]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_parse/src/parser/expr.rs
Rollup merge of #91325 - RalfJung:const_eval_select, r=dtolnay
[rust.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::pat::{RecoverColon, RecoverComma, PARAM_EXPECTED};
2 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
3 use super::{
4     AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions, TokenType,
5 };
6 use super::{SemiColonMode, SeqSep, TokenExpectType, TrailingToken};
7 use crate::maybe_recover_from_interpolated_ty_qpath;
8
9 use ast::token::DelimToken;
10 use rustc_ast::ptr::P;
11 use rustc_ast::token::{self, Token, TokenKind};
12 use rustc_ast::tokenstream::Spacing;
13 use rustc_ast::util::classify;
14 use rustc_ast::util::literal::LitError;
15 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
16 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, Lit, UnOp, DUMMY_NODE_ID};
17 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
18 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
19 use rustc_ast_pretty::pprust;
20 use rustc_errors::{Applicability, DiagnosticBuilder, PResult};
21 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
22 use rustc_session::lint::BuiltinLintDiagnostics;
23 use rustc_span::edition::LATEST_STABLE_EDITION;
24 use rustc_span::source_map::{self, Span, Spanned};
25 use rustc_span::symbol::{kw, sym, Ident, Symbol};
26 use rustc_span::{BytePos, Pos};
27 use std::mem;
28
29 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
30 /// dropped into the token stream, which happens while parsing the result of
31 /// macro expansion). Placement of these is not as complex as I feared it would
32 /// be. The important thing is to make sure that lookahead doesn't balk at
33 /// `token::Interpolated` tokens.
34 macro_rules! maybe_whole_expr {
35     ($p:expr) => {
36         if let token::Interpolated(nt) = &$p.token.kind {
37             match &**nt {
38                 token::NtExpr(e) | token::NtLiteral(e) => {
39                     let e = e.clone();
40                     $p.bump();
41                     return Ok(e);
42                 }
43                 token::NtPath(path) => {
44                     let path = path.clone();
45                     $p.bump();
46                     return Ok($p.mk_expr(
47                         $p.prev_token.span,
48                         ExprKind::Path(None, path),
49                         AttrVec::new(),
50                     ));
51                 }
52                 token::NtBlock(block) => {
53                     let block = block.clone();
54                     $p.bump();
55                     return Ok($p.mk_expr(
56                         $p.prev_token.span,
57                         ExprKind::Block(block, None),
58                         AttrVec::new(),
59                     ));
60                 }
61                 _ => {}
62             };
63         }
64     };
65 }
66
67 #[derive(Debug)]
68 pub(super) enum LhsExpr {
69     NotYetParsed,
70     AttributesParsed(AttrWrapper),
71     AlreadyParsed(P<Expr>),
72 }
73
74 impl From<Option<AttrWrapper>> for LhsExpr {
75     /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
76     /// and `None` into `LhsExpr::NotYetParsed`.
77     ///
78     /// This conversion does not allocate.
79     fn from(o: Option<AttrWrapper>) -> Self {
80         if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
81     }
82 }
83
84 impl From<P<Expr>> for LhsExpr {
85     /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
86     ///
87     /// This conversion does not allocate.
88     fn from(expr: P<Expr>) -> Self {
89         LhsExpr::AlreadyParsed(expr)
90     }
91 }
92
93 impl<'a> Parser<'a> {
94     /// Parses an expression.
95     #[inline]
96     pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
97         self.current_closure.take();
98
99         self.parse_expr_res(Restrictions::empty(), None)
100     }
101
102     /// Parses an expression, forcing tokens to be collected
103     pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
104         self.collect_tokens_no_attrs(|this| this.parse_expr())
105     }
106
107     pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
108         self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
109     }
110
111     fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
112         match self.parse_expr() {
113             Ok(expr) => Ok(expr),
114             Err(mut err) => match self.token.ident() {
115                 Some((Ident { name: kw::Underscore, .. }, false))
116                     if self.look_ahead(1, |t| t == &token::Comma) =>
117                 {
118                     // Special-case handling of `foo(_, _, _)`
119                     err.emit();
120                     self.bump();
121                     Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
122                 }
123                 _ => Err(err),
124             },
125         }
126     }
127
128     /// Parses a sequence of expressions delimited by parentheses.
129     fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
130         self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
131     }
132
133     /// Parses an expression, subject to the given restrictions.
134     #[inline]
135     pub(super) fn parse_expr_res(
136         &mut self,
137         r: Restrictions,
138         already_parsed_attrs: Option<AttrWrapper>,
139     ) -> PResult<'a, P<Expr>> {
140         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
141     }
142
143     /// Parses an associative expression.
144     ///
145     /// This parses an expression accounting for associativity and precedence of the operators in
146     /// the expression.
147     #[inline]
148     fn parse_assoc_expr(
149         &mut self,
150         already_parsed_attrs: Option<AttrWrapper>,
151     ) -> PResult<'a, P<Expr>> {
152         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
153     }
154
155     /// Parses an associative expression with operators of at least `min_prec` precedence.
156     pub(super) fn parse_assoc_expr_with(
157         &mut self,
158         min_prec: usize,
159         lhs: LhsExpr,
160     ) -> PResult<'a, P<Expr>> {
161         let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
162             expr
163         } else {
164             let attrs = match lhs {
165                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
166                 _ => None,
167             };
168             if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
169                 return self.parse_prefix_range_expr(attrs);
170             } else {
171                 self.parse_prefix_expr(attrs)?
172             }
173         };
174         let last_type_ascription_set = self.last_type_ascription.is_some();
175
176         if !self.should_continue_as_assoc_expr(&lhs) {
177             self.last_type_ascription = None;
178             return Ok(lhs);
179         }
180
181         self.expected_tokens.push(TokenType::Operator);
182         while let Some(op) = self.check_assoc_op() {
183             // Adjust the span for interpolated LHS to point to the `$lhs` token
184             // and not to what it refers to.
185             let lhs_span = match self.prev_token.kind {
186                 TokenKind::Interpolated(..) => self.prev_token.span,
187                 _ => lhs.span,
188             };
189
190             let cur_op_span = self.token.span;
191             let restrictions = if op.node.is_assign_like() {
192                 self.restrictions & Restrictions::NO_STRUCT_LITERAL
193             } else {
194                 self.restrictions
195             };
196             let prec = op.node.precedence();
197             if prec < min_prec {
198                 break;
199             }
200             // Check for deprecated `...` syntax
201             if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
202                 self.err_dotdotdot_syntax(self.token.span);
203             }
204
205             if self.token == token::LArrow {
206                 self.err_larrow_operator(self.token.span);
207             }
208
209             self.bump();
210             if op.node.is_comparison() {
211                 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
212                     return Ok(expr);
213                 }
214             }
215
216             if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
217                 && self.token.kind == token::Eq
218                 && self.prev_token.span.hi() == self.token.span.lo()
219             {
220                 // Look for JS' `===` and `!==` and recover ðŸ˜‡
221                 let sp = op.span.to(self.token.span);
222                 let sugg = match op.node {
223                     AssocOp::Equal => "==",
224                     AssocOp::NotEqual => "!=",
225                     _ => unreachable!(),
226                 };
227                 self.struct_span_err(sp, &format!("invalid comparison operator `{}=`", sugg))
228                     .span_suggestion_short(
229                         sp,
230                         &format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
231                         sugg.to_string(),
232                         Applicability::MachineApplicable,
233                     )
234                     .emit();
235                 self.bump();
236             }
237
238             let op = op.node;
239             // Special cases:
240             if op == AssocOp::As {
241                 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
242                 continue;
243             } else if op == AssocOp::Colon {
244                 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
245                 continue;
246             } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
247                 // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
248                 // generalise it to the Fixity::None code.
249                 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
250                 break;
251             }
252
253             let fixity = op.fixity();
254             let prec_adjustment = match fixity {
255                 Fixity::Right => 0,
256                 Fixity::Left => 1,
257                 // We currently have no non-associative operators that are not handled above by
258                 // the special cases. The code is here only for future convenience.
259                 Fixity::None => 1,
260             };
261             let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
262                 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
263             })?;
264
265             let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
266             lhs = match op {
267                 AssocOp::Add
268                 | AssocOp::Subtract
269                 | AssocOp::Multiply
270                 | AssocOp::Divide
271                 | AssocOp::Modulus
272                 | AssocOp::LAnd
273                 | AssocOp::LOr
274                 | AssocOp::BitXor
275                 | AssocOp::BitAnd
276                 | AssocOp::BitOr
277                 | AssocOp::ShiftLeft
278                 | AssocOp::ShiftRight
279                 | AssocOp::Equal
280                 | AssocOp::Less
281                 | AssocOp::LessEqual
282                 | AssocOp::NotEqual
283                 | AssocOp::Greater
284                 | AssocOp::GreaterEqual => {
285                     let ast_op = op.to_ast_binop().unwrap();
286                     let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
287                     self.mk_expr(span, binary, AttrVec::new())
288                 }
289                 AssocOp::Assign => {
290                     self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
291                 }
292                 AssocOp::AssignOp(k) => {
293                     let aop = match k {
294                         token::Plus => BinOpKind::Add,
295                         token::Minus => BinOpKind::Sub,
296                         token::Star => BinOpKind::Mul,
297                         token::Slash => BinOpKind::Div,
298                         token::Percent => BinOpKind::Rem,
299                         token::Caret => BinOpKind::BitXor,
300                         token::And => BinOpKind::BitAnd,
301                         token::Or => BinOpKind::BitOr,
302                         token::Shl => BinOpKind::Shl,
303                         token::Shr => BinOpKind::Shr,
304                     };
305                     let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
306                     self.mk_expr(span, aopexpr, AttrVec::new())
307                 }
308                 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
309                     self.span_bug(span, "AssocOp should have been handled by special case")
310                 }
311             };
312
313             if let Fixity::None = fixity {
314                 break;
315             }
316         }
317         if last_type_ascription_set {
318             self.last_type_ascription = None;
319         }
320         Ok(lhs)
321     }
322
323     fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
324         match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
325             // Semi-statement forms are odd:
326             // See https://github.com/rust-lang/rust/issues/29071
327             (true, None) => false,
328             (false, _) => true, // Continue parsing the expression.
329             // An exhaustive check is done in the following block, but these are checked first
330             // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
331             // want to keep their span info to improve diagnostics in these cases in a later stage.
332             (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
333             (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
334             (true, Some(AssocOp::Add)) // `{ 42 } + 42
335             // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
336             // `if x { a } else { b } && if y { c } else { d }`
337             if !self.look_ahead(1, |t| t.is_used_keyword()) => {
338                 // These cases are ambiguous and can't be identified in the parser alone.
339                 let sp = self.sess.source_map().start_point(self.token.span);
340                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
341                 false
342             }
343             (true, Some(AssocOp::LAnd)) => {
344                 // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
345                 // above due to #74233.
346                 // These cases are ambiguous and can't be identified in the parser alone.
347                 let sp = self.sess.source_map().start_point(self.token.span);
348                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
349                 false
350             }
351             (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
352             (true, Some(_)) => {
353                 self.error_found_expr_would_be_stmt(lhs);
354                 true
355             }
356         }
357     }
358
359     /// We've found an expression that would be parsed as a statement,
360     /// but the next token implies this should be parsed as an expression.
361     /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
362     fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
363         let mut err = self.struct_span_err(
364             self.token.span,
365             &format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
366         );
367         err.span_label(self.token.span, "expected expression");
368         self.sess.expr_parentheses_needed(&mut err, lhs.span);
369         err.emit();
370     }
371
372     /// Possibly translate the current token to an associative operator.
373     /// The method does not advance the current token.
374     ///
375     /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
376     fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
377         let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
378             // When parsing const expressions, stop parsing when encountering `>`.
