]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_parse/src/parser/expr.rs
0d9c57908c1e3620d12eee09236ea06f83fed65b
[rust.git] / compiler / rustc_parse / src / parser / expr.rs
1 use super::diagnostics::SnapshotParser;
2 use super::pat::{CommaRecoveryMode, RecoverColon, RecoverComma, PARAM_EXPECTED};
3 use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
4 use super::{
5     AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions,
6     SemiColonMode, SeqSep, TokenExpectType, TokenType, TrailingToken,
7 };
8 use crate::maybe_recover_from_interpolated_ty_qpath;
9
10 use core::mem;
11 use rustc_ast::ptr::P;
12 use rustc_ast::token::{self, Delimiter, Token, TokenKind};
13 use rustc_ast::tokenstream::Spacing;
14 use rustc_ast::util::classify;
15 use rustc_ast::util::literal::LitError;
16 use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
17 use rustc_ast::visit::Visitor;
18 use rustc_ast::StmtKind;
19 use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, ExprField, Lit, UnOp, DUMMY_NODE_ID};
20 use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
21 use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
22 use rustc_ast_pretty::pprust;
23 use rustc_data_structures::thin_vec::ThinVec;
24 use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, PResult};
25 use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
26 use rustc_session::lint::BuiltinLintDiagnostics;
27 use rustc_span::source_map::{self, Span, Spanned};
28 use rustc_span::symbol::{kw, sym, Ident, Symbol};
29 use rustc_span::{BytePos, Pos};
30
31 /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
32 /// dropped into the token stream, which happens while parsing the result of
33 /// macro expansion). Placement of these is not as complex as I feared it would
34 /// be. The important thing is to make sure that lookahead doesn't balk at
35 /// `token::Interpolated` tokens.
36 macro_rules! maybe_whole_expr {
37     ($p:expr) => {
38         if let token::Interpolated(nt) = &$p.token.kind {
39             match &**nt {
40                 token::NtExpr(e) | token::NtLiteral(e) => {
41                     let e = e.clone();
42                     $p.bump();
43                     return Ok(e);
44                 }
45                 token::NtPath(path) => {
46                     let path = (**path).clone();
47                     $p.bump();
48                     return Ok($p.mk_expr(
49                         $p.prev_token.span,
50                         ExprKind::Path(None, path),
51                         AttrVec::new(),
52                     ));
53                 }
54                 token::NtBlock(block) => {
55                     let block = block.clone();
56                     $p.bump();
57                     return Ok($p.mk_expr(
58                         $p.prev_token.span,
59                         ExprKind::Block(block, None),
60                         AttrVec::new(),
61                     ));
62                 }
63                 _ => {}
64             };
65         }
66     };
67 }
68
69 #[derive(Debug)]
70 pub(super) enum LhsExpr {
71     NotYetParsed,
72     AttributesParsed(AttrWrapper),
73     AlreadyParsed(P<Expr>),
74 }
75
76 impl From<Option<AttrWrapper>> for LhsExpr {
77     /// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
78     /// and `None` into `LhsExpr::NotYetParsed`.
79     ///
80     /// This conversion does not allocate.
81     fn from(o: Option<AttrWrapper>) -> Self {
82         if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
83     }
84 }
85
86 impl From<P<Expr>> for LhsExpr {
87     /// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
88     ///
89     /// This conversion does not allocate.
90     fn from(expr: P<Expr>) -> Self {
91         LhsExpr::AlreadyParsed(expr)
92     }
93 }
94
95 impl<'a> Parser<'a> {
96     /// Parses an expression.
97     #[inline]
98     pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
99         self.current_closure.take();
100
101         self.parse_expr_res(Restrictions::empty(), None)
102     }
103
104     /// Parses an expression, forcing tokens to be collected
105     pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> {
106         self.collect_tokens_no_attrs(|this| this.parse_expr())
107     }
108
109     pub fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
110         self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
111     }
112
113     fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
114         match self.parse_expr() {
115             Ok(expr) => Ok(expr),
116             Err(mut err) => match self.token.ident() {
117                 Some((Ident { name: kw::Underscore, .. }, false))
118                     if self.look_ahead(1, |t| t == &token::Comma) =>
119                 {
120                     // Special-case handling of `foo(_, _, _)`
121                     err.emit();
122                     self.bump();
123                     Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
124                 }
125                 _ => Err(err),
126             },
127         }
128     }
129
130     /// Parses a sequence of expressions delimited by parentheses.
131     fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
132         self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
133     }
134
135     /// Parses an expression, subject to the given restrictions.
136     #[inline]
137     pub(super) fn parse_expr_res(
138         &mut self,
139         r: Restrictions,
140         already_parsed_attrs: Option<AttrWrapper>,
141     ) -> PResult<'a, P<Expr>> {
142         self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
143     }
144
145     /// Parses an associative expression.
146     ///
147     /// This parses an expression accounting for associativity and precedence of the operators in
148     /// the expression.
149     #[inline]
150     fn parse_assoc_expr(
151         &mut self,
152         already_parsed_attrs: Option<AttrWrapper>,
153     ) -> PResult<'a, P<Expr>> {
154         self.parse_assoc_expr_with(0, already_parsed_attrs.into())
155     }
156
157     /// Parses an associative expression with operators of at least `min_prec` precedence.
158     pub(super) fn parse_assoc_expr_with(
159         &mut self,
160         min_prec: usize,
161         lhs: LhsExpr,
162     ) -> PResult<'a, P<Expr>> {
163         let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
164             expr
165         } else {
166             let attrs = match lhs {
167                 LhsExpr::AttributesParsed(attrs) => Some(attrs),
168                 _ => None,
169             };
170             if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
171                 return self.parse_prefix_range_expr(attrs);
172             } else {
173                 self.parse_prefix_expr(attrs)?
174             }
175         };
176         let last_type_ascription_set = self.last_type_ascription.is_some();
177
178         if !self.should_continue_as_assoc_expr(&lhs) {
179             self.last_type_ascription = None;
180             return Ok(lhs);
181         }
182
183         self.expected_tokens.push(TokenType::Operator);
184         while let Some(op) = self.check_assoc_op() {
185             // Adjust the span for interpolated LHS to point to the `$lhs` token
186             // and not to what it refers to.
