]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_parse/src/parser/expr.rs
Rollup merge of #106829 - compiler-errors:more-alias-combine, r=spastorino
[rust.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::diagnostics::SnapshotParser;
2 use super::pat::{CommaRecoveryMode, RecoverColon, RecoverComma, PARAM_EXPECTED};
3 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
4 use super::{
5     AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions,
6     SemiColonMode, SeqSep, TokenExpectType, TokenType, TrailingToken,
7 };
8 use crate::errors::{
9     ArrayBracketsInsteadOfSpaces, ArrayBracketsInsteadOfSpacesSugg, AsyncMoveOrderIncorrect,
10     BracesForStructLiteral, CatchAfterTry, CommaAfterBaseStruct, ComparisonInterpretedAsGeneric,
11     ComparisonOrShiftInterpretedAsGenericSugg, DoCatchSyntaxRemoved, DotDotDot, EqFieldInit,
12     ExpectedElseBlock, ExpectedEqForLetExpr, ExpectedExpressionFoundLet,
13     FieldExpressionWithGeneric, FloatLiteralRequiresIntegerPart, FoundExprWouldBeStmt,
14     IfExpressionMissingCondition, IfExpressionMissingThenBlock, IfExpressionMissingThenBlockSub,
15     InvalidBlockMacroSegment, InvalidComparisonOperator, InvalidComparisonOperatorSub,
16     InvalidInterpolatedExpression, InvalidLiteralSuffixOnTupleIndex, InvalidLogicalOperator,
17     InvalidLogicalOperatorSub, LabeledLoopInBreak, LeadingPlusNotSupported, LeftArrowOperator,
18     LifetimeInBorrowExpression, MacroInvocationWithQualifiedPath, MalformedLoopLabel,
19     MatchArmBodyWithoutBraces, MatchArmBodyWithoutBracesSugg, MissingCommaAfterMatchArm,
20     MissingDotDot, MissingInInForLoop, MissingInInForLoopSub, MissingSemicolonBeforeArray,
21     NoFieldsForFnCall, NotAsNegationOperator, NotAsNegationOperatorSub,
22     OuterAttributeNotAllowedOnIfElse, ParenthesesWithStructFields,
23     RequireColonAfterLabeledExpression, ShiftInterpretedAsGeneric, StructLiteralNotAllowedHere,
24     StructLiteralNotAllowedHereSugg, TildeAsUnaryOperator, UnexpectedIfWithIf,
25     UnexpectedTokenAfterLabel, UnexpectedTokenAfterLabelSugg, WrapExpressionInParentheses,
26 };
27 use crate::maybe_recover_from_interpolated_ty_qpath;
28 use core::mem;
29 use rustc_ast::ptr::P;
30 use rustc_ast::token::{self, Delimiter, Token, TokenKind};
31 use rustc_ast::tokenstream::Spacing;
32 use rustc_ast::util::case::Case;
33 use rustc_ast::util::classify;
34 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
35 use rustc_ast::visit::Visitor;
36 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, UnOp, DUMMY_NODE_ID};
37 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
38 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
39 use rustc_ast::{ClosureBinder, MetaItemLit, StmtKind};
40 use rustc_ast_pretty::pprust;
41 use rustc_errors::{
42     Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, IntoDiagnostic, PResult,
43     StashKey,
44 };
45 use rustc_session::errors::{report_lit_error, ExprParenthesesNeeded};
46 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
47 use rustc_session::lint::BuiltinLintDiagnostics;
48 use rustc_span::source_map::{self, Span, Spanned};
49 use rustc_span::symbol::{kw, sym, Ident, Symbol};
50 use rustc_span::{BytePos, Pos};
51
52 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
53 /// dropped into the token stream, which happens while parsing the result of
54 /// macro expansion). Placement of these is not as complex as I feared it would
55 /// be. The important thing is to make sure that lookahead doesn't balk at
56 /// `token::Interpolated` tokens.
57 macro_rules! maybe_whole_expr {
58     ($p:expr) => {
59         if let token::Interpolated(nt) = &$p.token.kind {
60             match &**nt {
61                 token::NtExpr(e) | token::NtLiteral(e) => {
62                     let e = e.clone();
63                     $p.bump();
64                     return Ok(e);
65                 }
66                 token::NtPath(path) => {
67                     let path = (**path).clone();
68                     $p.bump();
69                     return Ok($p.mk_expr($p.prev_token.span, ExprKind::Path(None, path)));
70                 }
71                 token::NtBlock(block) => {
72                     let block = block.clone();
73                     $p.bump();
74                     return Ok($p.mk_expr($p.prev_token.span, ExprKind::Block(block, None)));
75                 }
76                 _ => {}
77             };
78         }
79     };
80 }
81
82 #[derive(Debug)]
83 pub(super) enum LhsExpr {
84     NotYetParsed,
85     AttributesParsed(AttrWrapper),
86     AlreadyParsed { expr: P<Expr>, starts_statement: bool },
87 }
88
89 impl From<Option<AttrWrapper>> for LhsExpr {
90     /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
91     /// and `None` into `LhsExpr::NotYetParsed`.
92     ///
93     /// This conversion does not allocate.
94     fn from(o: Option<AttrWrapper>) -> Self {
95         if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
96     }
97 }
98
99 impl From<P<Expr>> for LhsExpr {
100     /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed { expr, starts_statement: false }`.
101     ///
102     /// This conversion does not allocate.
103     fn from(expr: P<Expr>) -> Self {
104         LhsExpr::AlreadyParsed { expr, starts_statement: false }
105     }
106 }
107
108 impl<'a> Parser<'a> {
109     /// Parses an expression.
110     #[inline]
111     pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
112         self.current_closure.take();
113
114         self.parse_expr_res(Restrictions::empty(), None)
115     }
116
117     /// Parses an expression, forcing tokens to be collected
118     pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
119         self.collect_tokens_no_attrs(|this| this.parse_expr())
120     }
121
122     pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
123         self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
124     }
125
126     fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
127         match self.parse_expr() {
128             Ok(expr) => Ok(expr),
129             Err(mut err) => match self.token.ident() {
130                 Some((Ident { name: kw::Underscore, .. }, false))
131                     if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) =>
132                 {
133                     // Special-case handling of `foo(_, _, _)`
134                     err.emit();
135                     self.bump();
136                     Ok(self.mk_expr(self.prev_token.span, ExprKind::Err))
137                 }
138                 _ => Err(err),
139             },
140         }
141     }
142
143     /// Parses a sequence of expressions delimited by parentheses.
144     fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
145         self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
146     }
147
148     /// Parses an expression, subject to the given restrictions.
149     #[inline]
150     pub(super) fn parse_expr_res(
151         &mut self,
152         r: Restrictions,
153         already_parsed_attrs: Option<AttrWrapper>,
154     ) -> PResult<'a, P<Expr>> {
155         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
156     }
157
158     /// Parses an associative expression.
159     ///
160     /// This parses an expression accounting for associativity and precedence of the operators in
161     /// the expression.
162     #[inline]
163     fn parse_assoc_expr(
164         &mut self,
165         already_parsed_attrs: Option<AttrWrapper>,
166     ) -> PResult<'a, P<Expr>> {
167         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
168     }
169
170     /// Parses an associative expression with operators of at least `min_prec` precedence.
171     pub(super) fn parse_assoc_expr_with(
172         &mut self,
173         min_prec: usize,
174         lhs: LhsExpr,
175     ) -> PResult<'a, P<Expr>> {
176         let mut starts_stmt = false;
177         let mut lhs = if let LhsExpr::AlreadyParsed { expr, starts_statement } = lhs {
178             starts_stmt = starts_statement;
179             expr
180         } else {
181             let attrs = match lhs {
182                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
183                 _ => None,
184             };
185             if self.token.is_range_separator() {
186                 return self.parse_prefix_range_expr(attrs);
187             } else {
188                 self.parse_prefix_expr(attrs)?
189             }
190         };
191         let last_type_ascription_set = self.last_type_ascription.is_some();
192
193         if !self.should_continue_as_assoc_expr(&lhs) {
194             self.last_type_ascription = None;
195             return Ok(lhs);
196         }
197
198         self.expected_tokens.push(TokenType::Operator);
199         while let Some(op) = self.check_assoc_op() {
200             // Adjust the span for interpolated LHS to point to the `$lhs` token
201             // and not to what it refers to.
202             let lhs_span = match self.prev_token.kind {
203                 TokenKind::Interpolated(..) => self.prev_token.span,
204                 _ => lhs.span,
205             };
206
207             let cur_op_span = self.token.span;
208             let restrictions = if op.node.is_assign_like() {
209                 self.restrictions & Restrictions::NO_STRUCT_LITERAL
210             } else {
211                 self.restrictions
212             };
213             let prec = op.node.precedence();
214             if prec < min_prec {
215                 break;
216             }
217             // Check for deprecated `...` syntax
218             if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
219                 self.err_dotdotdot_syntax(self.token.span);
220             }
221
222             if self.token == token::LArrow {
223                 self.err_larrow_operator(self.token.span);
224             }
225
226             self.bump();
227             if op.node.is_comparison() {
228                 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
229                     return Ok(expr);
230                 }
231             }
232
233             // Look for JS' `===` and `!==` and recover
234             if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
235                 && self.token.kind == token::Eq
236                 && self.prev_token.span.hi() == self.token.span.lo()
237             {
238                 let sp = op.span.to(self.token.span);
239                 let sugg = match op.node {
240                     AssocOp::Equal => "==",
241                     AssocOp::NotEqual => "!=",
242                     _ => unreachable!(),
243                 }
244                 .into();
245                 let invalid = format!("{}=", &sugg);
246                 self.sess.emit_err(InvalidComparisonOperator {
247                     span: sp,
248                     invalid: invalid.clone(),
249                     sub: InvalidComparisonOperatorSub::Correctable {
250                         span: sp,
251                         invalid,
252                         correct: sugg,
253                     },
254                 });
255                 self.bump();
256             }
257
258             // Look for PHP's `<>` and recover
259             if op.node == AssocOp::Less
260                 && self.token.kind == token::Gt
261                 && self.prev_token.span.hi() == self.token.span.lo()
262             {
263                 let sp = op.span.to(self.token.span);
264                 self.sess.emit_err(InvalidComparisonOperator {
265                     span: sp,
266                     invalid: "<>".into(),
267                     sub: InvalidComparisonOperatorSub::Correctable {
268                         span: sp,
269                         invalid: "<>".into(),
270                         correct: "!=".into(),
271                     },
272                 });
273                 self.bump();
274             }
275
276             // Look for C++'s `<=>` and recover
277             if op.node == AssocOp::LessEqual
278                 && self.token.kind == token::Gt
279                 && self.prev_token.span.hi() == self.token.span.lo()
280             {
281                 let sp = op.span.to(self.token.span);
282                 self.sess.emit_err(InvalidComparisonOperator {
283                     span: sp,
284                     invalid: "<=>".into(),
285                     sub: InvalidComparisonOperatorSub::Spaceship(sp),
286                 });
287                 self.bump();
288             }
289
290             if self.prev_token == token::BinOp(token::Plus)
291                 && self.token == token::BinOp(token::Plus)
292                 && self.prev_token.span.between(self.token.span).is_empty()
293             {
294                 let op_span = self.prev_token.span.to(self.token.span);
295                 // Eat the second `+`
296                 self.bump();
297                 lhs = self.recover_from_postfix_increment(lhs, op_span, starts_stmt)?;
298                 continue;
299             }
300
301             let op = op.node;
302             // Special cases:
303             if op == AssocOp::As {
304                 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
305                 continue;
306             } else if op == AssocOp::Colon {
307                 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
308                 continue;
309             } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
310                 // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
311                 // generalise it to the Fixity::None code.
312                 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
313                 break;
314             }
315
316             let fixity = op.fixity();
317             let prec_adjustment = match fixity {
318                 Fixity::Right => 0,
319                 Fixity::Left => 1,
320                 // We currently have no non-associative operators that are not handled above by
321                 // the special cases. The code is here only for future convenience.
322                 Fixity::None => 1,
323             };
324             let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
325                 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
326             })?;
327
328             let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
329             lhs = match op {
330                 AssocOp::Add
331                 | AssocOp::Subtract
332                 | AssocOp::Multiply
333                 | AssocOp::Divide
334                 | AssocOp::Modulus
335                 | AssocOp::LAnd
336                 | AssocOp::LOr
337                 | AssocOp::BitXor
338                 | AssocOp::BitAnd
339                 | AssocOp::BitOr
340                 | AssocOp::ShiftLeft
341                 | AssocOp::ShiftRight
342                 | AssocOp::Equal
343                 | AssocOp::Less
344                 | AssocOp::LessEqual
345                 | AssocOp::NotEqual
346                 | AssocOp::Greater
347                 | AssocOp::GreaterEqual => {
348                     let ast_op = op.to_ast_binop().unwrap();
349                     let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
350                     self.mk_expr(span, binary)
351                 }
352                 AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)),
353                 AssocOp::AssignOp(k) => {
354                     let aop = match k {
355                         token::Plus => BinOpKind::Add,
356                         token::Minus => BinOpKind::Sub,
357                         token::Star => BinOpKind::Mul,
358                         token::Slash => BinOpKind::Div,
359                         token::Percent => BinOpKind::Rem,
360                         token::Caret => BinOpKind::BitXor,
361                         token::And => BinOpKind::BitAnd,
362                         token::Or => BinOpKind::BitOr,
363                         token::Shl => BinOpKind::Shl,
364                         token::Shr => BinOpKind::Shr,
365                     };
366                     let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
367                     self.mk_expr(span, aopexpr)
368                 }
369                 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
370                     self.span_bug(span, "AssocOp should have been handled by special case")
371                 }
372             };
373
374             if let Fixity::None = fixity {
375                 break;
376             }
377         }
378         if last_type_ascription_set {
379             self.last_type_ascription = None;
380         }
381         Ok(lhs)
382     }
383
384     fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
385         match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
386             // Semi-statement forms are odd:
387             // See https://github.com/rust-lang/rust/issues/29071
388             (true, None) => false,
389             (false, _) => true, // Continue parsing the expression.