379             (
380                 Some(
381                     AssocOp::ShiftRight
382                     | AssocOp::Greater
383                     | AssocOp::GreaterEqual
384                     | AssocOp::AssignOp(token::BinOpToken::Shr),
385                 ),
386                 _,
387             ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
388                 return None;
389             }
390             (Some(op), _) => (op, self.token.span),
391             (None, Some((Ident { name: sym::and, span }, false))) => {
392                 self.error_bad_logical_op("and", "&&", "conjunction");
393                 (AssocOp::LAnd, span)
394             }
395             (None, Some((Ident { name: sym::or, span }, false))) => {
396                 self.error_bad_logical_op("or", "||", "disjunction");
397                 (AssocOp::LOr, span)
398             }
399             _ => return None,
400         };
401         Some(source_map::respan(span, op))
402     }
403
404     /// Error on `and` and `or` suggesting `&&` and `||` respectively.
405     fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
406         self.struct_span_err(self.token.span, &format!("`{}` is not a logical operator", bad))
407             .span_suggestion_short(
408                 self.token.span,
409                 &format!("use `{}` to perform logical {}", good, english),
410                 good.to_string(),
411                 Applicability::MachineApplicable,
412             )
413             .note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
414             .emit();
415     }
416
417     /// Checks if this expression is a successfully parsed statement.
418     fn expr_is_complete(&self, e: &Expr) -> bool {
419         self.restrictions.contains(Restrictions::STMT_EXPR)
420             && !classify::expr_requires_semi_to_be_stmt(e)
421     }
422
423     /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
424     /// The other two variants are handled in `parse_prefix_range_expr` below.
425     fn parse_range_expr(
426         &mut self,
427         prec: usize,
428         lhs: P<Expr>,
429         op: AssocOp,
430         cur_op_span: Span,
431     ) -> PResult<'a, P<Expr>> {
432         let rhs = if self.is_at_start_of_range_notation_rhs() {
433             Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
434         } else {
435             None
436         };
437         let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
438         let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
439         let limits =
440             if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
441         let range = self.mk_range(Some(lhs), rhs, limits);
442         Ok(self.mk_expr(span, range, AttrVec::new()))
443     }
444
445     fn is_at_start_of_range_notation_rhs(&self) -> bool {
446         if self.token.can_begin_expr() {
447             // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
448             if self.token == token::OpenDelim(token::Brace) {
449                 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
450             }
451             true
452         } else {
453             false
454         }
455     }
456
457     /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
458     fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
459         // Check for deprecated `...` syntax.
460         if self.token == token::DotDotDot {
461             self.err_dotdotdot_syntax(self.token.span);
462         }
463
464         debug_assert!(
465             [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
466             "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
467             self.token
468         );
469
470         let limits = match self.token.kind {
471             token::DotDot => RangeLimits::HalfOpen,
472             _ => RangeLimits::Closed,
473         };
474         let op = AssocOp::from_token(&self.token);
475         // FIXME: `parse_prefix_range_expr` is called when the current
476         // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
477         // parsed attributes, then trying to parse them here will always fail.
478         // We should figure out how we want attributes on range expressions to work.
479         let attrs = self.parse_or_use_outer_attributes(attrs)?;
480         self.collect_tokens_for_expr(attrs, |this, attrs| {
481             let lo = this.token.span;
482             this.bump();
483             let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
484                 // RHS must be parsed with more associativity than the dots.
485                 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
486                     .map(|x| (lo.to(x.span), Some(x)))?
487             } else {
488                 (lo, None)
489             };
490             let range = this.mk_range(None, opt_end, limits);
491             Ok(this.mk_expr(span, range, attrs.into()))
492         })
493     }
494
495     /// Parses a prefix-unary-operator expr.
496     fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
497         let attrs = self.parse_or_use_outer_attributes(attrs)?;
498         let lo = self.token.span;
499
500         macro_rules! make_it {
501             ($this:ident, $attrs:expr, |this, _| $body:expr) => {
502                 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
503                     let (hi, ex) = $body?;
504                     Ok($this.mk_expr(lo.to(hi), ex, attrs.into()))
505                 })
506             };
507         }
508
509         let this = self;
510
511         // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
512         match this.token.uninterpolate().kind {
513             token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
514             token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
515             token::BinOp(token::Minus) => {
516                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
517             } // `-expr`
518             token::BinOp(token::Star) => {
519                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
520             } // `*expr`
521             token::BinOp(token::And) | token::AndAnd => {
522                 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
523             }
524             token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
525                 let mut err = this.struct_span_err(lo, "leading `+` is not supported");
526                 err.span_label(lo, "unexpected `+`");
527
528                 // a block on the LHS might have been intended to be an expression instead
529                 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
530                     this.sess.expr_parentheses_needed(&mut err, *sp);
531                 } else {
532                     err.span_suggestion_verbose(
533                         lo,
534                         "try removing the `+`",
535                         "".to_string(),
536                         Applicability::MachineApplicable,
537                     );
538                 }
539                 err.emit();
540
541                 this.bump();
542                 this.parse_prefix_expr(None)
543             } // `+expr`
544             token::Ident(..) if this.token.is_keyword(kw::Box) => {
545                 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
546             }
547             token::Ident(..) if this.is_mistaken_not_ident_negation() => {
548                 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
549             }
550             _ => return this.parse_dot_or_call_expr(Some(attrs)),
551         }
552     }
553
554     fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
555         self.bump();
556         let expr = self.parse_prefix_expr(None);
557         let (span, expr) = self.interpolated_or_expr_span(expr)?;
558         Ok((lo.to(span), expr))
559     }
560
561     fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
562         let (span, expr) = self.parse_prefix_expr_common(lo)?;
563         Ok((span, self.mk_unary(op, expr)))
564     }
565
566     // Recover on `!` suggesting for bitwise negation instead.
567     fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
568         self.struct_span_err(lo, "`~` cannot be used as a unary operator")
569             .span_suggestion_short(
570                 lo,
571                 "use `!` to perform bitwise not",
572                 "!".to_owned(),
573                 Applicability::MachineApplicable,
574             )
575             .emit();
576
577         self.parse_unary_expr(lo, UnOp::Not)
578     }
579
580     /// Parse `box expr`.
581     fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
582         let (span, expr) = self.parse_prefix_expr_common(lo)?;
583         self.sess.gated_spans.gate(sym::box_syntax, span);
584         Ok((span, ExprKind::Box(expr)))
585     }
586
587     fn is_mistaken_not_ident_negation(&self) -> bool {
588         let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
589             // These tokens can start an expression after `!`, but
590             // can't continue an expression after an ident
591             token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
592             token::Literal(..) | token::Pound => true,
593             _ => t.is_whole_expr(),
594         };
595         self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
596     }
597
598     /// Recover on `not expr` in favor of `!expr`.
599     fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
600         // Emit the error...
601         let not_token = self.look_ahead(1, |t| t.clone());
602         self.struct_span_err(
603             not_token.span,
604             &format!("unexpected {} after identifier", super::token_descr(&not_token)),
605         )
606         .span_suggestion_short(
607             // Span the `not` plus trailing whitespace to avoid
608             // trailing whitespace after the `!` in our suggestion
609             self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
610             "use `!` to perform logical negation",
611             "!".to_owned(),
612             Applicability::MachineApplicable,
613         )
614         .emit();
615
616         // ...and recover!
617         self.parse_unary_expr(lo, UnOp::Not)
618     }
619
620     /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
621     fn interpolated_or_expr_span(
622         &self,
623         expr: PResult<'a, P<Expr>>,
624     ) -> PResult<'a, (Span, P<Expr>)> {
625         expr.map(|e| {
626             (
627                 match self.prev_token.kind {
628                     TokenKind::Interpolated(..) => self.prev_token.span,
629                     _ => e.span,
630                 },
631                 e,
632             )
633         })
634     }
635
636     fn parse_assoc_op_cast(
637         &mut self,
638         lhs: P<Expr>,
639         lhs_span: Span,
640         expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
641     ) -> PResult<'a, P<Expr>> {
642         let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
643             this.mk_expr(
644                 this.mk_expr_sp(&lhs, lhs_span, rhs.span),
645                 expr_kind(lhs, rhs),
646                 AttrVec::new(),
647             )
648         };
649
650         // Save the state of the parser before parsing type normally, in case there is a
651         // LessThan comparison after this cast.
652         let parser_snapshot_before_type = self.clone();
653         let cast_expr = match self.parse_ty_no_plus() {
654             Ok(rhs) => mk_expr(self, lhs, rhs),
655             Err(mut type_err) => {
656                 // Rewind to before attempting to parse the type with generics, to recover
657                 // from situations like `x as usize < y` in which we first tried to parse
658                 // `usize < y` as a type with generic arguments.
659                 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
660
661                 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
662                 match (&lhs.kind, &self.token.kind) {
663                     (
664                         // `foo: `
665                         ExprKind::Path(None, ast::Path { segments, .. }),
666                         TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
667                     ) if segments.len() == 1 => {
668                         let snapshot = self.clone();
669                         let label = Label {
670                             ident: Ident::from_str_and_span(
671                                 &format!("'{}", segments[0].ident),
672                                 segments[0].ident.span,
673                             ),
674                         };
675                         match self.parse_labeled_expr(label, AttrVec::new(), false) {
676                             Ok(expr) => {
677                                 type_err.cancel();
678                                 self.struct_span_err(label.ident.span, "malformed loop label")
679                                     .span_suggestion(
680                                         label.ident.span,
681                                         "use the correct loop label format",
682                                         label.ident.to_string(),
683                                         Applicability::MachineApplicable,
684                                     )
685                                     .emit();
686                                 return Ok(expr);
687                             }
688                             Err(mut err) => {
689                                 err.cancel();
690                                 *self = snapshot;
691                             }
692                         }
693                     }
694                     _ => {}
695                 }
696
697                 match self.parse_path(PathStyle::Expr) {
698                     Ok(path) => {
699                         let (op_noun, op_verb) = match self.token.kind {
700                             token::Lt => ("comparison", "comparing"),
701                             token::BinOp(token::Shl) => ("shift", "shifting"),
702                             _ => {
703                                 // We can end up here even without `<` being the next token, for
704                                 // example because `parse_ty_no_plus` returns `Err` on keywords,
705                                 // but `parse_path` returns `Ok` on them due to error recovery.
706                                 // Return original error and parser state.
707                                 *self = parser_snapshot_after_type;
708                                 return Err(type_err);
709                             }
710                         };
711
712                         // Successfully parsed the type path leaving a `<` yet to parse.
713                         type_err.cancel();
714
715                         // Report non-fatal diagnostics, keep `x as usize` as an expression
716                         // in AST and continue parsing.
717                         let msg = format!(
718                             "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
719                             pprust::path_to_string(&path),
720                             op_noun,
721                         );
722                         let span_after_type = parser_snapshot_after_type.token.span;
723                         let expr =
724                             mk_expr(self, lhs, self.mk_ty(path.span, TyKind::Path(None, path)));
725
726                         self.struct_span_err(self.token.span, &msg)
727                             .span_label(
728                                 self.look_ahead(1, |t| t.span).to(span_after_type),
729                                 "interpreted as generic arguments",
730                             )
731                             .span_label(self.token.span, format!("not interpreted as {}", op_noun))
732                             .multipart_suggestion(
733                                 &format!("try {} the cast value", op_verb),
734                                 vec![
735                                     (expr.span.shrink_to_lo(), "(".to_string()),
736                                     (expr.span.shrink_to_hi(), ")".to_string()),
737                                 ],
738                                 Applicability::MachineApplicable,
739                             )
740                             .emit();
741
742                         expr
743                     }
744                     Err(mut path_err) => {
745                         // Couldn't parse as a path, return original error and parser state.
746                         path_err.cancel();
747                         *self = parser_snapshot_after_type;
748                         return Err(type_err);
749                     }
750                 }
751             }
752         };
753
754         self.parse_and_disallow_postfix_after_cast(cast_expr)
755     }
756
757     /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
758     /// then emits an error and returns the newly parsed tree.
759     /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
760     fn parse_and_disallow_postfix_after_cast(
761         &mut self,
762         cast_expr: P<Expr>,
763     ) -> PResult<'a, P<Expr>> {
764         // Save the memory location of expr before parsing any following postfix operators.
