]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_parse/src/parser/expr.rs
Auto merge of #91403 - cjgillot:inherit-async, r=oli-obk
[rust.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::pat::{RecoverColon, RecoverComma, PARAM_EXPECTED};
2 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
3 use super::{
4     AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions, TokenType,
5 };
6 use super::{SemiColonMode, SeqSep, TokenExpectType, TrailingToken};
7 use crate::maybe_recover_from_interpolated_ty_qpath;
8
9 use ast::token::DelimToken;
10 use rustc_ast::ptr::P;
11 use rustc_ast::token::{self, Token, TokenKind};
12 use rustc_ast::tokenstream::Spacing;
13 use rustc_ast::util::classify;
14 use rustc_ast::util::literal::LitError;
15 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
16 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, Lit, UnOp, DUMMY_NODE_ID};
17 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
18 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
19 use rustc_ast_pretty::pprust;
20 use rustc_errors::{Applicability, DiagnosticBuilder, PResult};
21 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
22 use rustc_session::lint::BuiltinLintDiagnostics;
23 use rustc_span::edition::LATEST_STABLE_EDITION;
24 use rustc_span::source_map::{self, Span, Spanned};
25 use rustc_span::symbol::{kw, sym, Ident, Symbol};
26 use rustc_span::{BytePos, Pos};
27 use std::mem;
28
29 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
30 /// dropped into the token stream, which happens while parsing the result of
31 /// macro expansion). Placement of these is not as complex as I feared it would
32 /// be. The important thing is to make sure that lookahead doesn't balk at
33 /// `token::Interpolated` tokens.
34 macro_rules! maybe_whole_expr {
35     ($p:expr) => {
36         if let token::Interpolated(nt) = &$p.token.kind {
37             match &**nt {
38                 token::NtExpr(e) | token::NtLiteral(e) => {
39                     let e = e.clone();
40                     $p.bump();
41                     return Ok(e);
42                 }
43                 token::NtPath(path) => {
44                     let path = path.clone();
45                     $p.bump();
46                     return Ok($p.mk_expr(
47                         $p.prev_token.span,
48                         ExprKind::Path(None, path),
49                         AttrVec::new(),
50                     ));
51                 }
52                 token::NtBlock(block) => {
53                     let block = block.clone();
54                     $p.bump();
55                     return Ok($p.mk_expr(
56                         $p.prev_token.span,
57                         ExprKind::Block(block, None),
58                         AttrVec::new(),
59                     ));
60                 }
61                 _ => {}
62             };
63         }
64     };
65 }
66
67 #[derive(Debug)]
68 pub(super) enum LhsExpr {
69     NotYetParsed,
70     AttributesParsed(AttrWrapper),
71     AlreadyParsed(P<Expr>),
72 }
73
74 impl From<Option<AttrWrapper>> for LhsExpr {
75     /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
76     /// and `None` into `LhsExpr::NotYetParsed`.
77     ///
78     /// This conversion does not allocate.
79     fn from(o: Option<AttrWrapper>) -> Self {
80         if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
81     }
82 }
83
84 impl From<P<Expr>> for LhsExpr {
85     /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
86     ///
87     /// This conversion does not allocate.
88     fn from(expr: P<Expr>) -> Self {
89         LhsExpr::AlreadyParsed(expr)
90     }
91 }
92
93 impl<'a> Parser<'a> {
94     /// Parses an expression.
95     #[inline]
96     pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
97         self.current_closure.take();
98
99         self.parse_expr_res(Restrictions::empty(), None)
100     }
101
102     /// Parses an expression, forcing tokens to be collected
103     pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
104         self.collect_tokens_no_attrs(|this| this.parse_expr())
105     }
106
107     pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
108         self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
109     }
110
111     fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
112         match self.parse_expr() {
113             Ok(expr) => Ok(expr),
114             Err(mut err) => match self.token.ident() {
115                 Some((Ident { name: kw::Underscore, .. }, false))
116                     if self.look_ahead(1, |t| t == &token::Comma) =>
117                 {
118                     // Special-case handling of `foo(_, _, _)`
119                     err.emit();
120                     self.bump();
121                     Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
122                 }
123                 _ => Err(err),
124             },
125         }
126     }
127
128     /// Parses a sequence of expressions delimited by parentheses.
129     fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
130         self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
131     }
132
133     /// Parses an expression, subject to the given restrictions.
134     #[inline]
135     pub(super) fn parse_expr_res(
136         &mut self,
137         r: Restrictions,
138         already_parsed_attrs: Option<AttrWrapper>,
139     ) -> PResult<'a, P<Expr>> {
140         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
141     }
142
143     /// Parses an associative expression.
144     ///
145     /// This parses an expression accounting for associativity and precedence of the operators in
146     /// the expression.
147     #[inline]
148     fn parse_assoc_expr(
149         &mut self,
150         already_parsed_attrs: Option<AttrWrapper>,
151     ) -> PResult<'a, P<Expr>> {
152         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
153     }
154
155     /// Parses an associative expression with operators of at least `min_prec` precedence.
156     pub(super) fn parse_assoc_expr_with(
157         &mut self,
158         min_prec: usize,
159         lhs: LhsExpr,
160     ) -> PResult<'a, P<Expr>> {
161         let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
162             expr
163         } else {
164             let attrs = match lhs {
165                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
166                 _ => None,
167             };
168             if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
169                 return self.parse_prefix_range_expr(attrs);
170             } else {
171                 self.parse_prefix_expr(attrs)?
172             }
173         };
174         let last_type_ascription_set = self.last_type_ascription.is_some();
175
176         if !self.should_continue_as_assoc_expr(&lhs) {
177             self.last_type_ascription = None;
178             return Ok(lhs);
179         }
180
181         self.expected_tokens.push(TokenType::Operator);
182         while let Some(op) = self.check_assoc_op() {
183             // Adjust the span for interpolated LHS to point to the `$lhs` token
184             // and not to what it refers to.
185             let lhs_span = match self.prev_token.kind {
186                 TokenKind::Interpolated(..) => self.prev_token.span,
187                 _ => lhs.span,
188             };
189
190             let cur_op_span = self.token.span;
191             let restrictions = if op.node.is_assign_like() {
192                 self.restrictions & Restrictions::NO_STRUCT_LITERAL
193             } else {
194                 self.restrictions
195             };
196             let prec = op.node.precedence();
197             if prec < min_prec {
198                 break;
199             }
200             // Check for deprecated `...` syntax
201             if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
202                 self.err_dotdotdot_syntax(self.token.span);
203             }
204
205             if self.token == token::LArrow {
206                 self.err_larrow_operator(self.token.span);
207             }
208
209             self.bump();
210             if op.node.is_comparison() {
211                 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
212                     return Ok(expr);
213                 }
214             }
215
216             // Look for JS' `===` and `!==` and recover
217             if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
218                 && self.token.kind == token::Eq
219                 && self.prev_token.span.hi() == self.token.span.lo()
220             {
221                 let sp = op.span.to(self.token.span);
222                 let sugg = match op.node {
223                     AssocOp::Equal => "==",
224                     AssocOp::NotEqual => "!=",
225                     _ => unreachable!(),
226                 };
227                 self.struct_span_err(sp, &format!("invalid comparison operator `{}=`", sugg))
228                     .span_suggestion_short(
229                         sp,
230                         &format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
231                         sugg.to_string(),
232                         Applicability::MachineApplicable,
233                     )
234                     .emit();
235                 self.bump();
236             }
237
238             // Look for PHP's `<>` and recover
239             if op.node == AssocOp::Less
240                 && self.token.kind == token::Gt
241                 && self.prev_token.span.hi() == self.token.span.lo()
242             {
243                 let sp = op.span.to(self.token.span);
244                 self.struct_span_err(sp, "invalid comparison operator `<>`")
245                     .span_suggestion_short(
246                         sp,
247                         "`<>` is not a valid comparison operator, use `!=`",
248                         "!=".to_string(),
249                         Applicability::MachineApplicable,
250                     )
251                     .emit();
252                 self.bump();
253             }
254
255             // Look for C++'s `<=>` and recover
256             if op.node == AssocOp::LessEqual
257                 && self.token.kind == token::Gt
258                 && self.prev_token.span.hi() == self.token.span.lo()
259             {
260                 let sp = op.span.to(self.token.span);
261                 self.struct_span_err(sp, "invalid comparison operator `<=>`")
262                     .span_label(
263                         sp,
264                         "`<=>` is not a valid comparison operator, use `std::cmp::Ordering`",
265                     )
266                     .emit();
267                 self.bump();
268             }
269
270             let op = op.node;
271             // Special cases:
272             if op == AssocOp::As {
273                 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
274                 continue;
275             } else if op == AssocOp::Colon {
276                 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
277                 continue;
278             } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
279                 // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
280                 // generalise it to the Fixity::None code.
281                 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
282                 break;
283             }
284
285             let fixity = op.fixity();
286             let prec_adjustment = match fixity {
287                 Fixity::Right => 0,
288                 Fixity::Left => 1,
289                 // We currently have no non-associative operators that are not handled above by
290                 // the special cases. The code is here only for future convenience.
291                 Fixity::None => 1,
292             };
293             let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
294                 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
295             })?;
296
297             let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
298             lhs = match op {
299                 AssocOp::Add
300                 | AssocOp::Subtract
301                 | AssocOp::Multiply
302                 | AssocOp::Divide
303                 | AssocOp::Modulus
304                 | AssocOp::LAnd
305                 | AssocOp::LOr
306                 | AssocOp::BitXor
307                 | AssocOp::BitAnd
308                 | AssocOp::BitOr
309                 | AssocOp::ShiftLeft
310                 | AssocOp::ShiftRight
311                 | AssocOp::Equal
312                 | AssocOp::Less
313                 | AssocOp::LessEqual
314                 | AssocOp::NotEqual
315                 | AssocOp::Greater
316                 | AssocOp::GreaterEqual => {
317                     let ast_op = op.to_ast_binop().unwrap();
318                     let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
319                     self.mk_expr(span, binary, AttrVec::new())
320                 }
321                 AssocOp::Assign => {
322                     self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
323                 }
324                 AssocOp::AssignOp(k) => {
325                     let aop = match k {
326                         token::Plus => BinOpKind::Add,
327                         token::Minus => BinOpKind::Sub,
328                         token::Star => BinOpKind::Mul,
329                         token::Slash => BinOpKind::Div,
330                         token::Percent => BinOpKind::Rem,
331                         token::Caret => BinOpKind::BitXor,
332                         token::And => BinOpKind::BitAnd,
333                         token::Or => BinOpKind::BitOr,
334                         token::Shl => BinOpKind::Shl,
335                         token::Shr => BinOpKind::Shr,
336                     };
337                     let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
338                     self.mk_expr(span, aopexpr, AttrVec::new())
339                 }
340                 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
341                     self.span_bug(span, "AssocOp should have been handled by special case")
342                 }
343             };
344
345             if let Fixity::None = fixity {
346                 break;
347             }
348         }
349         if last_type_ascription_set {
350             self.last_type_ascription = None;
351         }
352         Ok(lhs)
353     }
354
355     fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
356         match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
357             // Semi-statement forms are odd:
358             // See https://github.com/rust-lang/rust/issues/29071
359             (true, None) => false,
360             (false, _) => true, // Continue parsing the expression.
361             // An exhaustive check is done in the following block, but these are checked first
362             // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
363             // want to keep their span info to improve diagnostics in these cases in a later stage.
364             (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
365             (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
366             (true, Some(AssocOp::Add)) // `{ 42 } + 42
367             // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
368             // `if x { a } else { b } && if y { c } else { d }`
369             if !self.look_ahead(1, |t| t.is_used_keyword()) => {
370                 // These cases are ambiguous and can't be identified in the parser alone.
371                 let sp = self.sess.source_map().start_point(self.token.span);
372                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
373                 false
374             }
375             (true, Some(AssocOp::LAnd)) => {
376                 // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
377                 // above due to #74233.
378                 // These cases are ambiguous and can't be identified in the parser alone.
379                 let sp = self.sess.source_map().start_point(self.token.span);
380                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
381                 false
382             }
383             (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
384             (true, Some(_)) => {
385                 self.error_found_expr_would_be_stmt(lhs);
386                 true
387             }
388         }
389     }
390
391     /// We've found an expression that would be parsed as a statement,
392     /// but the next token implies this should be parsed as an expression.
