug)]
282 enum BinderScopeType {
283     /// Any non-concatenating binder scopes.
284     Normal,
285     /// Within a syntactic trait ref, there may be multiple poly trait refs that
286     /// are nested (under the `associcated_type_bounds` feature). The binders of
287     /// the innner poly trait refs are extended from the outer poly trait refs
288     /// and don't increase the late bound depth. If you had
289     /// `T: for<'a>  Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
290     /// would be `Concatenating`. This also used in trait refs in where clauses
291     /// where we have two binders `for<> T: for<> Foo` (I've intentionally left
292     /// out any lifetimes because they aren't needed to show the two scopes).
293     /// The inner `for<>` has a scope of `Concatenating`.
294     Concatenating,
295 }
296
297 // A helper struct for debugging scopes without printing parent scopes
298 struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
299
300 impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
301     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
302         match self.0 {
303             Scope::Binder {
304                 lifetimes,
305                 next_early_index,
306                 track_lifetime_uses,
307                 opaque_type_parent,
308                 scope_type,
309                 hir_id,
310                 s: _,
311             } => f
312                 .debug_struct("Binder")
313                 .field("lifetimes", lifetimes)
314                 .field("next_early_index", next_early_index)
315                 .field("track_lifetime_uses", track_lifetime_uses)
316                 .field("opaque_type_parent", opaque_type_parent)
317                 .field("scope_type", scope_type)
318                 .field("hir_id", hir_id)
319                 .field("s", &"..")
320                 .finish(),
321             Scope::Body { id, s: _ } => {
322                 f.debug_struct("Body").field("id", id).field("s", &"..").finish()
323             }
324             Scope::Elision { elide, s: _ } => {
325                 f.debug_struct("Elision").field("elide", elide).field("s", &"..").finish()
326             }
327             Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
328                 .debug_struct("ObjectLifetimeDefault")
329                 .field("lifetime", lifetime)
330                 .field("s", &"..")
331                 .finish(),
332             Scope::Supertrait { lifetimes, s: _ } => f
333                 .debug_struct("Supertrait")
334                 .field("lifetimes", lifetimes)
335                 .field("s", &"..")
336                 .finish(),
337             Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
338             Scope::Root => f.debug_struct("Root").finish(),
339         }
340     }
341 }
342
343 #[derive(Clone, Debug)]
344 enum Elide {
345     /// Use a fresh anonymous late-bound lifetime each time, by
346     /// incrementing the counter to generate sequential indices. All
347     /// anonymous lifetimes must start *after* named bound vars.
348     FreshLateAnon(u32, Cell<u32>),
349     /// Always use this one lifetime.
350     Exact(Region),
351     /// Less or more than one lifetime were found, error on unspecified.
352     Error(Vec<ElisionFailureInfo>),
353     /// Forbid lifetime elision inside of a larger scope where it would be
354     /// permitted. For example, in let position impl trait.
355     Forbid,
356 }
357
358 #[derive(Clone, Debug)]
359 crate struct ElisionFailureInfo {
360     /// Where we can find the argument pattern.
361     crate parent: Option<hir::BodyId>,
362     /// The index of the argument in the original definition.
363     crate index: usize,
364     crate lifetime_count: usize,
365     crate have_bound_regions: bool,
366     crate span: Span,
367 }
368
369 type ScopeRef<'a> = &'a Scope<'a>;
370
371 const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root;
372
373 pub fn provide(providers: &mut ty::query::Providers) {
374     *providers = ty::query::Providers {
375         resolve_lifetimes_trait_definition,
376         resolve_lifetimes,
377
378         named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id),
379         is_late_bound_map,
380         object_lifetime_defaults: |tcx, id| match tcx.hir().find_by_def_id(id) {
381             Some(Node::Item(item)) => compute_object_lifetime_defaults(tcx, item),
382             _ => None,
383         },
384         late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id),
385         lifetime_scope_map: |tcx, id| {
386             let item_id = item_for(tcx, id);
387             do_resolve(tcx, item_id, false, true).scope_for_path.unwrap().remove(&id)
388         },
389
390         ..*providers
391     };
392 }
393
394 /// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items.
395 /// Also does not generate any diagnostics.
396 ///
397 /// This is ultimately a subset of the `resolve_lifetimes` work. It effectively
398 /// resolves lifetimes only within the trait "header" -- that is, the trait
399 /// and supertrait list. In contrast, `resolve_lifetimes` resolves all the
400 /// lifetimes within the trait and its items. There is room to refactor this,
401 /// for example to resolve lifetimes for each trait item in separate queries,
402 /// but it's convenient to do the entire trait at once because the lifetimes
403 /// from the trait definition are in scope within the trait items as well.
404 ///
405 /// The reason for this separate call is to resolve what would otherwise
406 /// be a cycle. Consider this example:
407 ///
408 /// ```rust
409 /// trait Base<'a> {
410 ///     type BaseItem;
411 /// }
412 /// trait Sub<'b>: for<'a> Base<'a> {
413 ///    type SubItem: Sub<BaseItem = &'b u32>;
414 /// }
415 /// ```
416 ///
417 /// When we resolve `Sub` and all its items, we also have to resolve `Sub<BaseItem = &'b u32>`.
418 /// To figure out the index of `'b`, we have to know about the supertraits
419 /// of `Sub` so that we can determine that the `for<'a>` will be in scope.
420 /// (This is because we -- currently at least -- flatten all the late-bound
421 /// lifetimes into a single binder.) This requires us to resolve the
422 /// *trait definition* of `Sub`; basically just enough lifetime information
423 /// to look at the supertraits.
424 #[tracing::instrument(level = "debug", skip(tcx))]
425 fn resolve_lifetimes_trait_definition(
426     tcx: TyCtxt<'_>,
427     local_def_id: LocalDefId,
428 ) -> ResolveLifetimes {
429     convert_named_region_map(do_resolve(tcx, local_def_id, true, false))
430 }
431
432 /// Computes the `ResolveLifetimes` map that contains data for an entire `Item`.
433 /// You should not read the result of this query directly, but rather use
434 /// `named_region_map`, `is_late_bound_map`, etc.
435 #[tracing::instrument(level = "debug", skip(tcx))]
436 fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes {
437     convert_named_region_map(do_resolve(tcx, local_def_id, false, false))
438 }
439
440 fn do_resolve(
441     tcx: TyCtxt<'_>,
442     local_def_id: LocalDefId,
443     trait_definition_only: bool,
444     with_scope_for_path: bool,
445 ) -> NamedRegionMap {
446     let item = tcx.hir().expect_item(local_def_id);
447     let mut named_region_map = NamedRegionMap {
448         defs: Default::default(),
449         late_bound: Default::default(),
450         late_bound_vars: Default::default(),
451         scope_for_path: with_scope_for_path.then(|| Default::default()),
452     };
453     let mut visitor = LifetimeContext {
454         tcx,
455         map: &mut named_region_map,
456         scope: ROOT_SCOPE,
457         is_in_fn_syntax: false,
458         is_in_const_generic: false,
459         trait_definition_only,
460         labels_in_fn: vec![],
461         xcrate_object_lifetime_defaults: Default::default(),
462         lifetime_uses: &mut Default::default(),
463         missing_named_lifetime_spots: vec![],
464     };
465     visitor.visit_item(item);
466
467     named_region_map
468 }
469
470 fn convert_named_region_map(named_region_map: NamedRegionMap) -> ResolveLifetimes {
471     let mut rl = ResolveLifetimes::default();
472
473     for (hir_id, v) in named_region_map.defs {
474         let map = rl.defs.entry(hir_id.owner).or_default();
475         map.insert(hir_id.local_id, v);
476     }
477     for hir_id in named_region_map.late_bound {
478         let map = rl.late_bound.entry(hir_id.owner).or_default();
479         map.insert(hir_id.local_id);
480     }
481     for (hir_id, v) in named_region_map.late_bound_vars {
482         let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
483         map.insert(hir_id.local_id, v);
484     }
485
486     debug!(?rl.defs);
487     rl
488 }
489
490 /// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution.
491 /// There are two important things this does.
492 /// First, we have to resolve lifetimes for
493 /// the entire *`Item`* that contains this owner, because that's the largest "scope"
494 /// where we can have relevant lifetimes.
495 /// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition`
496 /// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics.
497 /// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner
498 /// other than the trait itself (like the trait methods or associated types), then we just use the regular
499 /// `resolve_lifetimes`.
500 fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx ResolveLifetimes {
501     let item_id = item_for(tcx, def_id);
502     if item_id == def_id {
503         let item = tcx.hir().item(hir::ItemId { def_id: item_id });
504         match item.kind {
505             hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(item_id),
506             _ => tcx.resolve_lifetimes(item_id),
507         }
508     } else {
509         tcx.resolve_lifetimes(item_id)
510     }
511 }
512
513 /// Finds the `Item` that contains the given `LocalDefId`
514 fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> LocalDefId {
515     match tcx.hir().find_by_def_id(local_def_id) {
516         Some(Node::Item(item)) => {
517             return item.def_id;
518         }
519         _ => {}
520     }
521     let item = {
522         let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id);
523         let mut parent_iter = tcx.hir().parent_iter(hir_id);
524         loop {
525             let node = parent_iter.next().map(|n| n.1);
526             match node {
527                 Some(hir::Node::Item(item)) => break item.def_id,
528                 Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."),
529                 _ => {}
530             }
531         }
532     };
533     item
534 }
535
536 fn is_late_bound_map<'tcx>(
537     tcx: TyCtxt<'tcx>,
538     def_id: LocalDefId,
539 ) -> Option<(LocalDefId, &'tcx FxHashSet<ItemLocalId>)> {
540     match tcx.def_kind(def_id) {
541         DefKind::AnonConst | DefKind::InlineConst => {
542             let mut def_id = tcx
543                 .parent(def_id.to_def_id())
544                 .unwrap_or_else(|| bug!("anon const or closure without a parent"));
545             // We search for the next outer anon const or fn here
546             // while skipping closures.
547             //
548             // Note that for `AnonConst` we still just recurse until we
549             // find a function body, but who cares :shrug:
550             while tcx.is_closure(def_id) {
551                 def_id = tcx
552                     .parent(def_id)
553                     .unwrap_or_else(|| bug!("anon const or closure without a parent"));
554             }
555
556             tcx.is_late_bound_map(def_id.expect_local())
557         }
558         _ => resolve_lifetimes_for(tcx, def_id).late_bound.get(&def_id).map(|lt| (def_id, lt)),
559     }
560 }
561
562 /// In traits, there is an implicit `Self` type parameter which comes before the generics.
563 /// We have to account for this when computing the index of the other generic parameters.
564 /// This function returns whether there is such an implicit parameter defined on the given item.
565 fn sub_items_have_self_param(node: &hir::ItemKind<'_>) -> bool {
566     matches!(*node, hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..))
567 }
568
569 fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind {
570     match region {
571         Region::LateBound(_, _, def_id, _) => {
572             let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
573             ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
574         }
575         Region::LateBoundAnon(_, _, anon_idx) => {
576             ty::BoundVariableKind::Region(ty::BrAnon(*anon_idx))
577         }
578         _ => bug!("{:?} is not a late region", region),
579     }
580 }
581
582 #[tracing::instrument(level = "debug")]
583 fn get_lifetime_scopes_for_path(mut scope: &Scope<'_>) -> LifetimeScopeForPath {
584     let mut available_lifetimes = vec![];
585     loop {
586         match scope {
587             Scope::Binder { lifetimes, s, .. } => {
588                 available_lifetimes.extend(lifetimes.keys().filter_map(|p| match p {
589                     hir::ParamName::Plain(ident) => Some(ident.name.to_string()),
590                     _ => None,
591                 }));
592                 scope = s;
593             }
594             Scope::Body { s, .. } => {
595                 scope = s;
596             }
597             Scope::Elision { elide, s } => {
598                 if let Elide::Exact(_) = elide {
599                     return LifetimeScopeForPath::Elided;
600                 } else {
601                     scope = s;
602                 }
603             }
604             Scope::ObjectLifetimeDefault { s, .. } => {
605                 scope = s;
606             }
607             Scope::Root => {
608                 return LifetimeScopeForPath::NonElided(available_lifetimes);
609             }
610             Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
611                 scope = s;
612             }
613         }
614     }
615 }
616
617 impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
618     /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
619     fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
620         let mut scope = self.scope;
621         let mut supertrait_lifetimes = vec![];
622         loop {
623             match scope {
624                 Scope::Body { .. } | Scope::Root => {
625                     break (vec![], BinderScopeType::Normal);
626                 }
627
628                 Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => {
629                     scope = s;
630                 }
631
632                 Scope::Supertrait { s, lifetimes } => {
633                     supertrait_lifetimes = lifetimes.clone();
634                     scope = s;
635                 }
636
637                 Scope::TraitRefBoundary { .. } => {
638                     // We should only see super trait lifetimes if there is a `Binder` above
639                     assert!(supertrait_lifetimes.is_empty());
640                     break (vec![], BinderScopeType::Normal);
641                 }
642
643                 Scope::Binder { hir_id, .. } => {
644                     // Nested poly trait refs have the binders concatenated
645                     let mut full_binders =
646                         self.map.late_bound_vars.entry(*hir_id).or_default().clone();
647                     full_binders.extend(supertrait_lifetimes.into_iter());
648                     break (full_binders, BinderScopeType::Concatenating);
649                 }
650             }
651         }
652     }
653 }
654 impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> {
655     type NestedFilter = nested_filter::All;
656
657     fn nested_visit_map(&mut self) -> Self::Map {
658         self.tcx.hir()
659     }
660
661     // We want to nest trait/impl items in their parent, but nothing else.
662     fn visit_nested_item(&mut self, _: hir::ItemId) {}
663
664     fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) {
665         if !self.trait_definition_only {
666             intravisit::walk_trait_item_ref(self, ii)
667         }
668     }
669
670     fn visit_nested_body(&mut self, body: hir::BodyId) {
671         // Each body has their own set of labels, save labels.