765         // This will be compared with the memory location of the output expression.
766         // If they different we can assume we parsed another expression because the existing expression is not reallocated.
767         let addr_before = &*cast_expr as *const _ as usize;
768         let span = cast_expr.span;
769         let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
770         let changed = addr_before != &*with_postfix as *const _ as usize;
771
772         // Check if an illegal postfix operator has been added after the cast.
773         // If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
774         if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
775             let msg = format!(
776                 "casts cannot be followed by {}",
777                 match with_postfix.kind {
778                     ExprKind::Index(_, _) => "indexing",
779                     ExprKind::Try(_) => "?",
780                     ExprKind::Field(_, _) => "a field access",
781                     ExprKind::MethodCall(_, _, _) => "a method call",
782                     ExprKind::Call(_, _) => "a function call",
783                     ExprKind::Await(_) => "`.await`",
784                     ExprKind::Err => return Ok(with_postfix),
785                     _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
786                 }
787             );
788             let mut err = self.struct_span_err(span, &msg);
789             // If type ascription is "likely an error", the user will already be getting a useful
790             // help message, and doesn't need a second.
791             if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
792                 self.maybe_annotate_with_ascription(&mut err, false);
793             } else {
794                 let suggestions = vec![
795                     (span.shrink_to_lo(), "(".to_string()),
796                     (span.shrink_to_hi(), ")".to_string()),
797                 ];
798                 err.multipart_suggestion(
799                     "try surrounding the expression in parentheses",
800                     suggestions,
801                     Applicability::MachineApplicable,
802                 );
803             }
804             err.emit();
805         };
806         Ok(with_postfix)
807     }
808
809     fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
810         let maybe_path = self.could_ascription_be_path(&lhs.kind);
811         self.last_type_ascription = Some((self.prev_token.span, maybe_path));
812         let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
813         self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
814         Ok(lhs)
815     }
816
817     /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
818     fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
819         self.expect_and()?;
820         let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
821         let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
822         let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
823         let expr = self.parse_prefix_expr(None);
824         let (hi, expr) = self.interpolated_or_expr_span(expr)?;
825         let span = lo.to(hi);
826         if let Some(lt) = lifetime {
827             self.error_remove_borrow_lifetime(span, lt.ident.span);
828         }
829         Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
830     }
831
832     fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
833         self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
834             .span_label(lt_span, "annotated with lifetime here")
835             .span_suggestion(
836                 lt_span,
837                 "remove the lifetime annotation",
838                 String::new(),
839                 Applicability::MachineApplicable,
840             )
841             .emit();
842     }
843
844     /// Parse `mut?` or `raw [ const | mut ]`.
845     fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
846         if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
847             // `raw [ const | mut ]`.
848             let found_raw = self.eat_keyword(kw::Raw);
849             assert!(found_raw);
850             let mutability = self.parse_const_or_mut().unwrap();
851             self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
852             (ast::BorrowKind::Raw, mutability)
853         } else {
854             // `mut?`
855             (ast::BorrowKind::Ref, self.parse_mutability())
856         }
857     }
858
859     /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
860     fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
861         let attrs = self.parse_or_use_outer_attributes(attrs)?;
862         self.collect_tokens_for_expr(attrs, |this, attrs| {
863             let base = this.parse_bottom_expr();
864             let (span, base) = this.interpolated_or_expr_span(base)?;
865             this.parse_dot_or_call_expr_with(base, span, attrs)
866         })
867     }
868
869     pub(super) fn parse_dot_or_call_expr_with(
870         &mut self,
871         e0: P<Expr>,
872         lo: Span,
873         mut attrs: Vec<ast::Attribute>,
874     ) -> PResult<'a, P<Expr>> {
875         // Stitch the list of outer attributes onto the return value.
876         // A little bit ugly, but the best way given the current code
877         // structure
878         self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
879             expr.map(|mut expr| {
880                 attrs.extend::<Vec<_>>(expr.attrs.into());
881                 expr.attrs = attrs.into();
882                 expr
883             })
884         })
885     }
886
887     fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
888         loop {
889             if self.eat(&token::Question) {
890                 // `expr?`
891                 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
892                 continue;
893             }
894             if self.eat(&token::Dot) {
895                 // expr.f
896                 e = self.parse_dot_suffix_expr(lo, e)?;
897                 continue;
898             }
899             if self.expr_is_complete(&e) {
900                 return Ok(e);
901             }
902             e = match self.token.kind {
903                 token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
904                 token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
905                 _ => return Ok(e),
906             }
907         }
908     }
909
910     fn look_ahead_type_ascription_as_field(&mut self) -> bool {
911         self.look_ahead(1, |t| t.is_ident())
912             && self.look_ahead(2, |t| t == &token::Colon)
913             && self.look_ahead(3, |t| t.can_begin_expr())
914     }
915
916     fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
917         match self.token.uninterpolate().kind {
918             token::Ident(..) => self.parse_dot_suffix(base, lo),
919             token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
920                 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
921             }
922             token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
923                 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
924             }
925             _ => {
926                 self.error_unexpected_after_dot();
927                 Ok(base)
928             }
929         }
930     }
931
932     fn error_unexpected_after_dot(&self) {
933         // FIXME Could factor this out into non_fatal_unexpected or something.
934         let actual = pprust::token_to_string(&self.token);
935         self.struct_span_err(self.token.span, &format!("unexpected token: `{}`", actual)).emit();
936     }
937
938     // We need an identifier or integer, but the next token is a float.
939     // Break the float into components to extract the identifier or integer.
940     // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
941     // parts unless those parts are processed immediately. `TokenCursor` should either
942     // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
943     // we should break everything including floats into more basic proc-macro style
944     // tokens in the lexer (probably preferable).
945     fn parse_tuple_field_access_expr_float(
946         &mut self,
947         lo: Span,
948         base: P<Expr>,
949         float: Symbol,
950         suffix: Option<Symbol>,
951     ) -> P<Expr> {
952         #[derive(Debug)]
953         enum FloatComponent {
954             IdentLike(String),
955             Punct(char),
956         }
957         use FloatComponent::*;
958
959         let float_str = float.as_str();
960         let mut components = Vec::new();
961         let mut ident_like = String::new();
962         for c in float_str.chars() {
963             if c == '_' || c.is_ascii_alphanumeric() {
964                 ident_like.push(c);
965             } else if matches!(c, '.' | '+' | '-') {
966                 if !ident_like.is_empty() {
967                     components.push(IdentLike(mem::take(&mut ident_like)));
968                 }
969                 components.push(Punct(c));
970             } else {
971                 panic!("unexpected character in a float token: {:?}", c)
972             }
973         }
974         if !ident_like.is_empty() {
975             components.push(IdentLike(ident_like));
976         }
977
978         // With proc macros the span can refer to anything, the source may be too short,
979         // or too long, or non-ASCII. It only makes sense to break our span into components
980         // if its underlying text is identical to our float literal.
981         let span = self.token.span;
982         let can_take_span_apart =
983             || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
984
985         match &*components {
986             // 1e2
987             [IdentLike(i)] => {
988                 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
989             }
990             // 1.
991             [IdentLike(i), Punct('.')] => {
992                 let (ident_span, dot_span) = if can_take_span_apart() {
993                     let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
994                     let ident_span = span.with_hi(span.lo + ident_len);
995                     let dot_span = span.with_lo(span.lo + ident_len);
996                     (ident_span, dot_span)
997                 } else {
998                     (span, span)
999                 };
1000                 assert!(suffix.is_none());
1001                 let symbol = Symbol::intern(&i);
1002                 self.token = Token::new(token::Ident(symbol, false), ident_span);
1003                 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1004                 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1005             }
1006             // 1.2 | 1.2e3
1007             [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1008                 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1009                     let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1010                     let ident1_span = span.with_hi(span.lo + ident1_len);
1011                     let dot_span = span
1012                         .with_lo(span.lo + ident1_len)
1013                         .with_hi(span.lo + ident1_len + BytePos(1));
1014                     let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1015                     (ident1_span, dot_span, ident2_span)
1016                 } else {
1017                     (span, span, span)
1018                 };
1019                 let symbol1 = Symbol::intern(&i1);
1020                 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1021                 // This needs to be `Spacing::Alone` to prevent regressions.
1022                 // See issue #76399 and PR #76285 for more details
1023                 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1024                 let base1 =
1025                     self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1026                 let symbol2 = Symbol::intern(&i2);
1027                 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1028                 self.bump_with((next_token2, self.token_spacing)); // `.`
1029                 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1030             }
1031             // 1e+ | 1e- (recovered)
1032             [IdentLike(_), Punct('+' | '-')] |
1033             // 1e+2 | 1e-2
1034             [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1035             // 1.2e+ | 1.2e-
1036             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1037             // 1.2e+3 | 1.2e-3
1038             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1039                 // See the FIXME about `TokenCursor` above.
1040                 self.error_unexpected_after_dot();
1041                 base
1042             }
1043             _ => panic!("unexpected components in a float token: {:?}", components),
1044         }
1045     }
1046
1047     fn parse_tuple_field_access_expr(
1048         &mut self,
1049         lo: Span,
1050         base: P<Expr>,
1051         field: Symbol,
1052         suffix: Option<Symbol>,
1053         next_token: Option<(Token, Spacing)>,
1054     ) -> P<Expr> {
1055         match next_token {
1056             Some(next_token) => self.bump_with(next_token),
1057             None => self.bump(),
1058         }
1059         let span = self.prev_token.span;
1060         let field = ExprKind::Field(base, Ident::new(field, span));
1061         self.expect_no_suffix(span, "a tuple index", suffix);
1062         self.mk_expr(lo.to(span), field, AttrVec::new())
1063     }
1064
1065     /// Parse a function call expression, `expr(...)`.
1066     fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1067         let snapshot = if self.token.kind == token::OpenDelim(token::Paren)
1068             && self.look_ahead_type_ascription_as_field()
1069         {
1070             Some((self.clone(), fun.kind.clone()))
1071         } else {
1072             None
1073         };
1074         let open_paren = self.token.span;
1075
1076         let mut seq = self.parse_paren_expr_seq().map(|args| {
1077             self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
1078         });
1079         if let Some(expr) =
1080             self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1081         {
1082             return expr;
1083         }
1084         self.recover_seq_parse_error(token::Paren, lo, seq)
1085     }
1086
1087     /// If we encounter a parser state that looks like the user has written a `struct` literal with
1088     /// parentheses instead of braces, recover the parser state and provide suggestions.
1089     #[instrument(skip(self, seq, snapshot), level = "trace")]
1090     fn maybe_recover_struct_lit_bad_delims(
1091         &mut self,
1092         lo: Span,
1093         open_paren: Span,
1094         seq: &mut PResult<'a, P<Expr>>,
1095         snapshot: Option<(Self, ExprKind)>,
1096     ) -> Option<P<Expr>> {
1097         match (seq.as_mut(), snapshot) {
1098             (Err(ref mut err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1099                 let name = pprust::path_to_string(&path);
1100                 snapshot.bump(); // `(`
1101                 match snapshot.parse_struct_fields(path, false, token::Paren) {
1102                     Ok((fields, ..)) if snapshot.eat(&token::CloseDelim(token::Paren)) => {
1103                         // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1104                         // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1105                         *self = snapshot;
1106                         let close_paren = self.prev_token.span;
1107                         let span = lo.to(self.prev_token.span);
1108                         if !fields.is_empty() {
1109                             err.cancel();
1110                             let mut err = self.struct_span_err(
1111                                 span,
1112                                 "invalid `struct` delimiters or `fn` call arguments",
1113                             );
1114                             err.multipart_suggestion(
1115                                 &format!("if `{}` is a struct, use braces as delimiters", name),
1116                                 vec![
1117                                     (open_paren, " { ".to_string()),
1118                                     (close_paren, " }".to_string()),
1119                                 ],
1120                                 Applicability::MaybeIncorrect,
1121                             );
1122                             err.multipart_suggestion(
1123                                 &format!("if `{}` is a function, use the arguments directly", name),
1124                                 fields
1125                                     .into_iter()
1126                                     .map(|field| (field.span.until(field.expr.span), String::new()))
1127                                     .collect(),
1128                                 Applicability::MaybeIncorrect,
1129                             );
1130                             err.emit();
1131                         } else {
1132                             err.emit();
1133                         }
1134                         return Some(self.mk_expr_err(span));
1135                     }
1136                     Ok(_) => {}
1137                     Err(mut err) => err.emit(),
1138                 }
1139             }
1140             _ => {}
1141         }
1142         None
1143     }
1144
1145     /// Parse an indexing expression `expr[...]`.