393     /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
394     fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
395         let mut err = self.struct_span_err(
396             self.token.span,
397             &format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
398         );
399         err.span_label(self.token.span, "expected expression");
400         self.sess.expr_parentheses_needed(&mut err, lhs.span);
401         err.emit();
402     }
403
404     /// Possibly translate the current token to an associative operator.
405     /// The method does not advance the current token.
406     ///
407     /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
408     fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
409         let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
410             // When parsing const expressions, stop parsing when encountering `>`.
411             (
412                 Some(
413                     AssocOp::ShiftRight
414                     | AssocOp::Greater
415                     | AssocOp::GreaterEqual
416                     | AssocOp::AssignOp(token::BinOpToken::Shr),
417                 ),
418                 _,
419             ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
420                 return None;
421             }
422             (Some(op), _) => (op, self.token.span),
423             (None, Some((Ident { name: sym::and, span }, false))) => {
424                 self.error_bad_logical_op("and", "&&", "conjunction");
425                 (AssocOp::LAnd, span)
426             }
427             (None, Some((Ident { name: sym::or, span }, false))) => {
428                 self.error_bad_logical_op("or", "||", "disjunction");
429                 (AssocOp::LOr, span)
430             }
431             _ => return None,
432         };
433         Some(source_map::respan(span, op))
434     }
435
436     /// Error on `and` and `or` suggesting `&&` and `||` respectively.
437     fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
438         self.struct_span_err(self.token.span, &format!("`{}` is not a logical operator", bad))
439             .span_suggestion_short(
440                 self.token.span,
441                 &format!("use `{}` to perform logical {}", good, english),
442                 good.to_string(),
443                 Applicability::MachineApplicable,
444             )
445             .note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
446             .emit();
447     }
448
449     /// Checks if this expression is a successfully parsed statement.
450     fn expr_is_complete(&self, e: &Expr) -> bool {
451         self.restrictions.contains(Restrictions::STMT_EXPR)
452             && !classify::expr_requires_semi_to_be_stmt(e)
453     }
454
455     /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
456     /// The other two variants are handled in `parse_prefix_range_expr` below.
457     fn parse_range_expr(
458         &mut self,
459         prec: usize,
460         lhs: P<Expr>,
461         op: AssocOp,
462         cur_op_span: Span,
463     ) -> PResult<'a, P<Expr>> {
464         let rhs = if self.is_at_start_of_range_notation_rhs() {
465             Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
466         } else {
467             None
468         };
469         let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
470         let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
471         let limits =
472             if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
473         let range = self.mk_range(Some(lhs), rhs, limits);
474         Ok(self.mk_expr(span, range, AttrVec::new()))
475     }
476
477     fn is_at_start_of_range_notation_rhs(&self) -> bool {
478         if self.token.can_begin_expr() {
479             // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
480             if self.token == token::OpenDelim(token::Brace) {
481                 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
482             }
483             true
484         } else {
485             false
486         }
487     }
488
489     /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
490     fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
491         // Check for deprecated `...` syntax.
492         if self.token == token::DotDotDot {
493             self.err_dotdotdot_syntax(self.token.span);
494         }
495
496         debug_assert!(
497             [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
498             "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
499             self.token
500         );
501
502         let limits = match self.token.kind {
503             token::DotDot => RangeLimits::HalfOpen,
504             _ => RangeLimits::Closed,
505         };
506         let op = AssocOp::from_token(&self.token);
507         // FIXME: `parse_prefix_range_expr` is called when the current
508         // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
509         // parsed attributes, then trying to parse them here will always fail.
510         // We should figure out how we want attributes on range expressions to work.
511         let attrs = self.parse_or_use_outer_attributes(attrs)?;
512         self.collect_tokens_for_expr(attrs, |this, attrs| {
513             let lo = this.token.span;
514             this.bump();
515             let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
516                 // RHS must be parsed with more associativity than the dots.
517                 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
518                     .map(|x| (lo.to(x.span), Some(x)))?
519             } else {
520                 (lo, None)
521             };
522             let range = this.mk_range(None, opt_end, limits);
523             Ok(this.mk_expr(span, range, attrs.into()))
524         })
525     }
526
527     /// Parses a prefix-unary-operator expr.
528     fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
529         let attrs = self.parse_or_use_outer_attributes(attrs)?;
530         let lo = self.token.span;
531
532         macro_rules! make_it {
533             ($this:ident, $attrs:expr, |this, _| $body:expr) => {
534                 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
535                     let (hi, ex) = $body?;
536                     Ok($this.mk_expr(lo.to(hi), ex, attrs.into()))
537                 })
538             };
539         }
540
541         let this = self;
542
543         // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
544         match this.token.uninterpolate().kind {
545             token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
546             token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
547             token::BinOp(token::Minus) => {
548                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
549             } // `-expr`
550             token::BinOp(token::Star) => {
551                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
552             } // `*expr`
553             token::BinOp(token::And) | token::AndAnd => {
554                 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
555             }
556             token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
557                 let mut err = this.struct_span_err(lo, "leading `+` is not supported");
558                 err.span_label(lo, "unexpected `+`");
559
560                 // a block on the LHS might have been intended to be an expression instead
561                 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
562                     this.sess.expr_parentheses_needed(&mut err, *sp);
563                 } else {
564                     err.span_suggestion_verbose(
565                         lo,
566                         "try removing the `+`",
567                         "".to_string(),
568                         Applicability::MachineApplicable,
569                     );
570                 }
571                 err.emit();
572
573                 this.bump();
574                 this.parse_prefix_expr(None)
575             } // `+expr`
576             token::Ident(..) if this.token.is_keyword(kw::Box) => {
577                 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
578             }
579             token::Ident(..) if this.is_mistaken_not_ident_negation() => {
580                 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
581             }
582             _ => return this.parse_dot_or_call_expr(Some(attrs)),
583         }
584     }
585
586     fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
587         self.bump();
588         let expr = self.parse_prefix_expr(None);
589         let (span, expr) = self.interpolated_or_expr_span(expr)?;
590         Ok((lo.to(span), expr))
591     }
592
593     fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
594         let (span, expr) = self.parse_prefix_expr_common(lo)?;
595         Ok((span, self.mk_unary(op, expr)))
596     }
597
598     // Recover on `!` suggesting for bitwise negation instead.
599     fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
600         self.struct_span_err(lo, "`~` cannot be used as a unary operator")
601             .span_suggestion_short(
602                 lo,
603                 "use `!` to perform bitwise not",
604                 "!".to_owned(),
605                 Applicability::MachineApplicable,
606             )
607             .emit();
608
609         self.parse_unary_expr(lo, UnOp::Not)
610     }
611
612     /// Parse `box expr`.
613     fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
614         let (span, expr) = self.parse_prefix_expr_common(lo)?;
615         self.sess.gated_spans.gate(sym::box_syntax, span);
616         Ok((span, ExprKind::Box(expr)))
617     }
618
619     fn is_mistaken_not_ident_negation(&self) -> bool {
620         let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
621             // These tokens can start an expression after `!`, but
622             // can't continue an expression after an ident
623             token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
624             token::Literal(..) | token::Pound => true,
625             _ => t.is_whole_expr(),
626         };
627         self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
628     }
629
630     /// Recover on `not expr` in favor of `!expr`.
631     fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
632         // Emit the error...
633         let not_token = self.look_ahead(1, |t| t.clone());
634         self.struct_span_err(
635             not_token.span,
636             &format!("unexpected {} after identifier", super::token_descr(&not_token)),
637         )
638         .span_suggestion_short(
639             // Span the `not` plus trailing whitespace to avoid
640             // trailing whitespace after the `!` in our suggestion
641             self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
642             "use `!` to perform logical negation",
643             "!".to_owned(),
644             Applicability::MachineApplicable,
645         )
646         .emit();
647
648         // ...and recover!
649         self.parse_unary_expr(lo, UnOp::Not)
650     }
651
652     /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
653     fn interpolated_or_expr_span(
654         &self,
655         expr: PResult<'a, P<Expr>>,
656     ) -> PResult<'a, (Span, P<Expr>)> {
657         expr.map(|e| {
658             (
659                 match self.prev_token.kind {
660                     TokenKind::Interpolated(..) => self.prev_token.span,
661                     _ => e.span,
662                 },
663                 e,
664             )
665         })
666     }
667
668     fn parse_assoc_op_cast(
669         &mut self,
670         lhs: P<Expr>,
671         lhs_span: Span,
672         expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
673     ) -> PResult<'a, P<Expr>> {
674         let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
675             this.mk_expr(
676                 this.mk_expr_sp(&lhs, lhs_span, rhs.span),
677                 expr_kind(lhs, rhs),
678                 AttrVec::new(),
679             )
680         };
681
682         // Save the state of the parser before parsing type normally, in case there is a
683         // LessThan comparison after this cast.
684         let parser_snapshot_before_type = self.clone();
685         let cast_expr = match self.parse_as_cast_ty() {
686             Ok(rhs) => mk_expr(self, lhs, rhs),
687             Err(mut type_err) => {
688                 // Rewind to before attempting to parse the type with generics, to recover
689                 // from situations like `x as usize < y` in which we first tried to parse
690                 // `usize < y` as a type with generic arguments.
691                 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
692
693                 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
694                 match (&lhs.kind, &self.token.kind) {
695                     (
696                         // `foo: `
697                         ExprKind::Path(None, ast::Path { segments, .. }),
698                         TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
699                     ) if segments.len() == 1 => {
700                         let snapshot = self.clone();
701                         let label = Label {
702                             ident: Ident::from_str_and_span(
703                                 &format!("'{}", segments[0].ident),
704                                 segments[0].ident.span,
705                             ),
706                         };
707                         match self.parse_labeled_expr(label, AttrVec::new(), false) {
708                             Ok(expr) => {
709                                 type_err.cancel();
710                                 self.struct_span_err(label.ident.span, "malformed loop label")
711                                     .span_suggestion(
712                                         label.ident.span,
713                                         "use the correct loop label format",
714                                         label.ident.to_string(),
715                                         Applicability::MachineApplicable,
716                                     )
717                                     .emit();
718                                 return Ok(expr);
719                             }
720                             Err(mut err) => {
721                                 err.cancel();
722                                 *self = snapshot;
723                             }
724                         }
725                     }
726                     _ => {}
727                 }
728
729                 match self.parse_path(PathStyle::Expr) {
730                     Ok(path) => {
731                         let (op_noun, op_verb) = match self.token.kind {
732                             token::Lt => ("comparison", "comparing"),
733                             token::BinOp(token::Shl) => ("shift", "shifting"),
734                             _ => {
735                                 // We can end up here even without `<` being the next token, for
736                                 // example because `parse_ty_no_plus` returns `Err` on keywords,
737                                 // but `parse_path` returns `Ok` on them due to error recovery.
738                                 // Return original error and parser state.
739                                 *self = parser_snapshot_after_type;
740                                 return Err(type_err);
741                             }
742                         };
743
744                         // Successfully parsed the type path leaving a `<` yet to parse.
745                         type_err.cancel();
746
747                         // Report non-fatal diagnostics, keep `x as usize` as an expression
748                         // in AST and continue parsing.
749                         let msg = format!(
750                             "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
751                             pprust::path_to_string(&path),
752                             op_noun,
753                         );
754                         let span_after_type = parser_snapshot_after_type.token.span;
755                         let expr =
756                             mk_expr(self, lhs, self.mk_ty(path.span, TyKind::Path(None, path)));
757
758                         self.struct_span_err(self.token.span, &msg)
759                             .span_label(
760                                 self.look_ahead(1, |t| t.span).to(span_after_type),
761                                 "interpreted as generic arguments",
762                             )
763                             .span_label(self.token.span, format!("not interpreted as {}", op_noun))
764                             .multipart_suggestion(
765                                 &format!("try {} the cast value", op_verb),
766                                 vec![
767                                     (expr.span.shrink_to_lo(), "(".to_string()),
768                                     (expr.span.shrink_to_hi(), ")".to_string()),
769                                 ],
770                                 Applicability::MachineApplicable,
771                             )
772                             .emit();
773
774                         expr
775                     }
776                     Err(mut path_err) => {
777                         // Couldn't parse as a path, return original error and parser state.