672         let saved = take(&mut self.labels_in_fn);
673         let body = self.tcx.hir().body(body);
674         extract_labels(self, body);
675         self.with(Scope::Body { id: body.id(), s: self.scope }, |_, this| {
676             this.visit_body(body);
677         });
678         self.labels_in_fn = saved;
679     }
680
681     fn visit_fn(
682         &mut self,
683         fk: intravisit::FnKind<'tcx>,
684         fd: &'tcx hir::FnDecl<'tcx>,
685         b: hir::BodyId,
686         s: rustc_span::Span,
687         hir_id: hir::HirId,
688     ) {
689         let name = match fk {
690             intravisit::FnKind::ItemFn(id, _, _, _) => id.name,
691             intravisit::FnKind::Method(id, _, _) => id.name,
692             intravisit::FnKind::Closure => sym::closure,
693         };
694         let name = name.as_str();
695         let span = span!(Level::DEBUG, "visit_fn", name);
696         let _enter = span.enter();
697         match fk {
698             // Any `Binders` are handled elsewhere
699             intravisit::FnKind::ItemFn(..) | intravisit::FnKind::Method(..) => {
700                 intravisit::walk_fn(self, fk, fd, b, s, hir_id)
701             }
702             intravisit::FnKind::Closure => {
703                 self.map.late_bound_vars.insert(hir_id, vec![]);
704                 let scope = Scope::Binder {
705                     hir_id,
706                     lifetimes: FxIndexMap::default(),
707                     next_early_index: self.next_early_index(),
708                     s: self.scope,
709                     track_lifetime_uses: true,
710                     opaque_type_parent: false,
711                     scope_type: BinderScopeType::Normal,
712                 };
713                 self.with(scope, move |_old_scope, this| {
714                     intravisit::walk_fn(this, fk, fd, b, s, hir_id)
715                 });
716             }
717         }
718     }
719
720     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
721         match &item.kind {
722             hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
723                 if let Some(of_trait) = of_trait {
724                     self.map.late_bound_vars.insert(of_trait.hir_ref_id, Vec::default());
725                 }
726             }
727             _ => {}
728         }
729         match item.kind {
730             hir::ItemKind::Fn(ref sig, ref generics, _) => {
731                 self.missing_named_lifetime_spots.push(generics.into());
732                 self.visit_early_late(None, item.hir_id(), &sig.decl, generics, |this| {
733                     intravisit::walk_item(this, item);
734                 });
735                 self.missing_named_lifetime_spots.pop();
736             }
737
738             hir::ItemKind::ExternCrate(_)
739             | hir::ItemKind::Use(..)
740             | hir::ItemKind::Macro(..)
741             | hir::ItemKind::Mod(..)
742             | hir::ItemKind::ForeignMod { .. }
743             | hir::ItemKind::GlobalAsm(..) => {
744                 // These sorts of items have no lifetime parameters at all.
745                 intravisit::walk_item(self, item);
746             }
747             hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
748                 // No lifetime parameters, but implied 'static.
749                 let scope = Scope::Elision { elide: Elide::Exact(Region::Static), s: ROOT_SCOPE };
750                 self.with(scope, |_, this| intravisit::walk_item(this, item));
751             }
752             hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => {
753                 // Opaque types are visited when we visit the
754                 // `TyKind::OpaqueDef`, so that they have the lifetimes from
755                 // their parent opaque_ty in scope.
756                 //
757                 // The core idea here is that since OpaqueTys are generated with the impl Trait as
758                 // their owner, we can keep going until we find the Item that owns that. We then
759                 // conservatively add all resolved lifetimes. Otherwise we run into problems in
760                 // cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
761                 for (_hir_id, node) in
762                     self.tcx.hir().parent_iter(self.tcx.hir().local_def_id_to_hir_id(item.def_id))
763                 {
764                     match node {
765                         hir::Node::Item(parent_item) => {
766                             let resolved_lifetimes: &ResolveLifetimes =
767                                 self.tcx.resolve_lifetimes(item_for(self.tcx, parent_item.def_id));
768                             // We need to add *all* deps, since opaque tys may want them from *us*
769                             for (&owner, defs) in resolved_lifetimes.defs.iter() {
770                                 defs.iter().for_each(|(&local_id, region)| {
771                                     self.map.defs.insert(hir::HirId { owner, local_id }, *region);
772                                 });
773                             }
774                             for (&owner, late_bound) in resolved_lifetimes.late_bound.iter() {
775                                 late_bound.iter().for_each(|&local_id| {
776                                     self.map.late_bound.insert(hir::HirId { owner, local_id });
777                                 });
778                             }
779                             for (&owner, late_bound_vars) in
780                                 resolved_lifetimes.late_bound_vars.iter()
781                             {
782                                 late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
783                                     self.map.late_bound_vars.insert(
784                                         hir::HirId { owner, local_id },
785                                         late_bound_vars.clone(),
786                                     );
787                                 });
788                             }
789                             break;
790                         }
791                         hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"),
792                         _ => {}
793                     }
794                 }
795             }
796             hir::ItemKind::TyAlias(_, ref generics)
797             | hir::ItemKind::Enum(_, ref generics)
798             | hir::ItemKind::Struct(_, ref generics)
799             | hir::ItemKind::Union(_, ref generics)
800             | hir::ItemKind::Trait(_, _, ref generics, ..)
801             | hir::ItemKind::TraitAlias(ref generics, ..)
802             | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
803                 self.missing_named_lifetime_spots.push(generics.into());
804
805                 // Impls permit `'_` to be used and it is equivalent to "some fresh lifetime name".
806                 // This is not true for other kinds of items.
807                 let track_lifetime_uses = matches!(item.kind, hir::ItemKind::Impl { .. });
808                 // These kinds of items have only early-bound lifetime parameters.
809                 let mut index = if sub_items_have_self_param(&item.kind) {
810                     1 // Self comes before lifetimes
811                 } else {
812                     0
813                 };
814                 let mut non_lifetime_count = 0;
815                 let lifetimes = generics
816                     .params
817                     .iter()
818                     .filter_map(|param| match param.kind {
819                         GenericParamKind::Lifetime { .. } => {
820                             Some(Region::early(self.tcx.hir(), &mut index, param))
821                         }
822                         GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
823                             non_lifetime_count += 1;
824                             None
825                         }
826                     })
827                     .collect();
828                 self.map.late_bound_vars.insert(item.hir_id(), vec![]);
829                 let scope = Scope::Binder {
830                     hir_id: item.hir_id(),
831                     lifetimes,
832                     next_early_index: index + non_lifetime_count,
833                     opaque_type_parent: true,
834                     track_lifetime_uses,
835                     scope_type: BinderScopeType::Normal,
836                     s: ROOT_SCOPE,
837                 };
838                 self.with(scope, |old_scope, this| {
839                     this.check_lifetime_params(old_scope, &generics.params);
840                     let scope = Scope::TraitRefBoundary { s: this.scope };
841                     this.with(scope, |_, this| {
842                         intravisit::walk_item(this, item);
843                     });
844                 });
845                 self.missing_named_lifetime_spots.pop();
846             }
847         }
848     }
849
850     fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
851         match item.kind {
852             hir::ForeignItemKind::Fn(ref decl, _, ref generics) => {
853                 self.visit_early_late(None, item.hir_id(), decl, generics, |this| {
854                     intravisit::walk_foreign_item(this, item);
855                 })
856             }
857             hir::ForeignItemKind::Static(..) => {
858                 intravisit::walk_foreign_item(self, item);
859             }
860             hir::ForeignItemKind::Type => {
861                 intravisit::walk_foreign_item(self, item);
862             }
863         }
864     }
865
866     #[tracing::instrument(level = "debug", skip(self))]
867     fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
868         match ty.kind {
869             hir::TyKind::BareFn(ref c) => {
870                 let next_early_index = self.next_early_index();
871                 let was_in_fn_syntax = self.is_in_fn_syntax;
872                 self.is_in_fn_syntax = true;
873                 let lifetime_span: Option<Span> =
874                     c.generic_params.iter().rev().find_map(|param| match param.kind {
875                         GenericParamKind::Lifetime { .. } => Some(param.span),
876                         _ => None,
877                     });
878                 let (span, span_type) = if let Some(span) = lifetime_span {
879                     (span.shrink_to_hi(), ForLifetimeSpanType::TypeTail)
880                 } else {
881                     (ty.span.shrink_to_lo(), ForLifetimeSpanType::TypeEmpty)
882                 };
883                 self.missing_named_lifetime_spots
884                     .push(MissingLifetimeSpot::HigherRanked { span, span_type });
885                 let (lifetimes, binders): (FxIndexMap<hir::ParamName, Region>, Vec<_>) = c
886                     .generic_params
887                     .iter()
888                     .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
889                     .enumerate()
890                     .map(|(late_bound_idx, param)| {
891                         let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
892                         let r = late_region_as_bound_region(self.tcx, &pair.1);
893                         (pair, r)
894                     })
895                     .unzip();
896                 self.map.late_bound_vars.insert(ty.hir_id, binders);
897                 let scope = Scope::Binder {
898                     hir_id: ty.hir_id,
899                     lifetimes,
900                     s: self.scope,
901                     next_early_index,
902                     track_lifetime_uses: true,
903                     opaque_type_parent: false,
904                     scope_type: BinderScopeType::Normal,
905                 };
906                 self.with(scope, |old_scope, this| {
907                     // a bare fn has no bounds, so everything
908                     // contained within is scoped within its binder.
909                     this.check_lifetime_params(old_scope, &c.generic_params);
910                     intravisit::walk_ty(this, ty);
911                 });
912                 self.missing_named_lifetime_spots.pop();
913                 self.is_in_fn_syntax = was_in_fn_syntax;
914             }
915             hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
916                 debug!(?bounds, ?lifetime, "TraitObject");
917                 let scope = Scope::TraitRefBoundary { s: self.scope };
918                 self.with(scope, |_, this| {
919                     for bound in bounds {
920                         this.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
921                     }
922                 });
923                 match lifetime.name {
924                     LifetimeName::Implicit(_) => {
925                         // For types like `dyn Foo`, we should
926                         // generate a special form of elided.
927                         span_bug!(ty.span, "object-lifetime-default expected, not implicit",);
928                     }
929                     LifetimeName::ImplicitObjectLifetimeDefault => {
930                         // If the user does not write *anything*, we
931                         // use the object lifetime defaulting
932                         // rules. So e.g., `Box<dyn Debug>` becomes
933                         // `Box<dyn Debug + 'static>`.
934                         self.resolve_object_lifetime_default(lifetime)
935                     }
936                     LifetimeName::Underscore => {
937                         // If the user writes `'_`, we use the *ordinary* elision
938                         // rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
939                         // resolved the same as the `'_` in `&'_ Foo`.
940                         //
941                         // cc #48468
942                         self.resolve_elided_lifetimes(&[lifetime])
943                     }
944                     LifetimeName::Param(_) | LifetimeName::Static => {
945                         // If the user wrote an explicit name, use that.
946                         self.visit_lifetime(lifetime);
947                     }
948                     LifetimeName::Error => {}
949                 }
950             }
951             hir::TyKind::Rptr(ref lifetime_ref, ref mt) => {
952                 self.visit_lifetime(lifetime_ref);
953                 let scope = Scope::ObjectLifetimeDefault {
954                     lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
955                     s: self.scope,
956                 };
957                 self.with(scope, |_, this| this.visit_ty(&mt.ty));
958             }
959             hir::TyKind::OpaqueDef(item_id, lifetimes) => {
960                 // Resolve the lifetimes in the bounds to the lifetime defs in the generics.
961                 // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
962                 // `type MyAnonTy<'b> = impl MyTrait<'b>;`
963                 //                 ^                  ^ this gets resolved in the scope of
964                 //                                      the opaque_ty generics
965                 let opaque_ty = self.tcx.hir().item(item_id);
966                 let (generics, bounds) = match opaque_ty.kind {
967                     // Named opaque `impl Trait` types are reached via `TyKind::Path`.
968                     // This arm is for `impl Trait` in the types of statics, constants and locals.
969                     hir::ItemKind::OpaqueTy(hir::OpaqueTy {
970                         origin: hir::OpaqueTyOrigin::TyAlias,
971                         ..
972                     }) => {
973                         intravisit::walk_ty(self, ty);
974
975                         // Elided lifetimes are not allowed in non-return
976                         // position impl Trait
977                         let scope = Scope::TraitRefBoundary { s: self.scope };
978                         self.with(scope, |_, this| {
979                             let scope = Scope::Elision { elide: Elide::Forbid, s: this.scope };
980                             this.with(scope, |_, this| {
981                                 intravisit::walk_item(this, opaque_ty);
982                             })
983                         });
984
985                         return;
986                     }
987                     // RPIT (return position impl trait)
988                     hir::ItemKind::OpaqueTy(hir::OpaqueTy {
989                         origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
990                         ref generics,
991                         bounds,
992                         ..
993                     }) => (generics, bounds),
994                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
995                 };
996
997                 // Resolve the lifetimes that are applied to the opaque type.
998                 // These are resolved in the current scope.
999                 // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
1000                 // `fn foo<'a>() -> MyAnonTy<'a> { ... }`
1001                 //          ^                 ^this gets resolved in the current scope
1002                 for lifetime in lifetimes {
1003                     let hir::GenericArg::Lifetime(lifetime) = lifetime else {
1004                         continue
1005                     };
1006                     self.visit_lifetime(lifetime);
1007
1008                     // Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
1009                     // and ban them. Type variables instantiated inside binders aren't
1010                     // well-supported at the moment, so this doesn't work.
1011                     // In the future, this should be fixed and this error should be removed.
1012                     let def = self.map.defs.get(&lifetime.hir_id).cloned();
1013                     let Some(Region::LateBound(_, _, def_id, _)) = def else {
1014                         continue
1015                     };
1016                     let Some(def_id) = def_id.as_local() else {
1017                         continue
1018                     };
1019                     let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1020                     // Ensure that the parent of the def is an item, not HRTB
1021                     let parent_id = self.tcx.hir().get_parent_node(hir_id);
1022                     if !parent_id.is_owner() {
1023                         if !self.trait_definition_only {
1024                             struct_span_err!(
1025                                 self.tcx.sess,
1026                                 lifetime.span,
1027                                 E0657,
1028                                 "`impl Trait` can only capture lifetimes \
1029                                     bound at the fn or impl level"
1030                             )
1031                             .emit();
1032                         }
1033                         self.uninsert_lifetime_on_error(lifetime, def.unwrap());
1034                     }
1035                 }
1036
1037                 // We want to start our early-bound indices at the end of the parent scope,
1038                 // not including any parent `impl Trait`s.
1039                 let mut index = self.next_early_index_for_opaque_type();
1040                 debug!(?index);
1041
1042                 let mut elision = None;
1043                 let mut lifetimes = FxIndexMap::default();
1044                 let mut non_lifetime_count = 0;
1045                 for param in generics.params {
1046                     match param.kind {
1047                         GenericParamKind::Lifetime { .. } => {
1048                             let (name, reg) = Region::early(self.tcx.hir(), &mut index, &param);
1049                             let Region::EarlyBound(_, def_id, _) = reg else {
1050                                 bug!();
1051                             };
1052                             // We cannot predict what lifetimes are unused in opaque type.
1053                             self.lifetime_uses.insert(def_id, LifetimeUseSet::Many);
1054                             if let hir::ParamName::Plain(Ident {
1055                                 name: kw::UnderscoreLifetime,
1056                                 ..
1057                             }) = name
1058                             {
1059                                 // Pick the elided lifetime "definition" if one exists
1060                                 // and use it to make an elision scope.