1146     fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1147         self.bump(); // `[`
1148         let index = self.parse_expr()?;
1149         self.expect(&token::CloseDelim(token::Bracket))?;
1150         Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
1151     }
1152
1153     /// Assuming we have just parsed `.`, continue parsing into an expression.
1154     fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1155         if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1156             return Ok(self.mk_await_expr(self_arg, lo));
1157         }
1158
1159         let fn_span_lo = self.token.span;
1160         let mut segment = self.parse_path_segment(PathStyle::Expr, None)?;
1161         self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(token::Paren)]);
1162         self.check_turbofish_missing_angle_brackets(&mut segment);
1163
1164         if self.check(&token::OpenDelim(token::Paren)) {
1165             // Method call `expr.f()`
1166             let mut args = self.parse_paren_expr_seq()?;
1167             args.insert(0, self_arg);
1168
1169             let fn_span = fn_span_lo.to(self.prev_token.span);
1170             let span = lo.to(self.prev_token.span);
1171             Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
1172         } else {
1173             // Field access `expr.f`
1174             if let Some(args) = segment.args {
1175                 self.struct_span_err(
1176                     args.span(),
1177                     "field expressions cannot have generic arguments",
1178                 )
1179                 .emit();
1180             }
1181
1182             let span = lo.to(self.prev_token.span);
1183             Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
1184         }
1185     }
1186
1187     /// At the bottom (top?) of the precedence hierarchy,
1188     /// Parses things like parenthesized exprs, macros, `return`, etc.
1189     ///
1190     /// N.B., this does not parse outer attributes, and is private because it only works
1191     /// correctly if called from `parse_dot_or_call_expr()`.
1192     fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1193         maybe_recover_from_interpolated_ty_qpath!(self, true);
1194         maybe_whole_expr!(self);
1195
1196         // Outer attributes are already parsed and will be
1197         // added to the return value after the fact.
1198         //
1199         // Therefore, prevent sub-parser from parsing
1200         // attributes by giving them an empty "already-parsed" list.
1201         let attrs = AttrVec::new();
1202
1203         // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1204         let lo = self.token.span;
1205         if let token::Literal(_) = self.token.kind {
1206             // This match arm is a special-case of the `_` match arm below and
1207             // could be removed without changing functionality, but it's faster
1208             // to have it here, especially for programs with large constants.
1209             self.parse_lit_expr(attrs)
1210         } else if self.check(&token::OpenDelim(token::Paren)) {
1211             self.parse_tuple_parens_expr(attrs)
1212         } else if self.check(&token::OpenDelim(token::Brace)) {
1213             self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
1214         } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1215             self.parse_closure_expr(attrs)
1216         } else if self.check(&token::OpenDelim(token::Bracket)) {
1217             self.parse_array_or_repeat_expr(attrs, token::Bracket)
1218         } else if self.check_path() {
1219             self.parse_path_start_expr(attrs)
1220         } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
1221             self.parse_closure_expr(attrs)
1222         } else if self.eat_keyword(kw::If) {
1223             self.parse_if_expr(attrs)
1224         } else if self.check_keyword(kw::For) {
1225             if self.choose_generics_over_qpath(1) {
1226                 // NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
1227                 // this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
1228                 // When `for <Foo as Bar>::Proj in $expr $block` is wanted,
1229                 // you can disambiguate in favor of a pattern with `(...)`.
1230                 self.recover_quantified_closure_expr(attrs)
1231             } else {
1232                 assert!(self.eat_keyword(kw::For));
1233                 self.parse_for_expr(None, self.prev_token.span, attrs)
1234             }
1235         } else if self.eat_keyword(kw::While) {
1236             self.parse_while_expr(None, self.prev_token.span, attrs)
1237         } else if let Some(label) = self.eat_label() {
1238             self.parse_labeled_expr(label, attrs, true)
1239         } else if self.eat_keyword(kw::Loop) {
1240             self.parse_loop_expr(None, self.prev_token.span, attrs)
1241         } else if self.eat_keyword(kw::Continue) {
1242             let kind = ExprKind::Continue(self.eat_label());
1243             Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
1244         } else if self.eat_keyword(kw::Match) {
1245             let match_sp = self.prev_token.span;
1246             self.parse_match_expr(attrs).map_err(|mut err| {
1247                 err.span_label(match_sp, "while parsing this match expression");
1248                 err
1249             })
1250         } else if self.eat_keyword(kw::Unsafe) {
1251             self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
1252         } else if self.check_inline_const(0) {
1253             self.parse_const_block(lo.to(self.token.span), false)
1254         } else if self.is_do_catch_block() {
1255             self.recover_do_catch(attrs)
1256         } else if self.is_try_block() {
1257             self.expect_keyword(kw::Try)?;
1258             self.parse_try_block(lo, attrs)
1259         } else if self.eat_keyword(kw::Return) {
1260             self.parse_return_expr(attrs)
1261         } else if self.eat_keyword(kw::Break) {
1262             self.parse_break_expr(attrs)
1263         } else if self.eat_keyword(kw::Yield) {
1264             self.parse_yield_expr(attrs)
1265         } else if self.eat_keyword(kw::Let) {
1266             self.parse_let_expr(attrs)
1267         } else if self.eat_keyword(kw::Underscore) {
1268             self.sess.gated_spans.gate(sym::destructuring_assignment, self.prev_token.span);
1269             Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore, attrs))
1270         } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1271             // Don't complain about bare semicolons after unclosed braces
1272             // recovery in order to keep the error count down. Fixing the
1273             // delimiters will possibly also fix the bare semicolon found in
1274             // expression context. For example, silence the following error:
1275             //
1276             //     error: expected expression, found `;`
1277             //      --> file.rs:2:13
1278             //       |
1279             //     2 |     foo(bar(;
1280             //       |             ^ expected expression
1281             self.bump();
1282             Ok(self.mk_expr_err(self.token.span))
1283         } else if self.token.uninterpolated_span().rust_2018() {
1284             // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1285             if self.check_keyword(kw::Async) {
1286                 if self.is_async_block() {
1287                     // Check for `async {` and `async move {`.
1288                     self.parse_async_block(attrs)
1289                 } else {
1290                     self.parse_closure_expr(attrs)
1291                 }
1292             } else if self.eat_keyword(kw::Await) {
1293                 self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
1294             } else {
1295                 self.parse_lit_expr(attrs)
1296             }
1297         } else {
1298             self.parse_lit_expr(attrs)
1299         }
1300     }
1301
1302     fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1303         let lo = self.token.span;
1304         match self.parse_opt_lit() {
1305             Some(literal) => {
1306                 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
1307                 self.maybe_recover_from_bad_qpath(expr, true)
1308             }
1309             None => self.try_macro_suggestion(),
1310         }
1311     }
1312
1313     fn parse_tuple_parens_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1314         let lo = self.token.span;
1315         self.expect(&token::OpenDelim(token::Paren))?;
1316         let (es, trailing_comma) = match self.parse_seq_to_end(
1317             &token::CloseDelim(token::Paren),
1318             SeqSep::trailing_allowed(token::Comma),
1319             |p| p.parse_expr_catch_underscore(),
1320         ) {
1321             Ok(x) => x,
1322             Err(err) => return Ok(self.recover_seq_parse_error(token::Paren, lo, Err(err))),
1323         };
1324         let kind = if es.len() == 1 && !trailing_comma {
1325             // `(e)` is parenthesized `e`.
1326             ExprKind::Paren(es.into_iter().next().unwrap())
1327         } else {
1328             // `(e,)` is a tuple with only one field, `e`.
1329             ExprKind::Tup(es)
1330         };
1331         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1332         self.maybe_recover_from_bad_qpath(expr, true)
1333     }
1334
1335     fn parse_array_or_repeat_expr(
1336         &mut self,
1337         attrs: AttrVec,
1338         close_delim: token::DelimToken,
1339     ) -> PResult<'a, P<Expr>> {
1340         let lo = self.token.span;
1341         self.bump(); // `[` or other open delim
1342
1343         let close = &token::CloseDelim(close_delim);
1344         let kind = if self.eat(close) {
1345             // Empty vector
1346             ExprKind::Array(Vec::new())
1347         } else {
1348             // Non-empty vector
1349             let first_expr = self.parse_expr()?;
1350             if self.eat(&token::Semi) {
1351                 // Repeating array syntax: `[ 0; 512 ]`
1352                 let count = self.parse_anon_const_expr()?;
1353                 self.expect(close)?;
1354                 ExprKind::Repeat(first_expr, count)
1355             } else if self.eat(&token::Comma) {
1356                 // Vector with two or more elements.
1357                 let sep = SeqSep::trailing_allowed(token::Comma);
1358                 let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1359                 let mut exprs = vec![first_expr];
1360                 exprs.extend(remaining_exprs);
1361                 ExprKind::Array(exprs)
1362             } else {
1363                 // Vector with one element
1364                 self.expect(close)?;
1365                 ExprKind::Array(vec![first_expr])
1366             }
1367         };
1368         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1369         self.maybe_recover_from_bad_qpath(expr, true)
1370     }
1371
1372     fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1373         let (qself, path) = if self.eat_lt() {
1374             let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1375             (Some(qself), path)
1376         } else {
1377             (None, self.parse_path(PathStyle::Expr)?)
1378         };
1379         let lo = path.span;
1380
1381         // `!`, as an operator, is prefix, so we know this isn't that.
1382         let (hi, kind) = if self.eat(&token::Not) {
1383             // MACRO INVOCATION expression
1384             if qself.is_some() {
1385                 self.struct_span_err(path.span, "macros cannot use qualified paths").emit();
1386             }
1387             let mac = MacCall {
1388                 path,
1389                 args: self.parse_mac_args()?,
1390                 prior_type_ascription: self.last_type_ascription,
1391             };
1392             (self.prev_token.span, ExprKind::MacCall(mac))
1393         } else if self.check(&token::OpenDelim(token::Brace)) {
1394             if let Some(expr) = self.maybe_parse_struct_expr(qself.as_ref(), &path, &attrs) {
1395                 if qself.is_some() {
1396                     self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1397                 }
1398                 return expr;
1399             } else {
1400                 (path.span, ExprKind::Path(qself, path))
1401             }
1402         } else {
1403             (path.span, ExprKind::Path(qself, path))
1404         };
1405
1406         let expr = self.mk_expr(lo.to(hi), kind, attrs);
1407         self.maybe_recover_from_bad_qpath(expr, true)
1408     }
1409
1410     /// Parse `'label: $expr`. The label is already parsed.