778                         path_err.cancel();
779                         *self = parser_snapshot_after_type;
780                         return Err(type_err);
781                     }
782                 }
783             }
784         };
785
786         self.parse_and_disallow_postfix_after_cast(cast_expr)
787     }
788
789     /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
790     /// then emits an error and returns the newly parsed tree.
791     /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
792     fn parse_and_disallow_postfix_after_cast(
793         &mut self,
794         cast_expr: P<Expr>,
795     ) -> PResult<'a, P<Expr>> {
796         // Save the memory location of expr before parsing any following postfix operators.
797         // This will be compared with the memory location of the output expression.
798         // If they different we can assume we parsed another expression because the existing expression is not reallocated.
799         let addr_before = &*cast_expr as *const _ as usize;
800         let span = cast_expr.span;
801         let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
802         let changed = addr_before != &*with_postfix as *const _ as usize;
803
804         // Check if an illegal postfix operator has been added after the cast.
805         // If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
806         if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
807             let msg = format!(
808                 "casts cannot be followed by {}",
809                 match with_postfix.kind {
810                     ExprKind::Index(_, _) => "indexing",
811                     ExprKind::Try(_) => "`?`",
812                     ExprKind::Field(_, _) => "a field access",
813                     ExprKind::MethodCall(_, _, _) => "a method call",
814                     ExprKind::Call(_, _) => "a function call",
815                     ExprKind::Await(_) => "`.await`",
816                     ExprKind::Err => return Ok(with_postfix),
817                     _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
818                 }
819             );
820             let mut err = self.struct_span_err(span, &msg);
821             // If type ascription is "likely an error", the user will already be getting a useful
822             // help message, and doesn't need a second.
823             if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
824                 self.maybe_annotate_with_ascription(&mut err, false);
825             } else {
826                 let suggestions = vec![
827                     (span.shrink_to_lo(), "(".to_string()),
828                     (span.shrink_to_hi(), ")".to_string()),
829                 ];
830                 err.multipart_suggestion(
831                     "try surrounding the expression in parentheses",
832                     suggestions,
833                     Applicability::MachineApplicable,
834                 );
835             }
836             err.emit();
837         };
838         Ok(with_postfix)
839     }
840
841     fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
842         let maybe_path = self.could_ascription_be_path(&lhs.kind);
843         self.last_type_ascription = Some((self.prev_token.span, maybe_path));
844         let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
845         self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
846         Ok(lhs)
847     }
848
849     /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
850     fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
851         self.expect_and()?;
852         let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
853         let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
854         let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
855         let expr = self.parse_prefix_expr(None);
856         let (hi, expr) = self.interpolated_or_expr_span(expr)?;
857         let span = lo.to(hi);
858         if let Some(lt) = lifetime {
859             self.error_remove_borrow_lifetime(span, lt.ident.span);
860         }
861         Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
862     }
863
864     fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
865         self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
866             .span_label(lt_span, "annotated with lifetime here")
867             .span_suggestion(
868                 lt_span,
869                 "remove the lifetime annotation",
870                 String::new(),
871                 Applicability::MachineApplicable,
872             )
873             .emit();
874     }
875
876     /// Parse `mut?` or `raw [ const | mut ]`.
877     fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
878         if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
879             // `raw [ const | mut ]`.
880             let found_raw = self.eat_keyword(kw::Raw);
881             assert!(found_raw);
882             let mutability = self.parse_const_or_mut().unwrap();
883             self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
884             (ast::BorrowKind::Raw, mutability)
885         } else {
886             // `mut?`
887             (ast::BorrowKind::Ref, self.parse_mutability())
888         }
889     }
890
891     /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
892     fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
893         let attrs = self.parse_or_use_outer_attributes(attrs)?;
894         self.collect_tokens_for_expr(attrs, |this, attrs| {
895             let base = this.parse_bottom_expr();
896             let (span, base) = this.interpolated_or_expr_span(base)?;
897             this.parse_dot_or_call_expr_with(base, span, attrs)
898         })
899     }
900
901     pub(super) fn parse_dot_or_call_expr_with(
902         &mut self,
903         e0: P<Expr>,
904         lo: Span,
905         mut attrs: Vec<ast::Attribute>,
906     ) -> PResult<'a, P<Expr>> {
907         // Stitch the list of outer attributes onto the return value.
908         // A little bit ugly, but the best way given the current code
909         // structure
910         self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
911             expr.map(|mut expr| {
912                 attrs.extend::<Vec<_>>(expr.attrs.into());
913                 expr.attrs = attrs.into();
914                 expr
915             })
916         })
917     }
918
919     fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
920         loop {
921             if self.eat(&token::Question) {
922                 // `expr?`
923                 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
924                 continue;
925             }
926             if self.eat(&token::Dot) {
927                 // expr.f
928                 e = self.parse_dot_suffix_expr(lo, e)?;
929                 continue;
930             }
931             if self.expr_is_complete(&e) {
932                 return Ok(e);
933             }
934             e = match self.token.kind {
935                 token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
936                 token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
937                 _ => return Ok(e),
938             }
939         }
940     }
941
942     fn look_ahead_type_ascription_as_field(&mut self) -> bool {
943         self.look_ahead(1, |t| t.is_ident())
944             && self.look_ahead(2, |t| t == &token::Colon)
945             && self.look_ahead(3, |t| t.can_begin_expr())
946     }
947
948     fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
949         match self.token.uninterpolate().kind {
950             token::Ident(..) => self.parse_dot_suffix(base, lo),
951             token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
952                 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
953             }
954             token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
955                 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
956             }
957             _ => {
958                 self.error_unexpected_after_dot();
959                 Ok(base)
960             }
961         }
962     }
963
964     fn error_unexpected_after_dot(&self) {
965         // FIXME Could factor this out into non_fatal_unexpected or something.
966         let actual = pprust::token_to_string(&self.token);
967         self.struct_span_err(self.token.span, &format!("unexpected token: `{}`", actual)).emit();
968     }
969
970     // We need an identifier or integer, but the next token is a float.
971     // Break the float into components to extract the identifier or integer.
972     // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
973     // parts unless those parts are processed immediately. `TokenCursor` should either
974     // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
975     // we should break everything including floats into more basic proc-macro style
976     // tokens in the lexer (probably preferable).
977     fn parse_tuple_field_access_expr_float(
978         &mut self,
979         lo: Span,
980         base: P<Expr>,
981         float: Symbol,
982         suffix: Option<Symbol>,
983     ) -> P<Expr> {
984         #[derive(Debug)]
985         enum FloatComponent {
986             IdentLike(String),
987             Punct(char),
988         }
989         use FloatComponent::*;
990
991         let float_str = float.as_str();
992         let mut components = Vec::new();
993         let mut ident_like = String::new();
994         for c in float_str.chars() {
995             if c == '_' || c.is_ascii_alphanumeric() {
996                 ident_like.push(c);
997             } else if matches!(c, '.' | '+' | '-') {
998                 if !ident_like.is_empty() {
999                     components.push(IdentLike(mem::take(&mut ident_like)));
1000                 }
1001                 components.push(Punct(c));
1002             } else {
1003                 panic!("unexpected character in a float token: {:?}", c)
1004             }
1005         }
1006         if !ident_like.is_empty() {
1007             components.push(IdentLike(ident_like));
1008         }
1009
1010         // With proc macros the span can refer to anything, the source may be too short,
1011         // or too long, or non-ASCII. It only makes sense to break our span into components
1012         // if its underlying text is identical to our float literal.
1013         let span = self.token.span;
1014         let can_take_span_apart =
1015             || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1016
1017         match &*components {
1018             // 1e2
1019             [IdentLike(i)] => {
1020                 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
1021             }
1022             // 1.
1023             [IdentLike(i), Punct('.')] => {
1024                 let (ident_span, dot_span) = if can_take_span_apart() {
1025                     let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
1026                     let ident_span = span.with_hi(span.lo + ident_len);
1027                     let dot_span = span.with_lo(span.lo + ident_len);
1028                     (ident_span, dot_span)
1029                 } else {
1030                     (span, span)
1031                 };
1032                 assert!(suffix.is_none());
1033                 let symbol = Symbol::intern(&i);
1034                 self.token = Token::new(token::Ident(symbol, false), ident_span);
1035                 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1036                 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1037             }
1038             // 1.2 | 1.2e3
1039             [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1040                 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1041                     let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1042                     let ident1_span = span.with_hi(span.lo + ident1_len);
1043                     let dot_span = span
1044                         .with_lo(span.lo + ident1_len)
1045                         .with_hi(span.lo + ident1_len + BytePos(1));
1046                     let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1047                     (ident1_span, dot_span, ident2_span)
1048                 } else {
1049                     (span, span, span)
1050                 };
1051                 let symbol1 = Symbol::intern(&i1);
1052                 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1053                 // This needs to be `Spacing::Alone` to prevent regressions.
1054                 // See issue #76399 and PR #76285 for more details
1055                 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1056                 let base1 =
1057                     self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1058                 let symbol2 = Symbol::intern(&i2);
1059                 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1060                 self.bump_with((next_token2, self.token_spacing)); // `.`
1061                 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1062             }
1063             // 1e+ | 1e- (recovered)
1064             [IdentLike(_), Punct('+' | '-')] |
1065             // 1e+2 | 1e-2
1066             [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1067             // 1.2e+ | 1.2e-
1068             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1069             // 1.2e+3 | 1.2e-3
1070             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1071                 // See the FIXME about `TokenCursor` above.
1072                 self.error_unexpected_after_dot();
1073                 base
1074             }
1075             _ => panic!("unexpected components in a float token: {:?}", components),
1076         }
1077     }
1078
1079     fn parse_tuple_field_access_expr(
1080         &mut self,
1081         lo: Span,
1082         base: P<Expr>,
1083         field: Symbol,
1084         suffix: Option<Symbol>,
1085         next_token: Option<(Token, Spacing)>,
1086     ) -> P<Expr> {
1087         match next_token {
1088             Some(next_token) => self.bump_with(next_token),
1089             None => self.bump(),
1090         }
1091         let span = self.prev_token.span;
1092         let field = ExprKind::Field(base, Ident::new(field, span));
1093         self.expect_no_suffix(span, "a tuple index", suffix);
1094         self.mk_expr(lo.to(span), field, AttrVec::new())
1095     }
1096
1097     /// Parse a function call expression, `expr(...)`.
1098     fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1099         let snapshot = if self.token.kind == token::OpenDelim(token::Paren)
1100             && self.look_ahead_type_ascription_as_field()
1101         {
1102             Some((self.clone(), fun.kind.clone()))
1103         } else {
1104             None
1105         };
1106         let open_paren = self.token.span;
1107
1108         let mut seq = self.parse_paren_expr_seq().map(|args| {
1109             self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
1110         });
1111         if let Some(expr) =
1112             self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1113         {
1114             return expr;
1115         }
1116         self.recover_seq_parse_error(token::Paren, lo, seq)
1117     }
1118
1119     /// If we encounter a parser state that looks like the user has written a `struct` literal with
1120     /// parentheses instead of braces, recover the parser state and provide suggestions.
1121     #[instrument(skip(self, seq, snapshot), level = "trace")]
1122     fn maybe_recover_struct_lit_bad_delims(
1123         &mut self,
1124         lo: Span,
1125         open_paren: Span,
1126         seq: &mut PResult<'a, P<Expr>>,
1127         snapshot: Option<(Self, ExprKind)>,
1128     ) -> Option<P<Expr>> {
1129         match (seq.as_mut(), snapshot) {
1130             (Err(ref mut err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1131                 let name = pprust::path_to_string(&path);
1132                 snapshot.bump(); // `(`
1133                 match snapshot.parse_struct_fields(path, false, token::Paren) {
1134                     Ok((fields, ..)) if snapshot.eat(&token::CloseDelim(token::Paren)) => {
1135                         // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1136                         // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1137                         *self = snapshot;
1138                         let close_paren = self.prev_token.span;
1139                         let span = lo.to(self.prev_token.span);
1140                         if !fields.is_empty() {
1141                             err.cancel();
1142                             let mut err = self.struct_span_err(
1143                                 span,
1144                                 "invalid `struct` delimiters or `fn` call arguments",
1145                             );
1146                             err.multipart_suggestion(
1147                                 &format!("if `{}` is a struct, use braces as delimiters", name),
1148                                 vec![
1149                                     (open_paren, " { ".to_string()),
1150                                     (close_paren, " }".to_string()),
1151                                 ],
1152                                 Applicability::MaybeIncorrect,
1153                             );
1154                             err.multipart_suggestion(
1155                                 &format!("if `{}` is a function, use the arguments directly", name),
1156                                 fields
1157                                     .into_iter()
1158                                     .map(|field| (field.span.until(field.expr.span), String::new()))
1159                                     .collect(),
1160                                 Applicability::MaybeIncorrect,
1161                             );
1162                             err.emit();
1163                         } else {
1164                             err.emit();
1165                         }
1166                         return Some(self.mk_expr_err(span));
1167                     }
1168                     Ok(_) => {}
1169                     Err(mut err) => err.emit(),
1170                 }
1171             }
1172             _ => {}
1173         }
1174         None
1175     }
1176
1177     /// Parse an indexing expression `expr[...]`.