187             let lhs_span = match self.prev_token.kind {
188                 TokenKind::Interpolated(..) => self.prev_token.span,
189                 _ => lhs.span,
190             };
191
192             let cur_op_span = self.token.span;
193             let restrictions = if op.node.is_assign_like() {
194                 self.restrictions & Restrictions::NO_STRUCT_LITERAL
195             } else {
196                 self.restrictions
197             };
198             let prec = op.node.precedence();
199             if prec < min_prec {
200                 break;
201             }
202             // Check for deprecated `...` syntax
203             if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
204                 self.err_dotdotdot_syntax(self.token.span);
205             }
206
207             if self.token == token::LArrow {
208                 self.err_larrow_operator(self.token.span);
209             }
210
211             self.bump();
212             if op.node.is_comparison() {
213                 if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
214                     return Ok(expr);
215                 }
216             }
217
218             // Look for JS' `===` and `!==` and recover
219             if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
220                 && self.token.kind == token::Eq
221                 && self.prev_token.span.hi() == self.token.span.lo()
222             {
223                 let sp = op.span.to(self.token.span);
224                 let sugg = match op.node {
225                     AssocOp::Equal => "==",
226                     AssocOp::NotEqual => "!=",
227                     _ => unreachable!(),
228                 };
229                 self.struct_span_err(sp, &format!("invalid comparison operator `{sugg}=`"))
230                     .span_suggestion_short(
231                         sp,
232                         &format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
233                         sugg,
234                         Applicability::MachineApplicable,
235                     )
236                     .emit();
237                 self.bump();
238             }
239
240             // Look for PHP's `<>` and recover
241             if op.node == AssocOp::Less
242                 && self.token.kind == token::Gt
243                 && self.prev_token.span.hi() == self.token.span.lo()
244             {
245                 let sp = op.span.to(self.token.span);
246                 self.struct_span_err(sp, "invalid comparison operator `<>`")
247                     .span_suggestion_short(
248                         sp,
249                         "`<>` is not a valid comparison operator, use `!=`",
250                         "!=",
251                         Applicability::MachineApplicable,
252                     )
253                     .emit();
254                 self.bump();
255             }
256
257             // Look for C++'s `<=>` and recover
258             if op.node == AssocOp::LessEqual
259                 && self.token.kind == token::Gt
260                 && self.prev_token.span.hi() == self.token.span.lo()
261             {
262                 let sp = op.span.to(self.token.span);
263                 self.struct_span_err(sp, "invalid comparison operator `<=>`")
264                     .span_label(
265                         sp,
266                         "`<=>` is not a valid comparison operator, use `std::cmp::Ordering`",
267                     )
268                     .emit();
269                 self.bump();
270             }
271
272             if self.prev_token == token::BinOp(token::Plus)
273                 && self.token == token::BinOp(token::Plus)
274                 && self.prev_token.span.between(self.token.span).is_empty()
275             {
276                 let op_span = self.prev_token.span.to(self.token.span);
277                 // Eat the second `+`
278                 self.bump();
279                 lhs = self.recover_from_postfix_increment(lhs, op_span)?;
280                 continue;
281             }
282
283             let op = op.node;
284             // Special cases:
285             if op == AssocOp::As {
286                 lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
287                 continue;
288             } else if op == AssocOp::Colon {
289                 lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
290                 continue;
291             } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
292                 // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
293                 // generalise it to the Fixity::None code.
294                 lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
295                 break;
296             }
297
298             let fixity = op.fixity();
299             let prec_adjustment = match fixity {
300                 Fixity::Right => 0,
301                 Fixity::Left => 1,
302                 // We currently have no non-associative operators that are not handled above by
303                 // the special cases. The code is here only for future convenience.
304                 Fixity::None => 1,
305             };
306             let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
307                 this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
308             })?;
309
310             let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span);
311             lhs = match op {
312                 AssocOp::Add
313                 | AssocOp::Subtract
314                 | AssocOp::Multiply
315                 | AssocOp::Divide
316                 | AssocOp::Modulus
317                 | AssocOp::LAnd
318                 | AssocOp::LOr
319                 | AssocOp::BitXor
320                 | AssocOp::BitAnd
321                 | AssocOp::BitOr
322                 | AssocOp::ShiftLeft
323                 | AssocOp::ShiftRight
324                 | AssocOp::Equal
325                 | AssocOp::Less
326                 | AssocOp::LessEqual
327                 | AssocOp::NotEqual
328                 | AssocOp::Greater
329                 | AssocOp::GreaterEqual => {
330                     let ast_op = op.to_ast_binop().unwrap();
331                     let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
332                     self.mk_expr(span, binary, AttrVec::new())
333                 }
334                 AssocOp::Assign => {
335                     self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
336                 }
337                 AssocOp::AssignOp(k) => {
338                     let aop = match k {
339                         token::Plus => BinOpKind::Add,
340                         token::Minus => BinOpKind::Sub,
341                         token::Star => BinOpKind::Mul,
342                         token::Slash => BinOpKind::Div,
343                         token::Percent => BinOpKind::Rem,
344                         token::Caret => BinOpKind::BitXor,
345                         token::And => BinOpKind::BitAnd,
346                         token::Or => BinOpKind::BitOr,
347                         token::Shl => BinOpKind::Shl,
348                         token::Shr => BinOpKind::Shr,
349                     };
350                     let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
351                     self.mk_expr(span, aopexpr, AttrVec::new())
352                 }
353                 AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
354                     self.span_bug(span, "AssocOp should have been handled by special case")
355                 }
356             };
357
358             if let Fixity::None = fixity {
359                 break;
360             }
361         }
362         if last_type_ascription_set {
363             self.last_type_ascription = None;
364         }
365         Ok(lhs)
366     }
367
368     fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
369         match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
370             // Semi-statement forms are odd:
371             // See https://github.com/rust-lang/rust/issues/29071
372             (true, None) => false,
373             (false, _) => true, // Continue parsing the expression.
374             // An exhaustive check is done in the following block, but these are checked first
375             // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
376             // want to keep their span info to improve diagnostics in these cases in a later stage.
377             (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
378             (true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
379             (true, Some(AssocOp::Add)) // `{ 42 } + 42
380             // If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
381             // `if x { a } else { b } && if y { c } else { d }`
382             if !self.look_ahead(1, |t| t.is_used_keyword()) => {
383                 // These cases are ambiguous and can't be identified in the parser alone.
384                 let sp = self.sess.source_map().start_point(self.token.span);
385                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
386                 false
387             }
388             (true, Some(AssocOp::LAnd)) |
389             (true, Some(AssocOp::LOr)) |
390             (true, Some(AssocOp::BitOr)) => {
391                 // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
392                 // above due to #74233.
393                 // These cases are ambiguous and can't be identified in the parser alone.
394                 //
395                 // Bitwise AND is left out because guessing intent is hard. We can make
396                 // suggestions based on the assumption that double-refs are rarely intentional,
397                 // and closures are distinct enough that they don't get mixed up with their
398                 // return value.
399                 let sp = self.sess.source_map().start_point(self.token.span);
400                 self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
401                 false
402             }
403             (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
404             (true, Some(_)) => {
405                 self.error_found_expr_would_be_stmt(lhs);
406                 true
407             }
408         }
409     }
410
411     /// We've found an expression that would be parsed as a statement,
412     /// but the next token implies this should be parsed as an expression.
413     /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
414     fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
415         let mut err = self.struct_span_err(
416             self.token.span,
417             &format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
418         );
419         err.span_label(self.token.span, "expected expression");
420         self.sess.expr_parentheses_needed(&mut err, lhs.span);
421         err.emit();
422     }
423
424     /// Possibly translate the current token to an associative operator.
425     /// The method does not advance the current token.
426     ///
427     /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
428     fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
429         let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
430             // When parsing const expressions, stop parsing when encountering `>`.
431             (
432                 Some(
433                     AssocOp::ShiftRight
434                     | AssocOp::Greater
435                     | AssocOp::GreaterEqual
436                     | AssocOp::AssignOp(token::BinOpToken::Shr),
437                 ),
438                 _,
439             ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
440                 return None;
441             }
442             (Some(op), _) => (op, self.token.span),
443             (None, Some((Ident { name: sym::and, span }, false))) => {
444                 self.error_bad_logical_op("and", "&&", "conjunction");
445                 (AssocOp::LAnd, span)
446             }
447             (None, Some((Ident { name: sym::or, span }, false))) => {
448                 self.error_bad_logical_op("or", "||", "disjunction");
449                 (AssocOp::LOr, span)
450             }
451             _ => return None,
452         };
453         Some(source_map::respan(span, op))
454     }
455
456     /// Error on `and` and `or` suggesting `&&` and `||` respectively.
457     fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
458         self.struct_span_err(self.token.span, &format!("`{bad}` is not a logical operator"))
459             .span_suggestion_short(
460                 self.token.span,
461                 &format!("use `{good}` to perform logical {english}"),
462                 good,
463                 Applicability::MachineApplicable,
464             )
465             .note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
466             .emit();
467     }
468
469     /// Checks if this expression is a successfully parsed statement.
470     fn expr_is_complete(&self, e: &Expr) -> bool {
471         self.restrictions.contains(Restrictions::STMT_EXPR)
472             && !classify::expr_requires_semi_to_be_stmt(e)
473     }
474
475     /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
476     /// The other two variants are handled in `parse_prefix_range_expr` below.