1411     fn parse_labeled_expr(
1412         &mut self,
1413         label: Label,
1414         attrs: AttrVec,
1415         consume_colon: bool,
1416     ) -> PResult<'a, P<Expr>> {
1417         let lo = label.ident.span;
1418         let label = Some(label);
1419         let ate_colon = self.eat(&token::Colon);
1420         let expr = if self.eat_keyword(kw::While) {
1421             self.parse_while_expr(label, lo, attrs)
1422         } else if self.eat_keyword(kw::For) {
1423             self.parse_for_expr(label, lo, attrs)
1424         } else if self.eat_keyword(kw::Loop) {
1425             self.parse_loop_expr(label, lo, attrs)
1426         } else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
1427             self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
1428         } else {
1429             let msg = "expected `while`, `for`, `loop` or `{` after a label";
1430             self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1431             // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1432             self.parse_expr()
1433         }?;
1434
1435         if !ate_colon && consume_colon {
1436             self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
1437         }
1438
1439         Ok(expr)
1440     }
1441
1442     fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
1443         self.struct_span_err(span, "labeled expression must be followed by `:`")
1444             .span_label(lo, "the label")
1445             .span_suggestion_short(
1446                 lo.shrink_to_hi(),
1447                 "add `:` after the label",
1448                 ": ".to_string(),
1449                 Applicability::MachineApplicable,
1450             )
1451             .note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
1452             .emit();
1453     }
1454
1455     /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1456     fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1457         let lo = self.token.span;
1458
1459         self.bump(); // `do`
1460         self.bump(); // `catch`
1461
1462         let span_dc = lo.to(self.prev_token.span);
1463         self.struct_span_err(span_dc, "found removed `do catch` syntax")
1464             .span_suggestion(
1465                 span_dc,
1466                 "replace with the new syntax",
1467                 "try".to_string(),
1468                 Applicability::MachineApplicable,
1469             )
1470             .note("following RFC #2388, the new non-placeholder syntax is `try`")
1471             .emit();
1472
1473         self.parse_try_block(lo, attrs)
1474     }
1475
1476     /// Parse an expression if the token can begin one.
1477     fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1478         Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1479     }
1480
1481     /// Parse `"return" expr?`.
1482     fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1483         let lo = self.prev_token.span;
1484         let kind = ExprKind::Ret(self.parse_expr_opt()?);
1485         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1486         self.maybe_recover_from_bad_qpath(expr, true)
1487     }
1488
1489     /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1490     /// If the label is followed immediately by a `:` token, the label and `:` are
1491     /// parsed as part of the expression (i.e. a labeled loop). The language team has
1492     /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1493     /// the break expression of an unlabeled break is a labeled loop (as in
1494     /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1495     /// expression only gets a warning for compatibility reasons; and a labeled break
1496     /// with a labeled loop does not even get a warning because there is no ambiguity.
1497     fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1498         let lo = self.prev_token.span;
1499         let mut label = self.eat_label();
1500         let kind = if label.is_some() && self.token == token::Colon {
1501             // The value expression can be a labeled loop, see issue #86948, e.g.:
1502             // `loop { break 'label: loop { break 'label 42; }; }`
1503             let lexpr = self.parse_labeled_expr(label.take().unwrap(), AttrVec::new(), true)?;
1504             self.struct_span_err(
1505                 lexpr.span,
1506                 "parentheses are required around this expression to avoid confusion with a labeled break expression",
1507             )
1508             .multipart_suggestion(
1509                 "wrap the expression in parentheses",
1510                 vec![
1511                     (lexpr.span.shrink_to_lo(), "(".to_string()),
1512                     (lexpr.span.shrink_to_hi(), ")".to_string()),
1513                 ],
1514                 Applicability::MachineApplicable,
1515             )
1516             .emit();
1517             Some(lexpr)
1518         } else if self.token != token::OpenDelim(token::Brace)
1519             || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1520         {
1521             let expr = self.parse_expr_opt()?;
1522             if let Some(ref expr) = expr {
1523                 if label.is_some()
1524                     && matches!(
1525                         expr.kind,
1526                         ExprKind::While(_, _, None)
1527                             | ExprKind::ForLoop(_, _, _, None)
1528                             | ExprKind::Loop(_, None)
1529                             | ExprKind::Block(_, None)
1530                     )
1531                 {
1532                     self.sess.buffer_lint_with_diagnostic(
1533                         BREAK_WITH_LABEL_AND_LOOP,
1534                         lo.to(expr.span),
1535                         ast::CRATE_NODE_ID,
1536                         "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1537                         BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1538                     );
1539                 }
1540             }
1541             expr
1542         } else {
1543             None
1544         };
1545         let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
1546         self.maybe_recover_from_bad_qpath(expr, true)
1547     }
1548
1549     /// Parse `"yield" expr?`.
1550     fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1551         let lo = self.prev_token.span;
1552         let kind = ExprKind::Yield(self.parse_expr_opt()?);
1553         let span = lo.to(self.prev_token.span);
1554         self.sess.gated_spans.gate(sym::generators, span);
1555         let expr = self.mk_expr(span, kind, attrs);
1556         self.maybe_recover_from_bad_qpath(expr, true)
1557     }
1558
1559     /// Returns a string literal if the next token is a string literal.
1560     /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1561     /// and returns `None` if the next token is not literal at all.
1562     pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
1563         match self.parse_opt_lit() {
1564             Some(lit) => match lit.kind {
1565                 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1566                     style,
1567                     symbol: lit.token.symbol,
1568                     suffix: lit.token.suffix,
1569                     span: lit.span,
1570                     symbol_unescaped,
1571                 }),
1572                 _ => Err(Some(lit)),
1573             },
1574             None => Err(None),
1575         }
1576     }
1577
1578     pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
1579         self.parse_opt_lit().ok_or_else(|| {
1580             if let token::Interpolated(inner) = &self.token.kind {
1581                 let expr = match inner.as_ref() {
1582                     token::NtExpr(expr) => Some(expr),
1583                     token::NtLiteral(expr) => Some(expr),
1584                     _ => None,
1585                 };
1586                 if let Some(expr) = expr {
1587                     if matches!(expr.kind, ExprKind::Err) {
1588                         self.diagnostic()
1589                             .delay_span_bug(self.token.span, &"invalid interpolated expression");
1590                         return self.diagnostic().struct_dummy();
1591                     }
1592                 }
1593             }
1594             let msg = format!("unexpected token: {}", super::token_descr(&self.token));
1595             self.struct_span_err(self.token.span, &msg)
1596         })
1597     }
1598
1599     /// Matches `lit = true | false | token_lit`.
1600     /// Returns `None` if the next token is not a literal.
1601     pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
1602         let mut recovered = None;
1603         if self.token == token::Dot {
1604             // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1605             // dot would follow an optional literal, so we do this unconditionally.
1606             recovered = self.look_ahead(1, |next_token| {
1607                 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1608                     next_token.kind
1609                 {
1610                     if self.token.span.hi() == next_token.span.lo() {
1611                         let s = String::from("0.") + &symbol.as_str();
1612                         let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1613                         return Some(Token::new(kind, self.token.span.to(next_token.span)));
1614                     }
1615                 }
1616                 None
1617             });
1618             if let Some(token) = &recovered {
1619                 self.bump();
1620                 self.error_float_lits_must_have_int_part(&token);
1621             }
1622         }
1623
1624         let token = recovered.as_ref().unwrap_or(&self.token);
1625         match Lit::from_token(token) {
1626             Ok(lit) => {
1627                 self.bump();
1628                 Some(lit)
1629             }
1630             Err(LitError::NotLiteral) => None,
1631             Err(err) => {
1632                 let span = token.span;
1633                 let lit = match token.kind {
1634                     token::Literal(lit) => lit,
1635                     _ => unreachable!(),
1636                 };
1637                 self.bump();
1638                 self.report_lit_error(err, lit, span);
1639                 // Pack possible quotes and prefixes from the original literal into
1640                 // the error literal's symbol so they can be pretty-printed faithfully.
1641                 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1642                 let symbol = Symbol::intern(&suffixless_lit.to_string());
1643                 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1644                 Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
1645             }
1646         }
1647     }
1648
1649     fn error_float_lits_must_have_int_part(&self, token: &Token) {
1650         self.struct_span_err(token.span, "float literals must have an integer part")
1651             .span_suggestion(
1652                 token.span,
1653                 "must have an integer part",
1654                 pprust::token_to_string(token).into(),
1655                 Applicability::MachineApplicable,
1656             )
1657             .emit();
1658     }
1659
1660     fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
1661         // Checks if `s` looks like i32 or u1234 etc.
1662         fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
1663             s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
1664         }
1665
1666         let token::Lit { kind, suffix, .. } = lit;
1667         match err {
1668             // `NotLiteral` is not an error by itself, so we don't report
1669             // it and give the parser opportunity to try something else.
1670             LitError::NotLiteral => {}
1671             // `LexerError` *is* an error, but it was already reported
1672             // by lexer, so here we don't report it the second time.
1673             LitError::LexerError => {}
1674             LitError::InvalidSuffix => {
1675                 self.expect_no_suffix(
1676                     span,
1677                     &format!("{} {} literal", kind.article(), kind.descr()),
1678                     suffix,
1679                 );
1680             }
1681             LitError::InvalidIntSuffix => {
1682                 let suf = suffix.expect("suffix error with no suffix").as_str();
1683                 if looks_like_width_suffix(&['i', 'u'], &suf) {
1684                     // If it looks like a width, try to be helpful.
1685                     let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
1686                     self.struct_span_err(span, &msg)
1687                         .help("valid widths are 8, 16, 32, 64 and 128")
1688                         .emit();
1689                 } else {
1690                     let msg = format!("invalid suffix `{}` for number literal", suf);
1691                     self.struct_span_err(span, &msg)
1692                         .span_label(span, format!("invalid suffix `{}`", suf))
1693                         .help("the suffix must be one of the numeric types (`u32`, `isize`, `f32`, etc.)")
1694                         .emit();
1695                 }
1696             }
1697             LitError::InvalidFloatSuffix => {
1698                 let suf = suffix.expect("suffix error with no suffix").as_str();
1699                 if looks_like_width_suffix(&['f'], &suf) {
1700                     // If it looks like a width, try to be helpful.
1701                     let msg = format!("invalid width `{}` for float literal", &suf[1..]);
1702                     self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
1703                 } else {
1704                     let msg = format!("invalid suffix `{}` for float literal", suf);
1705                     self.struct_span_err(span, &msg)
1706                         .span_label(span, format!("invalid suffix `{}`", suf))
1707                         .help("valid suffixes are `f32` and `f64`")
1708                         .emit();
1709                 }
1710             }
1711             LitError::NonDecimalFloat(base) => {
1712                 let descr = match base {
1713                     16 => "hexadecimal",
1714                     8 => "octal",
1715                     2 => "binary",
1716                     _ => unreachable!(),
1717                 };
1718                 self.struct_span_err(span, &format!("{} float literal is not supported", descr))
1719                     .span_label(span, "not supported")
1720                     .emit();
1721             }
1722             LitError::IntTooLarge => {
1723                 self.struct_span_err(span, "integer literal is too large").emit();
1724             }
1725         }
1726     }
1727
1728     pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
1729         if let Some(suf) = suffix {
1730             let mut err = if kind == "a tuple index"
1731                 && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
1732             {
1733                 // #59553: warn instead of reject out of hand to allow the fix to percolate
1734                 // through the ecosystem when people fix their macros
1735                 let mut err = self
1736                     .sess
1737                     .span_diagnostic
1738                     .struct_span_warn(sp, &format!("suffixes on {} are invalid", kind));
1739                 err.note(&format!(
1740                     "`{}` is *temporarily* accepted on tuple index fields as it was \
1741                         incorrectly accepted on stable for a few releases",
1742                     suf,
1743                 ));
1744                 err.help(
1745                     "on proc macros, you'll want to use `syn::Index::from` or \
1746                         `proc_macro::Literal::*_unsuffixed` for code that will desugar \
1747                         to tuple field access",
1748                 );
1749                 err.note(
1750                     "see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
1751                      for more information",
1752                 );
1753                 err
1754             } else {
1755                 self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
1756             };
1757             err.span_label(sp, format!("invalid suffix `{}`", suf));
1758             err.emit();
1759         }
1760     }
1761
1762     /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
1763     /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
1764     pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1765         maybe_whole_expr!(self);
1766
1767         let lo = self.token.span;
1768         let minus_present = self.eat(&token::BinOp(token::Minus));
1769         let lit = self.parse_lit()?;
1770         let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
1771
1772         if minus_present {
1773             Ok(self.mk_expr(
1774                 lo.to(self.prev_token.span),
1775                 self.mk_unary(UnOp::Neg, expr),
1776                 AttrVec::new(),
1777             ))
1778         } else {
1779             Ok(expr)
1780         }
1781     }
1782
1783     fn is_array_like_block(&mut self) -> bool {
1784         self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
1785             && self.look_ahead(2, |t| t == &token::Comma)
1786             && self.look_ahead(3, |t| t.can_begin_expr())
1787     }
1788
1789     /// Emits a suggestion if it looks like the user meant an array but
1790     /// accidentally used braces, causing the code to be interpreted as a block
1791     /// expression.