1178     fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1179         self.bump(); // `[`
1180         let index = self.parse_expr()?;
1181         self.expect(&token::CloseDelim(token::Bracket))?;
1182         Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
1183     }
1184
1185     /// Assuming we have just parsed `.`, continue parsing into an expression.
1186     fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1187         if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1188             return Ok(self.mk_await_expr(self_arg, lo));
1189         }
1190
1191         let fn_span_lo = self.token.span;
1192         let mut segment = self.parse_path_segment(PathStyle::Expr, None)?;
1193         self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(token::Paren)]);
1194         self.check_turbofish_missing_angle_brackets(&mut segment);
1195
1196         if self.check(&token::OpenDelim(token::Paren)) {
1197             // Method call `expr.f()`
1198             let mut args = self.parse_paren_expr_seq()?;
1199             args.insert(0, self_arg);
1200
1201             let fn_span = fn_span_lo.to(self.prev_token.span);
1202             let span = lo.to(self.prev_token.span);
1203             Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
1204         } else {
1205             // Field access `expr.f`
1206             if let Some(args) = segment.args {
1207                 self.struct_span_err(
1208                     args.span(),
1209                     "field expressions cannot have generic arguments",
1210                 )
1211                 .emit();
1212             }
1213
1214             let span = lo.to(self.prev_token.span);
1215             Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
1216         }
1217     }
1218
1219     /// At the bottom (top?) of the precedence hierarchy,
1220     /// Parses things like parenthesized exprs, macros, `return`, etc.
1221     ///
1222     /// N.B., this does not parse outer attributes, and is private because it only works
1223     /// correctly if called from `parse_dot_or_call_expr()`.
1224     fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1225         maybe_recover_from_interpolated_ty_qpath!(self, true);
1226         maybe_whole_expr!(self);
1227
1228         // Outer attributes are already parsed and will be
1229         // added to the return value after the fact.
1230         //
1231         // Therefore, prevent sub-parser from parsing
1232         // attributes by giving them an empty "already-parsed" list.
1233         let attrs = AttrVec::new();
1234
1235         // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1236         let lo = self.token.span;
1237         if let token::Literal(_) = self.token.kind {
1238             // This match arm is a special-case of the `_` match arm below and
1239             // could be removed without changing functionality, but it's faster
1240             // to have it here, especially for programs with large constants.
1241             self.parse_lit_expr(attrs)
1242         } else if self.check(&token::OpenDelim(token::Paren)) {
1243             self.parse_tuple_parens_expr(attrs)
1244         } else if self.check(&token::OpenDelim(token::Brace)) {
1245             self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
1246         } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1247             self.parse_closure_expr(attrs)
1248         } else if self.check(&token::OpenDelim(token::Bracket)) {
1249             self.parse_array_or_repeat_expr(attrs, token::Bracket)
1250         } else if self.check_path() {
1251             self.parse_path_start_expr(attrs)
1252         } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
1253             self.parse_closure_expr(attrs)
1254         } else if self.eat_keyword(kw::If) {
1255             self.parse_if_expr(attrs)
1256         } else if self.check_keyword(kw::For) {
1257             if self.choose_generics_over_qpath(1) {
1258                 // NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
1259                 // this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
1260                 // When `for <Foo as Bar>::Proj in $expr $block` is wanted,
1261                 // you can disambiguate in favor of a pattern with `(...)`.
1262                 self.recover_quantified_closure_expr(attrs)
1263             } else {
1264                 assert!(self.eat_keyword(kw::For));
1265                 self.parse_for_expr(None, self.prev_token.span, attrs)
1266             }
1267         } else if self.eat_keyword(kw::While) {
1268             self.parse_while_expr(None, self.prev_token.span, attrs)
1269         } else if let Some(label) = self.eat_label() {
1270             self.parse_labeled_expr(label, attrs, true)
1271         } else if self.eat_keyword(kw::Loop) {
1272             self.parse_loop_expr(None, self.prev_token.span, attrs)
1273         } else if self.eat_keyword(kw::Continue) {
1274             let kind = ExprKind::Continue(self.eat_label());
1275             Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
1276         } else if self.eat_keyword(kw::Match) {
1277             let match_sp = self.prev_token.span;
1278             self.parse_match_expr(attrs).map_err(|mut err| {
1279                 err.span_label(match_sp, "while parsing this match expression");
1280                 err
1281             })
1282         } else if self.eat_keyword(kw::Unsafe) {
1283             self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
1284         } else if self.check_inline_const(0) {
1285             self.parse_const_block(lo.to(self.token.span), false)
1286         } else if self.is_do_catch_block() {
1287             self.recover_do_catch(attrs)
1288         } else if self.is_try_block() {
1289             self.expect_keyword(kw::Try)?;
1290             self.parse_try_block(lo, attrs)
1291         } else if self.eat_keyword(kw::Return) {
1292             self.parse_return_expr(attrs)
1293         } else if self.eat_keyword(kw::Break) {
1294             self.parse_break_expr(attrs)
1295         } else if self.eat_keyword(kw::Yield) {
1296             self.parse_yield_expr(attrs)
1297         } else if self.eat_keyword(kw::Let) {
1298             self.parse_let_expr(attrs)
1299         } else if self.eat_keyword(kw::Underscore) {
1300             Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore, attrs))
1301         } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1302             // Don't complain about bare semicolons after unclosed braces
1303             // recovery in order to keep the error count down. Fixing the
1304             // delimiters will possibly also fix the bare semicolon found in
1305             // expression context. For example, silence the following error:
1306             //
1307             //     error: expected expression, found `;`
1308             //      --> file.rs:2:13
1309             //       |
1310             //     2 |     foo(bar(;
1311             //       |             ^ expected expression
1312             self.bump();
1313             Ok(self.mk_expr_err(self.token.span))
1314         } else if self.token.uninterpolated_span().rust_2018() {
1315             // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1316             if self.check_keyword(kw::Async) {
1317                 if self.is_async_block() {
1318                     // Check for `async {` and `async move {`.
1319                     self.parse_async_block(attrs)
1320                 } else {
1321                     self.parse_closure_expr(attrs)
1322                 }
1323             } else if self.eat_keyword(kw::Await) {
1324                 self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
1325             } else {
1326                 self.parse_lit_expr(attrs)
1327             }
1328         } else {
1329             self.parse_lit_expr(attrs)
1330         }
1331     }
1332
1333     fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1334         let lo = self.token.span;
1335         match self.parse_opt_lit() {
1336             Some(literal) => {
1337                 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
1338                 self.maybe_recover_from_bad_qpath(expr, true)
1339             }
1340             None => self.try_macro_suggestion(),
1341         }
1342     }
1343
1344     fn parse_tuple_parens_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1345         let lo = self.token.span;
1346         self.expect(&token::OpenDelim(token::Paren))?;
1347         let (es, trailing_comma) = match self.parse_seq_to_end(
1348             &token::CloseDelim(token::Paren),
1349             SeqSep::trailing_allowed(token::Comma),
1350             |p| p.parse_expr_catch_underscore(),
1351         ) {
1352             Ok(x) => x,
1353             Err(err) => return Ok(self.recover_seq_parse_error(token::Paren, lo, Err(err))),
1354         };
1355         let kind = if es.len() == 1 && !trailing_comma {
1356             // `(e)` is parenthesized `e`.
1357             ExprKind::Paren(es.into_iter().next().unwrap())
1358         } else {
1359             // `(e,)` is a tuple with only one field, `e`.
1360             ExprKind::Tup(es)
1361         };
1362         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1363         self.maybe_recover_from_bad_qpath(expr, true)
1364     }
1365
1366     fn parse_array_or_repeat_expr(
1367         &mut self,
1368         attrs: AttrVec,
1369         close_delim: token::DelimToken,
1370     ) -> PResult<'a, P<Expr>> {
1371         let lo = self.token.span;
1372         self.bump(); // `[` or other open delim
1373
1374         let close = &token::CloseDelim(close_delim);
1375         let kind = if self.eat(close) {
1376             // Empty vector
1377             ExprKind::Array(Vec::new())
1378         } else {
1379             // Non-empty vector
1380             let first_expr = self.parse_expr()?;
1381             if self.eat(&token::Semi) {
1382                 // Repeating array syntax: `[ 0; 512 ]`
1383                 let count = self.parse_anon_const_expr()?;
1384                 self.expect(close)?;
1385                 ExprKind::Repeat(first_expr, count)
1386             } else if self.eat(&token::Comma) {
1387                 // Vector with two or more elements.
1388                 let sep = SeqSep::trailing_allowed(token::Comma);
1389                 let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1390                 let mut exprs = vec![first_expr];
1391                 exprs.extend(remaining_exprs);
1392                 ExprKind::Array(exprs)
1393             } else {
1394                 // Vector with one element
1395                 self.expect(close)?;
1396                 ExprKind::Array(vec![first_expr])
1397             }
1398         };
1399         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1400         self.maybe_recover_from_bad_qpath(expr, true)
1401     }
1402
1403     fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1404         let (qself, path) = if self.eat_lt() {
1405             let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1406             (Some(qself), path)
1407         } else {
1408             (None, self.parse_path(PathStyle::Expr)?)
1409         };
1410         let lo = path.span;
1411
1412         // `!`, as an operator, is prefix, so we know this isn't that.
1413         let (hi, kind) = if self.eat(&token::Not) {
1414             // MACRO INVOCATION expression
1415             if qself.is_some() {
1416                 self.struct_span_err(path.span, "macros cannot use qualified paths").emit();
1417             }
1418             let mac = MacCall {
1419                 path,
1420                 args: self.parse_mac_args()?,
1421                 prior_type_ascription: self.last_type_ascription,
1422             };
1423             (self.prev_token.span, ExprKind::MacCall(mac))
1424         } else if self.check(&token::OpenDelim(token::Brace)) {
1425             if let Some(expr) = self.maybe_parse_struct_expr(qself.as_ref(), &path, &attrs) {
1426                 if qself.is_some() {
1427                     self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1428                 }
1429                 return expr;
1430             } else {
1431                 (path.span, ExprKind::Path(qself, path))
1432             }
1433         } else {
1434             (path.span, ExprKind::Path(qself, path))
1435         };
1436
1437         let expr = self.mk_expr(lo.to(hi), kind, attrs);
1438         self.maybe_recover_from_bad_qpath(expr, true)
1439     }
1440
1441     /// Parse `'label: $expr`. The label is already parsed.