1061                                 elision = Some(reg);
1062                             } else {
1063                                 lifetimes.insert(name, reg);
1064                             }
1065                         }
1066                         GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1067                             non_lifetime_count += 1;
1068                         }
1069                     }
1070                 }
1071                 let next_early_index = index + non_lifetime_count;
1072                 self.map.late_bound_vars.insert(ty.hir_id, vec![]);
1073
1074                 if let Some(elision_region) = elision {
1075                     let scope =
1076                         Scope::Elision { elide: Elide::Exact(elision_region), s: self.scope };
1077                     self.with(scope, |_old_scope, this| {
1078                         let scope = Scope::Binder {
1079                             hir_id: ty.hir_id,
1080                             lifetimes,
1081                             next_early_index,
1082                             s: this.scope,
1083                             track_lifetime_uses: true,
1084                             opaque_type_parent: false,
1085                             scope_type: BinderScopeType::Normal,
1086                         };
1087                         this.with(scope, |_old_scope, this| {
1088                             this.visit_generics(generics);
1089                             let scope = Scope::TraitRefBoundary { s: this.scope };
1090                             this.with(scope, |_, this| {
1091                                 for bound in bounds {
1092                                     this.visit_param_bound(bound);
1093                                 }
1094                             })
1095                         });
1096                     });
1097                 } else {
1098                     let scope = Scope::Binder {
1099                         hir_id: ty.hir_id,
1100                         lifetimes,
1101                         next_early_index,
1102                         s: self.scope,
1103                         track_lifetime_uses: true,
1104                         opaque_type_parent: false,
1105                         scope_type: BinderScopeType::Normal,
1106                     };
1107                     self.with(scope, |_old_scope, this| {
1108                         let scope = Scope::TraitRefBoundary { s: this.scope };
1109                         this.with(scope, |_, this| {
1110                             this.visit_generics(generics);
1111                             for bound in bounds {
1112                                 this.visit_param_bound(bound);
1113                             }
1114                         })
1115                     });
1116                 }
1117             }
1118             _ => intravisit::walk_ty(self, ty),
1119         }
1120     }
1121
1122     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
1123         use self::hir::TraitItemKind::*;
1124         match trait_item.kind {
1125             Fn(ref sig, _) => {
1126                 self.missing_named_lifetime_spots.push((&trait_item.generics).into());
1127                 let tcx = self.tcx;
1128                 self.visit_early_late(
1129                     Some(tcx.hir().get_parent_item(trait_item.hir_id())),
1130                     trait_item.hir_id(),
1131                     &sig.decl,
1132                     &trait_item.generics,
1133                     |this| intravisit::walk_trait_item(this, trait_item),
1134                 );
1135                 self.missing_named_lifetime_spots.pop();
1136             }
1137             Type(bounds, ref ty) => {
1138                 self.missing_named_lifetime_spots.push((&trait_item.generics).into());
1139                 let generics = &trait_item.generics;
1140                 let mut index = self.next_early_index();
1141                 debug!("visit_ty: index = {}", index);
1142                 let mut non_lifetime_count = 0;
1143                 let lifetimes = generics
1144                     .params
1145                     .iter()
1146                     .filter_map(|param| match param.kind {
1147                         GenericParamKind::Lifetime { .. } => {
1148                             Some(Region::early(self.tcx.hir(), &mut index, param))
1149                         }
1150                         GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1151                             non_lifetime_count += 1;
1152                             None
1153                         }
1154                     })
1155                     .collect();
1156                 self.map.late_bound_vars.insert(trait_item.hir_id(), vec![]);
1157                 let scope = Scope::Binder {
1158                     hir_id: trait_item.hir_id(),
1159                     lifetimes,
1160                     next_early_index: index + non_lifetime_count,
1161                     s: self.scope,
1162                     track_lifetime_uses: true,
1163                     opaque_type_parent: true,
1164                     scope_type: BinderScopeType::Normal,
1165                 };
1166                 self.with(scope, |old_scope, this| {
1167                     this.check_lifetime_params(old_scope, &generics.params);
1168                     let scope = Scope::TraitRefBoundary { s: this.scope };
1169                     this.with(scope, |_, this| {
1170                         this.visit_generics(generics);
1171                         for bound in bounds {
1172                             this.visit_param_bound(bound);
1173                         }
1174                         if let Some(ty) = ty {
1175                             this.visit_ty(ty);
1176                         }
1177                     })
1178                 });
1179                 self.missing_named_lifetime_spots.pop();
1180             }
1181             Const(_, _) => {
1182                 // Only methods and types support generics.
1183                 assert!(trait_item.generics.params.is_empty());
1184                 self.missing_named_lifetime_spots.push(MissingLifetimeSpot::Static);
1185                 intravisit::walk_trait_item(self, trait_item);
1186                 self.missing_named_lifetime_spots.pop();
1187             }
1188         }
1189     }
1190
1191     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
1192         use self::hir::ImplItemKind::*;
1193         match impl_item.kind {
1194             Fn(ref sig, _) => {
1195                 self.missing_named_lifetime_spots.push((&impl_item.generics).into());
1196                 let tcx = self.tcx;
1197                 self.visit_early_late(
1198                     Some(tcx.hir().get_parent_item(impl_item.hir_id())),
1199                     impl_item.hir_id(),
1200                     &sig.decl,
1201                     &impl_item.generics,
1202                     |this| intravisit::walk_impl_item(this, impl_item),
1203                 );
1204                 self.missing_named_lifetime_spots.pop();
1205             }
1206             TyAlias(ref ty) => {
1207                 let generics = &impl_item.generics;
1208                 self.missing_named_lifetime_spots.push(generics.into());
1209                 let mut index = self.next_early_index();
1210                 let mut non_lifetime_count = 0;
1211                 debug!("visit_ty: index = {}", index);
1212                 let lifetimes: FxIndexMap<hir::ParamName, Region> = generics
1213                     .params
1214                     .iter()
1215                     .filter_map(|param| match param.kind {
1216                         GenericParamKind::Lifetime { .. } => {
1217                             Some(Region::early(self.tcx.hir(), &mut index, param))
1218                         }
1219                         GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => {
1220                             non_lifetime_count += 1;
1221                             None
1222                         }
1223                     })
1224                     .collect();
1225                 self.map.late_bound_vars.insert(ty.hir_id, vec![]);
1226                 let scope = Scope::Binder {
1227                     hir_id: ty.hir_id,
1228                     lifetimes,
1229                     next_early_index: index + non_lifetime_count,
1230                     s: self.scope,
1231                     track_lifetime_uses: true,
1232                     opaque_type_parent: true,
1233                     scope_type: BinderScopeType::Normal,
1234                 };
1235                 self.with(scope, |old_scope, this| {
1236                     this.check_lifetime_params(old_scope, &generics.params);
1237                     let scope = Scope::TraitRefBoundary { s: this.scope };
1238                     this.with(scope, |_, this| {
1239                         this.visit_generics(generics);
1240                         this.visit_ty(ty);
1241                     })
1242                 });
1243                 self.missing_named_lifetime_spots.pop();
1244             }
1245             Const(_, _) => {
1246                 // Only methods and types support generics.
1247                 assert!(impl_item.generics.params.is_empty());
1248                 self.missing_named_lifetime_spots.push(MissingLifetimeSpot::Static);
1249                 intravisit::walk_impl_item(self, impl_item);
1250                 self.missing_named_lifetime_spots.pop();
1251             }
1252         }
1253     }
1254
1255     #[tracing::instrument(level = "debug", skip(self))]
1256     fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
1257         if lifetime_ref.is_elided() {
1258             self.resolve_elided_lifetimes(&[lifetime_ref]);
1259             return;
1260         }
1261         if lifetime_ref.is_static() {
1262             self.insert_lifetime(lifetime_ref, Region::Static);
1263             return;
1264         }
1265         if self.is_in_const_generic && lifetime_ref.name != LifetimeName::Error {
1266             self.emit_non_static_lt_in_const_generic_error(lifetime_ref);
1267             return;
1268         }
1269         self.resolve_lifetime_ref(lifetime_ref);
1270     }
1271
1272     fn visit_assoc_type_binding(&mut self, type_binding: &'tcx hir::TypeBinding<'_>) {
1273         let scope = self.scope;
1274         if let Some(scope_for_path) = self.map.scope_for_path.as_mut() {
1275             // We add lifetime scope information for `Ident`s in associated type bindings and use
1276             // the `HirId` of the type binding as the key in `LifetimeMap`
1277             let lifetime_scope = get_lifetime_scopes_for_path(scope);
1278             let map = scope_for_path.entry(type_binding.hir_id.owner).or_default();
1279             map.insert(type_binding.hir_id.local_id, lifetime_scope);
1280         }
1281         hir::intravisit::walk_assoc_type_binding(self, type_binding);
1282     }
1283
1284     fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) {
1285         for (i, segment) in path.segments.iter().enumerate() {
1286             let depth = path.segments.len() - i - 1;
1287             if let Some(ref args) = segment.args {
1288                 self.visit_segment_args(path.res, depth, args);
1289             }
1290
1291             let scope = self.scope;
1292             if let Some(scope_for_path) = self.map.scope_for_path.as_mut() {
1293                 // Add lifetime scope information to path segment. Note we cannot call `visit_path_segment`
1294                 // here because that call would yield to resolution problems due to `walk_path_segment`
1295                 // being called, which processes the path segments generic args, which we have already
1296                 // processed using `visit_segment_args`.
1297                 let lifetime_scope = get_lifetime_scopes_for_path(scope);
1298                 if let Some(hir_id) = segment.hir_id {
1299                     let map = scope_for_path.entry(hir_id.owner).or_default();
1300                     map.insert(hir_id.local_id, lifetime_scope);
1301                 }
1302             }
1303         }
1304     }
1305
1306     fn visit_path_segment(&mut self, path_span: Span, path_segment: &'tcx hir::PathSegment<'tcx>) {
1307         let scope = self.scope;
1308         if let Some(scope_for_path) = self.map.scope_for_path.as_mut() {
1309             let lifetime_scope = get_lifetime_scopes_for_path(scope);
1310             if let Some(hir_id) = path_segment.hir_id {
1311                 let map = scope_for_path.entry(hir_id.owner).or_default();
1312                 map.insert(hir_id.local_id, lifetime_scope);
1313             }
1314         }
1315
1316         intravisit::walk_path_segment(self, path_span, path_segment);
1317     }
1318
1319     fn visit_fn_decl(&mut self, fd: &'tcx hir::FnDecl<'tcx>) {
1320         let output = match fd.output {
1321             hir::FnRetTy::DefaultReturn(_) => None,
1322             hir::FnRetTy::Return(ref ty) => Some(&**ty),
1323         };
1324         self.visit_fn_like_elision(&fd.inputs, output);
1325     }
1326
1327     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
1328         if !self.trait_definition_only {
1329             check_mixed_explicit_and_in_band_defs(self.tcx, &generics.params);
1330         }
1331         let scope = Scope::TraitRefBoundary { s: self.scope };
1332         self.with(scope, |_, this| {
1333             for param in generics.params {
1334                 match param.kind {
1335                     GenericParamKind::Lifetime { .. } => {}
1336                     GenericParamKind::Type { ref default, .. } => {
1337                         walk_list!(this, visit_param_bound, param.bounds);
1338                         if let Some(ref ty) = default {
1339                             this.visit_ty(&ty);
1340                         }
1341                     }
1342                     GenericParamKind::Const { ref ty, default } => {
1343                         let was_in_const_generic = this.is_in_const_generic;
1344                         this.is_in_const_generic = true;
1345                         walk_list!(this, visit_param_bound, param.bounds);
1346                         this.visit_ty(&ty);
1347                         if let Some(default) = default {
1348                             this.visit_body(this.tcx.hir().body(default.body));
1349                         }
1350                         this.is_in_const_generic = was_in_const_generic;
1351                     }
1352                 }
1353             }
1354             for predicate in generics.where_clause.predicates {
1355                 match predicate {
1356                     &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
1357                         ref bounded_ty,
1358                         bounds,
1359                         ref bound_generic_params,
1360                         ..
1361                     }) => {
1362                         let (lifetimes, binders): (FxIndexMap<hir::ParamName, Region>, Vec<_>) =
1363                             bound_generic_params
1364                                 .iter()
1365                                 .filter(|param| {
1366                                     matches!(param.kind, GenericParamKind::Lifetime { .. })
1367                                 })
1368                                 .enumerate()
1369                                 .map(|(late_bound_idx, param)| {
1370                                     let pair =
1371                                         Region::late(late_bound_idx as u32, this.tcx.hir(), param);
1372                                     let r = late_region_as_bound_region(this.tcx, &pair.1);
1373                                     (pair, r)
1374                                 })
1375                                 .unzip();
1376                         this.map.late_bound_vars.insert(bounded_ty.hir_id, binders.clone());
1377                         let next_early_index = this.next_early_index();
1378                         // Even if there are no lifetimes defined here, we still wrap it in a binder
1379                         // scope. If there happens to be a nested poly trait ref (an error), that
1380                         // will be `Concatenating` anyways, so we don't have to worry about the depth
1381                         // being wrong.
1382                         let scope = Scope::Binder {
1383                             hir_id: bounded_ty.hir_id,
1384                             lifetimes,
1385                             s: this.scope,
1386                             next_early_index,
1387                             track_lifetime_uses: true,
1388                             opaque_type_parent: false,
1389                             scope_type: BinderScopeType::Normal,
1390                         };
1391                         this.with(scope, |old_scope, this| {
1392                             this.check_lifetime_params(old_scope, &bound_generic_params);
1393                             this.visit_ty(&bounded_ty);
1394                             walk_list!(this, visit_param_bound, bounds);
1395                         })
1396                     }
1397                     &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
1398                         ref lifetime,
1399                         bounds,
1400                         ..
1401                     }) => {
1402                         this.visit_lifetime(lifetime);
1403                         walk_list!(this, visit_param_bound, bounds);
1404                     }
1405                     &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
1406                         ref lhs_ty,
1407                         ref rhs_ty,
1408                         ..
1409                     }) => {
1410                         this.visit_ty(lhs_ty);
1411                         this.visit_ty(rhs_ty);
1412                     }
1413                 }
1414             }
1415         })
1416     }
1417
1418     fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
1419         match bound {
1420             hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
1421                 // FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
1422                 // through the regular poly trait ref code, so we don't get another
1423                 // chance to introduce a binder. For now, I'm keeping the existing logic
1424                 // of "if there isn't a Binder scope above us, add one", but I
1425                 // imagine there's a better way to go about this.
1426                 let (binders, scope_type) = self.poly_trait_ref_binder_info();
1427
1428                 self.map.late_bound_vars.insert(*hir_id, binders);
1429                 let scope = Scope::Binder {
1430                     hir_id: *hir_id,
1431                     lifetimes: FxIndexMap::default(),
1432                     s: self.scope,
1433                     next_early_index: self.next_early_index(),
1434                     track_lifetime_uses: true,
1435                     opaque_type_parent: false,
1436                     scope_type,
1437                 };
1438                 self.with(scope, |_, this| {
1439                     intravisit::walk_param_bound(this, bound);
1440                 });
1441             }
1442             _ => intravisit::walk_param_bound(self, bound),
1443         }
1444     }
1445
1446     fn visit_poly_trait_ref(
1447         &mut self,
1448         trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
1449         _modifier: hir::TraitBoundModifier,
1450     ) {
1451         debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
1452
1453         let should_pop_missing_lt = self.is_trait_ref_fn_scope(trait_ref);
1454
1455         let next_early_index = self.next_early_index();
1456         let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
1457
1458         let initial_bound_vars = binders.len() as u32;
1459         let mut lifetimes: FxIndexMap<hir::ParamName, Region> = FxIndexMap::default();
1460         let binders_iter = trait_ref
1461             .bound_generic_params
1462             .iter()
1463             .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
1464             .enumerate()
1465             .map(|(late_bound_idx, param)| {
1466                 let pair =
1467                     Region::late(initial_bound_vars + late_bound_idx as u32, self.tcx.hir(), param);
1468                 let r = late_region_as_bound_region(self.tcx, &pair.1);
1469                 lifetimes.insert(pair.0, pair.1);
1470                 r
1471             });
1472         binders.extend(binders_iter);
1473
1474         debug!(?binders);
1475         self.map.late_bound_vars.insert(trait_ref.trait_ref.hir_ref_id, binders);
1476
1477         // Always introduce a scope here, even if this is in a where clause and
1478         // we introduced the binders around the bounded Ty. In that case, we
1479         // just reuse the concatenation functionality also present in nested trait
1480         // refs.