1792     fn maybe_suggest_brackets_instead_of_braces(
1793         &mut self,
1794         lo: Span,
1795         attrs: AttrVec,
1796     ) -> Option<P<Expr>> {
1797         let mut snapshot = self.clone();
1798         match snapshot.parse_array_or_repeat_expr(attrs, token::Brace) {
1799             Ok(arr) => {
1800                 let hi = snapshot.prev_token.span;
1801                 self.struct_span_err(
1802                     arr.span,
1803                     "this code is interpreted as a block expression, not an array",
1804                 )
1805                 .multipart_suggestion(
1806                     "try using [] instead of {}",
1807                     vec![(lo, "[".to_owned()), (hi, "]".to_owned())],
1808                     Applicability::MaybeIncorrect,
1809                 )
1810                 .note("to define an array, one would use square brackets instead of curly braces")
1811                 .emit();
1812
1813                 *self = snapshot;
1814                 Some(self.mk_expr_err(arr.span))
1815             }
1816             Err(mut e) => {
1817                 e.cancel();
1818                 None
1819             }
1820         }
1821     }
1822
1823     /// Parses a block or unsafe block.
1824     pub(super) fn parse_block_expr(
1825         &mut self,
1826         opt_label: Option<Label>,
1827         lo: Span,
1828         blk_mode: BlockCheckMode,
1829         mut attrs: AttrVec,
1830     ) -> PResult<'a, P<Expr>> {
1831         if self.is_array_like_block() {
1832             if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo, attrs.clone()) {
1833                 return Ok(arr);
1834             }
1835         }
1836
1837         if let Some(label) = opt_label {
1838             self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
1839         }
1840
1841         if self.token.is_whole_block() {
1842             self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
1843                 .span_label(lo.to(self.token.span), "the `block` fragment is within this context")
1844                 .emit();
1845         }
1846
1847         let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
1848         attrs.extend(inner_attrs);
1849         Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
1850     }
1851
1852     /// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
1853     fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1854         let lo = self.token.span;
1855         let _ = self.parse_late_bound_lifetime_defs()?;
1856         let span_for = lo.to(self.prev_token.span);
1857         let closure = self.parse_closure_expr(attrs)?;
1858
1859         self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
1860             .span_label(closure.span, "the parameters are attached to this closure")
1861             .span_suggestion(
1862                 span_for,
1863                 "remove the parameters",
1864                 String::new(),
1865                 Applicability::MachineApplicable,
1866             )
1867             .emit();
1868
1869         Ok(self.mk_expr_err(lo.to(closure.span)))
1870     }
1871
1872     /// Parses a closure expression (e.g., `move |args| expr`).
1873     fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1874         let lo = self.token.span;
1875
1876         let movability =
1877             if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
1878
1879         let asyncness = if self.token.uninterpolated_span().rust_2018() {
1880             self.parse_asyncness()
1881         } else {
1882             Async::No
1883         };
1884
1885         let capture_clause = self.parse_capture_clause()?;
1886         let decl = self.parse_fn_block_decl()?;
1887         let decl_hi = self.prev_token.span;
1888         let mut body = match decl.output {
1889             FnRetTy::Default(_) => {
1890                 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
1891                 self.parse_expr_res(restrictions, None)?
1892             }
1893             _ => {
1894                 // If an explicit return type is given, require a block to appear (RFC 968).
1895                 let body_lo = self.token.span;
1896                 self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
1897             }
1898         };
1899
1900         if let Async::Yes { span, .. } = asyncness {
1901             // Feature-gate `async ||` closures.
1902             self.sess.gated_spans.gate(sym::async_closure, span);
1903         }
1904
1905         if self.token.kind == TokenKind::Semi && self.token_cursor.frame.delim == DelimToken::Paren
1906         {
1907             // It is likely that the closure body is a block but where the
1908             // braces have been removed. We will recover and eat the next
1909             // statements later in the parsing process.
1910             body = self.mk_expr_err(body.span);
1911         }
1912
1913         let body_span = body.span;
1914
1915         let closure = self.mk_expr(
1916             lo.to(body.span),
1917             ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
1918             attrs,
1919         );
1920
1921         // Disable recovery for closure body
1922         let spans =
1923             ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
1924         self.current_closure = Some(spans);
1925
1926         Ok(closure)
1927     }
1928
1929     /// Parses an optional `move` prefix to a closure-like construct.
1930     fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
1931         if self.eat_keyword(kw::Move) {
1932             // Check for `move async` and recover
1933             if self.check_keyword(kw::Async) {
1934                 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
1935                 Err(self.incorrect_move_async_order_found(move_async_span))
1936             } else {
1937                 Ok(CaptureBy::Value)
1938             }
1939         } else {
1940             Ok(CaptureBy::Ref)
1941         }
1942     }
1943
1944     /// Parses the `|arg, arg|` header of a closure.
1945     fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
1946         let inputs = if self.eat(&token::OrOr) {
1947             Vec::new()
1948         } else {
1949             self.expect(&token::BinOp(token::Or))?;
1950             let args = self
1951                 .parse_seq_to_before_tokens(
1952                     &[&token::BinOp(token::Or), &token::OrOr],
1953                     SeqSep::trailing_allowed(token::Comma),
1954                     TokenExpectType::NoExpect,
1955                     |p| p.parse_fn_block_param(),
1956                 )?
1957                 .0;
1958             self.expect_or()?;
1959             args
1960         };
1961         let output =
1962             self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
1963
1964         Ok(P(FnDecl { inputs, output }))
1965     }
1966
1967     /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
1968     fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
1969         let lo = self.token.span;
1970         let attrs = self.parse_outer_attributes()?;
1971         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
1972             let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
1973             let ty = if this.eat(&token::Colon) {
1974                 this.parse_ty()?
1975             } else {
1976                 this.mk_ty(this.prev_token.span, TyKind::Infer)
1977             };
1978
1979             Ok((
1980                 Param {
1981                     attrs: attrs.into(),
1982                     ty,
1983                     pat,
1984                     span: lo.to(this.token.span),
1985                     id: DUMMY_NODE_ID,
1986                     is_placeholder: false,
1987                 },
1988                 TrailingToken::MaybeComma,
1989             ))
1990         })
1991     }
1992
1993     /// Parses an `if` expression (`if` token already eaten).
1994     fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1995         let lo = self.prev_token.span;
1996         let cond = self.parse_cond_expr()?;
1997
1998         let missing_then_block_binop_span = || {
1999             match cond.kind {
2000                 ExprKind::Binary(Spanned { span: binop_span, .. }, _, ref right)
2001                     if let ExprKind::Block(..) = right.kind => Some(binop_span),
2002                 _ => None
2003             }
2004         };
2005
2006         // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
2007         // verify that the last statement is either an implicit return (no `;`) or an explicit
2008         // return. This won't catch blocks with an explicit `return`, but that would be caught by
2009         // the dead code lint.
2010         let thn = if self.token.is_keyword(kw::Else) || !cond.returns() {
2011             if let Some(binop_span) = missing_then_block_binop_span() {
2012                 self.error_missing_if_then_block(lo, None, Some(binop_span)).emit();
2013                 self.mk_block_err(cond.span)
2014             } else {
2015                 self.error_missing_if_cond(lo, cond.span)
2016             }
2017         } else {
2018             let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2019             let not_block = self.token != token::OpenDelim(token::Brace);
2020             let block = self.parse_block().map_err(|err| {
2021                 if not_block {
2022                     self.error_missing_if_then_block(lo, Some(err), missing_then_block_binop_span())
2023                 } else {
2024                     err
2025                 }
2026             })?;
2027             self.error_on_if_block_attrs(lo, false, block.span, &attrs);
2028             block
2029         };
2030         let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2031         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
2032     }
2033
2034     fn error_missing_if_then_block(
2035         &self,
2036         if_span: Span,
2037         err: Option<DiagnosticBuilder<'a>>,
2038         binop_span: Option<Span>,
2039     ) -> DiagnosticBuilder<'a> {
2040         let msg = "this `if` expression has a condition, but no block";
2041
2042         let mut err = if let Some(mut err) = err {
2043             err.span_label(if_span, msg);
2044             err
2045         } else {
2046             self.struct_span_err(if_span, msg)
2047         };
2048
2049         if let Some(binop_span) = binop_span {
2050             err.span_help(binop_span, "maybe you forgot the right operand of the condition?");
2051         }
2052
2053         err
2054     }
2055
2056     fn error_missing_if_cond(&self, lo: Span, span: Span) -> P<ast::Block> {
2057         let sp = self.sess.source_map().next_point(lo);
2058         self.struct_span_err(sp, "missing condition for `if` expression")
2059             .span_label(sp, "expected if condition here")
2060             .emit();
2061         self.mk_block_err(span)
2062     }
2063
2064     /// Parses the condition of a `if` or `while` expression.
2065     fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2066         let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2067
2068         if let ExprKind::Let(..) = cond.kind {
2069             // Remove the last feature gating of a `let` expression since it's stable.
2070             self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2071         }
2072
2073         Ok(cond)
2074     }
2075
2076     /// Parses a `let $pat = $expr` pseudo-expression.
2077     /// The `let` token has already been eaten.
2078     fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2079         let lo = self.prev_token.span;
2080         let pat = self.parse_pat_allow_top_alt(None, RecoverComma::Yes, RecoverColon::Yes)?;
2081         self.expect(&token::Eq)?;
2082         let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2083             this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2084         })?;
2085         let span = lo.to(expr.span);
2086         self.sess.gated_spans.gate(sym::let_chains, span);
2087         Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span), attrs))
2088     }
2089
2090     /// Parses an `else { ... }` expression (`else` token already eaten).
2091     fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2092         let ctx_span = self.prev_token.span; // `else`
2093         let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2094         let expr = if self.eat_keyword(kw::If) {
2095             self.parse_if_expr(AttrVec::new())?
2096         } else {
2097             let blk = self.parse_block()?;
2098             self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new())
2099         };
2100         self.error_on_if_block_attrs(ctx_span, true, expr.span, &attrs);
2101         Ok(expr)
2102     }
2103
2104     fn error_on_if_block_attrs(
2105         &self,
2106         ctx_span: Span,
2107         is_ctx_else: bool,
2108         branch_span: Span,
2109         attrs: &[ast::Attribute],
2110     ) {
2111         let (span, last) = match attrs {
2112             [] => return,
2113             [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2114         };
2115         let ctx = if is_ctx_else { "else" } else { "if" };
2116         self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
2117             .span_label(branch_span, "the attributes are attached to this branch")
2118             .span_label(ctx_span, format!("the branch belongs to this `{}`", ctx))
2119             .span_suggestion(
2120                 span,
2121                 "remove the attributes",
2122                 String::new(),
2123                 Applicability::MachineApplicable,
2124             )
2125             .emit();
2126     }
2127
2128     /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2129     fn parse_for_expr(
2130         &mut self,
2131         opt_label: Option<Label>,
2132         lo: Span,
2133         mut attrs: AttrVec,
2134     ) -> PResult<'a, P<Expr>> {
2135         // Record whether we are about to parse `for (`.
2136         // This is used below for recovery in case of `for ( $stuff ) $block`
2137         // in which case we will suggest `for $stuff $block`.