1442     fn parse_labeled_expr(
1443         &mut self,
1444         label: Label,
1445         attrs: AttrVec,
1446         mut consume_colon: bool,
1447     ) -> PResult<'a, P<Expr>> {
1448         let lo = label.ident.span;
1449         let label = Some(label);
1450         let ate_colon = self.eat(&token::Colon);
1451         let expr = if self.eat_keyword(kw::While) {
1452             self.parse_while_expr(label, lo, attrs)
1453         } else if self.eat_keyword(kw::For) {
1454             self.parse_for_expr(label, lo, attrs)
1455         } else if self.eat_keyword(kw::Loop) {
1456             self.parse_loop_expr(label, lo, attrs)
1457         } else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
1458             self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
1459         } else if !ate_colon && (self.check(&TokenKind::Comma) || self.check(&TokenKind::Gt)) {
1460             // We're probably inside of a `Path<'a>` that needs a turbofish
1461             let msg = "expected `while`, `for`, `loop` or `{` after a label";
1462             self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1463             consume_colon = false;
1464             Ok(self.mk_expr_err(lo))
1465         } else {
1466             let msg = "expected `while`, `for`, `loop` or `{` after a label";
1467             self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1468             // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1469             self.parse_expr()
1470         }?;
1471
1472         if !ate_colon && consume_colon {
1473             self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
1474         }
1475
1476         Ok(expr)
1477     }
1478
1479     fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
1480         self.struct_span_err(span, "labeled expression must be followed by `:`")
1481             .span_label(lo, "the label")
1482             .span_suggestion_short(
1483                 lo.shrink_to_hi(),
1484                 "add `:` after the label",
1485                 ": ".to_string(),
1486                 Applicability::MachineApplicable,
1487             )
1488             .note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
1489             .emit();
1490     }
1491
1492     /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1493     fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1494         let lo = self.token.span;
1495
1496         self.bump(); // `do`
1497         self.bump(); // `catch`
1498
1499         let span_dc = lo.to(self.prev_token.span);
1500         self.struct_span_err(span_dc, "found removed `do catch` syntax")
1501             .span_suggestion(
1502                 span_dc,
1503                 "replace with the new syntax",
1504                 "try".to_string(),
1505                 Applicability::MachineApplicable,
1506             )
1507             .note("following RFC #2388, the new non-placeholder syntax is `try`")
1508             .emit();
1509
1510         self.parse_try_block(lo, attrs)
1511     }
1512
1513     /// Parse an expression if the token can begin one.
1514     fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1515         Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1516     }
1517
1518     /// Parse `"return" expr?`.
1519     fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1520         let lo = self.prev_token.span;
1521         let kind = ExprKind::Ret(self.parse_expr_opt()?);
1522         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1523         self.maybe_recover_from_bad_qpath(expr, true)
1524     }
1525
1526     /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1527     /// If the label is followed immediately by a `:` token, the label and `:` are
1528     /// parsed as part of the expression (i.e. a labeled loop). The language team has
1529     /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1530     /// the break expression of an unlabeled break is a labeled loop (as in
1531     /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1532     /// expression only gets a warning for compatibility reasons; and a labeled break
1533     /// with a labeled loop does not even get a warning because there is no ambiguity.
1534     fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1535         let lo = self.prev_token.span;
1536         let mut label = self.eat_label();
1537         let kind = if label.is_some() && self.token == token::Colon {
1538             // The value expression can be a labeled loop, see issue #86948, e.g.:
1539             // `loop { break 'label: loop { break 'label 42; }; }`
1540             let lexpr = self.parse_labeled_expr(label.take().unwrap(), AttrVec::new(), true)?;
1541             self.struct_span_err(
1542                 lexpr.span,
1543                 "parentheses are required around this expression to avoid confusion with a labeled break expression",
1544             )
1545             .multipart_suggestion(
1546                 "wrap the expression in parentheses",
1547                 vec![
1548                     (lexpr.span.shrink_to_lo(), "(".to_string()),
1549                     (lexpr.span.shrink_to_hi(), ")".to_string()),
1550                 ],
1551                 Applicability::MachineApplicable,
1552             )
1553             .emit();
1554             Some(lexpr)
1555         } else if self.token != token::OpenDelim(token::Brace)
1556             || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1557         {
1558             let expr = self.parse_expr_opt()?;
1559             if let Some(ref expr) = expr {
1560                 if label.is_some()
1561                     && matches!(
1562                         expr.kind,
1563                         ExprKind::While(_, _, None)
1564                             | ExprKind::ForLoop(_, _, _, None)
1565                             | ExprKind::Loop(_, None)
1566                             | ExprKind::Block(_, None)
1567                     )
1568                 {
1569                     self.sess.buffer_lint_with_diagnostic(
1570                         BREAK_WITH_LABEL_AND_LOOP,
1571                         lo.to(expr.span),
1572                         ast::CRATE_NODE_ID,
1573                         "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1574                         BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1575                     );
1576                 }
1577             }
1578             expr
1579         } else {
1580             None
1581         };
1582         let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
1583         self.maybe_recover_from_bad_qpath(expr, true)
1584     }
1585
1586     /// Parse `"yield" expr?`.
1587     fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1588         let lo = self.prev_token.span;
1589         let kind = ExprKind::Yield(self.parse_expr_opt()?);
1590         let span = lo.to(self.prev_token.span);
1591         self.sess.gated_spans.gate(sym::generators, span);
1592         let expr = self.mk_expr(span, kind, attrs);
1593         self.maybe_recover_from_bad_qpath(expr, true)
1594     }
1595
1596     /// Returns a string literal if the next token is a string literal.
1597     /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1598     /// and returns `None` if the next token is not literal at all.
1599     pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
1600         match self.parse_opt_lit() {
1601             Some(lit) => match lit.kind {
1602                 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1603                     style,
1604                     symbol: lit.token.symbol,
1605                     suffix: lit.token.suffix,
1606                     span: lit.span,
1607                     symbol_unescaped,
1608                 }),
1609                 _ => Err(Some(lit)),
1610             },
1611             None => Err(None),
1612         }
1613     }
1614
1615     pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
1616         self.parse_opt_lit().ok_or_else(|| {
1617             if let token::Interpolated(inner) = &self.token.kind {
1618                 let expr = match inner.as_ref() {
1619                     token::NtExpr(expr) => Some(expr),
1620                     token::NtLiteral(expr) => Some(expr),
1621                     _ => None,
1622                 };
1623                 if let Some(expr) = expr {
1624                     if matches!(expr.kind, ExprKind::Err) {
1625                         self.diagnostic()
1626                             .delay_span_bug(self.token.span, &"invalid interpolated expression");
1627                         return self.diagnostic().struct_dummy();
1628                     }
1629                 }
1630             }
1631             let msg = format!("unexpected token: {}", super::token_descr(&self.token));
1632             self.struct_span_err(self.token.span, &msg)
1633         })
1634     }
1635
1636     /// Matches `lit = true | false | token_lit`.
1637     /// Returns `None` if the next token is not a literal.
1638     pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
1639         let mut recovered = None;
1640         if self.token == token::Dot {
1641             // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1642             // dot would follow an optional literal, so we do this unconditionally.
1643             recovered = self.look_ahead(1, |next_token| {
1644                 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1645                     next_token.kind
1646                 {
1647                     if self.token.span.hi() == next_token.span.lo() {
1648                         let s = String::from("0.") + symbol.as_str();
1649                         let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1650                         return Some(Token::new(kind, self.token.span.to(next_token.span)));
1651                     }
1652                 }
1653                 None
1654             });
1655             if let Some(token) = &recovered {
1656                 self.bump();
1657                 self.error_float_lits_must_have_int_part(&token);
1658             }
1659         }
1660
1661         let token = recovered.as_ref().unwrap_or(&self.token);
1662         match Lit::from_token(token) {
1663             Ok(lit) => {
1664                 self.bump();
1665                 Some(lit)
1666             }
1667             Err(LitError::NotLiteral) => None,
1668             Err(err) => {
1669                 let span = token.span;
1670                 let lit = match token.kind {
1671                     token::Literal(lit) => lit,
1672                     _ => unreachable!(),
1673                 };
1674                 self.bump();
1675                 self.report_lit_error(err, lit, span);
1676                 // Pack possible quotes and prefixes from the original literal into
1677                 // the error literal's symbol so they can be pretty-printed faithfully.
1678                 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1679                 let symbol = Symbol::intern(&suffixless_lit.to_string());
1680                 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1681                 Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
1682             }
1683         }
1684     }
1685
1686     fn error_float_lits_must_have_int_part(&self, token: &Token) {
1687         self.struct_span_err(token.span, "float literals must have an integer part")
1688             .span_suggestion(
1689                 token.span,
1690                 "must have an integer part",
1691                 pprust::token_to_string(token).into(),
1692                 Applicability::MachineApplicable,
1693             )
1694             .emit();
1695     }
1696
1697     fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
1698         // Checks if `s` looks like i32 or u1234 etc.
1699         fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
1700             s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
1701         }
1702
1703         // Try to lowercase the prefix if it's a valid base prefix.
1704         fn fix_base_capitalisation(s: &str) -> Option<String> {
1705             if let Some(stripped) = s.strip_prefix('B') {
1706                 Some(format!("0b{stripped}"))
1707             } else if let Some(stripped) = s.strip_prefix('O') {
1708                 Some(format!("0o{stripped}"))
1709             } else if let Some(stripped) = s.strip_prefix('X') {
1710                 Some(format!("0x{stripped}"))
1711             } else {
1712                 None
1713             }
1714         }
1715
1716         let token::Lit { kind, suffix, .. } = lit;
1717         match err {
1718             // `NotLiteral` is not an error by itself, so we don't report
1719             // it and give the parser opportunity to try something else.
1720             LitError::NotLiteral => {}
1721             // `LexerError` *is* an error, but it was already reported
1722             // by lexer, so here we don't report it the second time.
1723             LitError::LexerError => {}
1724             LitError::InvalidSuffix => {
1725                 self.expect_no_suffix(
1726                     span,
1727                     &format!("{} {} literal", kind.article(), kind.descr()),
1728                     suffix,
1729                 );
1730             }
1731             LitError::InvalidIntSuffix => {
1732                 let suf = suffix.expect("suffix error with no suffix");
1733                 let suf = suf.as_str();
1734                 if looks_like_width_suffix(&['i', 'u'], &suf) {
1735                     // If it looks like a width, try to be helpful.
1736                     let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
1737                     self.struct_span_err(span, &msg)
1738                         .help("valid widths are 8, 16, 32, 64 and 128")
1739                         .emit();
1740                 } else if let Some(fixed) = fix_base_capitalisation(suf) {
1741                     let msg = "invalid base prefix for number literal";
1742
1743                     self.struct_span_err(span, &msg)
1744                         .note("base prefixes (`0xff`, `0b1010`, `0o755`) are lowercase")
1745                         .span_suggestion(
1746                             span,
1747                             "try making the prefix lowercase",
1748                             fixed,
1749                             Applicability::MaybeIncorrect,
1750                         )
1751                         .emit();
1752                 } else {
1753                     let msg = format!("invalid suffix `{}` for number literal", suf);
1754                     self.struct_span_err(span, &msg)
1755                         .span_label(span, format!("invalid suffix `{}`", suf))
1756                         .help("the suffix must be one of the numeric types (`u32`, `isize`, `f32`, etc.)")
1757                         .emit();
1758                 }
1759             }
1760             LitError::InvalidFloatSuffix => {
1761                 let suf = suffix.expect("suffix error with no suffix");
1762                 let suf = suf.as_str();
1763                 if looks_like_width_suffix(&['f'], suf) {
1764                     // If it looks like a width, try to be helpful.
1765                     let msg = format!("invalid width `{}` for float literal", &suf[1..]);
1766                     self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
1767                 } else {
1768                     let msg = format!("invalid suffix `{}` for float literal", suf);
1769                     self.struct_span_err(span, &msg)
1770                         .span_label(span, format!("invalid suffix `{}`", suf))
1771                         .help("valid suffixes are `f32` and `f64`")
1772                         .emit();
1773                 }
1774             }
1775             LitError::NonDecimalFloat(base) => {
1776                 let descr = match base {
1777                     16 => "hexadecimal",
1778                     8 => "octal",
1779                     2 => "binary",
1780                     _ => unreachable!(),
1781                 };
1782                 self.struct_span_err(span, &format!("{} float literal is not supported", descr))
1783                     .span_label(span, "not supported")
1784                     .emit();
1785             }
1786             LitError::IntTooLarge => {
1787                 self.struct_span_err(span, "integer literal is too large").emit();
1788             }
1789         }
1790     }
1791
1792     pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
1793         if let Some(suf) = suffix {
1794             let mut err = if kind == "a tuple index"
1795                 && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
1796             {
1797                 // #59553: warn instead of reject out of hand to allow the fix to percolate
1798                 // through the ecosystem when people fix their macros
1799                 let mut err = self
1800                     .sess
1801                     .span_diagnostic
1802                     .struct_span_warn(sp, &format!("suffixes on {} are invalid", kind));
1803                 err.note(&format!(
1804                     "`{}` is *temporarily* accepted on tuple index fields as it was \
1805                         incorrectly accepted on stable for a few releases",
1806                     suf,
1807                 ));
1808                 err.help(
1809                     "on proc macros, you'll want to use `syn::Index::from` or \
1810                         `proc_macro::Literal::*_unsuffixed` for code that will desugar \
1811                         to tuple field access",
1812                 );
1813                 err.note(
1814                     "see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
1815                      for more information",
1816                 );
1817                 err
1818             } else {
1819                 self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
1820             };
1821             err.span_label(sp, format!("invalid suffix `{}`", suf));
1822             err.emit();
1823         }
1824     }
1825
1826     /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
1827     /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
1828     pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1829         maybe_whole_expr!(self);
1830
1831         let lo = self.token.span;
1832         let minus_present = self.eat(&token::BinOp(token::Minus));
1833         let lit = self.parse_lit()?;
1834         let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
1835
1836         if minus_present {
1837             Ok(self.mk_expr(
1838                 lo.to(self.prev_token.span),
1839                 self.mk_unary(UnOp::Neg, expr),
1840                 AttrVec::new(),
1841             ))
1842         } else {
1843             Ok(expr)
1844         }
1845     }
1846
1847     fn is_array_like_block(&mut self) -> bool {
1848         self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
1849             && self.look_ahead(2, |t| t == &token::Comma)
1850             && self.look_ahead(3, |t| t.can_begin_expr())
1851     }
1852
1853     /// Emits a suggestion if it looks like the user meant an array but
1854     /// accidentally used braces, causing the code to be interpreted as a block
1855     /// expression.