390             // An exhaustive check is done in the following block, but these are checked first
391             // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
392             // want to keep their span info to improve diagnostics in these cases in a later stage.
393             (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
394             (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
395             (true, Some(AssocOp::Add)) | // `{ 42 } + 42` (unary plus)
396             (true, Some(AssocOp::LAnd)) | // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
397             (true, Some(AssocOp::LOr)) | // `{ 42 } || 42` ("logical or" or closure)
398             (true, Some(AssocOp::BitOr)) // `{ 42 } | 42` or `{ 42 } |x| 42`
399             => {
400                 // These cases are ambiguous and can't be identified in the parser alone.
401                 //
402                 // Bitwise AND is left out because guessing intent is hard. We can make
403                 // suggestions based on the assumption that double-refs are rarely intentional,
404                 // and closures are distinct enough that they don't get mixed up with their
405                 // return value.
406                 let sp = self.sess.source_map().start_point(self.token.span);
407                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
408                 false
409             }
410             (true, Some(op)) if !op.can_continue_expr_unambiguously() => false,
411             (true, Some(_)) => {
412                 self.error_found_expr_would_be_stmt(lhs);
413                 true
414             }
415         }
416     }
417
418     /// We've found an expression that would be parsed as a statement,
419     /// but the next token implies this should be parsed as an expression.
420     /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
421     fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
422         self.sess.emit_err(FoundExprWouldBeStmt {
423             span: self.token.span,
424             token: self.token.clone(),
425             suggestion: ExprParenthesesNeeded::surrounding(lhs.span),
426         });
427     }
428
429     /// Possibly translate the current token to an associative operator.
430     /// The method does not advance the current token.
431     ///
432     /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
433     fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
434         let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
435             // When parsing const expressions, stop parsing when encountering `>`.
436             (
437                 Some(
438                     AssocOp::ShiftRight
439                     | AssocOp::Greater
440                     | AssocOp::GreaterEqual
441                     | AssocOp::AssignOp(token::BinOpToken::Shr),
442                 ),
443                 _,
444             ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
445                 return None;
446             }
447             (Some(op), _) => (op, self.token.span),
448             (None, Some((Ident { name: sym::and, span }, false))) if self.may_recover() => {
449                 self.sess.emit_err(InvalidLogicalOperator {
450                     span: self.token.span,
451                     incorrect: "and".into(),
452                     sub: InvalidLogicalOperatorSub::Conjunction(self.token.span),
453                 });
454                 (AssocOp::LAnd, span)
455             }
456             (None, Some((Ident { name: sym::or, span }, false))) if self.may_recover() => {
457                 self.sess.emit_err(InvalidLogicalOperator {
458                     span: self.token.span,
459                     incorrect: "or".into(),
460                     sub: InvalidLogicalOperatorSub::Disjunction(self.token.span),
461                 });
462                 (AssocOp::LOr, span)
463             }
464             _ => return None,
465         };
466         Some(source_map::respan(span, op))
467     }
468
469     /// Checks if this expression is a successfully parsed statement.
470     fn expr_is_complete(&self, e: &Expr) -> bool {
471         self.restrictions.contains(Restrictions::STMT_EXPR)
472             && !classify::expr_requires_semi_to_be_stmt(e)
473     }
474
475     /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
476     /// The other two variants are handled in `parse_prefix_range_expr` below.
477     fn parse_range_expr(
478         &mut self,
479         prec: usize,
480         lhs: P<Expr>,
481         op: AssocOp,
482         cur_op_span: Span,
483     ) -> PResult<'a, P<Expr>> {
484         let rhs = if self.is_at_start_of_range_notation_rhs() {
485             Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
486         } else {
487             None
488         };
489         let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
490         let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
491         let limits =
492             if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
493         let range = self.mk_range(Some(lhs), rhs, limits);
494         Ok(self.mk_expr(span, range))
495     }
496
497     fn is_at_start_of_range_notation_rhs(&self) -> bool {
498         if self.token.can_begin_expr() {
499             // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
500             if self.token == token::OpenDelim(Delimiter::Brace) {
501                 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
502             }
503             true
504         } else {
505             false
506         }
507     }
508
509     /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
510     fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
511         // Check for deprecated `...` syntax.
512         if self.token == token::DotDotDot {
513             self.err_dotdotdot_syntax(self.token.span);
514         }
515
516         debug_assert!(
517             self.token.is_range_separator(),
518             "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
519             self.token
520         );
521
522         let limits = match self.token.kind {
523             token::DotDot => RangeLimits::HalfOpen,
524             _ => RangeLimits::Closed,
525         };
526         let op = AssocOp::from_token(&self.token);
527         // FIXME: `parse_prefix_range_expr` is called when the current
528         // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
529         // parsed attributes, then trying to parse them here will always fail.
530         // We should figure out how we want attributes on range expressions to work.
531         let attrs = self.parse_or_use_outer_attributes(attrs)?;
532         self.collect_tokens_for_expr(attrs, |this, attrs| {
533             let lo = this.token.span;
534             this.bump();
535             let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
536                 // RHS must be parsed with more associativity than the dots.
537                 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
538                     .map(|x| (lo.to(x.span), Some(x)))?
539             } else {
540                 (lo, None)
541             };
542             let range = this.mk_range(None, opt_end, limits);
543             Ok(this.mk_expr_with_attrs(span, range, attrs))
544         })
545     }
546
547     /// Parses a prefix-unary-operator expr.
548     fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
549         let attrs = self.parse_or_use_outer_attributes(attrs)?;
550         let lo = self.token.span;
551
552         macro_rules! make_it {
553             ($this:ident, $attrs:expr, |this, _| $body:expr) => {
554                 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
555                     let (hi, ex) = $body?;
556                     Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs))
557                 })
558             };
559         }
560
561         let this = self;
562
563         // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
564         match this.token.uninterpolate().kind {
565             // `!expr`
566             token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)),
567             // `~expr`
568             token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)),
569             // `-expr`
570             token::BinOp(token::Minus) => {
571                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
572             }
573             // `*expr`
574             token::BinOp(token::Star) => {
575                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
576             }
577             // `&expr` and `&&expr`
578             token::BinOp(token::And) | token::AndAnd => {
579                 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
580             }
581             // `+lit`
582             token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
583                 let mut err =
584                     LeadingPlusNotSupported { span: lo, remove_plus: None, add_parentheses: None };
585
586                 // a block on the LHS might have been intended to be an expression instead
587                 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
588                     err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp));
589                 } else {
590                     err.remove_plus = Some(lo);
591                 }
592                 this.sess.emit_err(err);
593
594                 this.bump();
595                 this.parse_prefix_expr(None)
596             }
597             // Recover from `++x`:
598             token::BinOp(token::Plus)
599                 if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) =>
600             {
601                 let starts_stmt = this.prev_token == token::Semi
602                     || this.prev_token == token::CloseDelim(Delimiter::Brace);
603                 let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
604                 // Eat both `+`s.
605                 this.bump();
606                 this.bump();
607
608                 let operand_expr = this.parse_dot_or_call_expr(Default::default())?;
609                 this.recover_from_prefix_increment(operand_expr, pre_span, starts_stmt)
610             }
611             token::Ident(..) if this.token.is_keyword(kw::Box) => {
612                 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
613             }
614             token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => {
615                 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
616             }
617             _ => return this.parse_dot_or_call_expr(Some(attrs)),
618         }
619     }
620
621     fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
622         self.bump();
623         let expr = self.parse_prefix_expr(None);
624         let (span, expr) = self.interpolated_or_expr_span(expr)?;
625         Ok((lo.to(span), expr))
626     }
627
628     fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
629         let (span, expr) = self.parse_prefix_expr_common(lo)?;
630         Ok((span, self.mk_unary(op, expr)))
631     }
632
633     /// Recover on `~expr` in favor of `!expr`.
634     fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
635         self.sess.emit_err(TildeAsUnaryOperator(lo));
636
637         self.parse_unary_expr(lo, UnOp::Not)
638     }
639
640     /// Parse `box expr`.
641     fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
642         let (span, expr) = self.parse_prefix_expr_common(lo)?;
643         self.sess.gated_spans.gate(sym::box_syntax, span);
644         Ok((span, ExprKind::Box(expr)))
645     }
646
647     fn is_mistaken_not_ident_negation(&self) -> bool {
648         let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
649             // These tokens can start an expression after `!`, but
650             // can't continue an expression after an ident
651             token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
652             token::Literal(..) | token::Pound => true,
653             _ => t.is_whole_expr(),
654         };
655         self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
656     }
657
658     /// Recover on `not expr` in favor of `!expr`.
659     fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
660         let negated_token = self.look_ahead(1, |t| t.clone());
661
662         let sub_diag = if negated_token.is_numeric_lit() {
663             NotAsNegationOperatorSub::SuggestNotBitwise
664         } else if negated_token.is_bool_lit() {
665             NotAsNegationOperatorSub::SuggestNotLogical
666         } else {
667             NotAsNegationOperatorSub::SuggestNotDefault
668         };
669
670         self.sess.emit_err(NotAsNegationOperator {
671             negated: negated_token.span,
672             negated_desc: super::token_descr(&negated_token),
673             // Span the `not` plus trailing whitespace to avoid
674             // trailing whitespace after the `!` in our suggestion
675             sub: sub_diag(
676                 self.sess.source_map().span_until_non_whitespace(lo.to(negated_token.span)),
677             ),
678         });
679
680         self.parse_unary_expr(lo, UnOp::Not)
681     }
682
683     /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
684     fn interpolated_or_expr_span(
685         &self,
686         expr: PResult<'a, P<Expr>>,
687     ) -> PResult<'a, (Span, P<Expr>)> {
688         expr.map(|e| {
689             (
690                 match self.prev_token.kind {
691                     TokenKind::Interpolated(..) => self.prev_token.span,
692                     _ => e.span,
693                 },
694                 e,
695             )
696         })
697     }
698
699     fn parse_assoc_op_cast(
700         &mut self,
701         lhs: P<Expr>,
702         lhs_span: Span,
703         expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
704     ) -> PResult<'a, P<Expr>> {
705         let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
706             this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, rhs.span), expr_kind(lhs, rhs))
707         };
708
709         // Save the state of the parser before parsing type normally, in case there is a
710         // LessThan comparison after this cast.
711         let parser_snapshot_before_type = self.clone();
712         let cast_expr = match self.parse_as_cast_ty() {
713             Ok(rhs) => mk_expr(self, lhs, rhs),
714             Err(type_err) => {
715                 if !self.may_recover() {
716                     return Err(type_err);
717                 }
718
719                 // Rewind to before attempting to parse the type with generics, to recover
720                 // from situations like `x as usize < y` in which we first tried to parse
721                 // `usize < y` as a type with generic arguments.
722                 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
723
724                 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
725                 match (&lhs.kind, &self.token.kind) {
726                     (
727                         // `foo: `
728                         ExprKind::Path(None, ast::Path { segments, .. }),
729                         TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
730                     ) if segments.len() == 1 => {
731                         let snapshot = self.create_snapshot_for_diagnostic();
732                         let label = Label {
733                             ident: Ident::from_str_and_span(
734                                 &format!("'{}", segments[0].ident),
735                                 segments[0].ident.span,
736                             ),
737                         };
738                         match self.parse_labeled_expr(label, false) {
739                             Ok(expr) => {
740                                 type_err.cancel();
741                                 self.sess.emit_err(MalformedLoopLabel {
742                                     span: label.ident.span,
743                                     correct_label: label.ident,
744                                 });
745                                 return Ok(expr);
746                             }
747                             Err(err) => {
748                                 err.cancel();
749                                 self.restore_snapshot(snapshot);
750                             }
751                         }
752                     }
753                     _ => {}
754                 }
755
756                 match self.parse_path(PathStyle::Expr) {
757                     Ok(path) => {
758                         let span_after_type = parser_snapshot_after_type.token.span;
759                         let expr = mk_expr(
760                             self,
761                             lhs,
762                             self.mk_ty(path.span, TyKind::Path(None, path.clone())),
763                         );
764
765                         let args_span = self.look_ahead(1, |t| t.span).to(span_after_type);
766                         let suggestion = ComparisonOrShiftInterpretedAsGenericSugg {
767                             left: expr.span.shrink_to_lo(),
768                             right: expr.span.shrink_to_hi(),
769                         };
770
771                         match self.token.kind {
772                             token::Lt => self.sess.emit_err(ComparisonInterpretedAsGeneric {
773                                 comparison: self.token.span,
774                                 r#type: path,
775                                 args: args_span,
776                                 suggestion,
777                             }),
778                             token::BinOp(token::Shl) => {
779                                 self.sess.emit_err(ShiftInterpretedAsGeneric {
780                                     shift: self.token.span,
781                                     r#type: path,
782                                     args: args_span,
783                                     suggestion,
784                                 })
785                             }
786                             _ => {
787                                 // We can end up here even without `<` being the next token, for
788                                 // example because `parse_ty_no_plus` returns `Err` on keywords,
789                                 // but `parse_path` returns `Ok` on them due to error recovery.
790                                 // Return original error and parser state.
791                                 *self = parser_snapshot_after_type;
792                                 return Err(type_err);
793                             }
794                         };
795
796                         // Successfully parsed the type path leaving a `<` yet to parse.
797                         type_err.cancel();
798
799                         // Keep `x as usize` as an expression in AST and continue parsing.
800                         expr
801                     }
802                     Err(path_err) => {
803                         // Couldn't parse as a path, return original error and parser state.
804                         path_err.cancel();
805                         *self = parser_snapshot_after_type;
806                         return Err(type_err);
807                     }
808                 }
809             }
810         };
811
812         self.parse_and_disallow_postfix_after_cast(cast_expr)
813     }
814
815     /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
816     /// then emits an error and returns the newly parsed tree.