477     fn parse_range_expr(
478         &mut self,
479         prec: usize,
480         lhs: P<Expr>,
481         op: AssocOp,
482         cur_op_span: Span,
483     ) -> PResult<'a, P<Expr>> {
484         let rhs = if self.is_at_start_of_range_notation_rhs() {
485             Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
486         } else {
487             None
488         };
489         let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
490         let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span);
491         let limits =
492             if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
493         let range = self.mk_range(Some(lhs), rhs, limits);
494         Ok(self.mk_expr(span, range, AttrVec::new()))
495     }
496
497     fn is_at_start_of_range_notation_rhs(&self) -> bool {
498         if self.token.can_begin_expr() {
499             // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
500             if self.token == token::OpenDelim(Delimiter::Brace) {
501                 return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
502             }
503             true
504         } else {
505             false
506         }
507     }
508
509     /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
510     fn parse_prefix_range_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
511         // Check for deprecated `...` syntax.
512         if self.token == token::DotDotDot {
513             self.err_dotdotdot_syntax(self.token.span);
514         }
515
516         debug_assert!(
517             [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
518             "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
519             self.token
520         );
521
522         let limits = match self.token.kind {
523             token::DotDot => RangeLimits::HalfOpen,
524             _ => RangeLimits::Closed,
525         };
526         let op = AssocOp::from_token(&self.token);
527         // FIXME: `parse_prefix_range_expr` is called when the current
528         // token is `DotDot`, `DotDotDot`, or `DotDotEq`. If we haven't already
529         // parsed attributes, then trying to parse them here will always fail.
530         // We should figure out how we want attributes on range expressions to work.
531         let attrs = self.parse_or_use_outer_attributes(attrs)?;
532         self.collect_tokens_for_expr(attrs, |this, attrs| {
533             let lo = this.token.span;
534             this.bump();
535             let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
536                 // RHS must be parsed with more associativity than the dots.
537                 this.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
538                     .map(|x| (lo.to(x.span), Some(x)))?
539             } else {
540                 (lo, None)
541             };
542             let range = this.mk_range(None, opt_end, limits);
543             Ok(this.mk_expr(span, range, attrs.into()))
544         })
545     }
546
547     /// Parses a prefix-unary-operator expr.
548     fn parse_prefix_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
549         let attrs = self.parse_or_use_outer_attributes(attrs)?;
550         let lo = self.token.span;
551
552         macro_rules! make_it {
553             ($this:ident, $attrs:expr, |this, _| $body:expr) => {
554                 $this.collect_tokens_for_expr($attrs, |$this, attrs| {
555                     let (hi, ex) = $body?;
556                     Ok($this.mk_expr(lo.to(hi), ex, attrs.into()))
557                 })
558             };
559         }
560
561         let this = self;
562
563         // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
564         match this.token.uninterpolate().kind {
565             token::Not => make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Not)), // `!expr`
566             token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), // `~expr`
567             token::BinOp(token::Minus) => {
568                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Neg))
569             } // `-expr`
570             token::BinOp(token::Star) => {
571                 make_it!(this, attrs, |this, _| this.parse_unary_expr(lo, UnOp::Deref))
572             } // `*expr`
573             token::BinOp(token::And) | token::AndAnd => {
574                 make_it!(this, attrs, |this, _| this.parse_borrow_expr(lo))
575             }
576             token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
577                 let mut err = this.struct_span_err(lo, "leading `+` is not supported");
578                 err.span_label(lo, "unexpected `+`");
579
580                 // a block on the LHS might have been intended to be an expression instead
581                 if let Some(sp) = this.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
582                     this.sess.expr_parentheses_needed(&mut err, *sp);
583                 } else {
584                     err.span_suggestion_verbose(
585                         lo,
586                         "try removing the `+`",
587                         "",
588                         Applicability::MachineApplicable,
589                     );
590                 }
591                 err.emit();
592
593                 this.bump();
594                 this.parse_prefix_expr(None)
595             } // `+expr`
596             // Recover from `++x`:
597             token::BinOp(token::Plus)
598                 if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) =>
599             {
600                 let prev_is_semi = this.prev_token == token::Semi;
601                 let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
602                 // Eat both `+`s.
603                 this.bump();
604                 this.bump();
605
606                 let operand_expr = this.parse_dot_or_call_expr(Default::default())?;
607                 this.recover_from_prefix_increment(operand_expr, pre_span, prev_is_semi)
608             }
609             token::Ident(..) if this.token.is_keyword(kw::Box) => {
610                 make_it!(this, attrs, |this, _| this.parse_box_expr(lo))
611             }
612             token::Ident(..) if this.is_mistaken_not_ident_negation() => {
613                 make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
614             }
615             _ => return this.parse_dot_or_call_expr(Some(attrs)),
616         }
617     }
618
619     fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
620         self.bump();
621         let expr = self.parse_prefix_expr(None);
622         let (span, expr) = self.interpolated_or_expr_span(expr)?;
623         Ok((lo.to(span), expr))
624     }
625
626     fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
627         let (span, expr) = self.parse_prefix_expr_common(lo)?;
628         Ok((span, self.mk_unary(op, expr)))
629     }
630
631     // Recover on `!` suggesting for bitwise negation instead.
632     fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
633         self.struct_span_err(lo, "`~` cannot be used as a unary operator")
634             .span_suggestion_short(
635                 lo,
636                 "use `!` to perform bitwise not",
637                 "!",
638                 Applicability::MachineApplicable,
639             )
640             .emit();
641
642         self.parse_unary_expr(lo, UnOp::Not)
643     }
644
645     /// Parse `box expr`.
646     fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
647         let (span, expr) = self.parse_prefix_expr_common(lo)?;
648         self.sess.gated_spans.gate(sym::box_syntax, span);
649         Ok((span, ExprKind::Box(expr)))
650     }
651
652     fn is_mistaken_not_ident_negation(&self) -> bool {
653         let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
654             // These tokens can start an expression after `!`, but
655             // can't continue an expression after an ident
656             token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
657             token::Literal(..) | token::Pound => true,
658             _ => t.is_whole_expr(),
659         };
660         self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
661     }
662
663     /// Recover on `not expr` in favor of `!expr`.
664     fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
665         // Emit the error...
666         let not_token = self.look_ahead(1, |t| t.clone());
667         self.struct_span_err(
668             not_token.span,
669             &format!("unexpected {} after identifier", super::token_descr(&not_token)),
670         )
671         .span_suggestion_short(
672             // Span the `not` plus trailing whitespace to avoid
673             // trailing whitespace after the `!` in our suggestion
674             self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
675             "use `!` to perform logical negation",
676             "!",
677             Applicability::MachineApplicable,
678         )
679         .emit();
680
681         // ...and recover!
682         self.parse_unary_expr(lo, UnOp::Not)
683     }
684
685     /// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
686     fn interpolated_or_expr_span(
687         &self,
688         expr: PResult<'a, P<Expr>>,
689     ) -> PResult<'a, (Span, P<Expr>)> {
690         expr.map(|e| {
691             (
692                 match self.prev_token.kind {
693                     TokenKind::Interpolated(..) => self.prev_token.span,
694                     _ => e.span,
695                 },
696                 e,
697             )
698         })
699     }
700
701     fn parse_assoc_op_cast(
702         &mut self,
703         lhs: P<Expr>,
704         lhs_span: Span,
705         expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
706     ) -> PResult<'a, P<Expr>> {
707         let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| {
708             this.mk_expr(
709                 this.mk_expr_sp(&lhs, lhs_span, rhs.span),
710                 expr_kind(lhs, rhs),
711                 AttrVec::new(),
712             )
713         };
714
715         // Save the state of the parser before parsing type normally, in case there is a
716         // LessThan comparison after this cast.