1856     fn maybe_suggest_brackets_instead_of_braces(
1857         &mut self,
1858         lo: Span,
1859         attrs: AttrVec,
1860     ) -> Option<P<Expr>> {
1861         let mut snapshot = self.clone();
1862         match snapshot.parse_array_or_repeat_expr(attrs, token::Brace) {
1863             Ok(arr) => {
1864                 let hi = snapshot.prev_token.span;
1865                 self.struct_span_err(
1866                     arr.span,
1867                     "this code is interpreted as a block expression, not an array",
1868                 )
1869                 .multipart_suggestion(
1870                     "try using [] instead of {}",
1871                     vec![(lo, "[".to_owned()), (hi, "]".to_owned())],
1872                     Applicability::MaybeIncorrect,
1873                 )
1874                 .note("to define an array, one would use square brackets instead of curly braces")
1875                 .emit();
1876
1877                 *self = snapshot;
1878                 Some(self.mk_expr_err(arr.span))
1879             }
1880             Err(mut e) => {
1881                 e.cancel();
1882                 None
1883             }
1884         }
1885     }
1886
1887     /// Parses a block or unsafe block.
1888     pub(super) fn parse_block_expr(
1889         &mut self,
1890         opt_label: Option<Label>,
1891         lo: Span,
1892         blk_mode: BlockCheckMode,
1893         mut attrs: AttrVec,
1894     ) -> PResult<'a, P<Expr>> {
1895         if self.is_array_like_block() {
1896             if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo, attrs.clone()) {
1897                 return Ok(arr);
1898             }
1899         }
1900
1901         if let Some(label) = opt_label {
1902             self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
1903         }
1904
1905         if self.token.is_whole_block() {
1906             self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
1907                 .span_label(lo.to(self.token.span), "the `block` fragment is within this context")
1908                 .emit();
1909         }
1910
1911         let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
1912         attrs.extend(inner_attrs);
1913         Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
1914     }
1915
1916     /// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
1917     fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1918         let lo = self.token.span;
1919         let _ = self.parse_late_bound_lifetime_defs()?;
1920         let span_for = lo.to(self.prev_token.span);
1921         let closure = self.parse_closure_expr(attrs)?;
1922
1923         self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
1924             .span_label(closure.span, "the parameters are attached to this closure")
1925             .span_suggestion(
1926                 span_for,
1927                 "remove the parameters",
1928                 String::new(),
1929                 Applicability::MachineApplicable,
1930             )
1931             .emit();
1932
1933         Ok(self.mk_expr_err(lo.to(closure.span)))
1934     }
1935
1936     /// Parses a closure expression (e.g., `move |args| expr`).
1937     fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1938         let lo = self.token.span;
1939
1940         let movability =
1941             if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
1942
1943         let asyncness = if self.token.uninterpolated_span().rust_2018() {
1944             self.parse_asyncness()
1945         } else {
1946             Async::No
1947         };
1948
1949         let capture_clause = self.parse_capture_clause()?;
1950         let decl = self.parse_fn_block_decl()?;
1951         let decl_hi = self.prev_token.span;
1952         let mut body = match decl.output {
1953             FnRetTy::Default(_) => {
1954                 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
1955                 self.parse_expr_res(restrictions, None)?
1956             }
1957             _ => {
1958                 // If an explicit return type is given, require a block to appear (RFC 968).
1959                 let body_lo = self.token.span;
1960                 self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
1961             }
1962         };
1963
1964         if let Async::Yes { span, .. } = asyncness {
1965             // Feature-gate `async ||` closures.
1966             self.sess.gated_spans.gate(sym::async_closure, span);
1967         }
1968
1969         if self.token.kind == TokenKind::Semi && self.token_cursor.frame.delim == DelimToken::Paren
1970         {
1971             // It is likely that the closure body is a block but where the
1972             // braces have been removed. We will recover and eat the next
1973             // statements later in the parsing process.
1974             body = self.mk_expr_err(body.span);
1975         }
1976
1977         let body_span = body.span;
1978
1979         let closure = self.mk_expr(
1980             lo.to(body.span),
1981             ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
1982             attrs,
1983         );
1984
1985         // Disable recovery for closure body
1986         let spans =
1987             ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
1988         self.current_closure = Some(spans);
1989
1990         Ok(closure)
1991     }
1992
1993     /// Parses an optional `move` prefix to a closure-like construct.
1994     fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
1995         if self.eat_keyword(kw::Move) {
1996             // Check for `move async` and recover
1997             if self.check_keyword(kw::Async) {
1998                 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
1999                 Err(self.incorrect_move_async_order_found(move_async_span))
2000             } else {
2001                 Ok(CaptureBy::Value)
2002             }
2003         } else {
2004             Ok(CaptureBy::Ref)
2005         }
2006     }
2007
2008     /// Parses the `|arg, arg|` header of a closure.
2009     fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
2010         let inputs = if self.eat(&token::OrOr) {
2011             Vec::new()
2012         } else {
2013             self.expect(&token::BinOp(token::Or))?;
2014             let args = self
2015                 .parse_seq_to_before_tokens(
2016                     &[&token::BinOp(token::Or), &token::OrOr],
2017                     SeqSep::trailing_allowed(token::Comma),
2018                     TokenExpectType::NoExpect,
2019                     |p| p.parse_fn_block_param(),
2020                 )?
2021                 .0;
2022             self.expect_or()?;
2023             args
2024         };
2025         let output =
2026             self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2027
2028         Ok(P(FnDecl { inputs, output }))
2029     }
2030
2031     /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2032     fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2033         let lo = self.token.span;
2034         let attrs = self.parse_outer_attributes()?;
2035         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2036             let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
2037             let ty = if this.eat(&token::Colon) {
2038                 this.parse_ty()?
2039             } else {
2040                 this.mk_ty(this.prev_token.span, TyKind::Infer)
2041             };
2042
2043             Ok((
2044                 Param {
2045                     attrs: attrs.into(),
2046                     ty,
2047                     pat,
2048                     span: lo.to(this.token.span),
2049                     id: DUMMY_NODE_ID,
2050                     is_placeholder: false,
2051                 },
2052                 TrailingToken::MaybeComma,
2053             ))
2054         })
2055     }
2056
2057     /// Parses an `if` expression (`if` token already eaten).
2058     fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2059         let lo = self.prev_token.span;
2060         let cond = self.parse_cond_expr()?;
2061
2062         let missing_then_block_binop_span = || {
2063             match cond.kind {
2064                 ExprKind::Binary(Spanned { span: binop_span, .. }, _, ref right)
2065                     if let ExprKind::Block(..) = right.kind => Some(binop_span),
2066                 _ => None
2067             }
2068         };
2069
2070         // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
2071         // verify that the last statement is either an implicit return (no `;`) or an explicit
2072         // return. This won't catch blocks with an explicit `return`, but that would be caught by
2073         // the dead code lint.
2074         let thn = if self.token.is_keyword(kw::Else) || !cond.returns() {
2075             if let Some(binop_span) = missing_then_block_binop_span() {
2076                 self.error_missing_if_then_block(lo, None, Some(binop_span)).emit();
2077                 self.mk_block_err(cond.span)
2078             } else {
2079                 self.error_missing_if_cond(lo, cond.span)
2080             }
2081         } else {
2082             let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2083             let not_block = self.token != token::OpenDelim(token::Brace);
2084             let block = self.parse_block().map_err(|err| {
2085                 if not_block {
2086                     self.error_missing_if_then_block(lo, Some(err), missing_then_block_binop_span())
2087                 } else {
2088                     err
2089                 }
2090             })?;
2091             self.error_on_if_block_attrs(lo, false, block.span, &attrs);
2092             block
2093         };
2094         let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2095         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
2096     }
2097
2098     fn error_missing_if_then_block(
2099         &self,
2100         if_span: Span,
2101         err: Option<DiagnosticBuilder<'a>>,
2102         binop_span: Option<Span>,
2103     ) -> DiagnosticBuilder<'a> {
2104         let msg = "this `if` expression has a condition, but no block";
2105
2106         let mut err = if let Some(mut err) = err {
2107             err.span_label(if_span, msg);
2108             err
2109         } else {
2110             self.struct_span_err(if_span, msg)
2111         };
2112
2113         if let Some(binop_span) = binop_span {
2114             err.span_help(binop_span, "maybe you forgot the right operand of the condition?");
2115         }
2116
2117         err
2118     }
2119
2120     fn error_missing_if_cond(&self, lo: Span, span: Span) -> P<ast::Block> {
2121         let sp = self.sess.source_map().next_point(lo);
2122         self.struct_span_err(sp, "missing condition for `if` expression")
2123             .span_label(sp, "expected if condition here")
2124             .emit();
2125         self.mk_block_err(span)
2126     }
2127
2128     /// Parses the condition of a `if` or `while` expression.
2129     fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2130         let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2131
2132         if let ExprKind::Let(..) = cond.kind {
2133             // Remove the last feature gating of a `let` expression since it's stable.
2134             self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2135         }
2136
2137         Ok(cond)
2138     }
2139
2140     /// Parses a `let $pat = $expr` pseudo-expression.
2141     /// The `let` token has already been eaten.
2142     fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2143         let lo = self.prev_token.span;
2144         let pat = self.parse_pat_allow_top_alt(None, RecoverComma::Yes, RecoverColon::Yes)?;
2145         self.expect(&token::Eq)?;
2146         let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2147             this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2148         })?;
2149         let span = lo.to(expr.span);
2150         self.sess.gated_spans.gate(sym::let_chains, span);
2151         Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span), attrs))
2152     }
2153
2154     /// Parses an `else { ... }` expression (`else` token already eaten).
2155     fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2156         let ctx_span = self.prev_token.span; // `else`
2157         let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2158         let expr = if self.eat_keyword(kw::If) {
2159             self.parse_if_expr(AttrVec::new())?
2160         } else {
2161             let blk = self.parse_block()?;
2162             self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new())
2163         };
2164         self.error_on_if_block_attrs(ctx_span, true, expr.span, &attrs);
2165         Ok(expr)
2166     }
2167
2168     fn error_on_if_block_attrs(
2169         &self,
2170         ctx_span: Span,
2171         is_ctx_else: bool,
2172         branch_span: Span,
2173         attrs: &[ast::Attribute],
2174     ) {
2175         let (span, last) = match attrs {
2176             [] => return,
2177             [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2178         };
2179         let ctx = if is_ctx_else { "else" } else { "if" };
2180         self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
2181             .span_label(branch_span, "the attributes are attached to this branch")
2182             .span_label(ctx_span, format!("the branch belongs to this `{}`", ctx))
2183             .span_suggestion(
2184                 span,
2185                 "remove the attributes",
2186                 String::new(),
2187                 Applicability::MachineApplicable,
2188             )
2189             .emit();
2190     }
2191
2192     /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2193     fn parse_for_expr(
2194         &mut self,
2195         opt_label: Option<Label>,
2196         lo: Span,
2197         mut attrs: AttrVec,
2198     ) -> PResult<'a, P<Expr>> {
2199         // Record whether we are about to parse `for (`.