1481         let scope = Scope::Binder {
1482             hir_id: trait_ref.trait_ref.hir_ref_id,
1483             lifetimes,
1484             s: self.scope,
1485             next_early_index,
1486             track_lifetime_uses: true,
1487             opaque_type_parent: false,
1488             scope_type,
1489         };
1490         self.with(scope, |old_scope, this| {
1491             this.check_lifetime_params(old_scope, &trait_ref.bound_generic_params);
1492             walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
1493             this.visit_trait_ref(&trait_ref.trait_ref);
1494         });
1495
1496         if should_pop_missing_lt {
1497             self.missing_named_lifetime_spots.pop();
1498         }
1499     }
1500 }
1501
1502 #[derive(Copy, Clone, PartialEq)]
1503 enum ShadowKind {
1504     Label,
1505     Lifetime,
1506 }
1507 struct Original {
1508     kind: ShadowKind,
1509     span: Span,
1510 }
1511 struct Shadower {
1512     kind: ShadowKind,
1513     span: Span,
1514 }
1515
1516 fn original_label(span: Span) -> Original {
1517     Original { kind: ShadowKind::Label, span }
1518 }
1519 fn shadower_label(span: Span) -> Shadower {
1520     Shadower { kind: ShadowKind::Label, span }
1521 }
1522 fn original_lifetime(span: Span) -> Original {
1523     Original { kind: ShadowKind::Lifetime, span }
1524 }
1525 fn shadower_lifetime(param: &hir::GenericParam<'_>) -> Shadower {
1526     Shadower { kind: ShadowKind::Lifetime, span: param.span }
1527 }
1528
1529 impl ShadowKind {
1530     fn desc(&self) -> &'static str {
1531         match *self {
1532             ShadowKind::Label => "label",
1533             ShadowKind::Lifetime => "lifetime",
1534         }
1535     }
1536 }
1537
1538 fn check_mixed_explicit_and_in_band_defs(tcx: TyCtxt<'_>, params: &[hir::GenericParam<'_>]) {
1539     let lifetime_params: Vec<_> = params
1540         .iter()
1541         .filter_map(|param| match param.kind {
1542             GenericParamKind::Lifetime { kind, .. } => Some((kind, param.span)),
1543             _ => None,
1544         })
1545         .collect();
1546     let explicit = lifetime_params.iter().find(|(kind, _)| *kind == LifetimeParamKind::Explicit);
1547     let in_band = lifetime_params.iter().find(|(kind, _)| *kind == LifetimeParamKind::InBand);
1548
1549     if let (Some((_, explicit_span)), Some((_, in_band_span))) = (explicit, in_band) {
1550         struct_span_err!(
1551             tcx.sess,
1552             *in_band_span,
1553             E0688,
1554             "cannot mix in-band and explicit lifetime definitions"
1555         )
1556         .span_label(*in_band_span, "in-band lifetime definition here")
1557         .span_label(*explicit_span, "explicit lifetime definition here")
1558         .emit();
1559     }
1560 }
1561
1562 fn signal_shadowing_problem(tcx: TyCtxt<'_>, name: Symbol, orig: Original, shadower: Shadower) {
1563     let mut err = if let (ShadowKind::Lifetime, ShadowKind::Lifetime) = (orig.kind, shadower.kind) {
1564         // lifetime/lifetime shadowing is an error
1565         struct_span_err!(
1566             tcx.sess,
1567             shadower.span,
1568             E0496,
1569             "{} name `{}` shadows a \
1570              {} name that is already in scope",
1571             shadower.kind.desc(),
1572             name,
1573             orig.kind.desc()
1574         )
1575         .forget_guarantee()
1576     } else {
1577         // shadowing involving a label is only a warning, due to issues with
1578         // labels and lifetimes not being macro-hygienic.
1579         tcx.sess.struct_span_warn(
1580             shadower.span,
1581             &format!(
1582                 "{} name `{}` shadows a \
1583                  {} name that is already in scope",
1584                 shadower.kind.desc(),
1585                 name,
1586                 orig.kind.desc()
1587             ),
1588         )
1589     };
1590     err.span_label(orig.span, "first declared here");
1591     err.span_label(shadower.span, format!("{} `{}` already in scope", orig.kind.desc(), name));
1592     err.emit();
1593 }
1594
1595 // Adds all labels in `b` to `ctxt.labels_in_fn`, signalling a warning
1596 // if one of the label shadows a lifetime or another label.
1597 fn extract_labels(ctxt: &mut LifetimeContext<'_, '_>, body: &hir::Body<'_>) {
1598     struct GatherLabels<'a, 'tcx> {
1599         tcx: TyCtxt<'tcx>,
1600         scope: ScopeRef<'a>,
1601         labels_in_fn: &'a mut Vec<Ident>,
1602     }
1603
1604     let mut gather =
1605         GatherLabels { tcx: ctxt.tcx, scope: ctxt.scope, labels_in_fn: &mut ctxt.labels_in_fn };
1606     gather.visit_body(body);
1607
1608     impl<'v, 'a, 'tcx> Visitor<'v> for GatherLabels<'a, 'tcx> {
1609         fn visit_expr(&mut self, ex: &hir::Expr<'_>) {
1610             if let Some(label) = expression_label(ex) {
1611                 for prior_label in &self.labels_in_fn[..] {
1612                     // FIXME (#24278): non-hygienic comparison
1613                     if label.name == prior_label.name {
1614                         signal_shadowing_problem(
1615                             self.tcx,
1616                             label.name,
1617                             original_label(prior_label.span),
1618                             shadower_label(label.span),
1619                         );
1620                     }
1621                 }
1622
1623                 check_if_label_shadows_lifetime(self.tcx, self.scope, label);
1624
1625                 self.labels_in_fn.push(label);
1626             }
1627             intravisit::walk_expr(self, ex)
1628         }
1629     }
1630
1631     fn expression_label(ex: &hir::Expr<'_>) -> Option<Ident> {
1632         match ex.kind {
1633             hir::ExprKind::Loop(_, Some(label), ..) => Some(label.ident),
1634             hir::ExprKind::Block(_, Some(label)) => Some(label.ident),
1635             _ => None,
1636         }
1637     }
1638
1639     fn check_if_label_shadows_lifetime(tcx: TyCtxt<'_>, mut scope: ScopeRef<'_>, label: Ident) {
1640         loop {
1641             match *scope {
1642                 Scope::Body { s, .. }
1643                 | Scope::Elision { s, .. }
1644                 | Scope::ObjectLifetimeDefault { s, .. }
1645                 | Scope::Supertrait { s, .. }
1646                 | Scope::TraitRefBoundary { s, .. } => {
1647                     scope = s;
1648                 }
1649
1650                 Scope::Root => {
1651                     return;
1652                 }
1653
1654                 Scope::Binder { ref lifetimes, s, .. } => {
1655                     // FIXME (#24278): non-hygienic comparison
1656                     if let Some(def) =
1657                         lifetimes.get(&hir::ParamName::Plain(label.normalize_to_macros_2_0()))
1658                     {
1659                         signal_shadowing_problem(
1660                             tcx,
1661                             label.name,
1662                             original_lifetime(tcx.def_span(def.id().unwrap().expect_local())),
1663                             shadower_label(label.span),
1664                         );
1665                         return;
1666                     }
1667                     scope = s;
1668                 }
1669             }
1670         }
1671     }
1672 }
1673
1674 fn compute_object_lifetime_defaults<'tcx>(
1675     tcx: TyCtxt<'tcx>,
1676     item: &hir::Item<'_>,
1677 ) -> Option<&'tcx [ObjectLifetimeDefault]> {
1678     match item.kind {
1679         hir::ItemKind::Struct(_, ref generics)
1680         | hir::ItemKind::Union(_, ref generics)
1681         | hir::ItemKind::Enum(_, ref generics)
1682         | hir::ItemKind::OpaqueTy(hir::OpaqueTy {
1683             ref generics,
1684             origin: hir::OpaqueTyOrigin::TyAlias,
1685             ..
1686         })
1687         | hir::ItemKind::TyAlias(_, ref generics)
1688         | hir::ItemKind::Trait(_, _, ref generics, ..) => {
1689             let result = object_lifetime_defaults_for_item(tcx, generics);
1690
1691             // Debugging aid.
1692             let attrs = tcx.hir().attrs(item.hir_id());
1693             if tcx.sess.contains_name(attrs, sym::rustc_object_lifetime_default) {
1694                 let object_lifetime_default_reprs: String = result
1695                     .iter()
1696                     .map(|set| match *set {
1697                         Set1::Empty => "BaseDefault".into(),
1698                         Set1::One(Region::Static) => "'static".into(),
1699                         Set1::One(Region::EarlyBound(mut i, _, _)) => generics
1700                             .params
1701                             .iter()
1702                             .find_map(|param| match param.kind {
1703                                 GenericParamKind::Lifetime { .. } => {
1704                                     if i == 0 {
1705                                         return Some(param.name.ident().to_string().into());
1706                                     }
1707                                     i -= 1;
1708                                     None
1709                                 }
1710                                 _ => None,
1711                             })
1712                             .unwrap(),
1713                         Set1::One(_) => bug!(),
1714                         Set1::Many => "Ambiguous".into(),
1715                     })
1716                     .collect::<Vec<Cow<'static, str>>>()
1717                     .join(",");
1718                 tcx.sess.span_err(item.span, &object_lifetime_default_reprs);
1719             }
1720
1721             Some(result)
1722         }
1723         _ => None,
1724     }
1725 }
1726
1727 /// Scan the bounds and where-clauses on parameters to extract bounds
1728 /// of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
1729 /// for each type parameter.
1730 fn object_lifetime_defaults_for_item<'tcx>(
1731     tcx: TyCtxt<'tcx>,
1732     generics: &hir::Generics<'_>,
1733 ) -> &'tcx [ObjectLifetimeDefault] {
1734     fn add_bounds(set: &mut Set1<hir::LifetimeName>, bounds: &[hir::GenericBound<'_>]) {
1735         for bound in bounds {
1736             if let hir::GenericBound::Outlives(ref lifetime) = *bound {
1737                 set.insert(lifetime.name.normalize_to_macros_2_0());
1738             }
1739         }
1740     }
1741
1742     let process_param = |param: &hir::GenericParam<'_>| match param.kind {
1743         GenericParamKind::Lifetime { .. } => None,
1744         GenericParamKind::Type { .. } => {
1745             let mut set = Set1::Empty;
1746
1747             add_bounds(&mut set, &param.bounds);
1748
1749             let param_def_id = tcx.hir().local_def_id(param.hir_id);
1750             for predicate in generics.where_clause.predicates {
1751                 // Look for `type: ...` where clauses.
1752                 let hir::WherePredicate::BoundPredicate(ref data) = *predicate else { continue };
1753
1754                 // Ignore `for<'a> type: ...` as they can change what
1755                 // lifetimes mean (although we could "just" handle it).
1756                 if !data.bound_generic_params.is_empty() {
1757                     continue;
1758                 }
1759
1760                 let res = match data.bounded_ty.kind {
1761                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => path.res,
1762                     _ => continue,
1763                 };
1764
1765                 if res == Res::Def(DefKind::TyParam, param_def_id.to_def_id()) {
1766                     add_bounds(&mut set, &data.bounds);
1767                 }
1768             }
1769
1770             Some(match set {
1771                 Set1::Empty => Set1::Empty,
1772                 Set1::One(name) => {
1773                     if name == hir::LifetimeName::Static {
1774                         Set1::One(Region::Static)
1775                     } else {
1776                         generics
1777                             .params
1778                             .iter()
1779                             .filter_map(|param| match param.kind {
1780                                 GenericParamKind::Lifetime { .. } => Some((
1781                                     param.hir_id,
1782                                     hir::LifetimeName::Param(param.name),
1783                                     LifetimeDefOrigin::from_param(param),
1784                                 )),
1785                                 _ => None,
1786                             })
1787                             .enumerate()
1788                             .find(|&(_, (_, lt_name, _))| lt_name == name)
1789                             .map_or(Set1::Many, |(i, (id, _, origin))| {
1790                                 let def_id = tcx.hir().local_def_id(id);
1791                                 Set1::One(Region::EarlyBound(i as u32, def_id.to_def_id(), origin))
1792                             })
1793                     }
1794                 }
1795                 Set1::Many => Set1::Many,
1796             })
1797         }
1798         GenericParamKind::Const { .. } => {
1799             // Generic consts don't impose any constraints.
1800             //
1801             // We still store a dummy value here to allow generic parameters
1802             // in an arbitrary order.