717         let parser_snapshot_before_type = self.clone();
718         let cast_expr = match self.parse_as_cast_ty() {
719             Ok(rhs) => mk_expr(self, lhs, rhs),
720             Err(type_err) => {
721                 // Rewind to before attempting to parse the type with generics, to recover
722                 // from situations like `x as usize < y` in which we first tried to parse
723                 // `usize < y` as a type with generic arguments.
724                 let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
725
726                 // Check for typo of `'a: loop { break 'a }` with a missing `'`.
727                 match (&lhs.kind, &self.token.kind) {
728                     (
729                         // `foo: `
730                         ExprKind::Path(None, ast::Path { segments, .. }),
731                         TokenKind::Ident(kw::For | kw::Loop | kw::While, false),
732                     ) if segments.len() == 1 => {
733                         let snapshot = self.create_snapshot_for_diagnostic();
734                         let label = Label {
735                             ident: Ident::from_str_and_span(
736                                 &format!("'{}", segments[0].ident),
737                                 segments[0].ident.span,
738                             ),
739                         };
740                         match self.parse_labeled_expr(label, AttrVec::new(), false) {
741                             Ok(expr) => {
742                                 type_err.cancel();
743                                 self.struct_span_err(label.ident.span, "malformed loop label")
744                                     .span_suggestion(
745                                         label.ident.span,
746                                         "use the correct loop label format",
747                                         label.ident,
748                                         Applicability::MachineApplicable,
749                                     )
750                                     .emit();
751                                 return Ok(expr);
752                             }
753                             Err(err) => {
754                                 err.cancel();
755                                 self.restore_snapshot(snapshot);
756                             }
757                         }
758                     }
759                     _ => {}
760                 }
761
762                 match self.parse_path(PathStyle::Expr) {
763                     Ok(path) => {
764                         let (op_noun, op_verb) = match self.token.kind {
765                             token::Lt => ("comparison", "comparing"),
766                             token::BinOp(token::Shl) => ("shift", "shifting"),
767                             _ => {
768                                 // We can end up here even without `<` being the next token, for
769                                 // example because `parse_ty_no_plus` returns `Err` on keywords,
770                                 // but `parse_path` returns `Ok` on them due to error recovery.
771                                 // Return original error and parser state.
772                                 *self = parser_snapshot_after_type;
773                                 return Err(type_err);
774                             }
775                         };
776
777                         // Successfully parsed the type path leaving a `<` yet to parse.
778                         type_err.cancel();
779
780                         // Report non-fatal diagnostics, keep `x as usize` as an expression
781                         // in AST and continue parsing.
782                         let msg = format!(
783                             "`<` is interpreted as a start of generic arguments for `{}`, not a {}",
784                             pprust::path_to_string(&path),
785                             op_noun,
786                         );
787                         let span_after_type = parser_snapshot_after_type.token.span;
788                         let expr =
789                             mk_expr(self, lhs, self.mk_ty(path.span, TyKind::Path(None, path)));
790
791                         self.struct_span_err(self.token.span, &msg)
792                             .span_label(
793                                 self.look_ahead(1, |t| t.span).to(span_after_type),
794                                 "interpreted as generic arguments",
795                             )
796                             .span_label(self.token.span, format!("not interpreted as {op_noun}"))
797                             .multipart_suggestion(
798                                 &format!("try {op_verb} the cast value"),
799                                 vec![
800                                     (expr.span.shrink_to_lo(), "(".to_string()),
801                                     (expr.span.shrink_to_hi(), ")".to_string()),
802                                 ],
803                                 Applicability::MachineApplicable,
804                             )
805                             .emit();
806
807                         expr
808                     }
809                     Err(path_err) => {
810                         // Couldn't parse as a path, return original error and parser state.
811                         path_err.cancel();
812                         *self = parser_snapshot_after_type;
813                         return Err(type_err);
814                     }
815                 }
816             }
817         };
818
819         self.parse_and_disallow_postfix_after_cast(cast_expr)
820     }
821
822     /// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
823     /// then emits an error and returns the newly parsed tree.
824     /// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
825     fn parse_and_disallow_postfix_after_cast(
826         &mut self,
827         cast_expr: P<Expr>,
828     ) -> PResult<'a, P<Expr>> {
829         let span = cast_expr.span;
830         let maybe_ascription_span = if let ExprKind::Type(ascripted_expr, _) = &cast_expr.kind {
831             Some(ascripted_expr.span.shrink_to_hi().with_hi(span.hi()))
832         } else {
833             None
834         };
835
836         // Save the memory location of expr before parsing any following postfix operators.
837         // This will be compared with the memory location of the output expression.
838         // If they different we can assume we parsed another expression because the existing expression is not reallocated.
839         let addr_before = &*cast_expr as *const _ as usize;
840         let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
841         let changed = addr_before != &*with_postfix as *const _ as usize;
842
843         // Check if an illegal postfix operator has been added after the cast.
844         // If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
845         if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
846             let msg = format!(
847                 "casts cannot be followed by {}",
848                 match with_postfix.kind {
849                     ExprKind::Index(_, _) => "indexing",
850                     ExprKind::Try(_) => "`?`",
851                     ExprKind::Field(_, _) => "a field access",
852                     ExprKind::MethodCall(_, _, _) => "a method call",
853                     ExprKind::Call(_, _) => "a function call",
854                     ExprKind::Await(_) => "`.await`",
855                     ExprKind::Err => return Ok(with_postfix),
856                     _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
857                 }
858             );
859             let mut err = self.struct_span_err(span, &msg);
860
861             let suggest_parens = |err: &mut DiagnosticBuilder<'_, _>| {
862                 let suggestions = vec![
863                     (span.shrink_to_lo(), "(".to_string()),
864                     (span.shrink_to_hi(), ")".to_string()),
865                 ];
866                 err.multipart_suggestion(
867                     "try surrounding the expression in parentheses",
868                     suggestions,
869                     Applicability::MachineApplicable,
870                 );
871             };
872
873             // If type ascription is "likely an error", the user will already be getting a useful
874             // help message, and doesn't need a second.
875             if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
876                 self.maybe_annotate_with_ascription(&mut err, false);
877             } else if let Some(ascription_span) = maybe_ascription_span {
878                 let is_nightly = self.sess.unstable_features.is_nightly_build();
879                 if is_nightly {
880                     suggest_parens(&mut err);
881                 }
882                 err.span_suggestion(
883                     ascription_span,
884                     &format!(
885                         "{}remove the type ascription",
886                         if is_nightly { "alternatively, " } else { "" }
887                     ),
888                     "",
889                     if is_nightly {
890                         Applicability::MaybeIncorrect
891                     } else {
892                         Applicability::MachineApplicable
893                     },
894                 );
895             } else {
896                 suggest_parens(&mut err);
897             }
898             err.emit();
899         };
900         Ok(with_postfix)
901     }
902
903     fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
904         let maybe_path = self.could_ascription_be_path(&lhs.kind);
905         self.last_type_ascription = Some((self.prev_token.span, maybe_path));
906         let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
907         self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
908         Ok(lhs)
909     }
910
911     /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
912     fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
913         self.expect_and()?;
914         let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
915         let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
916         let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
917         let expr = self.parse_prefix_expr(None);
918         let (hi, expr) = self.interpolated_or_expr_span(expr)?;
919         let span = lo.to(hi);
920         if let Some(lt) = lifetime {
921             self.error_remove_borrow_lifetime(span, lt.ident.span);
922         }
923         Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
924     }
925
926     fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
927         self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
928             .span_label(lt_span, "annotated with lifetime here")
929             .span_suggestion(
930                 lt_span,
931                 "remove the lifetime annotation",
932                 "",
933                 Applicability::MachineApplicable,
934             )
935             .emit();
936     }
937
938     /// Parse `mut?` or `raw [ const | mut ]`.
939     fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
940         if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
941             // `raw [ const | mut ]`.