2200         // This is used below for recovery in case of `for ( $stuff ) $block`
2201         // in which case we will suggest `for $stuff $block`.
2202         let begin_paren = match self.token.kind {
2203             token::OpenDelim(token::Paren) => Some(self.token.span),
2204             _ => None,
2205         };
2206
2207         let pat = self.parse_pat_allow_top_alt(None, RecoverComma::Yes, RecoverColon::Yes)?;
2208         if !self.eat_keyword(kw::In) {
2209             self.error_missing_in_for_loop();
2210         }
2211         self.check_for_for_in_in_typo(self.prev_token.span);
2212         let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2213
2214         let pat = self.recover_parens_around_for_head(pat, begin_paren);
2215
2216         let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
2217         attrs.extend(iattrs);
2218
2219         let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2220         Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2221     }
2222
2223     fn error_missing_in_for_loop(&mut self) {
2224         let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
2225             // Possibly using JS syntax (#75311).
2226             let span = self.token.span;
2227             self.bump();
2228             (span, "try using `in` here instead", "in")
2229         } else {
2230             (self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
2231         };
2232         self.struct_span_err(span, "missing `in` in `for` loop")
2233             .span_suggestion_short(
2234                 span,
2235                 msg,
2236                 sugg.into(),
2237                 // Has been misleading, at least in the past (closed Issue #48492).
2238                 Applicability::MaybeIncorrect,
2239             )
2240             .emit();
2241     }
2242
2243     /// Parses a `while` or `while let` expression (`while` token already eaten).
2244     fn parse_while_expr(
2245         &mut self,
2246         opt_label: Option<Label>,
2247         lo: Span,
2248         mut attrs: AttrVec,
2249     ) -> PResult<'a, P<Expr>> {
2250         let cond = self.parse_cond_expr()?;
2251         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2252         attrs.extend(iattrs);
2253         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
2254     }
2255
2256     /// Parses `loop { ... }` (`loop` token already eaten).
2257     fn parse_loop_expr(
2258         &mut self,
2259         opt_label: Option<Label>,
2260         lo: Span,
2261         mut attrs: AttrVec,
2262     ) -> PResult<'a, P<Expr>> {
2263         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2264         attrs.extend(iattrs);
2265         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
2266     }
2267
2268     fn eat_label(&mut self) -> Option<Label> {
2269         self.token.lifetime().map(|ident| {
2270             self.bump();
2271             Label { ident }
2272         })
2273     }
2274
2275     /// Parses a `match ... { ... }` expression (`match` token already eaten).
2276     fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2277         let match_span = self.prev_token.span;
2278         let lo = self.prev_token.span;
2279         let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2280         if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
2281             if self.token == token::Semi {
2282                 e.span_suggestion_short(
2283                     match_span,
2284                     "try removing this `match`",
2285                     String::new(),
2286                     Applicability::MaybeIncorrect, // speculative
2287                 );
2288             }
2289             return Err(e);
2290         }
2291         attrs.extend(self.parse_inner_attributes()?);
2292
2293         let mut arms: Vec<Arm> = Vec::new();
2294         while self.token != token::CloseDelim(token::Brace) {
2295             match self.parse_arm() {
2296                 Ok(arm) => arms.push(arm),
2297                 Err(mut e) => {
2298                     // Recover by skipping to the end of the block.
2299                     e.emit();
2300                     self.recover_stmt();
2301                     let span = lo.to(self.token.span);
2302                     if self.token == token::CloseDelim(token::Brace) {
2303                         self.bump();
2304                     }
2305                     return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
2306                 }
2307             }
2308         }
2309         let hi = self.token.span;
2310         self.bump();
2311         Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2312     }
2313
2314     /// Attempt to recover from match arm body with statements and no surrounding braces.
2315     fn parse_arm_body_missing_braces(
2316         &mut self,
2317         first_expr: &P<Expr>,
2318         arrow_span: Span,
2319     ) -> Option<P<Expr>> {
2320         if self.token.kind != token::Semi {
2321             return None;
2322         }
2323         let start_snapshot = self.clone();
2324         let semi_sp = self.token.span;
2325         self.bump(); // `;`
2326         let mut stmts =
2327             vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2328         let err = |this: &mut Parser<'_>, stmts: Vec<ast::Stmt>| {
2329             let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2330             let mut err = this.struct_span_err(span, "`match` arm body without braces");
2331             let (these, s, are) =
2332                 if stmts.len() > 1 { ("these", "s", "are") } else { ("this", "", "is") };
2333             err.span_label(
2334                 span,
2335                 &format!(
2336                     "{these} statement{s} {are} not surrounded by a body",
2337                     these = these,
2338                     s = s,
2339                     are = are
2340                 ),
2341             );
2342             err.span_label(arrow_span, "while parsing the `match` arm starting here");
2343             if stmts.len() > 1 {
2344                 err.multipart_suggestion(
2345                     &format!("surround the statement{} with a body", s),
2346                     vec![
2347                         (span.shrink_to_lo(), "{ ".to_string()),
2348                         (span.shrink_to_hi(), " }".to_string()),
2349                     ],
2350                     Applicability::MachineApplicable,
2351                 );
2352             } else {
2353                 err.span_suggestion(
2354                     semi_sp,
2355                     "use a comma to end a `match` arm expression",
2356                     ",".to_string(),
2357                     Applicability::MachineApplicable,
2358                 );
2359             }
2360             err.emit();
2361             this.mk_expr_err(span)
2362         };
2363         // We might have either a `,` -> `;` typo, or a block without braces. We need
2364         // a more subtle parsing strategy.
2365         loop {
2366             if self.token.kind == token::CloseDelim(token::Brace) {
2367                 // We have reached the closing brace of the `match` expression.
2368                 return Some(err(self, stmts));
2369             }
2370             if self.token.kind == token::Comma {
2371                 *self = start_snapshot;
2372                 return None;
2373             }
2374             let pre_pat_snapshot = self.clone();
2375             match self.parse_pat_no_top_alt(None) {
2376                 Ok(_pat) => {
2377                     if self.token.kind == token::FatArrow {
2378                         // Reached arm end.
2379                         *self = pre_pat_snapshot;
2380                         return Some(err(self, stmts));
2381                     }
2382                 }
2383                 Err(mut err) => {
2384                     err.cancel();
2385                 }
2386             }
2387
2388             *self = pre_pat_snapshot;
2389             match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2390                 // Consume statements for as long as possible.
2391                 Ok(Some(stmt)) => {
2392                     stmts.push(stmt);
2393                 }
2394                 Ok(None) => {
2395                     *self = start_snapshot;
2396                     break;
2397                 }
2398                 // We couldn't parse either yet another statement missing it's
2399                 // enclosing block nor the next arm's pattern or closing brace.
2400                 Err(mut stmt_err) => {
2401                     stmt_err.cancel();
2402                     *self = start_snapshot;
2403                     break;
2404                 }
2405             }
2406         }
2407         None
2408     }
2409
2410     pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2411         fn check_let_expr(expr: &Expr) -> (bool, bool) {
2412             match expr.kind {
2413                 ExprKind::Binary(_, ref lhs, ref rhs) => {
2414                     let lhs_rslt = check_let_expr(lhs);
2415                     let rhs_rslt = check_let_expr(rhs);
2416                     (lhs_rslt.0 || rhs_rslt.0, false)
2417                 }
2418                 ExprKind::Let(..) => (true, true),
2419                 _ => (false, true),
2420             }
2421         }
2422         let attrs = self.parse_outer_attributes()?;
2423         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2424             let lo = this.token.span;
2425             let pat = this.parse_pat_allow_top_alt(None, RecoverComma::Yes, RecoverColon::Yes)?;
2426             let guard = if this.eat_keyword(kw::If) {
2427                 let if_span = this.prev_token.span;
2428                 let cond = this.parse_expr()?;
2429                 let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
2430                 if has_let_expr {
2431                     if does_not_have_bin_op {
2432                         // Remove the last feature gating of a `let` expression since it's stable.
2433                         this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2434                     }
2435                     let span = if_span.to(cond.span);
2436                     this.sess.gated_spans.gate(sym::if_let_guard, span);
2437                 }
2438                 Some(cond)
2439             } else {
2440                 None
2441             };
2442             let arrow_span = this.token.span;
2443             if let Err(mut err) = this.expect(&token::FatArrow) {
2444                 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2445                 if TokenKind::FatArrow
2446                     .similar_tokens()
2447                     .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2448                 {
2449                     err.span_suggestion(
2450                         this.token.span,
2451                         "try using a fat arrow here",
2452                         "=>".to_string(),
2453                         Applicability::MaybeIncorrect,
2454                     );
2455                     err.emit();
2456                     this.bump();
2457                 } else {
2458                     return Err(err);
2459                 }
2460             }
2461             let arm_start_span = this.token.span;
2462
2463             let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2464                 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2465                 err
2466             })?;
2467
2468             let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2469                 && this.token != token::CloseDelim(token::Brace);
2470
2471             let hi = this.prev_token.span;
2472
2473             if require_comma {
2474                 let sm = this.sess.source_map();
2475                 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2476                     let span = body.span;
2477                     return Ok((
2478                         ast::Arm {
2479                             attrs: attrs.into(),
2480                             pat,
2481                             guard,
2482                             body,
2483                             span,
2484                             id: DUMMY_NODE_ID,
2485                             is_placeholder: false,
2486                         },
2487                         TrailingToken::None,
2488                     ));
2489                 }
2490                 this.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
2491                     |mut err| {
2492                         match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
2493                             (Ok(ref expr_lines), Ok(ref arm_start_lines))
2494                                 if arm_start_lines.lines[0].end_col
2495                                     == expr_lines.lines[0].end_col
2496                                     && expr_lines.lines.len() == 2
2497                                     && this.token == token::FatArrow =>
2498                             {
2499                                 // We check whether there's any trailing code in the parse span,
2500                                 // if there isn't, we very likely have the following:
2501                                 //
2502                                 // X |     &Y => "y"
2503                                 //   |        --    - missing comma
2504                                 //   |        |
2505                                 //   |        arrow_span
2506                                 // X |     &X => "x"
2507                                 //   |      - ^^ self.token.span
2508                                 //   |      |
2509                                 //   |      parsed until here as `"y" & X`
2510                                 err.span_suggestion_short(
2511                                     arm_start_span.shrink_to_hi(),
2512                                     "missing a comma here to end this `match` arm",
2513                                     ",".to_owned(),
2514                                     Applicability::MachineApplicable,
2515                                 );
2516                             }
2517                             _ => {
2518                                 err.span_label(
2519                                     arrow_span,
2520                                     "while parsing the `match` arm starting here",
2521                                 );
2522                             }
2523                         }
2524                         err
2525                     },
2526                 )?;
2527             } else {
2528                 this.eat(&token::Comma);
2529             }
2530
2531             Ok((
2532                 ast::Arm {
2533                     attrs: attrs.into(),
2534                     pat,
2535                     guard,
2536                     body: expr,
2537                     span: lo.to(hi),
2538                     id: DUMMY_NODE_ID,
2539                     is_placeholder: false,
2540                 },
2541                 TrailingToken::None,
2542             ))
2543         })
2544     }
2545
2546     /// Parses a `try {...}` expression (`try` token already eaten).
2547     fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2548         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2549         attrs.extend(iattrs);
2550         if self.eat_keyword(kw::Catch) {
2551             let mut error = self.struct_span_err(
2552                 self.prev_token.span,
2553                 "keyword `catch` cannot follow a `try` block",
2554             );
2555             error.help("try using `match` on the result of the `try` block instead");
2556             error.emit();
2557             Err(error)
2558         } else {
2559             let span = span_lo.to(body.span);
2560             self.sess.gated_spans.gate(sym::try_blocks, span);
2561             Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
2562         }
2563     }
2564
2565     fn is_do_catch_block(&self) -> bool {
2566         self.token.is_keyword(kw::Do)
2567             && self.is_keyword_ahead(1, &[kw::Catch])
2568             && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
2569             && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2570     }
2571
2572     fn is_try_block(&self) -> bool {
2573         self.token.is_keyword(kw::Try)
2574             && self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
2575             && self.token.uninterpolated_span().rust_2018()
2576     }
2577
2578     /// Parses an `async move? {...}` expression.