817     /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
818     fn parse_and_disallow_postfix_after_cast(
819         &mut self,
820         cast_expr: P<Expr>,
821     ) -> PResult<'a, P<Expr>> {
822         let span = cast_expr.span;
823         let (cast_kind, maybe_ascription_span) =
824             if let ExprKind::Type(ascripted_expr, _) = &cast_expr.kind {
825                 ("type ascription", Some(ascripted_expr.span.shrink_to_hi().with_hi(span.hi())))
826             } else {
827                 ("cast", None)
828             };
829
830         let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
831
832         // Check if an illegal postfix operator has been added after the cast.
833         // If the resulting expression is not a cast, it is an illegal postfix operator.
834         if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) {
835             let msg = format!(
836                 "{cast_kind} cannot be followed by {}",
837                 match with_postfix.kind {
838                     ExprKind::Index(_, _) => "indexing",
839                     ExprKind::Try(_) => "`?`",
840                     ExprKind::Field(_, _) => "a field access",
841                     ExprKind::MethodCall(_) => "a method call",
842                     ExprKind::Call(_, _) => "a function call",
843                     ExprKind::Await(_) => "`.await`",
844                     ExprKind::Err => return Ok(with_postfix),
845                     _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
846                 }
847             );
848             let mut err = self.struct_span_err(span, &msg);
849
850             let suggest_parens = |err: &mut Diagnostic| {
851                 let suggestions = vec![
852                     (span.shrink_to_lo(), "(".to_string()),
853                     (span.shrink_to_hi(), ")".to_string()),
854                 ];
855                 err.multipart_suggestion(
856                     "try surrounding the expression in parentheses",
857                     suggestions,
858                     Applicability::MachineApplicable,
859                 );
860             };
861
862             // If type ascription is "likely an error", the user will already be getting a useful
863             // help message, and doesn't need a second.
864             if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
865                 self.maybe_annotate_with_ascription(&mut err, false);
866             } else if let Some(ascription_span) = maybe_ascription_span {
867                 let is_nightly = self.sess.unstable_features.is_nightly_build();
868                 if is_nightly {
869                     suggest_parens(&mut err);
870                 }
871                 err.span_suggestion(
872                     ascription_span,
873                     &format!(
874                         "{}remove the type ascription",
875                         if is_nightly { "alternatively, " } else { "" }
876                     ),
877                     "",
878                     if is_nightly {
879                         Applicability::MaybeIncorrect
880                     } else {
881                         Applicability::MachineApplicable
882                     },
883                 );
884             } else {
885                 suggest_parens(&mut err);
886             }
887             err.emit();
888         };
889         Ok(with_postfix)
890     }
891
892     fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
893         let maybe_path = self.could_ascription_be_path(&lhs.kind);
894         self.last_type_ascription = Some((self.prev_token.span, maybe_path));
895         let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
896         self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
897         Ok(lhs)
898     }
899
900     /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
901     fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
902         self.expect_and()?;
903         let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
904         let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
905         let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
906         let expr = if self.token.is_range_separator() {
907             self.parse_prefix_range_expr(None)
908         } else {
909             self.parse_prefix_expr(None)
910         };
911         let (hi, expr) = self.interpolated_or_expr_span(expr)?;
912         let span = lo.to(hi);
913         if let Some(lt) = lifetime {
914             self.error_remove_borrow_lifetime(span, lt.ident.span);
915         }
916         Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
917     }
918
919     fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
920         self.sess.emit_err(LifetimeInBorrowExpression { span, lifetime_span: lt_span });
921     }
922
923     /// Parse `mut?` or `raw [ const | mut ]`.
924     fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
925         if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
926             // `raw [ const | mut ]`.
927             let found_raw = self.eat_keyword(kw::Raw);
928             assert!(found_raw);
929             let mutability = self.parse_const_or_mut().unwrap();
930             self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
931             (ast::BorrowKind::Raw, mutability)
932         } else {
933             // `mut?`
934             (ast::BorrowKind::Ref, self.parse_mutability())
935         }
936     }
937
938     /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
939     fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
940         let attrs = self.parse_or_use_outer_attributes(attrs)?;
941         self.collect_tokens_for_expr(attrs, |this, attrs| {
942             let base = this.parse_bottom_expr();
943             let (span, base) = this.interpolated_or_expr_span(base)?;
944             this.parse_dot_or_call_expr_with(base, span, attrs)
945         })
946     }
947
948     pub(super) fn parse_dot_or_call_expr_with(
949         &mut self,
950         e0: P<Expr>,
951         lo: Span,
952         mut attrs: ast::AttrVec,
953     ) -> PResult<'a, P<Expr>> {
954         // Stitch the list of outer attributes onto the return value.
955         // A little bit ugly, but the best way given the current code
956         // structure
957         let res = self.parse_dot_or_call_expr_with_(e0, lo);
958         if attrs.is_empty() {
959             res
960         } else {
961             res.map(|expr| {
962                 expr.map(|mut expr| {
963                     attrs.extend(expr.attrs);
964                     expr.attrs = attrs;
965                     expr
966                 })
967             })
968         }
969     }
970
971     fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
972         loop {
973             let has_question = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
974                 // we are using noexpect here because we don't expect a `?` directly after a `return`
975                 // which could be suggested otherwise
976                 self.eat_noexpect(&token::Question)
977             } else {
978                 self.eat(&token::Question)
979             };
980             if has_question {
981                 // `expr?`
982                 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e));
983                 continue;
984             }
985             let has_dot = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
986                 // we are using noexpect here because we don't expect a `.` directly after a `return`
987                 // which could be suggested otherwise
988                 self.eat_noexpect(&token::Dot)
989             } else {
990                 self.eat(&token::Dot)
991             };
992             if has_dot {
993                 // expr.f
994                 e = self.parse_dot_suffix_expr(lo, e)?;
995                 continue;
996             }
997             if self.expr_is_complete(&e) {
998                 return Ok(e);
999             }
1000             e = match self.token.kind {
1001                 token::OpenDelim(Delimiter::Parenthesis) => self.parse_fn_call_expr(lo, e),
1002                 token::OpenDelim(Delimiter::Bracket) => self.parse_index_expr(lo, e)?,
1003                 _ => return Ok(e),
1004             }
1005         }
1006     }
1007
1008     fn look_ahead_type_ascription_as_field(&mut self) -> bool {
1009         self.look_ahead(1, |t| t.is_ident())
1010             && self.look_ahead(2, |t| t == &token::Colon)
1011             && self.look_ahead(3, |t| t.can_begin_expr())
1012     }
1013
1014     fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1015         match self.token.uninterpolate().kind {
1016             token::Ident(..) => self.parse_dot_suffix(base, lo),
1017             token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
1018                 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
1019             }
1020             token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
1021                 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
1022             }
1023             _ => {
1024                 self.error_unexpected_after_dot();
1025                 Ok(base)
1026             }
1027         }
1028     }
1029
1030     fn error_unexpected_after_dot(&self) {
1031         // FIXME Could factor this out into non_fatal_unexpected or something.
1032         let actual = pprust::token_to_string(&self.token);
1033         self.struct_span_err(self.token.span, &format!("unexpected token: `{actual}`")).emit();
1034     }
1035
1036     // We need an identifier or integer, but the next token is a float.
1037     // Break the float into components to extract the identifier or integer.
1038     // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1039     // parts unless those parts are processed immediately. `TokenCursor` should either
1040     // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1041     // we should break everything including floats into more basic proc-macro style
1042     // tokens in the lexer (probably preferable).
1043     fn parse_tuple_field_access_expr_float(
1044         &mut self,
1045         lo: Span,
1046         base: P<Expr>,
1047         float: Symbol,
1048         suffix: Option<Symbol>,
1049     ) -> P<Expr> {
1050         #[derive(Debug)]
1051         enum FloatComponent {
1052             IdentLike(String),
1053             Punct(char),
1054         }
1055         use FloatComponent::*;
1056
1057         let float_str = float.as_str();
1058         let mut components = Vec::new();
1059         let mut ident_like = String::new();
1060         for c in float_str.chars() {
1061             if c == '_' || c.is_ascii_alphanumeric() {
1062                 ident_like.push(c);
1063             } else if matches!(c, '.' | '+' | '-') {
1064                 if !ident_like.is_empty() {
1065                     components.push(IdentLike(mem::take(&mut ident_like)));
1066                 }
1067                 components.push(Punct(c));
1068             } else {
1069                 panic!("unexpected character in a float token: {:?}", c)
1070             }
1071         }
1072         if !ident_like.is_empty() {
1073             components.push(IdentLike(ident_like));
1074         }
1075
1076         // With proc macros the span can refer to anything, the source may be too short,
1077         // or too long, or non-ASCII. It only makes sense to break our span into components
1078         // if its underlying text is identical to our float literal.
1079         let span = self.token.span;
1080         let can_take_span_apart =
1081             || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1082
1083         match &*components {
1084             // 1e2
1085             [IdentLike(i)] => {
1086                 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
1087             }
1088             // 1.
1089             [IdentLike(i), Punct('.')] => {
1090                 let (ident_span, dot_span) = if can_take_span_apart() {
1091                     let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
1092                     let ident_span = span.with_hi(span.lo + ident_len);
1093                     let dot_span = span.with_lo(span.lo + ident_len);
1094                     (ident_span, dot_span)
1095                 } else {
1096                     (span, span)
1097                 };
1098                 assert!(suffix.is_none());
1099                 let symbol = Symbol::intern(&i);
1100                 self.token = Token::new(token::Ident(symbol, false), ident_span);
1101                 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1102                 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1103             }
1104             // 1.2 | 1.2e3
1105             [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1106                 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1107                     let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1108                     let ident1_span = span.with_hi(span.lo + ident1_len);
1109                     let dot_span = span
1110                         .with_lo(span.lo + ident1_len)
1111                         .with_hi(span.lo + ident1_len + BytePos(1));
1112                     let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1113                     (ident1_span, dot_span, ident2_span)
1114                 } else {
1115                     (span, span, span)
1116                 };
1117                 let symbol1 = Symbol::intern(&i1);
1118                 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1119                 // This needs to be `Spacing::Alone` to prevent regressions.
1120                 // See issue #76399 and PR #76285 for more details
1121                 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1122                 let base1 =
1123                     self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1124                 let symbol2 = Symbol::intern(&i2);
1125                 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1126                 self.bump_with((next_token2, self.token_spacing)); // `.`
1127                 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1128             }
1129             // 1e+ | 1e- (recovered)
1130             [IdentLike(_), Punct('+' | '-')] |
1131             // 1e+2 | 1e-2
1132             [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1133             // 1.2e+ | 1.2e-
1134             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1135             // 1.2e+3 | 1.2e-3
1136             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1137                 // See the FIXME about `TokenCursor` above.
1138                 self.error_unexpected_after_dot();
1139                 base
1140             }
1141             _ => panic!("unexpected components in a float token: {:?}", components),
1142         }
1143     }
1144
1145     fn parse_tuple_field_access_expr(
1146         &mut self,
1147         lo: Span,
1148         base: P<Expr>,
1149         field: Symbol,
1150         suffix: Option<Symbol>,
1151         next_token: Option<(Token, Spacing)>,
1152     ) -> P<Expr> {
1153         match next_token {
1154             Some(next_token) => self.bump_with(next_token),
1155             None => self.bump(),
1156         }
1157         let span = self.prev_token.span;
1158         let field = ExprKind::Field(base, Ident::new(field, span));
1159         if let Some(suffix) = suffix {
1160             self.expect_no_tuple_index_suffix(span, suffix);
1161         }
1162         self.mk_expr(lo.to(span), field)
1163     }
1164
1165     /// Parse a function call expression, `expr(...)`.
1166     fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1167         let snapshot = if self.token.kind == token::OpenDelim(Delimiter::Parenthesis)
1168             && self.look_ahead_type_ascription_as_field()
1169         {
1170             Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1171         } else {
1172             None
1173         };
1174         let open_paren = self.token.span;
1175
1176         let mut seq = self
1177             .parse_paren_expr_seq()
1178             .map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args)));
1179         if let Some(expr) =
1180             self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1181         {
1182             return expr;
1183         }
1184         self.recover_seq_parse_error(Delimiter::Parenthesis, lo, seq)
1185     }
1186
1187     /// If we encounter a parser state that looks like the user has written a `struct` literal with
1188     /// parentheses instead of braces, recover the parser state and provide suggestions.
1189     #[instrument(skip(self, seq, snapshot), level = "trace")]
1190     fn maybe_recover_struct_lit_bad_delims(
1191         &mut self,
1192         lo: Span,
1193         open_paren: Span,
1194         seq: &mut PResult<'a, P<Expr>>,
1195         snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1196     ) -> Option<P<Expr>> {
1197         if !self.may_recover() {
1198             return None;
1199         }
1200
1201         match (seq.as_mut(), snapshot) {
1202             (Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1203                 snapshot.bump(); // `(`
1204                 match snapshot.parse_struct_fields(path.clone(), false, Delimiter::Parenthesis) {
1205                     Ok((fields, ..))
1206                         if snapshot.eat(&token::CloseDelim(Delimiter::Parenthesis)) =>
1207                     {
1208                         // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1209                         // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1210                         self.restore_snapshot(snapshot);
1211                         let close_paren = self.prev_token.span;
1212                         let span = lo.to(self.prev_token.span);
1213                         if !fields.is_empty() {
1214                             let mut replacement_err = ParenthesesWithStructFields {
1215                                 span,
1216                                 r#type: path,
1217                                 braces_for_struct: BracesForStructLiteral {
1218                                     first: open_paren,
1219                                     second: close_paren,
1220                                 },
1221                                 no_fields_for_fn: NoFieldsForFnCall {
1222                                     fields: fields
1223                                         .into_iter()
1224                                         .map(|field| field.span.until(field.expr.span))
1225                                         .collect(),
1226                                 },
1227                             }
1228                             .into_diagnostic(&self.sess.span_diagnostic);
1229                             replacement_err.emit();
1230
1231                             let old_err = mem::replace(err, replacement_err);
1232                             old_err.cancel();
1233                         } else {
1234                             err.emit();
1235                         }
1236                         return Some(self.mk_expr_err(span));
1237                     }
1238                     Ok(_) => {}
1239                     Err(mut err) => {
1240                         err.emit();
1241                     }
1242                 }
1243             }
1244             _ => {}
1245         }
1246         None
1247     }
1248
1249     /// Parse an indexing expression `expr[...]`.