942             let found_raw = self.eat_keyword(kw::Raw);
943             assert!(found_raw);
944             let mutability = self.parse_const_or_mut().unwrap();
945             self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
946             (ast::BorrowKind::Raw, mutability)
947         } else {
948             // `mut?`
949             (ast::BorrowKind::Ref, self.parse_mutability())
950         }
951     }
952
953     /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
954     fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrWrapper>) -> PResult<'a, P<Expr>> {
955         let attrs = self.parse_or_use_outer_attributes(attrs)?;
956         self.collect_tokens_for_expr(attrs, |this, attrs| {
957             let base = this.parse_bottom_expr();
958             let (span, base) = this.interpolated_or_expr_span(base)?;
959             this.parse_dot_or_call_expr_with(base, span, attrs)
960         })
961     }
962
963     pub(super) fn parse_dot_or_call_expr_with(
964         &mut self,
965         e0: P<Expr>,
966         lo: Span,
967         mut attrs: Vec<ast::Attribute>,
968     ) -> PResult<'a, P<Expr>> {
969         // Stitch the list of outer attributes onto the return value.
970         // A little bit ugly, but the best way given the current code
971         // structure
972         self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
973             expr.map(|mut expr| {
974                 attrs.extend::<Vec<_>>(expr.attrs.into());
975                 expr.attrs = attrs.into();
976                 expr
977             })
978         })
979     }
980
981     fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
982         loop {
983             let has_question = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
984                 // we are using noexpect here because we don't expect a `?` directly after a `return`
985                 // which could be suggested otherwise
986                 self.eat_noexpect(&token::Question)
987             } else {
988                 self.eat(&token::Question)
989             };
990             if has_question {
991                 // `expr?`
992                 e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
993                 continue;
994             }
995             let has_dot = if self.prev_token.kind == TokenKind::Ident(kw::Return, false) {
996                 // we are using noexpect here because we don't expect a `.` directly after a `return`
997                 // which could be suggested otherwise
998                 self.eat_noexpect(&token::Dot)
999             } else {
1000                 self.eat(&token::Dot)
1001             };
1002             if has_dot {
1003                 // expr.f
1004                 e = self.parse_dot_suffix_expr(lo, e)?;
1005                 continue;
1006             }
1007             if self.expr_is_complete(&e) {
1008                 return Ok(e);
1009             }
1010             e = match self.token.kind {
1011                 token::OpenDelim(Delimiter::Parenthesis) => self.parse_fn_call_expr(lo, e),
1012                 token::OpenDelim(Delimiter::Bracket) => self.parse_index_expr(lo, e)?,
1013                 _ => return Ok(e),
1014             }
1015         }
1016     }
1017
1018     fn look_ahead_type_ascription_as_field(&mut self) -> bool {
1019         self.look_ahead(1, |t| t.is_ident())
1020             && self.look_ahead(2, |t| t == &token::Colon)
1021             && self.look_ahead(3, |t| t.can_begin_expr())
1022     }
1023
1024     fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1025         match self.token.uninterpolate().kind {
1026             token::Ident(..) => self.parse_dot_suffix(base, lo),
1027             token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
1028                 Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
1029             }
1030             token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
1031                 Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
1032             }
1033             _ => {
1034                 self.error_unexpected_after_dot();
1035                 Ok(base)
1036             }
1037         }
1038     }
1039
1040     fn error_unexpected_after_dot(&self) {
1041         // FIXME Could factor this out into non_fatal_unexpected or something.
1042         let actual = pprust::token_to_string(&self.token);
1043         self.struct_span_err(self.token.span, &format!("unexpected token: `{actual}`")).emit();
1044     }
1045
1046     // We need an identifier or integer, but the next token is a float.
1047     // Break the float into components to extract the identifier or integer.
1048     // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1049     // parts unless those parts are processed immediately. `TokenCursor` should either
1050     // support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1051     // we should break everything including floats into more basic proc-macro style
1052     // tokens in the lexer (probably preferable).
1053     fn parse_tuple_field_access_expr_float(
1054         &mut self,
1055         lo: Span,
1056         base: P<Expr>,
1057         float: Symbol,
1058         suffix: Option<Symbol>,
1059     ) -> P<Expr> {
1060         #[derive(Debug)]
1061         enum FloatComponent {
1062             IdentLike(String),
1063             Punct(char),
1064         }
1065         use FloatComponent::*;
1066
1067         let float_str = float.as_str();
1068         let mut components = Vec::new();
1069         let mut ident_like = String::new();
1070         for c in float_str.chars() {
1071             if c == '_' || c.is_ascii_alphanumeric() {
1072                 ident_like.push(c);
1073             } else if matches!(c, '.' | '+' | '-') {
1074                 if !ident_like.is_empty() {
1075                     components.push(IdentLike(mem::take(&mut ident_like)));
1076                 }
1077                 components.push(Punct(c));
1078             } else {
1079                 panic!("unexpected character in a float token: {:?}", c)
1080             }
1081         }
1082         if !ident_like.is_empty() {
1083             components.push(IdentLike(ident_like));
1084         }
1085
1086         // With proc macros the span can refer to anything, the source may be too short,
1087         // or too long, or non-ASCII. It only makes sense to break our span into components
1088         // if its underlying text is identical to our float literal.
1089         let span = self.token.span;
1090         let can_take_span_apart =
1091             || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1092
1093         match &*components {
1094             // 1e2
1095             [IdentLike(i)] => {
1096                 self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
1097             }
1098             // 1.
1099             [IdentLike(i), Punct('.')] => {
1100                 let (ident_span, dot_span) = if can_take_span_apart() {
1101                     let (span, ident_len) = (span.data(), BytePos::from_usize(i.len()));
1102                     let ident_span = span.with_hi(span.lo + ident_len);
1103                     let dot_span = span.with_lo(span.lo + ident_len);
1104                     (ident_span, dot_span)
1105                 } else {
1106                     (span, span)
1107                 };
1108                 assert!(suffix.is_none());
1109                 let symbol = Symbol::intern(&i);
1110                 self.token = Token::new(token::Ident(symbol, false), ident_span);
1111                 let next_token = (Token::new(token::Dot, dot_span), self.token_spacing);
1112                 self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
1113             }
1114             // 1.2 | 1.2e3
1115             [IdentLike(i1), Punct('.'), IdentLike(i2)] => {
1116                 let (ident1_span, dot_span, ident2_span) = if can_take_span_apart() {
1117                     let (span, ident1_len) = (span.data(), BytePos::from_usize(i1.len()));
1118                     let ident1_span = span.with_hi(span.lo + ident1_len);
1119                     let dot_span = span
1120                         .with_lo(span.lo + ident1_len)
1121                         .with_hi(span.lo + ident1_len + BytePos(1));
1122                     let ident2_span = self.token.span.with_lo(span.lo + ident1_len + BytePos(1));
1123                     (ident1_span, dot_span, ident2_span)
1124                 } else {
1125                     (span, span, span)
1126                 };
1127                 let symbol1 = Symbol::intern(&i1);
1128                 self.token = Token::new(token::Ident(symbol1, false), ident1_span);
1129                 // This needs to be `Spacing::Alone` to prevent regressions.
1130                 // See issue #76399 and PR #76285 for more details
1131                 let next_token1 = (Token::new(token::Dot, dot_span), Spacing::Alone);
1132                 let base1 =
1133                     self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
1134                 let symbol2 = Symbol::intern(&i2);
1135                 let next_token2 = Token::new(token::Ident(symbol2, false), ident2_span);
1136                 self.bump_with((next_token2, self.token_spacing)); // `.`
1137                 self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
1138             }
1139             // 1e+ | 1e- (recovered)
1140             [IdentLike(_), Punct('+' | '-')] |
1141             // 1e+2 | 1e-2
1142             [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1143             // 1.2e+ | 1.2e-
1144             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1145             // 1.2e+3 | 1.2e-3
1146             [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1147                 // See the FIXME about `TokenCursor` above.