1803             Some(Set1::Empty)
1804         }
1805     };
1806
1807     tcx.arena.alloc_from_iter(generics.params.iter().filter_map(process_param))
1808 }
1809
1810 impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
1811     fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
1812     where
1813         F: for<'b> FnOnce(ScopeRef<'_>, &mut LifetimeContext<'b, 'tcx>),
1814     {
1815         let LifetimeContext { tcx, map, lifetime_uses, .. } = self;
1816         let labels_in_fn = take(&mut self.labels_in_fn);
1817         let xcrate_object_lifetime_defaults = take(&mut self.xcrate_object_lifetime_defaults);
1818         let missing_named_lifetime_spots = take(&mut self.missing_named_lifetime_spots);
1819         let mut this = LifetimeContext {
1820             tcx: *tcx,
1821             map,
1822             scope: &wrap_scope,
1823             is_in_fn_syntax: self.is_in_fn_syntax,
1824             is_in_const_generic: self.is_in_const_generic,
1825             trait_definition_only: self.trait_definition_only,
1826             labels_in_fn,
1827             xcrate_object_lifetime_defaults,
1828             lifetime_uses,
1829             missing_named_lifetime_spots,
1830         };
1831         let span = tracing::debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope));
1832         {
1833             let _enter = span.enter();
1834             f(self.scope, &mut this);
1835             if !self.trait_definition_only {
1836                 this.check_uses_for_lifetimes_defined_by_scope();
1837             }
1838         }
1839         self.labels_in_fn = this.labels_in_fn;
1840         self.xcrate_object_lifetime_defaults = this.xcrate_object_lifetime_defaults;
1841         self.missing_named_lifetime_spots = this.missing_named_lifetime_spots;
1842     }
1843
1844     /// helper method to determine the span to remove when suggesting the
1845     /// deletion of a lifetime
1846     fn lifetime_deletion_span(&self, name: Ident, generics: &hir::Generics<'_>) -> Option<Span> {
1847         generics.params.iter().enumerate().find_map(|(i, param)| {
1848             if param.name.ident() == name {
1849                 let in_band = matches!(
1850                     param.kind,
1851                     hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::InBand }
1852                 );
1853                 if in_band {
1854                     Some(param.span)
1855                 } else if generics.params.len() == 1 {
1856                     // if sole lifetime, remove the entire `<>` brackets
1857                     Some(generics.span)
1858                 } else {
1859                     // if removing within `<>` brackets, we also want to
1860                     // delete a leading or trailing comma as appropriate
1861                     if i >= generics.params.len() - 1 {
1862                         Some(generics.params[i - 1].span.shrink_to_hi().to(param.span))
1863                     } else {
1864                         Some(param.span.to(generics.params[i + 1].span.shrink_to_lo()))
1865                     }
1866                 }
1867             } else {
1868                 None
1869             }
1870         })
1871     }
1872
1873     // helper method to issue suggestions from `fn rah<'a>(&'a T)` to `fn rah(&T)`
1874     // or from `fn rah<'a>(T<'a>)` to `fn rah(T<'_>)`
1875     fn suggest_eliding_single_use_lifetime(
1876         &self,
1877         err: &mut Diagnostic,
1878         def_id: DefId,
1879         lifetime: &hir::Lifetime,
1880     ) {
1881         let name = lifetime.name.ident();
1882         let remove_decl = self
1883             .tcx
1884             .parent(def_id)
1885             .and_then(|parent_def_id| parent_def_id.as_local())
1886             .and_then(|parent_def_id| self.tcx.hir().get_generics(parent_def_id))
1887             .and_then(|generics| self.lifetime_deletion_span(name, generics));
1888
1889         let mut remove_use = None;
1890         let mut elide_use = None;
1891         let mut find_arg_use_span = |inputs: &[hir::Ty<'_>]| {
1892             for input in inputs {
1893                 match input.kind {
1894                     hir::TyKind::Rptr(lt, _) => {
1895                         if lt.name.ident() == name {
1896                             // include the trailing whitespace between the lifetime and type names
1897                             let lt_through_ty_span = lifetime.span.to(input.span.shrink_to_hi());
1898                             remove_use = Some(
1899                                 self.tcx
1900                                     .sess
1901                                     .source_map()
1902                                     .span_until_non_whitespace(lt_through_ty_span),
1903                             );
1904                             break;
1905                         }
1906                     }
1907                     hir::TyKind::Path(QPath::Resolved(_, path)) => {
1908                         let last_segment = &path.segments[path.segments.len() - 1];
1909                         let generics = last_segment.args();
1910                         for arg in generics.args.iter() {
1911                             if let GenericArg::Lifetime(lt) = arg {
1912                                 if lt.name.ident() == name {
1913                                     elide_use = Some(lt.span);
1914                                     break;
1915                                 }
1916                             }
1917                         }
1918                         break;
1919                     }
1920                     _ => {}
1921                 }
1922             }
1923         };
1924         if let Node::Lifetime(hir_lifetime) = self.tcx.hir().get(lifetime.hir_id) {
1925             if let Some(parent) =
1926                 self.tcx.hir().find_by_def_id(self.tcx.hir().get_parent_item(hir_lifetime.hir_id))
1927             {
1928                 match parent {
1929                     Node::Item(item) => {
1930                         if let hir::ItemKind::Fn(sig, _, _) = &item.kind {
1931                             find_arg_use_span(sig.decl.inputs);
1932                         }
1933                     }
1934                     Node::ImplItem(impl_item) => {
1935                         if let hir::ImplItemKind::Fn(sig, _) = &impl_item.kind {
1936                             find_arg_use_span(sig.decl.inputs);
1937                         }
1938                     }
1939                     _ => {}
1940                 }
1941             }
1942         }
1943
1944         let msg = "elide the single-use lifetime";
1945         match (remove_decl, remove_use, elide_use) {
1946             (Some(decl_span), Some(use_span), None) => {
1947                 // if both declaration and use deletion spans start at the same
1948                 // place ("start at" because the latter includes trailing
1949                 // whitespace), then this is an in-band lifetime
1950                 if decl_span.shrink_to_lo() == use_span.shrink_to_lo() {
1951                     err.span_suggestion(
1952                         use_span,
1953                         msg,
1954                         String::new(),
1955                         Applicability::MachineApplicable,
1956                     );
1957                 } else {
1958                     err.multipart_suggestion(
1959                         msg,
1960                         vec![(decl_span, String::new()), (use_span, String::new())],
1961                         Applicability::MachineApplicable,
1962                     );
1963                 }
1964             }
1965             (Some(decl_span), None, Some(use_span)) => {
1966                 err.multipart_suggestion(
1967                     msg,
1968                     vec![(decl_span, String::new()), (use_span, "'_".to_owned())],
1969                     Applicability::MachineApplicable,
1970                 );
1971             }
1972             _ => {}
1973         }
1974     }
1975
1976     fn check_uses_for_lifetimes_defined_by_scope(&mut self) {
1977         let Scope::Binder { lifetimes: defined_by, .. } = self.scope else {
1978             debug!("check_uses_for_lifetimes_defined_by_scope: not in a binder scope");
1979             return;
1980         };
1981
1982         let def_ids: Vec<_> = defined_by
1983             .values()
1984             .flat_map(|region| match region {
1985                 Region::EarlyBound(_, def_id, _)
1986                 | Region::LateBound(_, _, def_id, _)
1987                 | Region::Free(_, def_id) => Some(*def_id),
1988
1989                 Region::LateBoundAnon(..) | Region::Static => None,
1990             })
1991             .collect();
1992
1993         'lifetimes: for def_id in def_ids {
1994             debug!("check_uses_for_lifetimes_defined_by_scope: def_id = {:?}", def_id);
1995
1996             let lifetimeuseset = self.lifetime_uses.remove(&def_id);
1997
1998             debug!(
1999                 "check_uses_for_lifetimes_defined_by_scope: lifetimeuseset = {:?}",
2000                 lifetimeuseset
2001             );
2002
2003             match lifetimeuseset {
2004                 Some(LifetimeUseSet::One(lifetime)) => {
2005                     debug!(?def_id);
2006                     if let Some((id, span, name)) =
2007                         match self.tcx.hir().get_by_def_id(def_id.expect_local()) {
2008                             Node::Lifetime(hir_lifetime) => Some((
2009                                 hir_lifetime.hir_id,
2010                                 hir_lifetime.span,
2011                                 hir_lifetime.name.ident(),
2012                             )),
2013                             Node::GenericParam(param) => {
2014                                 Some((param.hir_id, param.span, param.name.ident()))
2015                             }
2016                             _ => None,
2017                         }
2018                     {
2019                         debug!("id = {:?} span = {:?} name = {:?}", id, span, name);
2020                         if name.name == kw::UnderscoreLifetime {
2021                             continue;
2022                         }
2023
2024                         if let Some(parent_def_id) = self.tcx.parent(def_id) {
2025                             if let Some(def_id) = parent_def_id.as_local() {
2026                                 // lifetimes in `derive` expansions don't count (Issue #53738)
2027                                 if self
2028                                     .tcx
2029                                     .get_attrs(def_id.to_def_id())
2030                                     .iter()
2031                                     .any(|attr| attr.has_name(sym::automatically_derived))
2032                                 {
2033                                     continue;
2034                                 }
2035
2036                                 // opaque types generated when desugaring an async function can have a single
2037                                 // use lifetime even if it is explicitly denied (Issue #77175)
2038                                 if let hir::Node::Item(hir::Item {
2039                                     kind: hir::ItemKind::OpaqueTy(ref opaque),
2040                                     ..
2041                                 }) = self.tcx.hir().get_by_def_id(def_id)
2042                                 {
2043                                     if !matches!(opaque.origin, hir::OpaqueTyOrigin::AsyncFn(..)) {
2044                                         continue 'lifetimes;
2045                                     }
2046                                     // We want to do this only if the liftime identifier is already defined
2047                                     // in the async function that generated this. Otherwise it could be
2048                                     // an opaque type defined by the developer and we still want this
2049                                     // lint to fail compilation
2050                                     for p in opaque.generics.params {
2051                                         if defined_by.contains_key(&p.name) {
2052                                             continue 'lifetimes;
2053                                         }
2054                                     }
2055                                 }
2056                             }
2057                         }
2058
2059                         self.tcx.struct_span_lint_hir(
2060                             lint::builtin::SINGLE_USE_LIFETIMES,
2061                             id,
2062                             span,
2063                             |lint| {
2064                                 let mut err = lint.build(&format!(
2065                                     "lifetime parameter `{}` only used once",
2066                                     name
2067                                 ));
2068                                 if span == lifetime.span {
2069                                     // spans are the same for in-band lifetime declarations
2070                                     err.span_label(span, "this lifetime is only used here");
2071                                 } else {
2072                                     err.span_label(span, "this lifetime...");
2073                                     err.span_label(lifetime.span, "...is used only here");
2074                                 }
2075                                 self.suggest_eliding_single_use_lifetime(
2076                                     &mut err, def_id, lifetime,
2077                                 );
2078                                 err.emit();
2079                             },
2080                         );
2081                     }
2082                 }
2083                 Some(LifetimeUseSet::Many) => {
2084                     debug!("not one use lifetime");
2085                 }
2086                 None => {
2087                     if let Some((id, span, name)) =
2088                         match self.tcx.hir().get_by_def_id(def_id.expect_local()) {
2089                             Node::Lifetime(hir_lifetime) => Some((
2090                                 hir_lifetime.hir_id,
2091                                 hir_lifetime.span,
2092                                 hir_lifetime.name.ident(),
2093                             )),
2094                             Node::GenericParam(param) => {
2095                                 Some((param.hir_id, param.span, param.name.ident()))
2096                             }
2097                             _ => None,
2098                         }
2099                     {
2100                         debug!("id ={:?} span = {:?} name = {:?}", id, span, name);
2101                         self.tcx.struct_span_lint_hir(
2102                             lint::builtin::UNUSED_LIFETIMES,
2103                             id,
2104                             span,
2105                             |lint| {
2106                                 let mut err = lint
2107                                     .build(&format!("lifetime parameter `{}` never used", name));
2108                                 if let Some(parent_def_id) = self.tcx.parent(def_id) {
2109                                     if let Some(generics) =
2110                                         self.tcx.hir().get_generics(parent_def_id.expect_local())
2111                                     {
2112                                         let unused_lt_span =
2113                                             self.lifetime_deletion_span(name, generics);
2114                                         if let Some(span) = unused_lt_span {
2115                                             err.span_suggestion(
2116                                                 span,
2117                                                 "elide the unused lifetime",
2118                                                 String::new(),
2119                                                 Applicability::MachineApplicable,
2120                                             );
2121                                         }
2122                                     }
2123                                 }
2124                                 err.emit();
2125                             },
2126                         );
2127                     }
2128                 }
2129             }
2130         }
2131     }
2132
2133     /// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
2134     ///
2135     /// Handles visiting fns and methods. These are a bit complicated because we must distinguish
2136     /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
2137     /// within type bounds; those are early bound lifetimes, and the rest are late bound.
2138     ///
2139     /// For example:
2140     ///
2141     ///    fn foo<'a,'b,'c,T:Trait<'b>>(...)
2142     ///
2143     /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
2144     /// lifetimes may be interspersed together.
2145     ///
2146     /// If early bound lifetimes are present, we separate them into their own list (and likewise
2147     /// for late bound). They will be numbered sequentially, starting from the lowest index that is
2148     /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
2149     /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
2150     /// ordering is not important there.
2151     fn visit_early_late<F>(
2152         &mut self,
2153         parent_id: Option<LocalDefId>,
2154         hir_id: hir::HirId,
2155         decl: &'tcx hir::FnDecl<'tcx>,
2156         generics: &'tcx hir::Generics<'tcx>,
2157         walk: F,
2158     ) where
2159         F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>),
2160     {
2161         insert_late_bound_lifetimes(self.map, decl, generics);
2162
2163         // Find the start of nested early scopes, e.g., in methods.
2164         let mut next_early_index = 0;
2165         if let Some(parent_id) = parent_id {
2166             let parent = self.tcx.hir().expect_item(parent_id);
2167             if sub_items_have_self_param(&parent.kind) {
2168                 next_early_index += 1; // Self comes before lifetimes
2169             }
2170             match parent.kind {
2171                 hir::ItemKind::Trait(_, _, ref generics, ..)
2172                 | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
2173                     next_early_index += generics.params.len() as u32;
2174                 }
2175                 _ => {}
2176             }
2177         }
2178
2179         let mut non_lifetime_count = 0;
2180         let mut named_late_bound_vars = 0;
2181         let lifetimes: FxIndexMap<hir::ParamName, Region> = generics
2182             .params
2183             .iter()
2184             .filter_map(|param| match param.kind {
2185                 GenericParamKind::Lifetime { .. } => {
2186                     if self.map.late_bound.contains(&param.hir_id) {
2187                         let late_bound_idx = named_late_bound_vars;
2188                         named_late_bound_vars += 1;
2189                         Some(Region::late(late_bound_idx, self.tcx.hir(), param))
2190                     } else {
2191                         Some(Region::early(self.tcx.hir(), &mut next_early_index, param))
2192                     }
2193                 }
2194                 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
2195                     non_lifetime_count += 1;
2196                     None
2197                 }
2198             })
2199             .collect();
2200         let next_early_index = next_early_index + non_lifetime_count;
2201
2202         let binders: Vec<_> = generics
2203             .params
2204             .iter()
2205             .filter(|param| {
2206                 matches!(param.kind, GenericParamKind::Lifetime { .. })
2207                     && self.map.late_bound.contains(&param.hir_id)
2208             })
2209             .enumerate()
2210             .map(|(late_bound_idx, param)| {
2211                 let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
2212                 late_region_as_bound_region(self.tcx, &pair.1)
2213             })
2214             .collect();
2215         self.map.late_bound_vars.insert(hir_id, binders);
2216         let scope = Scope::Binder {
2217             hir_id,
2218             lifetimes,
2219             next_early_index,
2220             s: self.scope,
2221             opaque_type_parent: true,
2222             track_lifetime_uses: false,
2223             scope_type: BinderScopeType::Normal,
2224         };
2225         self.with(scope, move |old_scope, this| {
2226             this.check_lifetime_params(old_scope, &generics.params);
2227             walk(this);
2228         });
2229     }
2230
2231     fn next_early_index_helper(&self, only_opaque_type_parent: bool) -> u32 {
2232         let mut scope = self.scope;
2233         loop {
2234             match *scope {
2235                 Scope::Root => return 0,
2236
2237                 Scope::Binder { next_early_index, opaque_type_parent, .. }
2238                     if (!only_opaque_type_parent || opaque_type_parent) =>
2239                 {
2240                     return next_early_index;
2241                 }
2242
2243                 Scope::Binder { s, .. }
2244                 | Scope::Body { s, .. }
2245                 | Scope::Elision { s, .. }
2246                 | Scope::ObjectLifetimeDefault { s, .. }
2247                 | Scope::Supertrait { s, .. }
2248                 | Scope::TraitRefBoundary { s, .. } => scope = s,
2249             }
2250         }
2251     }
2252
2253     /// Returns the next index one would use for an early-bound-region
2254     /// if extending the current scope.