1250     fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1251         let prev_span = self.prev_token.span;
1252         let open_delim_span = self.token.span;
1253         self.bump(); // `[`
1254         let index = self.parse_expr()?;
1255         self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?;
1256         self.expect(&token::CloseDelim(Delimiter::Bracket))?;
1257         Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index)))
1258     }
1259
1260     /// Assuming we have just parsed `.`, continue parsing into an expression.
1261     fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1262         if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1263             return Ok(self.mk_await_expr(self_arg, lo));
1264         }
1265
1266         let fn_span_lo = self.token.span;
1267         let mut seg = self.parse_path_segment(PathStyle::Expr, None)?;
1268         self.check_trailing_angle_brackets(&seg, &[&token::OpenDelim(Delimiter::Parenthesis)]);
1269         self.check_turbofish_missing_angle_brackets(&mut seg);
1270
1271         if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1272             // Method call `expr.f()`
1273             let args = self.parse_paren_expr_seq()?;
1274             let fn_span = fn_span_lo.to(self.prev_token.span);
1275             let span = lo.to(self.prev_token.span);
1276             Ok(self.mk_expr(
1277                 span,
1278                 ExprKind::MethodCall(Box::new(ast::MethodCall {
1279                     seg,
1280                     receiver: self_arg,
1281                     args,
1282                     span: fn_span,
1283                 })),
1284             ))
1285         } else {
1286             // Field access `expr.f`
1287             if let Some(args) = seg.args {
1288                 self.sess.emit_err(FieldExpressionWithGeneric(args.span()));
1289             }
1290
1291             let span = lo.to(self.prev_token.span);
1292             Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident)))
1293         }
1294     }
1295
1296     /// At the bottom (top?) of the precedence hierarchy,
1297     /// Parses things like parenthesized exprs, macros, `return`, etc.
1298     ///
1299     /// N.B., this does not parse outer attributes, and is private because it only works
1300     /// correctly if called from `parse_dot_or_call_expr()`.
1301     fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1302         maybe_recover_from_interpolated_ty_qpath!(self, true);
1303         maybe_whole_expr!(self);
1304
1305         // Outer attributes are already parsed and will be
1306         // added to the return value after the fact.
1307
1308         // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1309         let lo = self.token.span;
1310         if let token::Literal(_) = self.token.kind {
1311             // This match arm is a special-case of the `_` match arm below and
1312             // could be removed without changing functionality, but it's faster
1313             // to have it here, especially for programs with large constants.
1314             self.parse_lit_expr()
1315         } else if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1316             self.parse_tuple_parens_expr()
1317         } else if self.check(&token::OpenDelim(Delimiter::Brace)) {
1318             self.parse_block_expr(None, lo, BlockCheckMode::Default)
1319         } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1320             self.parse_closure_expr().map_err(|mut err| {
1321                 // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1322                 // then suggest parens around the lhs.
1323                 if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
1324                     err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
1325                 }
1326                 err
1327             })
1328         } else if self.check(&token::OpenDelim(Delimiter::Bracket)) {
1329             self.parse_array_or_repeat_expr(Delimiter::Bracket)
1330         } else if self.check_path() {
1331             self.parse_path_start_expr()
1332         } else if self.check_keyword(kw::Move)
1333             || self.check_keyword(kw::Static)
1334             || self.check_const_closure()
1335         {
1336             self.parse_closure_expr()
1337         } else if self.eat_keyword(kw::If) {
1338             self.parse_if_expr()
1339         } else if self.check_keyword(kw::For) {
1340             if self.choose_generics_over_qpath(1) {
1341                 self.parse_closure_expr()
1342             } else {
1343                 assert!(self.eat_keyword(kw::For));
1344                 self.parse_for_expr(None, self.prev_token.span)
1345             }
1346         } else if self.eat_keyword(kw::While) {
1347             self.parse_while_expr(None, self.prev_token.span)
1348         } else if let Some(label) = self.eat_label() {
1349             self.parse_labeled_expr(label, true)
1350         } else if self.eat_keyword(kw::Loop) {
1351             let sp = self.prev_token.span;
1352             self.parse_loop_expr(None, self.prev_token.span).map_err(|mut err| {
1353                 err.span_label(sp, "while parsing this `loop` expression");
1354                 err
1355             })
1356         } else if self.eat_keyword(kw::Continue) {
1357             let kind = ExprKind::Continue(self.eat_label());
1358             Ok(self.mk_expr(lo.to(self.prev_token.span), kind))
1359         } else if self.eat_keyword(kw::Match) {
1360             let match_sp = self.prev_token.span;
1361             self.parse_match_expr().map_err(|mut err| {
1362                 err.span_label(match_sp, "while parsing this `match` expression");
1363                 err
1364             })
1365         } else if self.eat_keyword(kw::Unsafe) {
1366             let sp = self.prev_token.span;
1367             self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err(
1368                 |mut err| {
1369                     err.span_label(sp, "while parsing this `unsafe` expression");
1370                     err
1371                 },
1372             )
1373         } else if self.check_inline_const(0) {
1374             self.parse_const_block(lo.to(self.token.span), false)
1375         } else if self.may_recover() && self.is_do_catch_block() {
1376             self.recover_do_catch()
1377         } else if self.is_try_block() {
1378             self.expect_keyword(kw::Try)?;
1379             self.parse_try_block(lo)
1380         } else if self.eat_keyword(kw::Return) {
1381             self.parse_return_expr()
1382         } else if self.eat_keyword(kw::Break) {
1383             self.parse_break_expr()
1384         } else if self.eat_keyword(kw::Yield) {
1385             self.parse_yield_expr()
1386         } else if self.is_do_yeet() {
1387             self.parse_yeet_expr()
1388         } else if self.check_keyword(kw::Let) {
1389             self.parse_let_expr()
1390         } else if self.eat_keyword(kw::Underscore) {
1391             Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore))
1392         } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1393             // Don't complain about bare semicolons after unclosed braces
1394             // recovery in order to keep the error count down. Fixing the
1395             // delimiters will possibly also fix the bare semicolon found in
1396             // expression context. For example, silence the following error:
1397             //
1398             //     error: expected expression, found `;`
1399             //      --> file.rs:2:13
1400             //       |
1401             //     2 |     foo(bar(;
1402             //       |             ^ expected expression
1403             self.bump();
1404             Ok(self.mk_expr_err(self.token.span))
1405         } else if self.token.uninterpolated_span().rust_2018() {
1406             // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1407             if self.check_keyword(kw::Async) {
1408                 if self.is_async_block() {
1409                     // Check for `async {` and `async move {`.
1410                     self.parse_async_block()
1411                 } else {
1412                     self.parse_closure_expr()
1413                 }
1414             } else if self.eat_keyword(kw::Await) {
1415                 self.recover_incorrect_await_syntax(lo, self.prev_token.span)
1416             } else {
1417                 self.parse_lit_expr()
1418             }
1419         } else {
1420             self.parse_lit_expr()
1421         }
1422     }
1423
1424     fn parse_lit_expr(&mut self) -> PResult<'a, P<Expr>> {
1425         let lo = self.token.span;
1426         match self.parse_opt_token_lit() {
1427             Some((token_lit, _)) => {
1428                 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit));
1429                 self.maybe_recover_from_bad_qpath(expr)
1430             }
1431             None => self.try_macro_suggestion(),
1432         }
1433     }
1434
1435     fn parse_tuple_parens_expr(&mut self) -> PResult<'a, P<Expr>> {
1436         let lo = self.token.span;
1437         self.expect(&token::OpenDelim(Delimiter::Parenthesis))?;
1438         let (es, trailing_comma) = match self.parse_seq_to_end(
1439             &token::CloseDelim(Delimiter::Parenthesis),
1440             SeqSep::trailing_allowed(token::Comma),
1441             |p| p.parse_expr_catch_underscore(),
1442         ) {
1443             Ok(x) => x,
1444             Err(err) => {
1445                 return Ok(self.recover_seq_parse_error(Delimiter::Parenthesis, lo, Err(err)));
1446             }
1447         };
1448         let kind = if es.len() == 1 && !trailing_comma {
1449             // `(e)` is parenthesized `e`.
1450             ExprKind::Paren(es.into_iter().next().unwrap())
1451         } else {
1452             // `(e,)` is a tuple with only one field, `e`.
1453             ExprKind::Tup(es)
1454         };
1455         let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1456         self.maybe_recover_from_bad_qpath(expr)
1457     }
1458
1459     fn parse_array_or_repeat_expr(&mut self, close_delim: Delimiter) -> PResult<'a, P<Expr>> {
1460         let lo = self.token.span;
1461         self.bump(); // `[` or other open delim
1462
1463         let close = &token::CloseDelim(close_delim);
1464         let kind = if self.eat(close) {
1465             // Empty vector
1466             ExprKind::Array(Vec::new())
1467         } else {
1468             // Non-empty vector
1469             let first_expr = self.parse_expr()?;
1470             if self.eat(&token::Semi) {
1471                 // Repeating array syntax: `[ 0; 512 ]`
1472                 let count = self.parse_anon_const_expr()?;
1473                 self.expect(close)?;
1474                 ExprKind::Repeat(first_expr, count)
1475             } else if self.eat(&token::Comma) {
1476                 // Vector with two or more elements.
1477                 let sep = SeqSep::trailing_allowed(token::Comma);
1478                 let (mut exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1479                 exprs.insert(0, first_expr);
1480                 ExprKind::Array(exprs)
1481             } else {
1482                 // Vector with one element
1483                 self.expect(close)?;
1484                 ExprKind::Array(vec![first_expr])
1485             }
1486         };
1487         let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1488         self.maybe_recover_from_bad_qpath(expr)
1489     }
1490
1491     fn parse_path_start_expr(&mut self) -> PResult<'a, P<Expr>> {
1492         let (qself, path) = if self.eat_lt() {
1493             let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1494             (Some(qself), path)
1495         } else {
1496             (None, self.parse_path(PathStyle::Expr)?)
1497         };
1498
1499         // `!`, as an operator, is prefix, so we know this isn't that.
1500         let (span, kind) = if self.eat(&token::Not) {
1501             // MACRO INVOCATION expression
1502             if qself.is_some() {
1503                 self.sess.emit_err(MacroInvocationWithQualifiedPath(path.span));
1504             }
1505             let lo = path.span;
1506             let mac = P(MacCall {
1507                 path,
1508                 args: self.parse_delim_args()?,
1509                 prior_type_ascription: self.last_type_ascription,
1510             });
1511             (lo.to(self.prev_token.span), ExprKind::MacCall(mac))
1512         } else if self.check(&token::OpenDelim(Delimiter::Brace))
1513             && let Some(expr) = self.maybe_parse_struct_expr(&qself, &path)
1514         {
1515             if qself.is_some() {
1516                 self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1517             }
1518             return expr;
1519         } else {
1520             (path.span, ExprKind::Path(qself, path))
1521         };
1522
1523         let expr = self.mk_expr(span, kind);
1524         self.maybe_recover_from_bad_qpath(expr)
1525     }
1526
1527     /// Parse `'label: $expr`. The label is already parsed.
1528     fn parse_labeled_expr(
1529         &mut self,
1530         label_: Label,
1531         mut consume_colon: bool,
1532     ) -> PResult<'a, P<Expr>> {
1533         let lo = label_.ident.span;
1534         let label = Some(label_);
1535         let ate_colon = self.eat(&token::Colon);
1536         let expr = if self.eat_keyword(kw::While) {
1537             self.parse_while_expr(label, lo)
1538         } else if self.eat_keyword(kw::For) {
1539             self.parse_for_expr(label, lo)
1540         } else if self.eat_keyword(kw::Loop) {
1541             self.parse_loop_expr(label, lo)
1542         } else if self.check_noexpect(&token::OpenDelim(Delimiter::Brace))
1543             || self.token.is_whole_block()
1544         {
1545             self.parse_block_expr(label, lo, BlockCheckMode::Default)
1546         } else if !ate_colon
1547             && self.may_recover()
1548             && (matches!(self.token.kind, token::CloseDelim(_) | token::Comma)
1549                 || self.token.is_op())
1550         {
1551             let (lit, _) =
1552                 self.recover_unclosed_char(label_.ident, Parser::mk_token_lit_char, |self_| {
1553                     self_.sess.create_err(UnexpectedTokenAfterLabel {
1554                         span: self_.token.span,
1555                         remove_label: None,
1556                         enclose_in_block: None,
1557                     })
1558                 });
1559             consume_colon = false;
1560             Ok(self.mk_expr(lo, ExprKind::Lit(lit)))
1561         } else if !ate_colon
1562             && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1563         {
1564             // We're probably inside of a `Path<'a>` that needs a turbofish
1565             self.sess.emit_err(UnexpectedTokenAfterLabel {
1566                 span: self.token.span,
1567                 remove_label: None,
1568                 enclose_in_block: None,
1569             });
1570             consume_colon = false;
1571             Ok(self.mk_expr_err(lo))
1572         } else {
1573             let mut err = UnexpectedTokenAfterLabel {
1574                 span: self.token.span,
1575                 remove_label: None,
1576                 enclose_in_block: None,
1577             };
1578
1579             // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1580             let expr = self.parse_expr().map(|expr| {
1581                 let span = expr.span;
1582
1583                 let found_labeled_breaks = {
1584                     struct FindLabeledBreaksVisitor(bool);
1585
1586                     impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1587                         fn visit_expr_post(&mut self, ex: &'ast Expr) {
1588                             if let ExprKind::Break(Some(_label), _) = ex.kind {
1589                                 self.0 = true;
1590                             }
1591                         }
1592                     }
1593
1594                     let mut vis = FindLabeledBreaksVisitor(false);
1595                     vis.visit_expr(&expr);
1596                     vis.0
1597                 };
1598
1599                 // Suggestion involves adding a labeled block.