2579     fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2580         let lo = self.token.span;
2581         self.expect_keyword(kw::Async)?;
2582         let capture_clause = self.parse_capture_clause()?;
2583         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2584         attrs.extend(iattrs);
2585         let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2586         Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2587     }
2588
2589     fn is_async_block(&self) -> bool {
2590         self.token.is_keyword(kw::Async)
2591             && ((
2592                 // `async move {`
2593                 self.is_keyword_ahead(1, &[kw::Move])
2594                     && self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
2595             ) || (
2596                 // `async {`
2597                 self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
2598             ))
2599     }
2600
2601     fn is_certainly_not_a_block(&self) -> bool {
2602         self.look_ahead(1, |t| t.is_ident())
2603             && (
2604                 // `{ ident, ` cannot start a block.
2605                 self.look_ahead(2, |t| t == &token::Comma)
2606                     || self.look_ahead(2, |t| t == &token::Colon)
2607                         && (
2608                             // `{ ident: token, ` cannot start a block.
2609                             self.look_ahead(4, |t| t == &token::Comma) ||
2610                 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2611                 self.look_ahead(3, |t| !t.can_begin_type())
2612                         )
2613             )
2614     }
2615
2616     fn maybe_parse_struct_expr(
2617         &mut self,
2618         qself: Option<&ast::QSelf>,
2619         path: &ast::Path,
2620         attrs: &AttrVec,
2621     ) -> Option<PResult<'a, P<Expr>>> {
2622         let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2623         if struct_allowed || self.is_certainly_not_a_block() {
2624             if let Err(err) = self.expect(&token::OpenDelim(token::Brace)) {
2625                 return Some(Err(err));
2626             }
2627             let expr = self.parse_struct_expr(qself.cloned(), path.clone(), attrs.clone(), true);
2628             if let (Ok(expr), false) = (&expr, struct_allowed) {
2629                 // This is a struct literal, but we don't can't accept them here.
2630                 self.error_struct_lit_not_allowed_here(path.span, expr.span);
2631             }
2632             return Some(expr);
2633         }
2634         None
2635     }
2636
2637     fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
2638         self.struct_span_err(sp, "struct literals are not allowed here")
2639             .multipart_suggestion(
2640                 "surround the struct literal with parentheses",
2641                 vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
2642                 Applicability::MachineApplicable,
2643             )
2644             .emit();
2645     }
2646
2647     pub(super) fn parse_struct_fields(
2648         &mut self,
2649         pth: ast::Path,
2650         recover: bool,
2651         close_delim: token::DelimToken,
2652     ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2653         let mut fields = Vec::new();
2654         let mut base = ast::StructRest::None;
2655         let mut recover_async = false;
2656
2657         let mut async_block_err = |e: &mut DiagnosticBuilder<'_>, span: Span| {
2658             recover_async = true;
2659             e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2660             e.help(&format!("set `edition = \"{}\"` in `Cargo.toml`", LATEST_STABLE_EDITION));
2661             e.note("for more on editions, read https://doc.rust-lang.org/edition-guide");
2662         };
2663
2664         while self.token != token::CloseDelim(close_delim) {
2665             if self.eat(&token::DotDot) {
2666                 let exp_span = self.prev_token.span;
2667                 // We permit `.. }` on the left-hand side of a destructuring assignment.
2668                 if self.check(&token::CloseDelim(close_delim)) {
2669                     base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2670                     break;
2671                 }
2672                 match self.parse_expr() {
2673                     Ok(e) => base = ast::StructRest::Base(e),
2674                     Err(mut e) if recover => {
2675                         e.emit();
2676                         self.recover_stmt();
2677                     }
2678                     Err(e) => return Err(e),
2679                 }
2680                 self.recover_struct_comma_after_dotdot(exp_span);
2681                 break;
2682             }
2683
2684             let recovery_field = self.find_struct_error_after_field_looking_code();
2685             let parsed_field = match self.parse_expr_field() {
2686                 Ok(f) => Some(f),
2687                 Err(mut e) => {
2688                     if pth == kw::Async {
2689                         async_block_err(&mut e, pth.span);
2690                     } else {
2691                         e.span_label(pth.span, "while parsing this struct");
2692                     }
2693                     e.emit();
2694
2695                     // If the next token is a comma, then try to parse
2696                     // what comes next as additional fields, rather than
2697                     // bailing out until next `}`.
2698                     if self.token != token::Comma {
2699                         self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2700                         if self.token != token::Comma {
2701                             break;
2702                         }
2703                     }
2704                     None
2705                 }
2706             };
2707
2708             match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
2709                 Ok(_) => {
2710                     if let Some(f) = parsed_field.or(recovery_field) {
2711                         // Only include the field if there's no parse error for the field name.
2712                         fields.push(f);
2713                     }
2714                 }
2715                 Err(mut e) => {
2716                     if pth == kw::Async {
2717                         async_block_err(&mut e, pth.span);
2718                     } else {
2719                         e.span_label(pth.span, "while parsing this struct");
2720                         if let Some(f) = recovery_field {
2721                             fields.push(f);
2722                             e.span_suggestion(
2723                                 self.prev_token.span.shrink_to_hi(),
2724                                 "try adding a comma",
2725                                 ",".into(),
2726                                 Applicability::MachineApplicable,
2727                             );
2728                         }
2729                     }
2730                     if !recover {
2731                         return Err(e);
2732                     }
2733                     e.emit();
2734                     self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2735                     self.eat(&token::Comma);
2736                 }
2737             }
2738         }
2739         Ok((fields, base, recover_async))
2740     }
2741
2742     /// Precondition: already parsed the '{'.
2743     pub(super) fn parse_struct_expr(
2744         &mut self,
2745         qself: Option<ast::QSelf>,
2746         pth: ast::Path,
2747         attrs: AttrVec,
2748         recover: bool,
2749     ) -> PResult<'a, P<Expr>> {
2750         let lo = pth.span;
2751         let (fields, base, recover_async) =
2752             self.parse_struct_fields(pth.clone(), recover, token::Brace)?;
2753         let span = lo.to(self.token.span);
2754         self.expect(&token::CloseDelim(token::Brace))?;
2755         let expr = if recover_async {
2756             ExprKind::Err
2757         } else {
2758             ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
2759         };
2760         Ok(self.mk_expr(span, expr, attrs))
2761     }
2762
2763     /// Use in case of error after field-looking code: `S { foo: () with a }`.
2764     fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
2765         match self.token.ident() {
2766             Some((ident, is_raw))
2767                 if (is_raw || !ident.is_reserved())
2768                     && self.look_ahead(1, |t| *t == token::Colon) =>
2769             {
2770                 Some(ast::ExprField {
2771                     ident,
2772                     span: self.token.span,
2773                     expr: self.mk_expr_err(self.token.span),
2774                     is_shorthand: false,
2775                     attrs: AttrVec::new(),
2776                     id: DUMMY_NODE_ID,
2777                     is_placeholder: false,
2778                 })
2779             }
2780             _ => None,
2781         }
2782     }
2783
2784     fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
2785         if self.token != token::Comma {
2786             return;
2787         }
2788         self.struct_span_err(
2789             span.to(self.prev_token.span),
2790             "cannot use a comma after the base struct",
2791         )
2792         .span_suggestion_short(
2793             self.token.span,
2794             "remove this comma",
2795             String::new(),
2796             Applicability::MachineApplicable,
2797         )
2798         .note("the base struct must always be the last field")
2799         .emit();
2800         self.recover_stmt();
2801     }
2802
2803     /// Parses `ident (COLON expr)?`.
2804     fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
2805         let attrs = self.parse_outer_attributes()?;
2806         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2807             let lo = this.token.span;
2808
2809             // Check if a colon exists one ahead. This means we're parsing a fieldname.
2810             let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
2811             let (ident, expr) = if is_shorthand {
2812                 // Mimic `x: x` for the `x` field shorthand.
2813                 let ident = this.parse_ident_common(false)?;
2814                 let path = ast::Path::from_ident(ident);
2815                 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
2816             } else {
2817                 let ident = this.parse_field_name()?;
2818                 this.error_on_eq_field_init(ident);
2819                 this.bump(); // `:`
2820                 (ident, this.parse_expr()?)
2821             };
2822
2823             Ok((
2824                 ast::ExprField {
2825                     ident,
2826                     span: lo.to(expr.span),
2827                     expr,
2828                     is_shorthand,
2829                     attrs: attrs.into(),
2830                     id: DUMMY_NODE_ID,
2831                     is_placeholder: false,
2832                 },
2833                 TrailingToken::MaybeComma,
2834             ))
2835         })
2836     }
2837
2838     /// Check for `=`. This means the source incorrectly attempts to
2839     /// initialize a field with an eq rather than a colon.
2840     fn error_on_eq_field_init(&self, field_name: Ident) {
2841         if self.token != token::Eq {
2842             return;
2843         }
2844
2845         self.struct_span_err(self.token.span, "expected `:`, found `=`")
2846             .span_suggestion(
2847                 field_name.span.shrink_to_hi().to(self.token.span),
2848                 "replace equals symbol with a colon",
2849                 ":".to_string(),
2850                 Applicability::MachineApplicable,
2851             )
2852             .emit();
2853     }
2854
2855     fn err_dotdotdot_syntax(&self, span: Span) {
2856         self.struct_span_err(span, "unexpected token: `...`")
2857             .span_suggestion(
2858                 span,
2859                 "use `..` for an exclusive range",
2860                 "..".to_owned(),
2861                 Applicability::MaybeIncorrect,
2862             )
2863             .span_suggestion(
2864                 span,
2865                 "or `..=` for an inclusive range",
2866                 "..=".to_owned(),
2867                 Applicability::MaybeIncorrect,
2868             )
2869             .emit();
2870     }
2871
2872     fn err_larrow_operator(&self, span: Span) {
2873         self.struct_span_err(span, "unexpected token: `<-`")
2874             .span_suggestion(
2875                 span,
2876                 "if you meant to write a comparison against a negative value, add a \
2877              space in between `<` and `-`",
2878                 "< -".to_string(),
2879                 Applicability::MaybeIncorrect,
2880             )
2881             .emit();
2882     }
2883
2884     fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
2885         ExprKind::AssignOp(binop, lhs, rhs)
2886     }
2887
2888     fn mk_range(
2889         &mut self,
2890         start: Option<P<Expr>>,
2891         end: Option<P<Expr>>,
2892         limits: RangeLimits,
2893     ) -> ExprKind {
2894         if end.is_none() && limits == RangeLimits::Closed {
2895             self.inclusive_range_with_incorrect_end(self.prev_token.span);
2896             ExprKind::Err
2897         } else {
2898             ExprKind::Range(start, end, limits)
2899         }
2900     }
2901
2902     fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
2903         ExprKind::Unary(unop, expr)
2904     }
2905
2906     fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
2907         ExprKind::Binary(binop, lhs, rhs)
2908     }
2909
2910     fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
2911         ExprKind::Index(expr, idx)
2912     }
2913
2914     fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
2915         ExprKind::Call(f, args)
2916     }
2917
2918     fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
2919         let span = lo.to(self.prev_token.span);
2920         let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
2921         self.recover_from_await_method_call();
2922         await_expr
2923     }
2924
2925     crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
2926         P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
2927     }
2928
2929     pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
2930         self.mk_expr(span, ExprKind::Err, AttrVec::new())
2931     }
2932
2933     /// Create expression span ensuring the span of the parent node
2934     /// is larger than the span of lhs and rhs, including the attributes.
2935     fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
2936         lhs.attrs
2937             .iter()
2938             .find(|a| a.style == AttrStyle::Outer)
2939             .map_or(lhs_span, |a| a.span)
2940             .to(rhs_span)
2941     }
2942
2943     fn collect_tokens_for_expr(
2944         &mut self,
2945         attrs: AttrWrapper,
2946         f: impl FnOnce(&mut Self, Vec<ast::Attribute>) -> PResult<'a, P<Expr>>,
2947     ) -> PResult<'a, P<Expr>> {
2948         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2949             let res = f(this, attrs)?;
2950             let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
2951                 && this.token.kind == token::Semi
2952             {
2953                 TrailingToken::Semi
2954             } else {
2955                 // FIXME - pass this through from the place where we know
2956                 // we need a comma, rather than assuming that `#[attr] expr,`
2957                 // always captures a trailing comma
2958                 TrailingToken::MaybeComma
2959             };
2960             Ok((res, trailing))
2961         })
2962     }
2963 }