2255     fn next_early_index(&self) -> u32 {
2256         self.next_early_index_helper(true)
2257     }
2258
2259     /// Returns the next index one would use for an `impl Trait` that
2260     /// is being converted into an opaque type alias `impl Trait`. This will be the
2261     /// next early index from the enclosing item, for the most
2262     /// part. See the `opaque_type_parent` field for more info.
2263     fn next_early_index_for_opaque_type(&self) -> u32 {
2264         self.next_early_index_helper(false)
2265     }
2266
2267     fn resolve_lifetime_ref(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
2268         debug!("resolve_lifetime_ref(lifetime_ref={:?})", lifetime_ref);
2269
2270         // If we've already reported an error, just ignore `lifetime_ref`.
2271         if let LifetimeName::Error = lifetime_ref.name {
2272             return;
2273         }
2274
2275         // Walk up the scope chain, tracking the number of fn scopes
2276         // that we pass through, until we find a lifetime with the
2277         // given name or we run out of scopes.
2278         // search.
2279         let mut late_depth = 0;
2280         let mut scope = self.scope;
2281         let mut outermost_body = None;
2282         let result = loop {
2283             match *scope {
2284                 Scope::Body { id, s } => {
2285                     // Non-static lifetimes are prohibited in anonymous constants without
2286                     // `generic_const_exprs`.
2287                     self.maybe_emit_forbidden_non_static_lifetime_error(id, lifetime_ref);
2288
2289                     outermost_body = Some(id);
2290                     scope = s;
2291                 }
2292
2293                 Scope::Root => {
2294                     break None;
2295                 }
2296
2297                 Scope::Binder { ref lifetimes, scope_type, s, .. } => {
2298                     match lifetime_ref.name {
2299                         LifetimeName::Param(param_name) => {
2300                             if let Some(&def) = lifetimes.get(&param_name.normalize_to_macros_2_0())
2301                             {
2302                                 break Some(def.shifted(late_depth));
2303                             }
2304                         }
2305                         _ => bug!("expected LifetimeName::Param"),
2306                     }
2307                     match scope_type {
2308                         BinderScopeType::Normal => late_depth += 1,
2309                         BinderScopeType::Concatenating => {}
2310                     }
2311                     scope = s;
2312                 }
2313
2314                 Scope::Elision { s, .. }
2315                 | Scope::ObjectLifetimeDefault { s, .. }
2316                 | Scope::Supertrait { s, .. }
2317                 | Scope::TraitRefBoundary { s, .. } => {
2318                     scope = s;
2319                 }
2320             }
2321         };
2322
2323         if let Some(mut def) = result {
2324             if let Region::EarlyBound(..) = def {
2325                 // Do not free early-bound regions, only late-bound ones.
2326             } else if let Some(body_id) = outermost_body {
2327                 let fn_id = self.tcx.hir().body_owner(body_id);
2328                 match self.tcx.hir().get(fn_id) {
2329                     Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. })
2330                     | Node::TraitItem(&hir::TraitItem {
2331                         kind: hir::TraitItemKind::Fn(..), ..
2332                     })
2333                     | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => {
2334                         let scope = self.tcx.hir().local_def_id(fn_id);
2335                         def = Region::Free(scope.to_def_id(), def.id().unwrap());
2336                     }
2337                     _ => {}
2338                 }
2339             }
2340
2341             // Check for fn-syntax conflicts with in-band lifetime definitions
2342             if !self.trait_definition_only && self.is_in_fn_syntax {
2343                 match def {
2344                     Region::EarlyBound(_, _, LifetimeDefOrigin::InBand)
2345                     | Region::LateBound(_, _, _, LifetimeDefOrigin::InBand) => {
2346                         struct_span_err!(
2347                             self.tcx.sess,
2348                             lifetime_ref.span,
2349                             E0687,
2350                             "lifetimes used in `fn` or `Fn` syntax must be \
2351                              explicitly declared using `<...>` binders"
2352                         )
2353                         .span_label(lifetime_ref.span, "in-band lifetime definition")
2354                         .emit();
2355                     }
2356
2357                     Region::Static
2358                     | Region::EarlyBound(
2359                         _,
2360                         _,
2361                         LifetimeDefOrigin::ExplicitOrElided | LifetimeDefOrigin::Error,
2362                     )
2363                     | Region::LateBound(
2364                         _,
2365                         _,
2366                         _,
2367                         LifetimeDefOrigin::ExplicitOrElided | LifetimeDefOrigin::Error,
2368                     )
2369                     | Region::LateBoundAnon(..)
2370                     | Region::Free(..) => {}
2371                 }
2372             }
2373
2374             self.insert_lifetime(lifetime_ref, def);
2375         } else {
2376             self.emit_undeclared_lifetime_error(lifetime_ref);
2377         }
2378     }
2379
2380     fn visit_segment_args(
2381         &mut self,
2382         res: Res,
2383         depth: usize,
2384         generic_args: &'tcx hir::GenericArgs<'tcx>,
2385     ) {
2386         debug!(
2387             "visit_segment_args(res={:?}, depth={:?}, generic_args={:?})",
2388             res, depth, generic_args,
2389         );
2390
2391         if generic_args.parenthesized {
2392             let was_in_fn_syntax = self.is_in_fn_syntax;
2393             self.is_in_fn_syntax = true;
2394             self.visit_fn_like_elision(generic_args.inputs(), Some(generic_args.bindings[0].ty()));
2395             self.is_in_fn_syntax = was_in_fn_syntax;
2396             return;
2397         }
2398
2399         let mut elide_lifetimes = true;
2400         let lifetimes: Vec<_> = generic_args
2401             .args
2402             .iter()
2403             .filter_map(|arg| match arg {
2404                 hir::GenericArg::Lifetime(lt) => {
2405                     if !lt.is_elided() {
2406                         elide_lifetimes = false;
2407                     }
2408                     Some(lt)
2409                 }
2410                 _ => None,
2411             })
2412             .collect();
2413         // We short-circuit here if all are elided in order to pluralize
2414         // possible errors
2415         if elide_lifetimes {
2416             self.resolve_elided_lifetimes(&lifetimes);
2417         } else {
2418             lifetimes.iter().for_each(|lt| self.visit_lifetime(lt));
2419         }
2420
2421         // Figure out if this is a type/trait segment,
2422         // which requires object lifetime defaults.
2423         let parent_def_id = |this: &mut Self, def_id: DefId| {
2424             let def_key = this.tcx.def_key(def_id);
2425             DefId { krate: def_id.krate, index: def_key.parent.expect("missing parent") }
2426         };
2427         let type_def_id = match res {
2428             Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(parent_def_id(self, def_id)),
2429             Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(parent_def_id(self, def_id)),
2430             Res::Def(
2431                 DefKind::Struct
2432                 | DefKind::Union
2433                 | DefKind::Enum
2434                 | DefKind::TyAlias
2435                 | DefKind::Trait,
2436                 def_id,
2437             ) if depth == 0 => Some(def_id),
2438             _ => None,
2439         };
2440
2441         debug!("visit_segment_args: type_def_id={:?}", type_def_id);
2442
2443         // Compute a vector of defaults, one for each type parameter,
2444         // per the rules given in RFCs 599 and 1156. Example:
2445         //
2446         // ```rust
2447         // struct Foo<'a, T: 'a, U> { }
2448         // ```
2449         //
2450         // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
2451         // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
2452         // and `dyn Baz` to `dyn Baz + 'static` (because there is no
2453         // such bound).
2454         //
2455         // Therefore, we would compute `object_lifetime_defaults` to a
2456         // vector like `['x, 'static]`. Note that the vector only
2457         // includes type parameters.
2458         let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
2459             let in_body = {
2460                 let mut scope = self.scope;
2461                 loop {
2462                     match *scope {
2463                         Scope::Root => break false,
2464
2465                         Scope::Body { .. } => break true,
2466
2467                         Scope::Binder { s, .. }
2468                         | Scope::Elision { s, .. }
2469                         | Scope::ObjectLifetimeDefault { s, .. }
2470                         | Scope::Supertrait { s, .. }
2471                         | Scope::TraitRefBoundary { s, .. } => {
2472                             scope = s;
2473                         }
2474                     }
2475                 }
2476             };
2477
2478             let map = &self.map;
2479             let set_to_region = |set: &ObjectLifetimeDefault| match *set {
2480                 Set1::Empty => {
2481                     if in_body {
2482                         None
2483                     } else {
2484                         Some(Region::Static)
2485                     }
2486                 }
2487                 Set1::One(r) => {
2488                     let lifetimes = generic_args.args.iter().filter_map(|arg| match arg {
2489                         GenericArg::Lifetime(lt) => Some(lt),
2490                         _ => None,
2491                     });
2492                     r.subst(lifetimes, map)
2493                 }
2494                 Set1::Many => None,
2495             };
2496             if let Some(def_id) = def_id.as_local() {
2497                 let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
2498                 self.tcx
2499                     .object_lifetime_defaults(id.owner)
2500                     .unwrap()
2501                     .iter()
2502                     .map(set_to_region)
2503                     .collect()
2504             } else {
2505                 let tcx = self.tcx;
2506                 self.xcrate_object_lifetime_defaults
2507                     .entry(def_id)
2508                     .or_insert_with(|| {
2509                         tcx.generics_of(def_id)
2510                             .params
2511                             .iter()
2512                             .filter_map(|param| match param.kind {
2513                                 GenericParamDefKind::Type { object_lifetime_default, .. } => {
2514                                     Some(object_lifetime_default)
2515                                 }
2516                                 GenericParamDefKind::Const { .. } => Some(Set1::Empty),
2517                                 GenericParamDefKind::Lifetime => None,
2518                             })
2519                             .collect()
2520                     })
2521                     .iter()
2522                     .map(set_to_region)
2523                     .collect()
2524             }
2525         });
2526
2527         debug!("visit_segment_args: object_lifetime_defaults={:?}", object_lifetime_defaults);
2528
2529         let mut i = 0;
2530         for arg in generic_args.args {
2531             match arg {
2532                 GenericArg::Lifetime(_) => {}
2533                 GenericArg::Type(ty) => {
2534                     if let Some(&lt) = object_lifetime_defaults.get(i) {
2535                         let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
2536                         self.with(scope, |_, this| this.visit_ty(ty));
2537                     } else {
2538                         self.visit_ty(ty);
2539                     }
2540                     i += 1;
2541                 }
2542                 GenericArg::Const(ct) => {
2543                     self.visit_anon_const(&ct.value);
2544                     i += 1;
2545                 }
2546                 GenericArg::Infer(inf) => {
2547                     self.visit_id(inf.hir_id);
2548                     i += 1;
2549                 }
2550             }
2551         }
2552
2553         // Hack: when resolving the type `XX` in binding like `dyn
2554         // Foo<'b, Item = XX>`, the current object-lifetime default
2555         // would be to examine the trait `Foo` to check whether it has
2556         // a lifetime bound declared on `Item`. e.g., if `Foo` is
2557         // declared like so, then the default object lifetime bound in
2558         // `XX` should be `'b`:
2559         //
2560         // ```rust
2561         // trait Foo<'a> {
2562         //   type Item: 'a;
2563         // }
2564         // ```
2565         //
2566         // but if we just have `type Item;`, then it would be
2567         // `'static`. However, we don't get all of this logic correct.
2568         //
2569         // Instead, we do something hacky: if there are no lifetime parameters
2570         // to the trait, then we simply use a default object lifetime
2571         // bound of `'static`, because there is no other possibility. On the other hand,
2572         // if there ARE lifetime parameters, then we require the user to give an
2573         // explicit bound for now.
2574         //
2575         // This is intended to leave room for us to implement the
2576         // correct behavior in the future.
2577         let has_lifetime_parameter =
2578             generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));
2579
2580         // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
2581         // in the trait ref `YY<...>` in `Item: YY<...>`.
2582         for binding in generic_args.bindings {
2583             let scope = Scope::ObjectLifetimeDefault {
2584                 lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) },
2585                 s: self.scope,
2586             };
2587             if let Some(type_def_id) = type_def_id {
2588                 let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes(
2589                     self.tcx,
2590                     type_def_id,
2591                     binding.ident,
2592                 );
2593                 self.with(scope, |_, this| {
2594                     let scope = Scope::Supertrait {
2595                         lifetimes: lifetimes.unwrap_or_default(),
2596                         s: this.scope,
2597                     };
2598                     this.with(scope, |_, this| this.visit_assoc_type_binding(binding));
2599                 });
2600             } else {
2601                 self.with(scope, |_, this| this.visit_assoc_type_binding(binding));
2602             }
2603         }
2604     }
2605
2606     /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
2607     /// associated type name and starting trait.
2608     /// For example, imagine we have
2609     /// ```rust
2610     /// trait Foo<'a, 'b> {
2611     ///   type As;
2612     /// }
2613     /// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
2614     /// trait Bar: for<'b> Bar<'b> {}
2615     /// ```
2616     /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
2617     /// the starting trait `Bar`, we would return `Some(['b, 'a])`.
2618     fn supertrait_hrtb_lifetimes(
2619         tcx: TyCtxt<'tcx>,
2620         def_id: DefId,
2621         assoc_name: Ident,
2622     ) -> Option<Vec<ty::BoundVariableKind>> {
2623         let trait_defines_associated_type_named = |trait_def_id: DefId| {
2624             tcx.associated_items(trait_def_id)
2625                 .find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id)
2626                 .is_some()
2627         };
2628
2629         use smallvec::{smallvec, SmallVec};
2630         let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
2631             smallvec![(def_id, smallvec![])];
2632         let mut visited: FxHashSet<DefId> = FxHashSet::default();
2633         loop {
2634             let Some((def_id, bound_vars)) = stack.pop() else {
2635                 break None;
2636             };
2637             // See issue #83753. If someone writes an associated type on a non-trait, just treat it as
2638             // there being no supertrait HRTBs.
2639             match tcx.def_kind(def_id) {
2640                 DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {}
2641                 _ => break None,
2642             }
2643
2644             if trait_defines_associated_type_named(def_id) {
2645                 break Some(bound_vars.into_iter().collect());
2646             }
2647             let predicates =
2648                 tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name)));
2649             let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| {
2650                 let bound_predicate = pred.kind();
2651                 match bound_predicate.skip_binder() {
2652                     ty::PredicateKind::Trait(data) => {
2653                         // The order here needs to match what we would get from `subst_supertrait`
2654                         let pred_bound_vars = bound_predicate.bound_vars();
2655                         let mut all_bound_vars = bound_vars.clone();
2656                         all_bound_vars.extend(pred_bound_vars.iter());
2657                         let super_def_id = data.trait_ref.def_id;
2658                         Some((super_def_id, all_bound_vars))
2659                     }
2660                     _ => None,
2661                 }
2662             });
2663
2664             let obligations = obligations.filter(|o| visited.insert(o.0));
2665             stack.extend(obligations);
2666         }
2667     }
2668
2669     #[tracing::instrument(level = "debug", skip(self))]
2670     fn visit_fn_like_elision(
2671         &mut self,
2672         inputs: &'tcx [hir::Ty<'tcx>],
2673         output: Option<&'tcx hir::Ty<'tcx>>,
2674     ) {
2675         debug!("visit_fn_like_elision: enter");
2676         let mut scope = &*self.scope;
2677         let hir_id = loop {
2678             match scope {
2679                 Scope::Binder { hir_id, .. } => {
2680                     break *hir_id;
2681                 }
2682                 Scope::ObjectLifetimeDefault { ref s, .. }
2683                 | Scope::Elision { ref s, .. }
2684                 | Scope::Supertrait { ref s, .. }
2685                 | Scope::TraitRefBoundary { ref s, .. } => {
2686                     scope = *s;
2687                 }
2688                 Scope::Root | Scope::Body { .. } => {
2689                     // See issues #83907 and #83693. Just bail out from looking inside.