1600                 //
1601                 // If there are no breaks that may use this label, suggest removing the label and
1602                 // recover to the unmodified expression.
1603                 if !found_labeled_breaks {
1604                     err.remove_label = Some(lo.until(span));
1605
1606                     return expr;
1607                 }
1608
1609                 err.enclose_in_block = Some(UnexpectedTokenAfterLabelSugg {
1610                     left: span.shrink_to_lo(),
1611                     right: span.shrink_to_hi(),
1612                 });
1613
1614                 // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to suppress future errors about `break 'label`.
1615                 let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1616                 let blk = self.mk_block(vec![stmt], BlockCheckMode::Default, span);
1617                 self.mk_expr(span, ExprKind::Block(blk, label))
1618             });
1619
1620             self.sess.emit_err(err);
1621             expr
1622         }?;
1623
1624         if !ate_colon && consume_colon {
1625             self.sess.emit_err(RequireColonAfterLabeledExpression {
1626                 span: expr.span,
1627                 label: lo,
1628                 label_end: lo.shrink_to_hi(),
1629             });
1630         }
1631
1632         Ok(expr)
1633     }
1634
1635     /// Emit an error when a char is parsed as a lifetime because of a missing quote.
1636     pub(super) fn recover_unclosed_char<L>(
1637         &self,
1638         lifetime: Ident,
1639         mk_lit_char: impl FnOnce(Symbol, Span) -> L,
1640         err: impl FnOnce(&Self) -> DiagnosticBuilder<'a, ErrorGuaranteed>,
1641     ) -> L {
1642         if let Some(mut diag) =
1643             self.sess.span_diagnostic.steal_diagnostic(lifetime.span, StashKey::LifetimeIsChar)
1644         {
1645             diag.span_suggestion_verbose(
1646                 lifetime.span.shrink_to_hi(),
1647                 "add `'` to close the char literal",
1648                 "'",
1649                 Applicability::MaybeIncorrect,
1650             )
1651             .emit();
1652         } else {
1653             err(self)
1654                 .span_suggestion_verbose(
1655                     lifetime.span.shrink_to_hi(),
1656                     "add `'` to close the char literal",
1657                     "'",
1658                     Applicability::MaybeIncorrect,
1659                 )
1660                 .emit();
1661         }
1662         let name = lifetime.without_first_quote().name;
1663         mk_lit_char(name, lifetime.span)
1664     }
1665
1666     /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1667     fn recover_do_catch(&mut self) -> PResult<'a, P<Expr>> {
1668         let lo = self.token.span;
1669
1670         self.bump(); // `do`
1671         self.bump(); // `catch`
1672
1673         let span = lo.to(self.prev_token.span);
1674         self.sess.emit_err(DoCatchSyntaxRemoved { span });
1675
1676         self.parse_try_block(lo)
1677     }
1678
1679     /// Parse an expression if the token can begin one.
1680     fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1681         Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1682     }
1683
1684     /// Parse `"return" expr?`.
1685     fn parse_return_expr(&mut self) -> PResult<'a, P<Expr>> {
1686         let lo = self.prev_token.span;
1687         let kind = ExprKind::Ret(self.parse_expr_opt()?);
1688         let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1689         self.maybe_recover_from_bad_qpath(expr)
1690     }
1691
1692     /// Parse `"do" "yeet" expr?`.
1693     fn parse_yeet_expr(&mut self) -> PResult<'a, P<Expr>> {
1694         let lo = self.token.span;
1695
1696         self.bump(); // `do`
1697         self.bump(); // `yeet`
1698
1699         let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1700
1701         let span = lo.to(self.prev_token.span);
1702         self.sess.gated_spans.gate(sym::yeet_expr, span);
1703         let expr = self.mk_expr(span, kind);
1704         self.maybe_recover_from_bad_qpath(expr)
1705     }
1706
1707     /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1708     /// If the label is followed immediately by a `:` token, the label and `:` are
1709     /// parsed as part of the expression (i.e. a labeled loop). The language team has
1710     /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1711     /// the break expression of an unlabeled break is a labeled loop (as in
1712     /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1713     /// expression only gets a warning for compatibility reasons; and a labeled break
1714     /// with a labeled loop does not even get a warning because there is no ambiguity.
1715     fn parse_break_expr(&mut self) -> PResult<'a, P<Expr>> {
1716         let lo = self.prev_token.span;
1717         let mut label = self.eat_label();
1718         let kind = if label.is_some() && self.token == token::Colon {
1719             // The value expression can be a labeled loop, see issue #86948, e.g.:
1720             // `loop { break 'label: loop { break 'label 42; }; }`
1721             let lexpr = self.parse_labeled_expr(label.take().unwrap(), true)?;
1722             self.sess.emit_err(LabeledLoopInBreak {
1723                 span: lexpr.span,
1724                 sub: WrapExpressionInParentheses {
1725                     left: lexpr.span.shrink_to_lo(),
1726                     right: lexpr.span.shrink_to_hi(),
1727                 },
1728             });
1729             Some(lexpr)
1730         } else if self.token != token::OpenDelim(Delimiter::Brace)
1731             || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1732         {
1733             let expr = self.parse_expr_opt()?;
1734             if let Some(expr) = &expr {
1735                 if label.is_some()
1736                     && matches!(
1737                         expr.kind,
1738                         ExprKind::While(_, _, None)
1739                             | ExprKind::ForLoop(_, _, _, None)
1740                             | ExprKind::Loop(_, None, _)
1741                             | ExprKind::Block(_, None)
1742                     )
1743                 {
1744                     self.sess.buffer_lint_with_diagnostic(
1745                         BREAK_WITH_LABEL_AND_LOOP,
1746                         lo.to(expr.span),
1747                         ast::CRATE_NODE_ID,
1748                         "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1749                         BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1750                     );
1751                 }
1752             }
1753             expr
1754         } else {
1755             None
1756         };
1757         let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind));
1758         self.maybe_recover_from_bad_qpath(expr)
1759     }
1760
1761     /// Parse `"yield" expr?`.
1762     fn parse_yield_expr(&mut self) -> PResult<'a, P<Expr>> {
1763         let lo = self.prev_token.span;
1764         let kind = ExprKind::Yield(self.parse_expr_opt()?);
1765         let span = lo.to(self.prev_token.span);
1766         self.sess.gated_spans.gate(sym::generators, span);
1767         let expr = self.mk_expr(span, kind);
1768         self.maybe_recover_from_bad_qpath(expr)
1769     }
1770
1771     /// Returns a string literal if the next token is a string literal.
1772     /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1773     /// and returns `None` if the next token is not literal at all.
1774     pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> {
1775         match self.parse_opt_meta_item_lit() {
1776             Some(lit) => match lit.kind {
1777                 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1778                     style,
1779                     symbol: lit.symbol,
1780                     suffix: lit.suffix,
1781                     span: lit.span,
1782                     symbol_unescaped,
1783                 }),
1784                 _ => Err(Some(lit)),
1785             },
1786             None => Err(None),
1787         }
1788     }
1789
1790     pub(crate) fn mk_token_lit_char(name: Symbol, span: Span) -> (token::Lit, Span) {
1791         (token::Lit { symbol: name, suffix: None, kind: token::Char }, span)
1792     }
1793
1794     fn mk_meta_item_lit_char(name: Symbol, span: Span) -> MetaItemLit {
1795         ast::MetaItemLit {
1796             symbol: name,
1797             suffix: None,
1798             kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')),
1799             span,
1800         }
1801     }
1802
1803     fn handle_missing_lit<L>(
1804         &mut self,
1805         mk_lit_char: impl FnOnce(Symbol, Span) -> L,
1806     ) -> PResult<'a, L> {
1807         if let token::Interpolated(inner) = &self.token.kind {
1808             let expr = match inner.as_ref() {
1809                 token::NtExpr(expr) => Some(expr),
1810                 token::NtLiteral(expr) => Some(expr),
1811                 _ => None,
1812             };
1813             if let Some(expr) = expr {
1814                 if matches!(expr.kind, ExprKind::Err) {
1815                     let mut err = InvalidInterpolatedExpression { span: self.token.span }
1816                         .into_diagnostic(&self.sess.span_diagnostic);
1817                     err.downgrade_to_delayed_bug();
1818                     return Err(err);
1819                 }
1820             }
1821         }
1822         let token = self.token.clone();
1823         let err = |self_: &Self| {
1824             let msg = format!("unexpected token: {}", super::token_descr(&token));
1825             self_.struct_span_err(token.span, &msg)
1826         };
1827         // On an error path, eagerly consider a lifetime to be an unclosed character lit
1828         if self.token.is_lifetime() {
1829             let lt = self.expect_lifetime();
1830             Ok(self.recover_unclosed_char(lt.ident, mk_lit_char, err))
1831         } else {
1832             Err(err(self))
1833         }
1834     }
1835
1836     pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> {
1837         self.parse_opt_token_lit()
1838             .ok_or(())
1839             .or_else(|()| self.handle_missing_lit(Parser::mk_token_lit_char))
1840     }
1841
1842     pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> {
1843         self.parse_opt_meta_item_lit()
1844             .ok_or(())
1845             .or_else(|()| self.handle_missing_lit(Parser::mk_meta_item_lit_char))
1846     }
1847
1848     fn recover_after_dot(&mut self) -> Option<Token> {
1849         let mut recovered = None;
1850         if self.token == token::Dot {
1851             // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1852             // dot would follow an optional literal, so we do this unconditionally.
1853             recovered = self.look_ahead(1, |next_token| {
1854                 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1855                     next_token.kind
1856                 {
1857                     if self.token.span.hi() == next_token.span.lo() {
1858                         let s = String::from("0.") + symbol.as_str();
1859                         let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1860                         return Some(Token::new(kind, self.token.span.to(next_token.span)));
1861                     }
1862                 }
1863                 None
1864             });
1865             if let Some(token) = &recovered {
1866                 self.bump();
1867                 self.sess.emit_err(FloatLiteralRequiresIntegerPart {
1868                     span: token.span,
1869                     correct: pprust::token_to_string(token).into_owned(),
1870                 });
1871             }
1872         }
1873
1874         recovered
1875     }
1876
1877     /// Matches `lit = true | false | token_lit`.
1878     /// Returns `None` if the next token is not a literal.
1879     pub(super) fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> {
1880         let recovered = self.recover_after_dot();
1881         let token = recovered.as_ref().unwrap_or(&self.token);
1882         let span = token.span;
1883         token::Lit::from_token(token).map(|token_lit| {
1884             self.bump();
1885             (token_lit, span)
1886         })
1887     }
1888
1889     /// Matches `lit = true | false | token_lit`.
1890     /// Returns `None` if the next token is not a literal.
1891     pub(super) fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> {
1892         let recovered = self.recover_after_dot();
1893         let token = recovered.as_ref().unwrap_or(&self.token);
1894         match token::Lit::from_token(token) {
1895             Some(token_lit) => {
1896                 match MetaItemLit::from_token_lit(token_lit, token.span) {
1897                     Ok(lit) => {
1898                         self.bump();
1899                         Some(lit)
1900                     }
1901                     Err(err) => {
1902                         let span = token.span;
1903                         let token::Literal(lit) = token.kind else {
1904                             unreachable!();
1905                         };
1906                         self.bump();
1907                         report_lit_error(&self.sess, err, lit, span);
1908                         // Pack possible quotes and prefixes from the original literal into
1909                         // the error literal's symbol so they can be pretty-printed faithfully.
1910                         let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1911                         let symbol = Symbol::intern(&suffixless_lit.to_string());
1912                         let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1913                         Some(
1914                             MetaItemLit::from_token_lit(lit, span)
1915                                 .unwrap_or_else(|_| unreachable!()),
1916                         )
1917                     }
1918                 }
1919             }
1920             None => None,
1921         }
1922     }
1923
1924     pub(super) fn expect_no_tuple_index_suffix(&self, span: Span, suffix: Symbol) {
1925         if [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suffix) {
1926             // #59553: warn instead of reject out of hand to allow the fix to percolate
1927             // through the ecosystem when people fix their macros
1928             self.sess.emit_warning(InvalidLiteralSuffixOnTupleIndex {
1929                 span,
1930                 suffix,
1931                 exception: Some(()),
1932             });
1933         } else {
1934             self.sess.emit_err(InvalidLiteralSuffixOnTupleIndex { span, suffix, exception: None });
1935         }
1936     }
1937
1938     /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
1939     /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
1940     pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
1941         maybe_whole_expr!(self);
1942
1943         let lo = self.token.span;
1944         let minus_present = self.eat(&token::BinOp(token::Minus));
1945         let (token_lit, span) = self.parse_token_lit()?;
1946         let expr = self.mk_expr(span, ExprKind::Lit(token_lit));
1947
1948         if minus_present {
1949             Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr)))
1950         } else {
1951             Ok(expr)
1952         }
1953     }
1954
1955     fn is_array_like_block(&mut self) -> bool {
1956         self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
1957             && self.look_ahead(2, |t| t == &token::Comma)
1958             && self.look_ahead(3, |t| t.can_begin_expr())
1959     }
1960
1961     /// Emits a suggestion if it looks like the user meant an array but
1962     /// accidentally used braces, causing the code to be interpreted as a block
1963     /// expression.