1148                 self.error_unexpected_after_dot();
1149                 base
1150             }
1151             _ => panic!("unexpected components in a float token: {:?}", components),
1152         }
1153     }
1154
1155     fn parse_tuple_field_access_expr(
1156         &mut self,
1157         lo: Span,
1158         base: P<Expr>,
1159         field: Symbol,
1160         suffix: Option<Symbol>,
1161         next_token: Option<(Token, Spacing)>,
1162     ) -> P<Expr> {
1163         match next_token {
1164             Some(next_token) => self.bump_with(next_token),
1165             None => self.bump(),
1166         }
1167         let span = self.prev_token.span;
1168         let field = ExprKind::Field(base, Ident::new(field, span));
1169         self.expect_no_suffix(span, "a tuple index", suffix);
1170         self.mk_expr(lo.to(span), field, AttrVec::new())
1171     }
1172
1173     /// Parse a function call expression, `expr(...)`.
1174     fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
1175         let snapshot = if self.token.kind == token::OpenDelim(Delimiter::Parenthesis)
1176             && self.look_ahead_type_ascription_as_field()
1177         {
1178             Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1179         } else {
1180             None
1181         };
1182         let open_paren = self.token.span;
1183
1184         let mut seq = self.parse_paren_expr_seq().map(|args| {
1185             self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
1186         });
1187         if let Some(expr) =
1188             self.maybe_recover_struct_lit_bad_delims(lo, open_paren, &mut seq, snapshot)
1189         {
1190             return expr;
1191         }
1192         self.recover_seq_parse_error(Delimiter::Parenthesis, lo, seq)
1193     }
1194
1195     /// If we encounter a parser state that looks like the user has written a `struct` literal with
1196     /// parentheses instead of braces, recover the parser state and provide suggestions.
1197     #[instrument(skip(self, seq, snapshot), level = "trace")]
1198     fn maybe_recover_struct_lit_bad_delims(
1199         &mut self,
1200         lo: Span,
1201         open_paren: Span,
1202         seq: &mut PResult<'a, P<Expr>>,
1203         snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1204     ) -> Option<P<Expr>> {
1205         match (seq.as_mut(), snapshot) {
1206             (Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1207                 let name = pprust::path_to_string(&path);
1208                 snapshot.bump(); // `(`
1209                 match snapshot.parse_struct_fields(path, false, Delimiter::Parenthesis) {
1210                     Ok((fields, ..))
1211                         if snapshot.eat(&token::CloseDelim(Delimiter::Parenthesis)) =>
1212                     {
1213                         // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1214                         // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1215                         self.restore_snapshot(snapshot);
1216                         let close_paren = self.prev_token.span;
1217                         let span = lo.to(self.prev_token.span);
1218                         if !fields.is_empty() {
1219                             let replacement_err = self.struct_span_err(
1220                                 span,
1221                                 "invalid `struct` delimiters or `fn` call arguments",
1222                             );
1223                             mem::replace(err, replacement_err).cancel();
1224
1225                             err.multipart_suggestion(
1226                                 &format!("if `{name}` is a struct, use braces as delimiters"),
1227                                 vec![
1228                                     (open_paren, " { ".to_string()),
1229                                     (close_paren, " }".to_string()),
1230                                 ],
1231                                 Applicability::MaybeIncorrect,
1232                             );
1233                             err.multipart_suggestion(
1234                                 &format!("if `{name}` is a function, use the arguments directly"),
1235                                 fields
1236                                     .into_iter()
1237                                     .map(|field| (field.span.until(field.expr.span), String::new()))
1238                                     .collect(),
1239                                 Applicability::MaybeIncorrect,
1240                             );
1241                             err.emit();
1242                         } else {
1243                             err.emit();
1244                         }
1245                         return Some(self.mk_expr_err(span));
1246                     }
1247                     Ok(_) => {}
1248                     Err(mut err) => {
1249                         err.emit();
1250                     }
1251                 }
1252             }
1253             _ => {}
1254         }
1255         None
1256     }
1257
1258     /// Parse an indexing expression `expr[...]`.
1259     fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
1260         self.bump(); // `[`
1261         let index = self.parse_expr()?;
1262         self.expect(&token::CloseDelim(Delimiter::Bracket))?;
1263         Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
1264     }
1265
1266     /// Assuming we have just parsed `.`, continue parsing into an expression.
1267     fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
1268         if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
1269             return Ok(self.mk_await_expr(self_arg, lo));
1270         }
1271
1272         let fn_span_lo = self.token.span;
1273         let mut segment = self.parse_path_segment(PathStyle::Expr, None)?;
1274         self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(Delimiter::Parenthesis)]);
1275         self.check_turbofish_missing_angle_brackets(&mut segment);
1276
1277         if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1278             // Method call `expr.f()`
1279             let mut args = self.parse_paren_expr_seq()?;
1280             args.insert(0, self_arg);
1281
1282             let fn_span = fn_span_lo.to(self.prev_token.span);
1283             let span = lo.to(self.prev_token.span);
1284             Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
1285         } else {
1286             // Field access `expr.f`
1287             if let Some(args) = segment.args {
1288                 self.struct_span_err(
1289                     args.span(),
1290                     "field expressions cannot have generic arguments",
1291                 )
1292                 .emit();
1293             }
1294
1295             let span = lo.to(self.prev_token.span);
1296             Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
1297         }
1298     }
1299
1300     /// At the bottom (top?) of the precedence hierarchy,
1301     /// Parses things like parenthesized exprs, macros, `return`, etc.
1302     ///
1303     /// N.B., this does not parse outer attributes, and is private because it only works
1304     /// correctly if called from `parse_dot_or_call_expr()`.
1305     fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
1306         maybe_recover_from_interpolated_ty_qpath!(self, true);
1307         maybe_whole_expr!(self);
1308
1309         // Outer attributes are already parsed and will be
1310         // added to the return value after the fact.
1311         //
1312         // Therefore, prevent sub-parser from parsing
1313         // attributes by giving them an empty "already-parsed" list.
1314         let attrs = AttrVec::new();
1315
1316         // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
1317         let lo = self.token.span;
1318         if let token::Literal(_) = self.token.kind {
1319             // This match arm is a special-case of the `_` match arm below and
1320             // could be removed without changing functionality, but it's faster
1321             // to have it here, especially for programs with large constants.
1322             self.parse_lit_expr(attrs)
1323         } else if self.check(&token::OpenDelim(Delimiter::Parenthesis)) {
1324             self.parse_tuple_parens_expr(attrs)
1325         } else if self.check(&token::OpenDelim(Delimiter::Brace)) {
1326             self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
1327         } else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
1328             self.parse_closure_expr(attrs).map_err(|mut err| {
1329                 // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1330                 // then suggest parens around the lhs.
1331                 if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&lo) {
1332                     self.sess.expr_parentheses_needed(&mut err, *sp);
1333                 }
1334                 err
1335             })
1336         } else if self.check(&token::OpenDelim(Delimiter::Bracket)) {
1337             self.parse_array_or_repeat_expr(attrs, Delimiter::Bracket)
1338         } else if self.check_path() {
1339             self.parse_path_start_expr(attrs)
1340         } else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
1341             self.parse_closure_expr(attrs)
1342         } else if self.eat_keyword(kw::If) {
1343             self.parse_if_expr(attrs)
1344         } else if self.check_keyword(kw::For) {
1345             if self.choose_generics_over_qpath(1) {
1346                 // NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
1347                 // this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
1348                 // When `for <Foo as Bar>::Proj in $expr $block` is wanted,
1349                 // you can disambiguate in favor of a pattern with `(...)`.