2690                     self.tcx.sess.delay_span_bug(
2691                         rustc_span::DUMMY_SP,
2692                         "In fn_like_elision without appropriate scope above",
2693                     );
2694                     return;
2695                 }
2696             }
2697         };
2698         // While not strictly necessary, we gather anon lifetimes *before* actually
2699         // visiting the argument types.
2700         let mut gather = GatherAnonLifetimes { anon_count: 0 };
2701         for input in inputs {
2702             gather.visit_ty(input);
2703         }
2704         trace!(?gather.anon_count);
2705         let late_bound_vars = self.map.late_bound_vars.entry(hir_id).or_default();
2706         let named_late_bound_vars = late_bound_vars.len() as u32;
2707         late_bound_vars.extend(
2708             (0..gather.anon_count).map(|var| ty::BoundVariableKind::Region(ty::BrAnon(var))),
2709         );
2710         let arg_scope = Scope::Elision {
2711             elide: Elide::FreshLateAnon(named_late_bound_vars, Cell::new(0)),
2712             s: self.scope,
2713         };
2714         self.with(arg_scope, |_, this| {
2715             for input in inputs {
2716                 this.visit_ty(input);
2717             }
2718         });
2719
2720         let Some(output) = output else { return };
2721
2722         debug!("determine output");
2723
2724         // Figure out if there's a body we can get argument names from,
2725         // and whether there's a `self` argument (treated specially).
2726         let mut assoc_item_kind = None;
2727         let mut impl_self = None;
2728         let parent = self.tcx.hir().get_parent_node(output.hir_id);
2729         let body = match self.tcx.hir().get(parent) {
2730             // `fn` definitions and methods.
2731             Node::Item(&hir::Item { kind: hir::ItemKind::Fn(.., body), .. }) => Some(body),
2732
2733             Node::TraitItem(&hir::TraitItem { kind: hir::TraitItemKind::Fn(_, ref m), .. }) => {
2734                 if let hir::ItemKind::Trait(.., ref trait_items) =
2735                     self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(parent)).kind
2736                 {
2737                     assoc_item_kind =
2738                         trait_items.iter().find(|ti| ti.id.hir_id() == parent).map(|ti| ti.kind);
2739                 }
2740                 match *m {
2741                     hir::TraitFn::Required(_) => None,
2742                     hir::TraitFn::Provided(body) => Some(body),
2743                 }
2744             }
2745
2746             Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body), .. }) => {
2747                 if let hir::ItemKind::Impl(hir::Impl { ref self_ty, ref items, .. }) =
2748                     self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(parent)).kind
2749                 {
2750                     impl_self = Some(self_ty);
2751                     assoc_item_kind =
2752                         items.iter().find(|ii| ii.id.hir_id() == parent).map(|ii| ii.kind);
2753                 }
2754                 Some(body)
2755             }
2756
2757             // Foreign functions, `fn(...) -> R` and `Trait(...) -> R` (both types and bounds).
2758             Node::ForeignItem(_) | Node::Ty(_) | Node::TraitRef(_) => None,
2759             // Everything else (only closures?) doesn't
2760             // actually enjoy elision in return types.
2761             _ => {
2762                 self.visit_ty(output);
2763                 return;
2764             }
2765         };
2766
2767         let has_self = match assoc_item_kind {
2768             Some(hir::AssocItemKind::Fn { has_self }) => has_self,
2769             _ => false,
2770         };
2771
2772         // In accordance with the rules for lifetime elision, we can determine
2773         // what region to use for elision in the output type in two ways.
2774         // First (determined here), if `self` is by-reference, then the
2775         // implied output region is the region of the self parameter.
2776         if has_self {
2777             struct SelfVisitor<'a> {
2778                 map: &'a NamedRegionMap,
2779                 impl_self: Option<&'a hir::TyKind<'a>>,
2780                 lifetime: Set1<Region>,
2781             }
2782
2783             impl SelfVisitor<'_> {
2784                 // Look for `self: &'a Self` - also desugared from `&'a self`,
2785                 // and if that matches, use it for elision and return early.
2786                 fn is_self_ty(&self, res: Res) -> bool {
2787                     if let Res::SelfTy { .. } = res {
2788                         return true;
2789                     }
2790
2791                     // Can't always rely on literal (or implied) `Self` due
2792                     // to the way elision rules were originally specified.
2793                     if let Some(&hir::TyKind::Path(hir::QPath::Resolved(None, ref path))) =
2794                         self.impl_self
2795                     {
2796                         match path.res {
2797                             // Permit the types that unambiguously always
2798                             // result in the same type constructor being used
2799                             // (it can't differ between `Self` and `self`).
2800                             Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _)
2801                             | Res::PrimTy(_) => return res == path.res,
2802                             _ => {}
2803                         }
2804                     }
2805
2806                     false
2807                 }
2808             }
2809
2810             impl<'a> Visitor<'a> for SelfVisitor<'a> {
2811                 fn visit_ty(&mut self, ty: &'a hir::Ty<'a>) {
2812                     if let hir::TyKind::Rptr(lifetime_ref, ref mt) = ty.kind {
2813                         if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = mt.ty.kind
2814                         {
2815                             if self.is_self_ty(path.res) {
2816                                 if let Some(lifetime) = self.map.defs.get(&lifetime_ref.hir_id) {
2817                                     self.lifetime.insert(*lifetime);
2818                                 }
2819                             }
2820                         }
2821                     }
2822                     intravisit::walk_ty(self, ty)
2823                 }
2824             }
2825
2826             let mut visitor = SelfVisitor {
2827                 map: self.map,
2828                 impl_self: impl_self.map(|ty| &ty.kind),
2829                 lifetime: Set1::Empty,
2830             };
2831             visitor.visit_ty(&inputs[0]);
2832             if let Set1::One(lifetime) = visitor.lifetime {
2833                 let scope = Scope::Elision { elide: Elide::Exact(lifetime), s: self.scope };
2834                 self.with(scope, |_, this| this.visit_ty(output));
2835                 return;
2836             }
2837         }
2838
2839         // Second, if there was exactly one lifetime (either a substitution or a
2840         // reference) in the arguments, then any anonymous regions in the output
2841         // have that lifetime.
2842         let mut possible_implied_output_region = None;
2843         let mut lifetime_count = 0;
2844         let arg_lifetimes = inputs
2845             .iter()
2846             .enumerate()
2847             .skip(has_self as usize)
2848             .map(|(i, input)| {
2849                 let mut gather = GatherLifetimes {
2850                     map: self.map,
2851                     outer_index: ty::INNERMOST,
2852                     have_bound_regions: false,
2853                     lifetimes: Default::default(),
2854                 };
2855                 gather.visit_ty(input);
2856
2857                 lifetime_count += gather.lifetimes.len();
2858
2859                 if lifetime_count == 1 && gather.lifetimes.len() == 1 {
2860                     // there's a chance that the unique lifetime of this
2861                     // iteration will be the appropriate lifetime for output
2862                     // parameters, so lets store it.
2863                     possible_implied_output_region = gather.lifetimes.iter().cloned().next();
2864                 }
2865
2866                 ElisionFailureInfo {
2867                     parent: body,
2868                     index: i,
2869                     lifetime_count: gather.lifetimes.len(),
2870                     have_bound_regions: gather.have_bound_regions,
2871                     span: input.span,
2872                 }
2873             })
2874             .collect();
2875
2876         let elide = if lifetime_count == 1 {
2877             Elide::Exact(possible_implied_output_region.unwrap())
2878         } else {
2879             Elide::Error(arg_lifetimes)
2880         };
2881
2882         debug!(?elide);
2883
2884         let scope = Scope::Elision { elide, s: self.scope };
2885         self.with(scope, |_, this| this.visit_ty(output));
2886
2887         struct GatherLifetimes<'a> {
2888             map: &'a NamedRegionMap,
2889             outer_index: ty::DebruijnIndex,
2890             have_bound_regions: bool,
2891             lifetimes: FxHashSet<Region>,
2892         }
2893
2894         impl<'v, 'a> Visitor<'v> for GatherLifetimes<'a> {
2895             fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2896                 if let hir::TyKind::BareFn(_) = ty.kind {
2897                     self.outer_index.shift_in(1);
2898                 }
2899                 match ty.kind {
2900                     hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
2901                         for bound in bounds {
2902                             self.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
2903                         }
2904
2905                         // Stay on the safe side and don't include the object
2906                         // lifetime default (which may not end up being used).
2907                         if !lifetime.is_elided() {
2908                             self.visit_lifetime(lifetime);
2909                         }
2910                     }
2911                     _ => {
2912                         intravisit::walk_ty(self, ty);
2913                     }
2914                 }
2915                 if let hir::TyKind::BareFn(_) = ty.kind {
2916                     self.outer_index.shift_out(1);
2917                 }
2918             }
2919
2920             fn visit_generic_param(&mut self, param: &hir::GenericParam<'_>) {
2921                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
2922                     // FIXME(eddyb) Do we want this? It only makes a difference
2923                     // if this `for<'a>` lifetime parameter is never used.
2924                     self.have_bound_regions = true;
2925                 }
2926
2927                 intravisit::walk_generic_param(self, param);
2928             }
2929
2930             fn visit_poly_trait_ref(
2931                 &mut self,
2932                 trait_ref: &hir::PolyTraitRef<'_>,
2933                 modifier: hir::TraitBoundModifier,
2934             ) {
2935                 self.outer_index.shift_in(1);
2936                 intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
2937                 self.outer_index.shift_out(1);
2938             }
2939
2940             fn visit_param_bound(&mut self, bound: &hir::GenericBound<'_>) {
2941                 if let hir::GenericBound::LangItemTrait { .. } = bound {
2942                     self.outer_index.shift_in(1);
2943                     intravisit::walk_param_bound(self, bound);
2944                     self.outer_index.shift_out(1);
2945                 } else {
2946                     intravisit::walk_param_bound(self, bound);
2947                 }
2948             }
2949
2950             fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
2951                 if let Some(&lifetime) = self.map.defs.get(&lifetime_ref.hir_id) {
2952                     match lifetime {
2953                         Region::LateBound(debruijn, _, _, _)
2954                         | Region::LateBoundAnon(debruijn, _, _)
2955                             if debruijn < self.outer_index =>
2956                         {
2957                             self.have_bound_regions = true;
2958                         }
2959                         _ => {
2960                             // FIXME(jackh726): nested trait refs?
2961                             self.lifetimes.insert(lifetime.shifted_out_to_binder(self.outer_index));
2962                         }
2963                     }
2964                 }
2965             }
2966         }
2967
2968         struct GatherAnonLifetimes {
2969             anon_count: u32,
2970         }
2971         impl<'v> Visitor<'v> for GatherAnonLifetimes {
2972             #[instrument(skip(self), level = "trace")]
2973             fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
2974                 // If we enter a `BareFn`, then we enter a *new* binding scope
2975                 if let hir::TyKind::BareFn(_) = ty.kind {
2976                     return;
2977                 }
2978                 intravisit::walk_ty(self, ty);
2979             }
2980
2981             fn visit_generic_args(
2982                 &mut self,
2983                 path_span: Span,
2984                 generic_args: &'v hir::GenericArgs<'v>,
2985             ) {
2986                 // parenthesized args enter a new elison scope
2987                 if generic_args.parenthesized {
2988                     return;
2989                 }
2990                 intravisit::walk_generic_args(self, path_span, generic_args)
2991             }
2992
2993             #[instrument(skip(self), level = "trace")]
2994             fn visit_lifetime(&mut self, lifetime_ref: &hir::Lifetime) {
2995                 if lifetime_ref.is_elided() {
2996                     self.anon_count += 1;
2997                 }
2998             }
2999         }
3000     }
3001
3002     fn resolve_elided_lifetimes(&mut self, lifetime_refs: &[&'tcx hir::Lifetime]) {
3003         debug!("resolve_elided_lifetimes(lifetime_refs={:?})", lifetime_refs);
3004
3005         if lifetime_refs.is_empty() {
3006             return;
3007         }
3008
3009         let mut late_depth = 0;
3010         let mut scope = self.scope;
3011         let mut lifetime_names = FxHashSet::default();
3012         let mut lifetime_spans = vec![];
3013         let error = loop {
3014             match *scope {
3015                 // Do not assign any resolution, it will be inferred.
3016                 Scope::Body { .. } => break Ok(()),
3017
3018                 Scope::Root => break Err(None),
3019
3020                 Scope::Binder { s, ref lifetimes, scope_type, .. } => {
3021                     // collect named lifetimes for suggestions
3022                     for name in lifetimes.keys() {
3023                         if let hir::ParamName::Plain(name) = name {
3024                             lifetime_names.insert(name.name);
3025                             lifetime_spans.push(name.span);
3026                         }
3027                     }
3028                     match scope_type {
3029                         BinderScopeType::Normal => late_depth += 1,
3030                         BinderScopeType::Concatenating => {}
3031                     }
3032                     scope = s;
3033                 }
3034
3035                 Scope::Elision {
3036                     elide: Elide::FreshLateAnon(named_late_bound_vars, ref counter),
3037                     ..
3038                 } => {
3039                     for lifetime_ref in lifetime_refs {
3040                         let lifetime =
3041                             Region::late_anon(named_late_bound_vars, counter).shifted(late_depth);
3042
3043                         self.insert_lifetime(lifetime_ref, lifetime);
3044                     }
3045                     break Ok(());
3046                 }
3047
3048                 Scope::Elision { elide: Elide::Exact(l), .. } => {
3049                     let lifetime = l.shifted(late_depth);
3050                     for lifetime_ref in lifetime_refs {
3051                         self.insert_lifetime(lifetime_ref, lifetime);
3052                     }
3053                     break Ok(());
3054                 }
3055
3056                 Scope::Elision { elide: Elide::Error(ref e), ref s, .. } => {
3057                     let mut scope = s;
3058                     loop {
3059                         match scope {
3060                             Scope::Binder { ref lifetimes, s, .. } => {
3061                                 // Collect named lifetimes for suggestions.
3062                                 for name in lifetimes.keys() {
3063                                     if let hir::ParamName::Plain(name) = name {
3064                                         lifetime_names.insert(name.name);
3065                                         lifetime_spans.push(name.span);
3066                                     }
3067                                 }
3068                                 scope = s;
3069                             }
3070                             Scope::ObjectLifetimeDefault { ref s, .. }
3071                             | Scope::Elision { ref s, .. }
3072                             | Scope::TraitRefBoundary { ref s, .. } => {
3073                                 scope = s;
3074                             }
3075                             _ => break,
3076                         }
3077                     }
3078                     break Err(Some(&e[..]));
3079                 }
3080
3081                 Scope::Elision { elide: Elide::Forbid, .. } => break Err(None),
3082
3083                 Scope::ObjectLifetimeDefault { s, .. }
3084                 | Scope::Supertrait { s, .. }
3085                 | Scope::TraitRefBoundary { s, .. } => {
3086                     scope = s;
3087                 }
3088             }
3089         };
3090
3091         let error = match error {
3092             Ok(()) => {
3093                 self.report_elided_lifetime_in_ty(lifetime_refs);
3094                 return;
3095             }
3096             Err(error) => error,
3097         };
3098
3099         // If we specifically need the `scope_for_path` map, then we're in the
3100         // diagnostic pass and we don't want to emit more errors.