1964     fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<P<Expr>> {
1965         let mut snapshot = self.create_snapshot_for_diagnostic();
1966         match snapshot.parse_array_or_repeat_expr(Delimiter::Brace) {
1967             Ok(arr) => {
1968                 self.sess.emit_err(ArrayBracketsInsteadOfSpaces {
1969                     span: arr.span,
1970                     sub: ArrayBracketsInsteadOfSpacesSugg {
1971                         left: lo,
1972                         right: snapshot.prev_token.span,
1973                     },
1974                 });
1975
1976                 self.restore_snapshot(snapshot);
1977                 Some(self.mk_expr_err(arr.span))
1978             }
1979             Err(e) => {
1980                 e.cancel();
1981                 None
1982             }
1983         }
1984     }
1985
1986     fn suggest_missing_semicolon_before_array(
1987         &self,
1988         prev_span: Span,
1989         open_delim_span: Span,
1990     ) -> PResult<'a, ()> {
1991         if !self.may_recover() {
1992             return Ok(());
1993         }
1994
1995         if self.token.kind == token::Comma {
1996             if !self.sess.source_map().is_multiline(prev_span.until(self.token.span)) {
1997                 return Ok(());
1998             }
1999             let mut snapshot = self.create_snapshot_for_diagnostic();
2000             snapshot.bump();
2001             match snapshot.parse_seq_to_before_end(
2002                 &token::CloseDelim(Delimiter::Bracket),
2003                 SeqSep::trailing_allowed(token::Comma),
2004                 |p| p.parse_expr(),
2005             ) {
2006                 Ok(_)
2007                     // When the close delim is `)`, `token.kind` is expected to be `token::CloseDelim(Delimiter::Parenthesis)`,
2008                     // but the actual `token.kind` is `token::CloseDelim(Delimiter::Bracket)`.
2009                     // This is because the `token.kind` of the close delim is treated as the same as
2010                     // that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different.
2011                     // Therefore, `token.kind` should not be compared here.
2012                     if snapshot
2013                         .span_to_snippet(snapshot.token.span)
2014                         .map_or(false, |snippet| snippet == "]") =>
2015                 {
2016                     return Err(MissingSemicolonBeforeArray {
2017                         open_delim: open_delim_span,
2018                         semicolon: prev_span.shrink_to_hi(),
2019                     }.into_diagnostic(&self.sess.span_diagnostic));
2020                 }
2021                 Ok(_) => (),
2022                 Err(err) => err.cancel(),
2023             }
2024         }
2025         Ok(())
2026     }
2027
2028     /// Parses a block or unsafe block.
2029     pub(super) fn parse_block_expr(
2030         &mut self,
2031         opt_label: Option<Label>,
2032         lo: Span,
2033         blk_mode: BlockCheckMode,
2034     ) -> PResult<'a, P<Expr>> {
2035         if self.may_recover() && self.is_array_like_block() {
2036             if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) {
2037                 return Ok(arr);
2038             }
2039         }
2040
2041         if self.token.is_whole_block() {
2042             self.sess.emit_err(InvalidBlockMacroSegment {
2043                 span: self.token.span,
2044                 context: lo.to(self.token.span),
2045             });
2046         }
2047
2048         let (attrs, blk) = self.parse_block_common(lo, blk_mode, true)?;
2049         Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs))
2050     }
2051
2052     /// Parse a block which takes no attributes and has no label
2053     fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> {
2054         let blk = self.parse_block()?;
2055         Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None)))
2056     }
2057
2058     /// Parses a closure expression (e.g., `move |args| expr`).
2059     fn parse_closure_expr(&mut self) -> PResult<'a, P<Expr>> {
2060         let lo = self.token.span;
2061
2062         let binder = if self.check_keyword(kw::For) {
2063             let lo = self.token.span;
2064             let lifetime_defs = self.parse_late_bound_lifetime_defs()?;
2065             let span = lo.to(self.prev_token.span);
2066
2067             self.sess.gated_spans.gate(sym::closure_lifetime_binder, span);
2068
2069             ClosureBinder::For { span, generic_params: P::from_vec(lifetime_defs) }
2070         } else {
2071             ClosureBinder::NotPresent
2072         };
2073
2074         let constness = self.parse_constness(Case::Sensitive);
2075
2076         let movability =
2077             if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
2078
2079         let asyncness = if self.token.uninterpolated_span().rust_2018() {
2080             self.parse_asyncness(Case::Sensitive)
2081         } else {
2082             Async::No
2083         };
2084
2085         let capture_clause = self.parse_capture_clause()?;
2086         let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?;
2087         let decl_hi = self.prev_token.span;
2088         let mut body = match fn_decl.output {
2089             FnRetTy::Default(_) => {
2090                 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
2091                 self.parse_expr_res(restrictions, None)?
2092             }
2093             _ => {
2094                 // If an explicit return type is given, require a block to appear (RFC 968).
2095                 let body_lo = self.token.span;
2096                 self.parse_block_expr(None, body_lo, BlockCheckMode::Default)?
2097             }
2098         };
2099
2100         if let Async::Yes { span, .. } = asyncness {
2101             // Feature-gate `async ||` closures.
2102             self.sess.gated_spans.gate(sym::async_closure, span);
2103         }
2104
2105         if self.token.kind == TokenKind::Semi
2106             && matches!(self.token_cursor.frame.delim_sp, Some((Delimiter::Parenthesis, _)))
2107             && self.may_recover()
2108         {
2109             // It is likely that the closure body is a block but where the
2110             // braces have been removed. We will recover and eat the next
2111             // statements later in the parsing process.
2112             body = self.mk_expr_err(body.span);
2113         }
2114
2115         let body_span = body.span;
2116
2117         let closure = self.mk_expr(
2118             lo.to(body.span),
2119             ExprKind::Closure(Box::new(ast::Closure {
2120                 binder,
2121                 capture_clause,
2122                 constness,
2123                 asyncness,
2124                 movability,
2125                 fn_decl,
2126                 body,
2127                 fn_decl_span: lo.to(decl_hi),
2128                 fn_arg_span,
2129             })),
2130         );
2131
2132         // Disable recovery for closure body
2133         let spans =
2134             ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2135         self.current_closure = Some(spans);
2136
2137         Ok(closure)
2138     }
2139
2140     /// Parses an optional `move` prefix to a closure-like construct.
2141     fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2142         if self.eat_keyword(kw::Move) {
2143             // Check for `move async` and recover
2144             if self.check_keyword(kw::Async) {
2145                 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2146                 Err(AsyncMoveOrderIncorrect { span: move_async_span }
2147                     .into_diagnostic(&self.sess.span_diagnostic))
2148             } else {
2149                 Ok(CaptureBy::Value)
2150             }
2151         } else {
2152             Ok(CaptureBy::Ref)
2153         }
2154     }
2155
2156     /// Parses the `|arg, arg|` header of a closure.
2157     fn parse_fn_block_decl(&mut self) -> PResult<'a, (P<FnDecl>, Span)> {
2158         let arg_start = self.token.span.lo();
2159
2160         let inputs = if self.eat(&token::OrOr) {
2161             Vec::new()
2162         } else {
2163             self.expect(&token::BinOp(token::Or))?;
2164             let args = self
2165                 .parse_seq_to_before_tokens(
2166                     &[&token::BinOp(token::Or), &token::OrOr],
2167                     SeqSep::trailing_allowed(token::Comma),
2168                     TokenExpectType::NoExpect,
2169                     |p| p.parse_fn_block_param(),
2170                 )?
2171                 .0;
2172             self.expect_or()?;
2173             args
2174         };
2175         let arg_span = self.prev_token.span.with_lo(arg_start);
2176         let output =
2177             self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2178
2179         Ok((P(FnDecl { inputs, output }), arg_span))
2180     }
2181
2182     /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2183     fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2184         let lo = self.token.span;
2185         let attrs = self.parse_outer_attributes()?;
2186         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2187             let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
2188             let ty = if this.eat(&token::Colon) {
2189                 this.parse_ty()?
2190             } else {
2191                 this.mk_ty(this.prev_token.span, TyKind::Infer)
2192             };
2193
2194             Ok((
2195                 Param {
2196                     attrs,
2197                     ty,
2198                     pat,
2199                     span: lo.to(this.prev_token.span),
2200                     id: DUMMY_NODE_ID,
2201                     is_placeholder: false,
2202                 },
2203                 TrailingToken::MaybeComma,
2204             ))
2205         })
2206     }
2207
2208     /// Parses an `if` expression (`if` token already eaten).
2209     fn parse_if_expr(&mut self) -> PResult<'a, P<Expr>> {
2210         let lo = self.prev_token.span;
2211         let cond = self.parse_cond_expr()?;
2212         self.parse_if_after_cond(lo, cond)
2213     }
2214
2215     fn parse_if_after_cond(&mut self, lo: Span, mut cond: P<Expr>) -> PResult<'a, P<Expr>> {
2216         let cond_span = cond.span;
2217         // Tries to interpret `cond` as either a missing expression if it's a block,
2218         // or as an unfinished expression if it's a binop and the RHS is a block.
2219         // We could probably add more recoveries here too...
2220         let mut recover_block_from_condition = |this: &mut Self| {
2221             let block = match &mut cond.kind {
2222                 ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2223                     if let ExprKind::Block(_, None) = right.kind => {
2224                         self.sess.emit_err(IfExpressionMissingThenBlock {
2225                             if_span: lo,
2226                             sub: IfExpressionMissingThenBlockSub::UnfinishedCondition(
2227                                 cond_span.shrink_to_lo().to(*binop_span)
2228                             ),
2229                         });
2230                         std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi()))
2231                     },
2232                 ExprKind::Block(_, None) => {
2233                     self.sess.emit_err(IfExpressionMissingCondition {
2234                         if_span: lo.shrink_to_hi(),
2235                         block_span: self.sess.source_map().start_point(cond_span),
2236                     });
2237                     std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi()))
2238                 }
2239                 _ => {
2240                     return None;
2241                 }
2242             };
2243             if let ExprKind::Block(block, _) = &block.kind {
2244                 Some(block.clone())
2245             } else {
2246                 unreachable!()
2247             }
2248         };
2249         // Parse then block
2250         let thn = if self.token.is_keyword(kw::Else) {
2251             if let Some(block) = recover_block_from_condition(self) {
2252                 block
2253             } else {
2254                 self.sess.emit_err(IfExpressionMissingThenBlock {
2255                     if_span: lo,
2256                     sub: IfExpressionMissingThenBlockSub::AddThenBlock(cond_span.shrink_to_hi()),
2257                 });
2258                 self.mk_block_err(cond_span.shrink_to_hi())
2259             }
2260         } else {
2261             let attrs = self.parse_outer_attributes()?; // For recovery.
2262             let block = if self.check(&token::OpenDelim(Delimiter::Brace)) {
2263                 self.parse_block()?
2264             } else {
2265                 if let Some(block) = recover_block_from_condition(self) {
2266                     block
2267                 } else {
2268                     self.error_on_extra_if(&cond)?;
2269                     // Parse block, which will always fail, but we can add a nice note to the error
2270                     self.parse_block().map_err(|mut err| {
2271                         err.span_note(
2272                             cond_span,
2273                             "the `if` expression is missing a block after this condition",
2274                         );
2275                         err
2276                     })?
2277                 }
2278             };
2279             self.error_on_if_block_attrs(lo, false, block.span, attrs);
2280             block
2281         };
2282         let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2283         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els)))
2284     }
2285
2286     /// Parses the condition of a `if` or `while` expression.
2287     fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2288         let cond =
2289             self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, None)?;
2290
2291         if let ExprKind::Let(..) = cond.kind {
2292             // Remove the last feature gating of a `let` expression since it's stable.
2293             self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2294         }
2295
2296         Ok(cond)
2297     }
2298
2299     /// Parses a `let $pat = $expr` pseudo-expression.
2300     fn parse_let_expr(&mut self) -> PResult<'a, P<Expr>> {
2301         // This is a *approximate* heuristic that detects if `let` chains are
2302         // being parsed in the right position. It's approximate because it
2303         // doesn't deny all invalid `let` expressions, just completely wrong usages.
2304         let not_in_chain = !matches!(
2305             self.prev_token.kind,
2306             TokenKind::AndAnd | TokenKind::Ident(kw::If, _) | TokenKind::Ident(kw::While, _)
2307         );
2308         if !self.restrictions.contains(Restrictions::ALLOW_LET) || not_in_chain {
2309             self.sess.emit_err(ExpectedExpressionFoundLet { span: self.token.span });
2310         }
2311
2312         self.bump(); // Eat `let` token
2313         let lo = self.prev_token.span;
2314         let pat = self.parse_pat_allow_top_alt(
2315             None,
2316             RecoverComma::Yes,
2317             RecoverColon::Yes,
2318             CommaRecoveryMode::LikelyTuple,
2319         )?;
2320         if self.token == token::EqEq {
2321             self.sess.emit_err(ExpectedEqForLetExpr {
2322                 span: self.token.span,
2323                 sugg_span: self.token.span,
2324             });
2325             self.bump();
2326         } else {
2327             self.expect(&token::Eq)?;
2328         }
2329         let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2330             this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2331         })?;
2332         let span = lo.to(expr.span);
2333         self.sess.gated_spans.gate(sym::let_chains, span);
2334         Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span)))
2335     }
2336
2337     /// Parses an `else { ... }` expression (`else` token already eaten).
2338     fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2339         let else_span = self.prev_token.span; // `else`
2340         let attrs = self.parse_outer_attributes()?; // For recovery.
2341         let expr = if self.eat_keyword(kw::If) {
2342             self.parse_if_expr()?
2343         } else if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) {
2344             self.parse_simple_block()?
2345         } else {
2346             let snapshot = self.create_snapshot_for_diagnostic();
2347             let first_tok = super::token_descr(&self.token);
2348             let first_tok_span = self.token.span;
2349             match self.parse_expr() {
2350                 Ok(cond)
2351                 // If it's not a free-standing expression, and is followed by a block,
2352                 // then it's very likely the condition to an `else if`.
2353                     if self.check(&TokenKind::OpenDelim(Delimiter::Brace))
2354                         && classify::expr_requires_semi_to_be_stmt(&cond) =>
2355                 {
2356                     self.sess.emit_err(ExpectedElseBlock {
2357                         first_tok_span,
2358                         first_tok,
2359                         else_span,
2360                         condition_start: cond.span.shrink_to_lo(),
2361                     });
2362                     self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)?