1350                 self.recover_quantified_closure_expr(attrs)
1351             } else {
1352                 assert!(self.eat_keyword(kw::For));
1353                 self.parse_for_expr(None, self.prev_token.span, attrs)
1354             }
1355         } else if self.eat_keyword(kw::While) {
1356             self.parse_while_expr(None, self.prev_token.span, attrs)
1357         } else if let Some(label) = self.eat_label() {
1358             self.parse_labeled_expr(label, attrs, true)
1359         } else if self.eat_keyword(kw::Loop) {
1360             let sp = self.prev_token.span;
1361             self.parse_loop_expr(None, self.prev_token.span, attrs).map_err(|mut err| {
1362                 err.span_label(sp, "while parsing this `loop` expression");
1363                 err
1364             })
1365         } else if self.eat_keyword(kw::Continue) {
1366             let kind = ExprKind::Continue(self.eat_label());
1367             Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
1368         } else if self.eat_keyword(kw::Match) {
1369             let match_sp = self.prev_token.span;
1370             self.parse_match_expr(attrs).map_err(|mut err| {
1371                 err.span_label(match_sp, "while parsing this `match` expression");
1372                 err
1373             })
1374         } else if self.eat_keyword(kw::Unsafe) {
1375             let sp = self.prev_token.span;
1376             self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
1377                 .map_err(|mut err| {
1378                     err.span_label(sp, "while parsing this `unsafe` expression");
1379                     err
1380                 })
1381         } else if self.check_inline_const(0) {
1382             self.parse_const_block(lo.to(self.token.span), false)
1383         } else if self.is_do_catch_block() {
1384             self.recover_do_catch(attrs)
1385         } else if self.is_try_block() {
1386             self.expect_keyword(kw::Try)?;
1387             self.parse_try_block(lo, attrs)
1388         } else if self.eat_keyword(kw::Return) {
1389             self.parse_return_expr(attrs)
1390         } else if self.eat_keyword(kw::Break) {
1391             self.parse_break_expr(attrs)
1392         } else if self.eat_keyword(kw::Yield) {
1393             self.parse_yield_expr(attrs)
1394         } else if self.is_do_yeet() {
1395             self.parse_yeet_expr(attrs)
1396         } else if self.check_keyword(kw::Let) {
1397             self.manage_let_chains_context();
1398             self.bump();
1399             self.parse_let_expr(attrs)
1400         } else if self.eat_keyword(kw::Underscore) {
1401             Ok(self.mk_expr(self.prev_token.span, ExprKind::Underscore, attrs))
1402         } else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
1403             // Don't complain about bare semicolons after unclosed braces
1404             // recovery in order to keep the error count down. Fixing the
1405             // delimiters will possibly also fix the bare semicolon found in
1406             // expression context. For example, silence the following error:
1407             //
1408             //     error: expected expression, found `;`
1409             //      --> file.rs:2:13
1410             //       |
1411             //     2 |     foo(bar(;
1412             //       |             ^ expected expression
1413             self.bump();
1414             Ok(self.mk_expr_err(self.token.span))
1415         } else if self.token.uninterpolated_span().rust_2018() {
1416             // `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
1417             if self.check_keyword(kw::Async) {
1418                 if self.is_async_block() {
1419                     // Check for `async {` and `async move {`.
1420                     self.parse_async_block(attrs)
1421                 } else {
1422                     self.parse_closure_expr(attrs)
1423                 }
1424             } else if self.eat_keyword(kw::Await) {
1425                 self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
1426             } else {
1427                 self.parse_lit_expr(attrs)
1428             }
1429         } else {
1430             self.parse_lit_expr(attrs)
1431         }
1432     }
1433
1434     fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1435         let lo = self.token.span;
1436         match self.parse_opt_lit() {
1437             Some(literal) => {
1438                 let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
1439                 self.maybe_recover_from_bad_qpath(expr)
1440             }
1441             None => self.try_macro_suggestion(),
1442         }
1443     }
1444
1445     fn parse_tuple_parens_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1446         let lo = self.token.span;
1447         self.expect(&token::OpenDelim(Delimiter::Parenthesis))?;
1448         let (es, trailing_comma) = match self.parse_seq_to_end(
1449             &token::CloseDelim(Delimiter::Parenthesis),
1450             SeqSep::trailing_allowed(token::Comma),
1451             |p| p.parse_expr_catch_underscore(),
1452         ) {
1453             Ok(x) => x,
1454             Err(err) => {
1455                 return Ok(self.recover_seq_parse_error(Delimiter::Parenthesis, lo, Err(err)));
1456             }
1457         };
1458         let kind = if es.len() == 1 && !trailing_comma {
1459             // `(e)` is parenthesized `e`.
1460             ExprKind::Paren(es.into_iter().next().unwrap())
1461         } else {
1462             // `(e,)` is a tuple with only one field, `e`.
1463             ExprKind::Tup(es)
1464         };
1465         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1466         self.maybe_recover_from_bad_qpath(expr)
1467     }
1468
1469     fn parse_array_or_repeat_expr(
1470         &mut self,
1471         attrs: AttrVec,
1472         close_delim: Delimiter,
1473     ) -> PResult<'a, P<Expr>> {
1474         let lo = self.token.span;
1475         self.bump(); // `[` or other open delim
1476
1477         let close = &token::CloseDelim(close_delim);
1478         let kind = if self.eat(close) {
1479             // Empty vector
1480             ExprKind::Array(Vec::new())
1481         } else {
1482             // Non-empty vector
1483             let first_expr = self.parse_expr()?;
1484             if self.eat(&token::Semi) {
1485                 // Repeating array syntax: `[ 0; 512 ]`
1486                 let count = self.parse_anon_const_expr()?;
1487                 self.expect(close)?;
1488                 ExprKind::Repeat(first_expr, count)
1489             } else if self.eat(&token::Comma) {
1490                 // Vector with two or more elements.
1491                 let sep = SeqSep::trailing_allowed(token::Comma);
1492                 let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1493                 let mut exprs = vec![first_expr];
1494                 exprs.extend(remaining_exprs);
1495                 ExprKind::Array(exprs)
1496             } else {
1497                 // Vector with one element
1498                 self.expect(close)?;
1499                 ExprKind::Array(vec![first_expr])
1500             }
1501         };
1502         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1503         self.maybe_recover_from_bad_qpath(expr)
1504     }
1505
1506     fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1507         let (qself, path) = if self.eat_lt() {
1508             let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
1509             (Some(qself), path)
1510         } else {
1511             (None, self.parse_path(PathStyle::Expr)?)
1512         };
1513         let lo = path.span;
1514
1515         // `!`, as an operator, is prefix, so we know this isn't that.
1516         let (hi, kind) = if self.eat(&token::Not) {
1517             // MACRO INVOCATION expression
1518             if qself.is_some() {
1519                 self.struct_span_err(path.span, "macros cannot use qualified paths").emit();
1520             }
1521             let mac = MacCall {
1522                 path,
1523                 args: self.parse_mac_args()?,
1524                 prior_type_ascription: self.last_type_ascription,
1525             };
1526             (self.prev_token.span, ExprKind::MacCall(mac))
1527         } else if self.check(&token::OpenDelim(Delimiter::Brace)) {
1528             if let Some(expr) = self.maybe_parse_struct_expr(qself.as_ref(), &path, &attrs) {
1529                 if qself.is_some() {
1530                     self.sess.gated_spans.gate(sym::more_qualified_paths, path.span);
1531                 }
1532                 return expr;
1533             } else {
1534                 (path.span, ExprKind::Path(qself, path))
1535             }
1536         } else {
1537             (path.span, ExprKind::Path(qself, path))
1538         };
1539
1540         let expr = self.mk_expr(lo.to(hi), kind, attrs);
1541         self.maybe_recover_from_bad_qpath(expr)
1542     }
1543
1544     /// Parse `'label: $expr`. The label is already parsed.