3101         if self.map.scope_for_path.is_some() {
3102             self.tcx.sess.delay_span_bug(
3103                 rustc_span::DUMMY_SP,
3104                 "Encountered unexpected errors during diagnostics related part",
3105             );
3106             return;
3107         }
3108
3109         let mut spans: Vec<_> = lifetime_refs.iter().map(|lt| lt.span).collect();
3110         spans.sort();
3111         let mut spans_dedup = spans.clone();
3112         spans_dedup.dedup();
3113         let spans_with_counts: Vec<_> = spans_dedup
3114             .into_iter()
3115             .map(|sp| (sp, spans.iter().filter(|nsp| *nsp == &sp).count()))
3116             .collect();
3117
3118         let mut err = self.report_missing_lifetime_specifiers(spans.clone(), lifetime_refs.len());
3119
3120         if let Some(params) = error {
3121             // If there's no lifetime available, suggest `'static`.
3122             if self.report_elision_failure(&mut err, params) && lifetime_names.is_empty() {
3123                 lifetime_names.insert(kw::StaticLifetime);
3124             }
3125         }
3126
3127         self.add_missing_lifetime_specifiers_label(
3128             &mut err,
3129             spans_with_counts,
3130             &lifetime_names,
3131             lifetime_spans,
3132             error.unwrap_or(&[]),
3133         );
3134         err.emit();
3135     }
3136
3137     fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
3138         debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref);
3139         let mut late_depth = 0;
3140         let mut scope = self.scope;
3141         let lifetime = loop {
3142             match *scope {
3143                 Scope::Binder { s, scope_type, .. } => {
3144                     match scope_type {
3145                         BinderScopeType::Normal => late_depth += 1,
3146                         BinderScopeType::Concatenating => {}
3147                     }
3148                     scope = s;
3149                 }
3150
3151                 Scope::Root | Scope::Elision { .. } => break Region::Static,
3152
3153                 Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,
3154
3155                 Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,
3156
3157                 Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
3158                     scope = s;
3159                 }
3160             }
3161         };
3162         self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
3163     }
3164
3165     fn check_lifetime_params(
3166         &mut self,
3167         old_scope: ScopeRef<'_>,
3168         params: &'tcx [hir::GenericParam<'tcx>],
3169     ) {
3170         let lifetimes: Vec<_> = params
3171             .iter()
3172             .filter_map(|param| match param.kind {
3173                 GenericParamKind::Lifetime { .. } => {
3174                     Some((param, param.name.normalize_to_macros_2_0()))
3175                 }
3176                 _ => None,
3177             })
3178             .collect();
3179         for (i, (lifetime_i, lifetime_i_name)) in lifetimes.iter().enumerate() {
3180             if let hir::ParamName::Plain(_) = lifetime_i_name {
3181                 let name = lifetime_i_name.ident().name;
3182                 if name == kw::UnderscoreLifetime || name == kw::StaticLifetime {
3183                     let mut err = struct_span_err!(
3184                         self.tcx.sess,
3185                         lifetime_i.span,
3186                         E0262,
3187                         "invalid lifetime parameter name: `{}`",
3188                         lifetime_i.name.ident(),
3189                     );
3190                     err.span_label(
3191                         lifetime_i.span,
3192                         format!("{} is a reserved lifetime name", name),
3193                     );
3194                     err.emit();
3195                 }
3196             }
3197
3198             // It is a hard error to shadow a lifetime within the same scope.
3199             for (lifetime_j, lifetime_j_name) in lifetimes.iter().skip(i + 1) {
3200                 if lifetime_i_name == lifetime_j_name {
3201                     struct_span_err!(
3202                         self.tcx.sess,
3203                         lifetime_j.span,
3204                         E0263,
3205                         "lifetime name `{}` declared twice in the same scope",
3206                         lifetime_j.name.ident()
3207                     )
3208                     .span_label(lifetime_j.span, "declared twice")
3209                     .span_label(lifetime_i.span, "previous declaration here")
3210                     .emit();
3211                 }
3212             }
3213
3214             // It is a soft error to shadow a lifetime within a parent scope.
3215             self.check_lifetime_param_for_shadowing(old_scope, &lifetime_i);
3216
3217             for bound in lifetime_i.bounds {
3218                 match bound {
3219                     hir::GenericBound::Outlives(ref lt) => match lt.name {
3220                         hir::LifetimeName::Underscore => self.tcx.sess.delay_span_bug(
3221                             lt.span,
3222                             "use of `'_` in illegal place, but not caught by lowering",
3223                         ),
3224                         hir::LifetimeName::Static => {
3225                             self.insert_lifetime(lt, Region::Static);
3226                             self.tcx
3227                                 .sess
3228                                 .struct_span_warn(
3229                                     lifetime_i.span.to(lt.span),
3230                                     &format!(
3231                                         "unnecessary lifetime parameter `{}`",
3232                                         lifetime_i.name.ident(),
3233                                     ),
3234                                 )
3235                                 .help(&format!(
3236                                     "you can use the `'static` lifetime directly, in place of `{}`",
3237                                     lifetime_i.name.ident(),
3238                                 ))
3239                                 .emit();
3240                         }
3241                         hir::LifetimeName::Param(_) | hir::LifetimeName::Implicit(_) => {
3242                             self.resolve_lifetime_ref(lt);
3243                         }
3244                         hir::LifetimeName::ImplicitObjectLifetimeDefault => {
3245                             self.tcx.sess.delay_span_bug(
3246                                 lt.span,
3247                                 "lowering generated `ImplicitObjectLifetimeDefault` \
3248                                  outside of an object type",
3249                             )
3250                         }
3251                         hir::LifetimeName::Error => {
3252                             // No need to do anything, error already reported.
3253                         }
3254                     },
3255                     _ => bug!(),
3256                 }
3257             }
3258         }
3259     }
3260
3261     fn check_lifetime_param_for_shadowing(
3262         &self,
3263         mut old_scope: ScopeRef<'_>,
3264         param: &'tcx hir::GenericParam<'tcx>,
3265     ) {
3266         for label in &self.labels_in_fn {
3267             // FIXME (#24278): non-hygienic comparison
3268             if param.name.ident().name == label.name {
3269                 signal_shadowing_problem(
3270                     self.tcx,
3271                     label.name,
3272                     original_label(label.span),
3273                     shadower_lifetime(&param),
3274                 );
3275                 return;
3276             }
3277         }
3278
3279         loop {
3280             match *old_scope {
3281                 Scope::Body { s, .. }
3282                 | Scope::Elision { s, .. }
3283                 | Scope::ObjectLifetimeDefault { s, .. }
3284                 | Scope::Supertrait { s, .. }
3285                 | Scope::TraitRefBoundary { s, .. } => {
3286                     old_scope = s;
3287                 }
3288
3289                 Scope::Root => {
3290                     return;
3291                 }
3292
3293                 Scope::Binder { ref lifetimes, s, .. } => {
3294                     if let Some(&def) = lifetimes.get(&param.name.normalize_to_macros_2_0()) {
3295                         signal_shadowing_problem(
3296                             self.tcx,
3297                             param.name.ident().name,
3298                             original_lifetime(self.tcx.def_span(def.id().unwrap())),
3299                             shadower_lifetime(&param),
3300                         );
3301                         return;
3302                     }
3303
3304                     old_scope = s;
3305                 }
3306             }
3307         }
3308     }
3309
3310     /// Returns `true` if, in the current scope, replacing `'_` would be
3311     /// equivalent to a single-use lifetime.
3312     fn track_lifetime_uses(&self) -> bool {
3313         let mut scope = self.scope;
3314         loop {
3315             match *scope {
3316                 Scope::Root => break false,
3317
3318                 // Inside of items, it depends on the kind of item.
3319                 Scope::Binder { track_lifetime_uses, .. } => break track_lifetime_uses,
3320
3321                 // Inside a body, `'_` will use an inference variable,
3322                 // should be fine.
3323                 Scope::Body { .. } => break true,
3324
3325                 // A lifetime only used in a fn argument could as well
3326                 // be replaced with `'_`, as that would generate a
3327                 // fresh name, too.
3328                 Scope::Elision { elide: Elide::FreshLateAnon(..), .. } => break true,
3329
3330                 // In the return type or other such place, `'_` is not
3331                 // going to make a fresh name, so we cannot
3332                 // necessarily replace a single-use lifetime with
3333                 // `'_`.
3334                 Scope::Elision {
3335                     elide: Elide::Exact(_) | Elide::Error(_) | Elide::Forbid, ..
3336                 } => break false,
3337
3338                 Scope::ObjectLifetimeDefault { s, .. }
3339                 | Scope::Supertrait { s, .. }
3340                 | Scope::TraitRefBoundary { s, .. } => scope = s,
3341             }
3342         }
3343     }
3344
3345     #[tracing::instrument(level = "debug", skip(self))]
3346     fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) {
3347         debug!(
3348             node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id),
3349             span = ?self.tcx.sess.source_map().span_to_diagnostic_string(lifetime_ref.span)
3350         );
3351         self.map.defs.insert(lifetime_ref.hir_id, def);
3352
3353         match def {
3354             Region::LateBoundAnon(..) | Region::Static => {
3355                 // These are anonymous lifetimes or lifetimes that are not declared.
3356             }
3357
3358             Region::Free(_, def_id)
3359             | Region::LateBound(_, _, def_id, _)
3360             | Region::EarlyBound(_, def_id, _) => {
3361                 // A lifetime declared by the user.
3362                 let track_lifetime_uses = self.track_lifetime_uses();
3363                 debug!(?track_lifetime_uses);
3364                 if track_lifetime_uses && !self.lifetime_uses.contains_key(&def_id) {
3365                     debug!("first use of {:?}", def_id);
3366                     self.lifetime_uses.insert(def_id, LifetimeUseSet::One(lifetime_ref));
3367                 } else {
3368                     debug!("many uses of {:?}", def_id);
3369                     self.lifetime_uses.insert(def_id, LifetimeUseSet::Many);
3370                 }
3371             }
3372         }
3373     }
3374
3375     /// Sometimes we resolve a lifetime, but later find that it is an
3376     /// error (esp. around impl trait). In that case, we remove the
3377     /// entry into `map.defs` so as not to confuse later code.
3378     fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) {
3379         let old_value = self.map.defs.remove(&lifetime_ref.hir_id);
3380         assert_eq!(old_value, Some(bad_def));
3381     }
3382 }
3383
3384 /// Detects late-bound lifetimes and inserts them into
3385 /// `map.late_bound`.
3386 ///
3387 /// A region declared on a fn is **late-bound** if:
3388 /// - it is constrained by an argument type;
3389 /// - it does not appear in a where-clause.
3390 ///
3391 /// "Constrained" basically means that it appears in any type but
3392 /// not amongst the inputs to a projection. In other words, `<&'a
3393 /// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
3394 #[tracing::instrument(level = "debug", skip(map))]
3395 fn insert_late_bound_lifetimes(
3396     map: &mut NamedRegionMap,
3397     decl: &hir::FnDecl<'_>,
3398     generics: &hir::Generics<'_>,
3399 ) {
3400     let mut constrained_by_input = ConstrainedCollector::default();
3401     for arg_ty in decl.inputs {
3402         constrained_by_input.visit_ty(arg_ty);
3403     }
3404
3405     let mut appears_in_output = AllCollector::default();
3406     intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
3407
3408     debug!(?constrained_by_input.regions);
3409
3410     // Walk the lifetimes that appear in where clauses.
3411     //
3412     // Subtle point: because we disallow nested bindings, we can just
3413     // ignore binders here and scrape up all names we see.
3414     let mut appears_in_where_clause = AllCollector::default();
3415     appears_in_where_clause.visit_generics(generics);
3416
3417     for param in generics.params {
3418         if let hir::GenericParamKind::Lifetime { .. } = param.kind {
3419             if !param.bounds.is_empty() {
3420                 // `'a: 'b` means both `'a` and `'b` are referenced
3421                 appears_in_where_clause
3422                     .regions
3423                     .insert(hir::LifetimeName::Param(param.name.normalize_to_macros_2_0()));
3424             }
3425         }
3426     }
3427
3428     debug!(?appears_in_where_clause.regions);
3429
3430     // Late bound regions are those that:
3431     // - appear in the inputs
3432     // - do not appear in the where-clauses
3433     // - are not implicitly captured by `impl Trait`
3434     for param in generics.params {
3435         match param.kind {
3436             hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }
3437
3438             // Neither types nor consts are late-bound.
3439             hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
3440         }
3441
3442         let lt_name = hir::LifetimeName::Param(param.name.normalize_to_macros_2_0());
3443         // appears in the where clauses? early-bound.
3444         if appears_in_where_clause.regions.contains(&lt_name) {
3445             continue;
3446         }
3447
3448         // does not appear in the inputs, but appears in the return type? early-bound.
3449         if !constrained_by_input.regions.contains(&lt_name)
3450             && appears_in_output.regions.contains(&lt_name)
3451         {
3452             continue;
3453         }
3454
3455         debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id);
3456
3457         let inserted = map.late_bound.insert(param.hir_id);
3458         assert!(inserted, "visited lifetime {:?} twice", param.hir_id);
3459     }
3460
3461     return;
3462
3463     #[derive(Default)]
3464     struct ConstrainedCollector {
3465         regions: FxHashSet<hir::LifetimeName>,
3466     }
3467
3468     impl<'v> Visitor<'v> for ConstrainedCollector {
3469         fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
3470             match ty.kind {
3471                 hir::TyKind::Path(
3472                     hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
3473                 ) => {
3474                     // ignore lifetimes appearing in associated type
3475                     // projections, as they are not *constrained*
3476                     // (defined above)
3477                 }
3478
3479                 hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
3480                     // consider only the lifetimes on the final
3481                     // segment; I am not sure it's even currently
3482                     // valid to have them elsewhere, but even if it
3483                     // is, those would be potentially inputs to
3484                     // projections
3485                     if let Some(last_segment) = path.segments.last() {
3486                         self.visit_path_segment(path.span, last_segment);
3487                     }
3488                 }
3489
3490                 _ => {
3491                     intravisit::walk_ty(self, ty);
3492                 }
3493             }
3494         }
3495
3496         fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
3497             self.regions.insert(lifetime_ref.name.normalize_to_macros_2_0());
3498         }
3499     }
3500
3501     #[derive(Default)]
3502     struct AllCollector {
3503         regions: FxHashSet<hir::LifetimeName>,
3504     }
3505
3506     impl<'v> Visitor<'v> for AllCollector {
3507         fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
3508             self.regions.insert(lifetime_ref.name.normalize_to_macros_2_0());
3509         }
3510     }
3511 }