2138         let begin_paren = match self.token.kind {
2139             token::OpenDelim(token::Paren) => Some(self.token.span),
2140             _ => None,
2141         };
2142
2143         let pat = self.parse_pat_allow_top_alt(None, RecoverComma::Yes, RecoverColon::Yes)?;
2144         if !self.eat_keyword(kw::In) {
2145             self.error_missing_in_for_loop();
2146         }
2147         self.check_for_for_in_in_typo(self.prev_token.span);
2148         let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2149
2150         let pat = self.recover_parens_around_for_head(pat, begin_paren);
2151
2152         let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
2153         attrs.extend(iattrs);
2154
2155         let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2156         Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2157     }
2158
2159     fn error_missing_in_for_loop(&mut self) {
2160         let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
2161             // Possibly using JS syntax (#75311).
2162             let span = self.token.span;
2163             self.bump();
2164             (span, "try using `in` here instead", "in")
2165         } else {
2166             (self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
2167         };
2168         self.struct_span_err(span, "missing `in` in `for` loop")
2169             .span_suggestion_short(
2170                 span,
2171                 msg,
2172                 sugg.into(),
2173                 // Has been misleading, at least in the past (closed Issue #48492).
2174                 Applicability::MaybeIncorrect,
2175             )
2176             .emit();
2177     }
2178
2179     /// Parses a `while` or `while let` expression (`while` token already eaten).
2180     fn parse_while_expr(
2181         &mut self,
2182         opt_label: Option<Label>,
2183         lo: Span,
2184         mut attrs: AttrVec,
2185     ) -> PResult<'a, P<Expr>> {
2186         let cond = self.parse_cond_expr()?;
2187         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2188         attrs.extend(iattrs);
2189         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
2190     }
2191
2192     /// Parses `loop { ... }` (`loop` token already eaten).
2193     fn parse_loop_expr(
2194         &mut self,
2195         opt_label: Option<Label>,
2196         lo: Span,
2197         mut attrs: AttrVec,
2198     ) -> PResult<'a, P<Expr>> {
2199         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2200         attrs.extend(iattrs);
2201         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
2202     }
2203
2204     fn eat_label(&mut self) -> Option<Label> {
2205         self.token.lifetime().map(|ident| {
2206             self.bump();
2207             Label { ident }
2208         })
2209     }
2210
2211     /// Parses a `match ... { ... }` expression (`match` token already eaten).
2212     fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2213         let match_span = self.prev_token.span;
2214         let lo = self.prev_token.span;
2215         let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2216         if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
2217             if self.token == token::Semi {
2218                 e.span_suggestion_short(
2219                     match_span,
2220                     "try removing this `match`",
2221                     String::new(),
2222                     Applicability::MaybeIncorrect, // speculative
2223                 );
2224             }
2225             return Err(e);
2226         }
2227         attrs.extend(self.parse_inner_attributes()?);
2228
2229         let mut arms: Vec<Arm> = Vec::new();
2230         while self.token != token::CloseDelim(token::Brace) {
2231             match self.parse_arm() {
2232                 Ok(arm) => arms.push(arm),
2233                 Err(mut e) => {
2234                     // Recover by skipping to the end of the block.
2235                     e.emit();
2236                     self.recover_stmt();
2237                     let span = lo.to(self.token.span);
2238                     if self.token == token::CloseDelim(token::Brace) {
2239                         self.bump();
2240                     }
2241                     return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
2242                 }
2243             }
2244         }
2245         let hi = self.token.span;
2246         self.bump();
2247         Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2248     }
2249
2250     /// Attempt to recover from match arm body with statements and no surrounding braces.
2251     fn parse_arm_body_missing_braces(
2252         &mut self,
2253         first_expr: &P<Expr>,
2254         arrow_span: Span,
2255     ) -> Option<P<Expr>> {
2256         if self.token.kind != token::Semi {
2257             return None;
2258         }
2259         let start_snapshot = self.clone();
2260         let semi_sp = self.token.span;
2261         self.bump(); // `;`
2262         let mut stmts =
2263             vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2264         let err = |this: &mut Parser<'_>, stmts: Vec<ast::Stmt>| {
2265             let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2266             let mut err = this.struct_span_err(span, "`match` arm body without braces");
2267             let (these, s, are) =
2268                 if stmts.len() > 1 { ("these", "s", "are") } else { ("this", "", "is") };
2269             err.span_label(
2270                 span,
2271                 &format!(
2272                     "{these} statement{s} {are} not surrounded by a body",
2273                     these = these,
2274                     s = s,
2275                     are = are
2276                 ),
2277             );
2278             err.span_label(arrow_span, "while parsing the `match` arm starting here");
2279             if stmts.len() > 1 {
2280                 err.multipart_suggestion(
2281                     &format!("surround the statement{} with a body", s),
2282                     vec![
2283                         (span.shrink_to_lo(), "{ ".to_string()),
2284                         (span.shrink_to_hi(), " }".to_string()),
2285                     ],
2286                     Applicability::MachineApplicable,
2287                 );
2288             } else {
2289                 err.span_suggestion(
2290                     semi_sp,
2291                     "use a comma to end a `match` arm expression",
2292                     ",".to_string(),
2293                     Applicability::MachineApplicable,
2294                 );
2295             }
2296             err.emit();
2297             this.mk_expr_err(span)
2298         };
2299         // We might have either a `,` -> `;` typo, or a block without braces. We need
2300         // a more subtle parsing strategy.
2301         loop {
2302             if self.token.kind == token::CloseDelim(token::Brace) {
2303                 // We have reached the closing brace of the `match` expression.
2304                 return Some(err(self, stmts));
2305             }
2306             if self.token.kind == token::Comma {
2307                 *self = start_snapshot;
2308                 return None;
2309             }
2310             let pre_pat_snapshot = self.clone();
2311             match self.parse_pat_no_top_alt(None) {
2312                 Ok(_pat) => {
2313                     if self.token.kind == token::FatArrow {
2314                         // Reached arm end.
2315                         *self = pre_pat_snapshot;
2316                         return Some(err(self, stmts));
2317                     }
2318                 }
2319                 Err(mut err) => {
2320                     err.cancel();
2321                 }
2322             }
2323
2324             *self = pre_pat_snapshot;
2325             match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2326                 // Consume statements for as long as possible.
2327                 Ok(Some(stmt)) => {
2328                     stmts.push(stmt);
2329                 }
2330                 Ok(None) => {
2331                     *self = start_snapshot;
2332                     break;
2333                 }
2334                 // We couldn't parse either yet another statement missing it's
2335                 // enclosing block nor the next arm's pattern or closing brace.
2336                 Err(mut stmt_err) => {
2337                     stmt_err.cancel();
2338                     *self = start_snapshot;
2339                     break;
2340                 }
2341             }
2342         }
2343         None
2344     }
2345
2346     pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2347         let attrs = self.parse_outer_attributes()?;
2348         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2349             let lo = this.token.span;
2350             let pat = this.parse_pat_allow_top_alt(None, RecoverComma::Yes, RecoverColon::Yes)?;
2351             let guard = if this.eat_keyword(kw::If) {
2352                 let if_span = this.prev_token.span;
2353                 let cond = this.parse_expr()?;
2354                 if let ExprKind::Let(..) = cond.kind {
2355                     // Remove the last feature gating of a `let` expression since it's stable.
2356                     this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2357                     let span = if_span.to(cond.span);
2358                     this.sess.gated_spans.gate(sym::if_let_guard, span);
2359                 }
2360                 Some(cond)
2361             } else {
2362                 None
2363             };
2364             let arrow_span = this.token.span;
2365             if let Err(mut err) = this.expect(&token::FatArrow) {
2366                 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2367                 if TokenKind::FatArrow
2368                     .similar_tokens()
2369                     .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2370                 {
2371                     err.span_suggestion(
2372                         this.token.span,
2373                         "try using a fat arrow here",
2374                         "=>".to_string(),
2375                         Applicability::MaybeIncorrect,
2376                     );
2377                     err.emit();
2378                     this.bump();
2379                 } else {
2380                     return Err(err);
2381                 }
2382             }
2383             let arm_start_span = this.token.span;
2384
2385             let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2386                 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2387                 err
2388             })?;
2389
2390             let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2391                 && this.token != token::CloseDelim(token::Brace);
2392
2393             let hi = this.prev_token.span;
2394
2395             if require_comma {
2396                 let sm = this.sess.source_map();
2397                 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2398                     let span = body.span;
2399                     return Ok((
2400                         ast::Arm {
2401                             attrs: attrs.into(),
2402                             pat,
2403                             guard,
2404                             body,
2405                             span,
2406                             id: DUMMY_NODE_ID,
2407                             is_placeholder: false,
2408                         },
2409                         TrailingToken::None,
2410                     ));
2411                 }
2412                 this.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
2413                     |mut err| {
2414                         match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
2415                             (Ok(ref expr_lines), Ok(ref arm_start_lines))
2416                                 if arm_start_lines.lines[0].end_col
2417                                     == expr_lines.lines[0].end_col
2418                                     && expr_lines.lines.len() == 2
2419                                     && this.token == token::FatArrow =>
2420                             {
2421                                 // We check whether there's any trailing code in the parse span,
2422                                 // if there isn't, we very likely have the following:
2423                                 //
2424                                 // X |     &Y => "y"
2425                                 //   |        --    - missing comma
2426                                 //   |        |
2427                                 //   |        arrow_span
2428                                 // X |     &X => "x"
2429                                 //   |      - ^^ self.token.span
2430                                 //   |      |
2431                                 //   |      parsed until here as `"y" & X`
2432                                 err.span_suggestion_short(
2433                                     arm_start_span.shrink_to_hi(),
2434                                     "missing a comma here to end this `match` arm",
2435                                     ",".to_owned(),
2436                                     Applicability::MachineApplicable,
2437                                 );
2438                             }
2439                             _ => {
2440                                 err.span_label(
2441                                     arrow_span,
2442                                     "while parsing the `match` arm starting here",
2443                                 );
2444                             }
2445                         }
2446                         err
2447                     },
2448                 )?;
2449             } else {
2450                 this.eat(&token::Comma);
2451             }
2452
2453             Ok((
2454                 ast::Arm {
2455                     attrs: attrs.into(),
2456                     pat,
2457                     guard,
2458                     body: expr,
2459                     span: lo.to(hi),
2460                     id: DUMMY_NODE_ID,
2461                     is_placeholder: false,
2462                 },
2463                 TrailingToken::None,
2464             ))
2465         })
2466     }
2467
2468     /// Parses a `try {...}` expression (`try` token already eaten).
2469     fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2470         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2471         attrs.extend(iattrs);
2472         if self.eat_keyword(kw::Catch) {
2473             let mut error = self.struct_span_err(
2474                 self.prev_token.span,
2475                 "keyword `catch` cannot follow a `try` block",
2476             );
2477             error.help("try using `match` on the result of the `try` block instead");
2478             error.emit();
2479             Err(error)
2480         } else {
2481             let span = span_lo.to(body.span);
2482             self.sess.gated_spans.gate(sym::try_blocks, span);
2483             Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
2484         }
2485     }
2486
2487     fn is_do_catch_block(&self) -> bool {
2488         self.token.is_keyword(kw::Do)
2489             && self.is_keyword_ahead(1, &[kw::Catch])
2490             && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
2491             && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2492     }
2493
2494     fn is_try_block(&self) -> bool {
2495         self.token.is_keyword(kw::Try)
2496             && self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
2497             && self.token.uninterpolated_span().rust_2018()
2498     }
2499
2500     /// Parses an `async move? {...}` expression.
2501     fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2502         let lo = self.token.span;
2503         self.expect_keyword(kw::Async)?;
2504         let capture_clause = self.parse_capture_clause()?;
2505         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2506         attrs.extend(iattrs);
2507         let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2508         Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2509     }
2510
2511     fn is_async_block(&self) -> bool {
2512         self.token.is_keyword(kw::Async)
2513             && ((
2514                 // `async move {`
2515                 self.is_keyword_ahead(1, &[kw::Move])
2516                     && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
2517             ) || (
2518                 // `async {`
2519                 self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
2520             ))
2521     }
2522
2523     fn is_certainly_not_a_block(&self) -> bool {
2524         self.look_ahead(1, |t| t.is_ident())
2525             && (
2526                 // `{ ident, ` cannot start a block.