2363                 }
2364                 Err(e) => {
2365                     e.cancel();
2366                     self.restore_snapshot(snapshot);
2367                     self.parse_simple_block()?
2368                 },
2369                 Ok(_) => {
2370                     self.restore_snapshot(snapshot);
2371                     self.parse_simple_block()?
2372                 },
2373             }
2374         };
2375         self.error_on_if_block_attrs(else_span, true, expr.span, attrs);
2376         Ok(expr)
2377     }
2378
2379     fn error_on_if_block_attrs(
2380         &self,
2381         ctx_span: Span,
2382         is_ctx_else: bool,
2383         branch_span: Span,
2384         attrs: AttrWrapper,
2385     ) {
2386         if attrs.is_empty() {
2387             return;
2388         }
2389
2390         let attrs: &[ast::Attribute] = &attrs.take_for_recovery(self.sess);
2391         let (attributes, last) = match attrs {
2392             [] => return,
2393             [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2394         };
2395         let ctx = if is_ctx_else { "else" } else { "if" };
2396         self.sess.emit_err(OuterAttributeNotAllowedOnIfElse {
2397             last,
2398             branch_span,
2399             ctx_span,
2400             ctx: ctx.to_string(),
2401             attributes,
2402         });
2403     }
2404
2405     fn error_on_extra_if(&mut self, cond: &P<Expr>) -> PResult<'a, ()> {
2406         if let ExprKind::Binary(Spanned { span: binop_span, node: binop}, _, right) = &cond.kind &&
2407             let BinOpKind::And = binop &&
2408             let ExprKind::If(cond, ..) = &right.kind {
2409                     Err(self.sess.create_err(UnexpectedIfWithIf(binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()))))
2410             } else {
2411                 Ok(())
2412             }
2413     }
2414
2415     /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2416     fn parse_for_expr(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2417         // Record whether we are about to parse `for (`.
2418         // This is used below for recovery in case of `for ( $stuff ) $block`
2419         // in which case we will suggest `for $stuff $block`.
2420         let begin_paren = match self.token.kind {
2421             token::OpenDelim(Delimiter::Parenthesis) => Some(self.token.span),
2422             _ => None,
2423         };
2424
2425         let pat = self.parse_pat_allow_top_alt(
2426             None,
2427             RecoverComma::Yes,
2428             RecoverColon::Yes,
2429             CommaRecoveryMode::LikelyTuple,
2430         )?;
2431         if !self.eat_keyword(kw::In) {
2432             self.error_missing_in_for_loop();
2433         }
2434         self.check_for_for_in_in_typo(self.prev_token.span);
2435         let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2436
2437         let pat = self.recover_parens_around_for_head(pat, begin_paren);
2438
2439         let (attrs, loop_block) = self.parse_inner_attrs_and_block()?;
2440
2441         let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2442         Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
2443     }
2444
2445     fn error_missing_in_for_loop(&mut self) {
2446         let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) {
2447             // Possibly using JS syntax (#75311).
2448             let span = self.token.span;
2449             self.bump();
2450             (span, MissingInInForLoopSub::InNotOf)
2451         } else {
2452             (self.prev_token.span.between(self.token.span), MissingInInForLoopSub::AddIn)
2453         };
2454
2455         self.sess.emit_err(MissingInInForLoop { span, sub: sub(span) });
2456     }
2457
2458     /// Parses a `while` or `while let` expression (`while` token already eaten).
2459     fn parse_while_expr(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2460         let cond = self.parse_cond_expr().map_err(|mut err| {
2461             err.span_label(lo, "while parsing the condition of this `while` expression");
2462             err
2463         })?;
2464         let (attrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| {
2465             err.span_label(lo, "while parsing the body of this `while` expression");
2466             err.span_label(cond.span, "this `while` condition successfully parsed");
2467             err
2468         })?;
2469         Ok(self.mk_expr_with_attrs(
2470             lo.to(self.prev_token.span),
2471             ExprKind::While(cond, body, opt_label),
2472             attrs,
2473         ))
2474     }
2475
2476     /// Parses `loop { ... }` (`loop` token already eaten).
2477     fn parse_loop_expr(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> {
2478         let loop_span = self.prev_token.span;
2479         let (attrs, body) = self.parse_inner_attrs_and_block()?;
2480         Ok(self.mk_expr_with_attrs(
2481             lo.to(self.prev_token.span),
2482             ExprKind::Loop(body, opt_label, loop_span),
2483             attrs,
2484         ))
2485     }
2486
2487     pub(crate) fn eat_label(&mut self) -> Option<Label> {
2488         self.token.lifetime().map(|ident| {
2489             self.bump();
2490             Label { ident }
2491         })
2492     }
2493
2494     /// Parses a `match ... { ... }` expression (`match` token already eaten).
2495     fn parse_match_expr(&mut self) -> PResult<'a, P<Expr>> {
2496         let match_span = self.prev_token.span;
2497         let lo = self.prev_token.span;
2498         let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2499         if let Err(mut e) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2500             if self.token == token::Semi {
2501                 e.span_suggestion_short(
2502                     match_span,
2503                     "try removing this `match`",
2504                     "",
2505                     Applicability::MaybeIncorrect, // speculative
2506                 );
2507             }
2508             if self.maybe_recover_unexpected_block_label() {
2509                 e.cancel();
2510                 self.bump();
2511             } else {
2512                 return Err(e);
2513             }
2514         }
2515         let attrs = self.parse_inner_attributes()?;
2516
2517         let mut arms: Vec<Arm> = Vec::new();
2518         while self.token != token::CloseDelim(Delimiter::Brace) {
2519             match self.parse_arm() {
2520                 Ok(arm) => arms.push(arm),
2521                 Err(mut e) => {
2522                     // Recover by skipping to the end of the block.
2523                     e.emit();
2524                     self.recover_stmt();
2525                     let span = lo.to(self.token.span);
2526                     if self.token == token::CloseDelim(Delimiter::Brace) {
2527                         self.bump();
2528                     }
2529                     return Ok(self.mk_expr_with_attrs(
2530                         span,
2531                         ExprKind::Match(scrutinee, arms),
2532                         attrs,
2533                     ));
2534                 }
2535             }
2536         }
2537         let hi = self.token.span;
2538         self.bump();
2539         Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2540     }
2541
2542     /// Attempt to recover from match arm body with statements and no surrounding braces.
2543     fn parse_arm_body_missing_braces(
2544         &mut self,
2545         first_expr: &P<Expr>,
2546         arrow_span: Span,
2547     ) -> Option<P<Expr>> {
2548         if self.token.kind != token::Semi {
2549             return None;
2550         }
2551         let start_snapshot = self.create_snapshot_for_diagnostic();
2552         let semi_sp = self.token.span;
2553         self.bump(); // `;`
2554         let mut stmts =
2555             vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2556         let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| {
2557             let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2558
2559             this.sess.emit_err(MatchArmBodyWithoutBraces {
2560                 statements: span,
2561                 arrow: arrow_span,
2562                 num_statements: stmts.len(),
2563                 sub: if stmts.len() > 1 {
2564                     MatchArmBodyWithoutBracesSugg::AddBraces {
2565                         left: span.shrink_to_lo(),
2566                         right: span.shrink_to_hi(),
2567                     }
2568                 } else {
2569                     MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp }
2570                 },
2571             });
2572             this.mk_expr_err(span)
2573         };
2574         // We might have either a `,` -> `;` typo, or a block without braces. We need
2575         // a more subtle parsing strategy.
2576         loop {
2577             if self.token.kind == token::CloseDelim(Delimiter::Brace) {
2578                 // We have reached the closing brace of the `match` expression.
2579                 return Some(err(self, stmts));
2580             }
2581             if self.token.kind == token::Comma {
2582                 self.restore_snapshot(start_snapshot);
2583                 return None;
2584             }
2585             let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
2586             match self.parse_pat_no_top_alt(None) {
2587                 Ok(_pat) => {
2588                     if self.token.kind == token::FatArrow {
2589                         // Reached arm end.
2590                         self.restore_snapshot(pre_pat_snapshot);
2591                         return Some(err(self, stmts));
2592                     }
2593                 }
2594                 Err(err) => {
2595                     err.cancel();
2596                 }
2597             }
2598
2599             self.restore_snapshot(pre_pat_snapshot);
2600             match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2601                 // Consume statements for as long as possible.
2602                 Ok(Some(stmt)) => {
2603                     stmts.push(stmt);
2604                 }
2605                 Ok(None) => {
2606                     self.restore_snapshot(start_snapshot);
2607                     break;
2608                 }
2609                 // We couldn't parse either yet another statement missing it's
2610                 // enclosing block nor the next arm's pattern or closing brace.
2611                 Err(stmt_err) => {
2612                     stmt_err.cancel();
2613                     self.restore_snapshot(start_snapshot);
2614                     break;
2615                 }
2616             }
2617         }
2618         None
2619     }
2620
2621     pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2622         // Used to check the `let_chains` and `if_let_guard` features mostly by scanning
2623         // `&&` tokens.
2624         fn check_let_expr(expr: &Expr) -> (bool, bool) {
2625             match &expr.kind {
2626                 ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => {
2627                     let lhs_rslt = check_let_expr(lhs);
2628                     let rhs_rslt = check_let_expr(rhs);
2629                     (lhs_rslt.0 || rhs_rslt.0, false)
2630                 }
2631                 ExprKind::Let(..) => (true, true),
2632                 _ => (false, true),
2633             }
2634         }
2635         let attrs = self.parse_outer_attributes()?;
2636         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2637             let lo = this.token.span;
2638             let pat = this.parse_pat_allow_top_alt(
2639                 None,
2640                 RecoverComma::Yes,
2641                 RecoverColon::Yes,
2642                 CommaRecoveryMode::EitherTupleOrPipe,
2643             )?;
2644             let guard = if this.eat_keyword(kw::If) {
2645                 let if_span = this.prev_token.span;
2646                 let cond = this.parse_expr_res(Restrictions::ALLOW_LET, None)?;
2647                 let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
2648                 if has_let_expr {
2649                     if does_not_have_bin_op {
2650                         // Remove the last feature gating of a `let` expression since it's stable.
2651                         this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2652                     }
2653                     let span = if_span.to(cond.span);
2654                     this.sess.gated_spans.gate(sym::if_let_guard, span);
2655                 }
2656                 Some(cond)
2657             } else {
2658                 None
2659             };
2660             let arrow_span = this.token.span;
2661             if let Err(mut err) = this.expect(&token::FatArrow) {
2662                 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2663                 if TokenKind::FatArrow
2664                     .similar_tokens()
2665                     .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2666                 {
2667                     err.span_suggestion(
2668                         this.token.span,
2669                         "try using a fat arrow here",
2670                         "=>",
2671                         Applicability::MaybeIncorrect,
2672                     );
2673                     err.emit();
2674                     this.bump();
2675                 } else {
2676                     return Err(err);
2677                 }
2678             }
2679             let arm_start_span = this.token.span;
2680
2681             let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2682                 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2683                 err
2684             })?;
2685
2686             let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2687                 && this.token != token::CloseDelim(Delimiter::Brace);
2688
2689             let hi = this.prev_token.span;
2690
2691             if require_comma {
2692                 let sm = this.sess.source_map();
2693                 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2694                     let span = body.span;
2695                     return Ok((
2696                         ast::Arm {
2697                             attrs,
2698                             pat,
2699                             guard,
2700                             body,
2701                             span,
2702                             id: DUMMY_NODE_ID,
2703                             is_placeholder: false,
2704                         },
2705                         TrailingToken::None,
2706                     ));
2707                 }
2708                 this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)])
2709                     .or_else(|mut err| {
2710                         if this.token == token::FatArrow {
2711                             if let Ok(expr_lines) = sm.span_to_lines(expr.span)
2712                             && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
2713                             && arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
2714                             && expr_lines.lines.len() == 2
2715                             {
2716                                 // We check whether there's any trailing code in the parse span,
2717                                 // if there isn't, we very likely have the following:
2718                                 //
2719                                 // X |     &Y => "y"
2720                                 //   |        --    - missing comma
2721                                 //   |        |
2722                                 //   |        arrow_span
2723                                 // X |     &X => "x"
2724                                 //   |      - ^^ self.token.span
2725                                 //   |      |
2726                                 //   |      parsed until here as `"y" & X`
2727                                 err.span_suggestion_short(
2728                                     arm_start_span.shrink_to_hi(),
2729                                     "missing a comma here to end this `match` arm",
2730                                     ",",
2731                                     Applicability::MachineApplicable,
2732                                 );
2733                                 return Err(err);
2734                             }
2735                         } else {
2736                             // FIXME(compiler-errors): We could also recover `; PAT =>` here
2737
2738                             // Try to parse a following `PAT =>`, if successful
2739                             // then we should recover.
2740                             let mut snapshot = this.create_snapshot_for_diagnostic();
2741                             let pattern_follows = snapshot
2742                                 .parse_pat_allow_top_alt(
2743                                     None,
2744                                     RecoverComma::Yes,
2745                                     RecoverColon::Yes,
2746                                     CommaRecoveryMode::EitherTupleOrPipe,
2747                                 )
2748                                 .map_err(|err| err.cancel())
2749                                 .is_ok();
2750                             if pattern_follows && snapshot.check(&TokenKind::FatArrow) {
2751                                 err.cancel();
2752                                 this.sess.emit_err(MissingCommaAfterMatchArm {
2753                                     span: hi.shrink_to_hi(),
2754                                 });
2755                                 return Ok(true);
2756                             }
2757                         }
2758                         err.span_label(arrow_span, "while parsing the `match` arm starting here");
2759                         Err(err)
2760                     })?;
2761             } else {
2762                 this.eat(&token::Comma);
2763             }
2764
2765             Ok((
2766                 ast::Arm {
2767                     attrs,
2768                     pat,
2769                     guard,
2770                     body: expr,
2771                     span: lo.to(hi),
2772                     id: DUMMY_NODE_ID,
2773                     is_placeholder: false,
2774                 },
2775                 TrailingToken::None,
2776             ))
2777         })
2778     }
2779
2780     /// Parses a `try {...}` expression (`try` token already eaten).