2527                 self.look_ahead(2, |t| t == &token::Comma)
2528                     || self.look_ahead(2, |t| t == &token::Colon)
2529                         && (
2530                             // `{ ident: token, ` cannot start a block.
2531                             self.look_ahead(4, |t| t == &token::Comma) ||
2532                 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2533                 self.look_ahead(3, |t| !t.can_begin_type())
2534                         )
2535             )
2536     }
2537
2538     fn maybe_parse_struct_expr(
2539         &mut self,
2540         qself: Option<&ast::QSelf>,
2541         path: &ast::Path,
2542         attrs: &AttrVec,
2543     ) -> Option<PResult<'a, P<Expr>>> {
2544         let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2545         if struct_allowed || self.is_certainly_not_a_block() {
2546             if let Err(err) = self.expect(&token::OpenDelim(token::Brace)) {
2547                 return Some(Err(err));
2548             }
2549             let expr = self.parse_struct_expr(qself.cloned(), path.clone(), attrs.clone(), true);
2550             if let (Ok(expr), false) = (&expr, struct_allowed) {
2551                 // This is a struct literal, but we don't can't accept them here.
2552                 self.error_struct_lit_not_allowed_here(path.span, expr.span);
2553             }
2554             return Some(expr);
2555         }
2556         None
2557     }
2558
2559     fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
2560         self.struct_span_err(sp, "struct literals are not allowed here")
2561             .multipart_suggestion(
2562                 "surround the struct literal with parentheses",
2563                 vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
2564                 Applicability::MachineApplicable,
2565             )
2566             .emit();
2567     }
2568
2569     pub(super) fn parse_struct_fields(
2570         &mut self,
2571         pth: ast::Path,
2572         recover: bool,
2573         close_delim: token::DelimToken,
2574     ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2575         let mut fields = Vec::new();
2576         let mut base = ast::StructRest::None;
2577         let mut recover_async = false;
2578
2579         let mut async_block_err = |e: &mut DiagnosticBuilder<'_>, span: Span| {
2580             recover_async = true;
2581             e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2582             e.help(&format!("set `edition = \"{}\"` in `Cargo.toml`", LATEST_STABLE_EDITION));
2583             e.note("for more on editions, read https://doc.rust-lang.org/edition-guide");
2584         };
2585
2586         while self.token != token::CloseDelim(close_delim) {
2587             if self.eat(&token::DotDot) {
2588                 let exp_span = self.prev_token.span;
2589                 // We permit `.. }` on the left-hand side of a destructuring assignment.
2590                 if self.check(&token::CloseDelim(close_delim)) {
2591                     self.sess.gated_spans.gate(sym::destructuring_assignment, self.prev_token.span);
2592                     base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2593                     break;
2594                 }
2595                 match self.parse_expr() {
2596                     Ok(e) => base = ast::StructRest::Base(e),
2597                     Err(mut e) if recover => {
2598                         e.emit();
2599                         self.recover_stmt();
2600                     }
2601                     Err(e) => return Err(e),
2602                 }
2603                 self.recover_struct_comma_after_dotdot(exp_span);
2604                 break;
2605             }
2606
2607             let recovery_field = self.find_struct_error_after_field_looking_code();
2608             let parsed_field = match self.parse_expr_field() {
2609                 Ok(f) => Some(f),
2610                 Err(mut e) => {
2611                     if pth == kw::Async {
2612                         async_block_err(&mut e, pth.span);
2613                     } else {
2614                         e.span_label(pth.span, "while parsing this struct");
2615                     }
2616                     e.emit();
2617
2618                     // If the next token is a comma, then try to parse
2619                     // what comes next as additional fields, rather than
2620                     // bailing out until next `}`.
2621                     if self.token != token::Comma {
2622                         self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2623                         if self.token != token::Comma {
2624                             break;
2625                         }
2626                     }
2627                     None
2628                 }
2629             };
2630
2631             match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
2632                 Ok(_) => {
2633                     if let Some(f) = parsed_field.or(recovery_field) {
2634                         // Only include the field if there's no parse error for the field name.
2635                         fields.push(f);
2636                     }
2637                 }
2638                 Err(mut e) => {
2639                     if pth == kw::Async {
2640                         async_block_err(&mut e, pth.span);
2641                     } else {
2642                         e.span_label(pth.span, "while parsing this struct");
2643                         if let Some(f) = recovery_field {
2644                             fields.push(f);
2645                             e.span_suggestion(
2646                                 self.prev_token.span.shrink_to_hi(),
2647                                 "try adding a comma",
2648                                 ",".into(),
2649                                 Applicability::MachineApplicable,
2650                             );
2651                         }
2652                     }
2653                     if !recover {
2654                         return Err(e);
2655                     }
2656                     e.emit();
2657                     self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2658                     self.eat(&token::Comma);
2659                 }
2660             }
2661         }
2662         Ok((fields, base, recover_async))
2663     }
2664
2665     /// Precondition: already parsed the '{'.
2666     pub(super) fn parse_struct_expr(
2667         &mut self,
2668         qself: Option<ast::QSelf>,
2669         pth: ast::Path,
2670         attrs: AttrVec,
2671         recover: bool,
2672     ) -> PResult<'a, P<Expr>> {
2673         let lo = pth.span;
2674         let (fields, base, recover_async) =
2675             self.parse_struct_fields(pth.clone(), recover, token::Brace)?;
2676         let span = lo.to(self.token.span);
2677         self.expect(&token::CloseDelim(token::Brace))?;
2678         let expr = if recover_async {
2679             ExprKind::Err
2680         } else {
2681             ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
2682         };
2683         Ok(self.mk_expr(span, expr, attrs))
2684     }
2685
2686     /// Use in case of error after field-looking code: `S { foo: () with a }`.
2687     fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
2688         match self.token.ident() {
2689             Some((ident, is_raw))
2690                 if (is_raw || !ident.is_reserved())
2691                     && self.look_ahead(1, |t| *t == token::Colon) =>
2692             {
2693                 Some(ast::ExprField {
2694                     ident,
2695                     span: self.token.span,
2696                     expr: self.mk_expr_err(self.token.span),
2697                     is_shorthand: false,
2698                     attrs: AttrVec::new(),
2699                     id: DUMMY_NODE_ID,
2700                     is_placeholder: false,
2701                 })
2702             }
2703             _ => None,
2704         }
2705     }
2706
2707     fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
2708         if self.token != token::Comma {
2709             return;
2710         }
2711         self.struct_span_err(
2712             span.to(self.prev_token.span),
2713             "cannot use a comma after the base struct",
2714         )
2715         .span_suggestion_short(
2716             self.token.span,
2717             "remove this comma",
2718             String::new(),
2719             Applicability::MachineApplicable,
2720         )
2721         .note("the base struct must always be the last field")
2722         .emit();
2723         self.recover_stmt();
2724     }
2725
2726     /// Parses `ident (COLON expr)?`.
2727     fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
2728         let attrs = self.parse_outer_attributes()?;
2729         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2730             let lo = this.token.span;
2731
2732             // Check if a colon exists one ahead. This means we're parsing a fieldname.
2733             let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
2734             let (ident, expr) = if is_shorthand {
2735                 // Mimic `x: x` for the `x` field shorthand.
2736                 let ident = this.parse_ident_common(false)?;
2737                 let path = ast::Path::from_ident(ident);
2738                 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
2739             } else {
2740                 let ident = this.parse_field_name()?;
2741                 this.error_on_eq_field_init(ident);
2742                 this.bump(); // `:`
2743                 (ident, this.parse_expr()?)
2744             };
2745
2746             Ok((
2747                 ast::ExprField {
2748                     ident,
2749                     span: lo.to(expr.span),
2750                     expr,
2751                     is_shorthand,
2752                     attrs: attrs.into(),
2753                     id: DUMMY_NODE_ID,
2754                     is_placeholder: false,
2755                 },
2756                 TrailingToken::MaybeComma,
2757             ))
2758         })
2759     }
2760
2761     /// Check for `=`. This means the source incorrectly attempts to
2762     /// initialize a field with an eq rather than a colon.
2763     fn error_on_eq_field_init(&self, field_name: Ident) {
2764         if self.token != token::Eq {
2765             return;
2766         }
2767
2768         self.struct_span_err(self.token.span, "expected `:`, found `=`")
2769             .span_suggestion(
2770                 field_name.span.shrink_to_hi().to(self.token.span),
2771                 "replace equals symbol with a colon",
2772                 ":".to_string(),
2773                 Applicability::MachineApplicable,
2774             )
2775             .emit();
2776     }
2777
2778     fn err_dotdotdot_syntax(&self, span: Span) {
2779         self.struct_span_err(span, "unexpected token: `...`")
2780             .span_suggestion(
2781                 span,
2782                 "use `..` for an exclusive range",
2783                 "..".to_owned(),
2784                 Applicability::MaybeIncorrect,
2785             )
2786             .span_suggestion(
2787                 span,
2788                 "or `..=` for an inclusive range",
2789                 "..=".to_owned(),
2790                 Applicability::MaybeIncorrect,
2791             )
2792             .emit();
2793     }
2794
2795     fn err_larrow_operator(&self, span: Span) {
2796         self.struct_span_err(span, "unexpected token: `<-`")
2797             .span_suggestion(
2798                 span,
2799                 "if you meant to write a comparison against a negative value, add a \
2800              space in between `<` and `-`",
2801                 "< -".to_string(),
2802                 Applicability::MaybeIncorrect,
2803             )
2804             .emit();
2805     }
2806
2807     fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
2808         ExprKind::AssignOp(binop, lhs, rhs)
2809     }
2810
2811     fn mk_range(
2812         &mut self,
2813         start: Option<P<Expr>>,
2814         end: Option<P<Expr>>,
2815         limits: RangeLimits,
2816     ) -> ExprKind {
2817         if end.is_none() && limits == RangeLimits::Closed {
2818             self.inclusive_range_with_incorrect_end(self.prev_token.span);
2819             ExprKind::Err
2820         } else {
2821             ExprKind::Range(start, end, limits)
2822         }
2823     }
2824
2825     fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
2826         ExprKind::Unary(unop, expr)
2827     }
2828
2829     fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
2830         ExprKind::Binary(binop, lhs, rhs)
2831     }
2832
2833     fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
2834         ExprKind::Index(expr, idx)
2835     }
2836
2837     fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
2838         ExprKind::Call(f, args)
2839     }
2840
2841     fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
2842         let span = lo.to(self.prev_token.span);
2843         let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
2844         self.recover_from_await_method_call();
2845         await_expr
2846     }
2847
2848     crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
2849         P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
2850     }
2851
2852     pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
2853         self.mk_expr(span, ExprKind::Err, AttrVec::new())
2854     }
2855
2856     /// Create expression span ensuring the span of the parent node
2857     /// is larger than the span of lhs and rhs, including the attributes.
2858     fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
2859         lhs.attrs
2860             .iter()
2861             .find(|a| a.style == AttrStyle::Outer)
2862             .map_or(lhs_span, |a| a.span)
2863             .to(rhs_span)
2864     }
2865
2866     fn collect_tokens_for_expr(
2867         &mut self,
2868         attrs: AttrWrapper,
2869         f: impl FnOnce(&mut Self, Vec<ast::Attribute>) -> PResult<'a, P<Expr>>,
2870     ) -> PResult<'a, P<Expr>> {
2871         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2872             let res = f(this, attrs)?;
2873             let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
2874                 && this.token.kind == token::Semi
2875             {
2876                 TrailingToken::Semi
2877             } else {
2878                 // FIXME - pass this through from the place where we know
2879                 // we need a comma, rather than assuming that `#[attr] expr,`
2880                 // always captures a trailing comma
2881                 TrailingToken::MaybeComma
2882             };
2883             Ok((res, trailing))
2884         })
2885     }
2886 }