2781     fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, P<Expr>> {
2782         let (attrs, body) = self.parse_inner_attrs_and_block()?;
2783         if self.eat_keyword(kw::Catch) {
2784             Err(CatchAfterTry { span: self.prev_token.span }
2785                 .into_diagnostic(&self.sess.span_diagnostic))
2786         } else {
2787             let span = span_lo.to(body.span);
2788             self.sess.gated_spans.gate(sym::try_blocks, span);
2789             Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs))
2790         }
2791     }
2792
2793     fn is_do_catch_block(&self) -> bool {
2794         self.token.is_keyword(kw::Do)
2795             && self.is_keyword_ahead(1, &[kw::Catch])
2796             && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2797             && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2798     }
2799
2800     fn is_do_yeet(&self) -> bool {
2801         self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
2802     }
2803
2804     fn is_try_block(&self) -> bool {
2805         self.token.is_keyword(kw::Try)
2806             && self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2807             && self.token.uninterpolated_span().rust_2018()
2808     }
2809
2810     /// Parses an `async move? {...}` expression.
2811     fn parse_async_block(&mut self) -> PResult<'a, P<Expr>> {
2812         let lo = self.token.span;
2813         self.expect_keyword(kw::Async)?;
2814         let capture_clause = self.parse_capture_clause()?;
2815         let (attrs, body) = self.parse_inner_attrs_and_block()?;
2816         let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2817         Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
2818     }
2819
2820     fn is_async_block(&self) -> bool {
2821         self.token.is_keyword(kw::Async)
2822             && ((
2823                 // `async move {`
2824                 self.is_keyword_ahead(1, &[kw::Move])
2825                     && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2826             ) || (
2827                 // `async {`
2828                 self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2829             ))
2830     }
2831
2832     fn is_certainly_not_a_block(&self) -> bool {
2833         self.look_ahead(1, |t| t.is_ident())
2834             && (
2835                 // `{ ident, ` cannot start a block.
2836                 self.look_ahead(2, |t| t == &token::Comma)
2837                     || self.look_ahead(2, |t| t == &token::Colon)
2838                         && (
2839                             // `{ ident: token, ` cannot start a block.
2840                             self.look_ahead(4, |t| t == &token::Comma) ||
2841                 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2842                 self.look_ahead(3, |t| !t.can_begin_type())
2843                         )
2844             )
2845     }
2846
2847     fn maybe_parse_struct_expr(
2848         &mut self,
2849         qself: &Option<P<ast::QSelf>>,
2850         path: &ast::Path,
2851     ) -> Option<PResult<'a, P<Expr>>> {
2852         let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2853         if struct_allowed || self.is_certainly_not_a_block() {
2854             if let Err(err) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2855                 return Some(Err(err));
2856             }
2857             let expr = self.parse_struct_expr(qself.clone(), path.clone(), true);
2858             if let (Ok(expr), false) = (&expr, struct_allowed) {
2859                 // This is a struct literal, but we don't can't accept them here.
2860                 self.sess.emit_err(StructLiteralNotAllowedHere {
2861                     span: expr.span,
2862                     sub: StructLiteralNotAllowedHereSugg {
2863                         left: path.span.shrink_to_lo(),
2864                         right: expr.span.shrink_to_hi(),
2865                     },
2866                 });
2867             }
2868             return Some(expr);
2869         }
2870         None
2871     }
2872
2873     pub(super) fn parse_struct_fields(
2874         &mut self,
2875         pth: ast::Path,
2876         recover: bool,
2877         close_delim: Delimiter,
2878     ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2879         let mut fields = Vec::new();
2880         let mut base = ast::StructRest::None;
2881         let mut recover_async = false;
2882
2883         let mut async_block_err = |e: &mut Diagnostic, span: Span| {
2884             recover_async = true;
2885             e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2886             e.help_use_latest_edition();
2887         };
2888
2889         while self.token != token::CloseDelim(close_delim) {
2890             if self.eat(&token::DotDot) || self.recover_struct_field_dots(close_delim) {
2891                 let exp_span = self.prev_token.span;
2892                 // We permit `.. }` on the left-hand side of a destructuring assignment.
2893                 if self.check(&token::CloseDelim(close_delim)) {
2894                     base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2895                     break;
2896                 }
2897                 match self.parse_expr() {
2898                     Ok(e) => base = ast::StructRest::Base(e),
2899                     Err(mut e) if recover => {
2900                         e.emit();
2901                         self.recover_stmt();
2902                     }
2903                     Err(e) => return Err(e),
2904                 }
2905                 self.recover_struct_comma_after_dotdot(exp_span);
2906                 break;
2907             }
2908
2909             let recovery_field = self.find_struct_error_after_field_looking_code();
2910             let parsed_field = match self.parse_expr_field() {
2911                 Ok(f) => Some(f),
2912                 Err(mut e) => {
2913                     if pth == kw::Async {
2914                         async_block_err(&mut e, pth.span);
2915                     } else {
2916                         e.span_label(pth.span, "while parsing this struct");
2917                     }
2918                     e.emit();
2919
2920                     // If the next token is a comma, then try to parse
2921                     // what comes next as additional fields, rather than
2922                     // bailing out until next `}`.
2923                     if self.token != token::Comma {
2924                         self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2925                         if self.token != token::Comma {
2926                             break;
2927                         }
2928                     }
2929                     None
2930                 }
2931             };
2932
2933             let is_shorthand = parsed_field.as_ref().map_or(false, |f| f.is_shorthand);
2934             // A shorthand field can be turned into a full field with `:`.
2935             // We should point this out.
2936             self.check_or_expected(!is_shorthand, TokenType::Token(token::Colon));
2937
2938             match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
2939                 Ok(_) => {
2940                     if let Some(f) = parsed_field.or(recovery_field) {
2941                         // Only include the field if there's no parse error for the field name.
2942                         fields.push(f);
2943                     }
2944                 }
2945                 Err(mut e) => {
2946                     if pth == kw::Async {
2947                         async_block_err(&mut e, pth.span);
2948                     } else {
2949                         e.span_label(pth.span, "while parsing this struct");
2950                         if let Some(f) = recovery_field {
2951                             fields.push(f);
2952                             e.span_suggestion(
2953                                 self.prev_token.span.shrink_to_hi(),
2954                                 "try adding a comma",
2955                                 ",",
2956                                 Applicability::MachineApplicable,
2957                             );
2958                         } else if is_shorthand
2959                             && (AssocOp::from_token(&self.token).is_some()
2960                                 || matches!(&self.token.kind, token::OpenDelim(_))
2961                                 || self.token.kind == token::Dot)
2962                         {
2963                             // Looks like they tried to write a shorthand, complex expression.
2964                             let ident = parsed_field.expect("is_shorthand implies Some").ident;
2965                             e.span_suggestion(
2966                                 ident.span.shrink_to_lo(),
2967                                 "try naming a field",
2968                                 &format!("{ident}: "),
2969                                 Applicability::HasPlaceholders,
2970                             );
2971                         }
2972                     }
2973                     if !recover {
2974                         return Err(e);
2975                     }
2976                     e.emit();
2977                     self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
2978                     self.eat(&token::Comma);
2979                 }
2980             }
2981         }
2982         Ok((fields, base, recover_async))
2983     }
2984
2985     /// Precondition: already parsed the '{'.
2986     pub(super) fn parse_struct_expr(
2987         &mut self,
2988         qself: Option<P<ast::QSelf>>,
2989         pth: ast::Path,
2990         recover: bool,
2991     ) -> PResult<'a, P<Expr>> {
2992         let lo = pth.span;
2993         let (fields, base, recover_async) =
2994             self.parse_struct_fields(pth.clone(), recover, Delimiter::Brace)?;
2995         let span = lo.to(self.token.span);
2996         self.expect(&token::CloseDelim(Delimiter::Brace))?;
2997         let expr = if recover_async {
2998             ExprKind::Err
2999         } else {
3000             ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
3001         };
3002         Ok(self.mk_expr(span, expr))
3003     }
3004
3005     /// Use in case of error after field-looking code: `S { foo: () with a }`.
3006     fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
3007         match self.token.ident() {
3008             Some((ident, is_raw))
3009                 if (is_raw || !ident.is_reserved())
3010                     && self.look_ahead(1, |t| *t == token::Colon) =>
3011             {
3012                 Some(ast::ExprField {
3013                     ident,
3014                     span: self.token.span,
3015                     expr: self.mk_expr_err(self.token.span),
3016                     is_shorthand: false,
3017                     attrs: AttrVec::new(),
3018                     id: DUMMY_NODE_ID,
3019                     is_placeholder: false,
3020                 })
3021             }
3022             _ => None,
3023         }
3024     }
3025
3026     fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
3027         if self.token != token::Comma {
3028             return;
3029         }
3030         self.sess.emit_err(CommaAfterBaseStruct {
3031             span: span.to(self.prev_token.span),
3032             comma: self.token.span,
3033         });
3034         self.recover_stmt();
3035     }
3036
3037     fn recover_struct_field_dots(&mut self, close_delim: Delimiter) -> bool {
3038         if !self.look_ahead(1, |t| *t == token::CloseDelim(close_delim))
3039             && self.eat(&token::DotDotDot)
3040         {
3041             // recover from typo of `...`, suggest `..`
3042             let span = self.prev_token.span;
3043             self.sess.emit_err(MissingDotDot { token_span: span, sugg_span: span });
3044             return true;
3045         }
3046         false
3047     }
3048
3049     /// Parses `ident (COLON expr)?`.
3050     fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3051         let attrs = self.parse_outer_attributes()?;
3052         self.recover_diff_marker();
3053         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3054             let lo = this.token.span;
3055
3056             // Check if a colon exists one ahead. This means we're parsing a fieldname.
3057             let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3058             let (ident, expr) = if is_shorthand {
3059                 // Mimic `x: x` for the `x` field shorthand.
3060                 let ident = this.parse_ident_common(false)?;
3061                 let path = ast::Path::from_ident(ident);
3062                 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path)))
3063             } else {
3064                 let ident = this.parse_field_name()?;
3065                 this.error_on_eq_field_init(ident);
3066                 this.bump(); // `:`
3067                 (ident, this.parse_expr()?)
3068             };
3069
3070             Ok((
3071                 ast::ExprField {
3072                     ident,
3073                     span: lo.to(expr.span),
3074                     expr,
3075                     is_shorthand,
3076                     attrs,
3077                     id: DUMMY_NODE_ID,
3078                     is_placeholder: false,
3079                 },
3080                 TrailingToken::MaybeComma,
3081             ))
3082         })
3083     }
3084
3085     /// Check for `=`. This means the source incorrectly attempts to
3086     /// initialize a field with an eq rather than a colon.
3087     fn error_on_eq_field_init(&self, field_name: Ident) {
3088         if self.token != token::Eq {
3089             return;
3090         }
3091
3092         self.sess.emit_err(EqFieldInit {
3093             span: self.token.span,
3094             eq: field_name.span.shrink_to_hi().to(self.token.span),
3095         });
3096     }
3097
3098     fn err_dotdotdot_syntax(&self, span: Span) {
3099         self.sess.emit_err(DotDotDot { span });
3100     }
3101
3102     fn err_larrow_operator(&self, span: Span) {
3103         self.sess.emit_err(LeftArrowOperator { span });
3104     }
3105
3106     fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3107         ExprKind::AssignOp(binop, lhs, rhs)
3108     }
3109
3110     fn mk_range(
3111         &mut self,
3112         start: Option<P<Expr>>,
3113         end: Option<P<Expr>>,
3114         limits: RangeLimits,
3115     ) -> ExprKind {
3116         if end.is_none() && limits == RangeLimits::Closed {
3117             self.inclusive_range_with_incorrect_end(self.prev_token.span);
3118             ExprKind::Err
3119         } else {
3120             ExprKind::Range(start, end, limits)
3121         }
3122     }
3123
3124     fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
3125         ExprKind::Unary(unop, expr)
3126     }
3127
3128     fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3129         ExprKind::Binary(binop, lhs, rhs)
3130     }
3131
3132     fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
3133         ExprKind::Index(expr, idx)
3134     }
3135
3136     fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
3137         ExprKind::Call(f, args)
3138     }
3139
3140     fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3141         let span = lo.to(self.prev_token.span);
3142         let await_expr = self.mk_expr(span, ExprKind::Await(self_arg));
3143         self.recover_from_await_method_call();
3144         await_expr
3145     }
3146
3147     pub(crate) fn mk_expr_with_attrs(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
3148         P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
3149     }
3150
3151     pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> P<Expr> {
3152         P(Expr { kind, span, attrs: AttrVec::new(), id: DUMMY_NODE_ID, tokens: None })
3153     }
3154
3155     pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
3156         self.mk_expr(span, ExprKind::Err)
3157     }
3158
3159     /// Create expression span ensuring the span of the parent node
3160     /// is larger than the span of lhs and rhs, including the attributes.
3161     fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
3162         lhs.attrs
3163             .iter()
3164             .find(|a| a.style == AttrStyle::Outer)
3165             .map_or(lhs_span, |a| a.span)
3166             .to(rhs_span)
3167     }
3168
3169     fn collect_tokens_for_expr(
3170         &mut self,
3171         attrs: AttrWrapper,
3172         f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, P<Expr>>,
3173     ) -> PResult<'a, P<Expr>> {
3174         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3175             let res = f(this, attrs)?;
3176             let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
3177                 && this.token.kind == token::Semi
3178             {
3179                 TrailingToken::Semi
3180             } else if this.token.kind == token::Gt {
3181                 TrailingToken::Gt
3182             } else {
3183                 // FIXME - pass this through from the place where we know
3184                 // we need a comma, rather than assuming that `#[attr] expr,`
3185                 // always captures a trailing comma
3186                 TrailingToken::MaybeComma
3187             };
3188             Ok((res, trailing))
3189         })
3190     }
3191 }