1545     fn parse_labeled_expr(
1546         &mut self,
1547         label: Label,
1548         attrs: AttrVec,
1549         mut consume_colon: bool,
1550     ) -> PResult<'a, P<Expr>> {
1551         let lo = label.ident.span;
1552         let label = Some(label);
1553         let ate_colon = self.eat(&token::Colon);
1554         let expr = if self.eat_keyword(kw::While) {
1555             self.parse_while_expr(label, lo, attrs)
1556         } else if self.eat_keyword(kw::For) {
1557             self.parse_for_expr(label, lo, attrs)
1558         } else if self.eat_keyword(kw::Loop) {
1559             self.parse_loop_expr(label, lo, attrs)
1560         } else if self.check_noexpect(&token::OpenDelim(Delimiter::Brace))
1561             || self.token.is_whole_block()
1562         {
1563             self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
1564         } else if !ate_colon
1565             && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1566         {
1567             // We're probably inside of a `Path<'a>` that needs a turbofish
1568             let msg = "expected `while`, `for`, `loop` or `{` after a label";
1569             self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
1570             consume_colon = false;
1571             Ok(self.mk_expr_err(lo))
1572         } else {
1573             let msg = "expected `while`, `for`, `loop` or `{` after a label";
1574
1575             let mut err = self.struct_span_err(self.token.span, msg);
1576             err.span_label(self.token.span, msg);
1577
1578             // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1579             let expr = self.parse_expr().map(|expr| {
1580                 let span = expr.span;
1581
1582                 let found_labeled_breaks = {
1583                     struct FindLabeledBreaksVisitor(bool);
1584
1585                     impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1586                         fn visit_expr_post(&mut self, ex: &'ast Expr) {
1587                             if let ExprKind::Break(Some(_label), _) = ex.kind {
1588                                 self.0 = true;
1589                             }
1590                         }
1591                     }
1592
1593                     let mut vis = FindLabeledBreaksVisitor(false);
1594                     vis.visit_expr(&expr);
1595                     vis.0
1596                 };
1597
1598                 // Suggestion involves adding a (as of time of writing this, unstable) labeled block.
1599                 //
1600                 // If there are no breaks that may use this label, suggest removing the label and
1601                 // recover to the unmodified expression.
1602                 if !found_labeled_breaks {
1603                     let msg = "consider removing the label";
1604                     err.span_suggestion_verbose(
1605                         lo.until(span),
1606                         msg,
1607                         "",
1608                         Applicability::MachineApplicable,
1609                     );
1610
1611                     return expr;
1612                 }
1613
1614                 let sugg_msg = "consider enclosing expression in a block";
1615                 let suggestions = vec![
1616                     (span.shrink_to_lo(), "{ ".to_owned()),
1617                     (span.shrink_to_hi(), " }".to_owned()),
1618                 ];
1619
1620                 err.multipart_suggestion_verbose(
1621                     sugg_msg,
1622                     suggestions,
1623                     Applicability::MachineApplicable,
1624                 );
1625
1626                 // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to supress future errors about `break 'label`.
1627                 let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1628                 let blk = self.mk_block(vec![stmt], BlockCheckMode::Default, span);
1629                 self.mk_expr(span, ExprKind::Block(blk, label), ThinVec::new())
1630             });
1631
1632             err.emit();
1633             expr
1634         }?;
1635
1636         if !ate_colon && consume_colon {
1637             self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
1638         }
1639
1640         Ok(expr)
1641     }
1642
1643     fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
1644         self.struct_span_err(span, "labeled expression must be followed by `:`")
1645             .span_label(lo, "the label")
1646             .span_suggestion_short(
1647                 lo.shrink_to_hi(),
1648                 "add `:` after the label",
1649                 ": ",
1650                 Applicability::MachineApplicable,
1651             )
1652             .note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
1653             .emit();
1654     }
1655
1656     /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1657     fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1658         let lo = self.token.span;
1659
1660         self.bump(); // `do`
1661         self.bump(); // `catch`
1662
1663         let span_dc = lo.to(self.prev_token.span);
1664         self.struct_span_err(span_dc, "found removed `do catch` syntax")
1665             .span_suggestion(
1666                 span_dc,
1667                 "replace with the new syntax",
1668                 "try",
1669                 Applicability::MachineApplicable,
1670             )
1671             .note("following RFC #2388, the new non-placeholder syntax is `try`")
1672             .emit();
1673
1674         self.parse_try_block(lo, attrs)
1675     }
1676
1677     /// Parse an expression if the token can begin one.
1678     fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
1679         Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1680     }
1681
1682     /// Parse `"return" expr?`.
1683     fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1684         let lo = self.prev_token.span;
1685         let kind = ExprKind::Ret(self.parse_expr_opt()?);
1686         let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
1687         self.maybe_recover_from_bad_qpath(expr)
1688     }
1689
1690     /// Parse `"do" "yeet" expr?`.
1691     fn parse_yeet_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1692         let lo = self.token.span;
1693
1694         self.bump(); // `do`
1695         self.bump(); // `yeet`
1696
1697         let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1698
1699         let span = lo.to(self.prev_token.span);
1700         self.sess.gated_spans.gate(sym::yeet_expr, span);
1701         let expr = self.mk_expr(span, kind, attrs);
1702         self.maybe_recover_from_bad_qpath(expr)
1703     }
1704
1705     /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1706     /// If the label is followed immediately by a `:` token, the label and `:` are
1707     /// parsed as part of the expression (i.e. a labeled loop). The language team has
1708     /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1709     /// the break expression of an unlabeled break is a labeled loop (as in
1710     /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1711     /// expression only gets a warning for compatibility reasons; and a labeled break
1712     /// with a labeled loop does not even get a warning because there is no ambiguity.
1713     fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1714         let lo = self.prev_token.span;
1715         let mut label = self.eat_label();
1716         let kind = if label.is_some() && self.token == token::Colon {
1717             // The value expression can be a labeled loop, see issue #86948, e.g.:
1718             // `loop { break 'label: loop { break 'label 42; }; }`
1719             let lexpr = self.parse_labeled_expr(label.take().unwrap(), AttrVec::new(), true)?;
1720             self.struct_span_err(
1721                 lexpr.span,
1722                 "parentheses are required around this expression to avoid confusion with a labeled break expression",
1723             )
1724             .multipart_suggestion(
1725                 "wrap the expression in parentheses",
1726                 vec![
1727                     (lexpr.span.shrink_to_lo(), "(".to_string()),
1728                     (lexpr.span.shrink_to_hi(), ")".to_string()),
1729                 ],
1730                 Applicability::MachineApplicable,
1731             )
1732             .emit();
1733             Some(lexpr)
1734         } else if self.token != token::OpenDelim(Delimiter::Brace)
1735             || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1736         {
1737             let expr = self.parse_expr_opt()?;
1738             if let Some(ref expr) = expr {
1739                 if label.is_some()
1740                     && matches!(
1741                         expr.kind,
1742                         ExprKind::While(_, _, None)
1743                             | ExprKind::ForLoop(_, _, _, None)
1744                             | ExprKind::Loop(_, None)
1745                             | ExprKind::Block(_, None)
1746                     )
1747                 {
1748                     self.sess.buffer_lint_with_diagnostic(
1749                         BREAK_WITH_LABEL_AND_LOOP,
1750                         lo.to(expr.span),
1751                         ast::CRATE_NODE_ID,
1752                         "this labeled break expression is easy to confuse with an unlabeled break with a labeled value expression",
1753                         BuiltinLintDiagnostics::BreakWithLabelAndLoop(expr.span),
1754                     );
1755                 }
1756             }
1757             expr
1758         } else {
1759             None
1760         };
1761         let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
1762         self.maybe_recover_from_bad_qpath(expr)
1763     }
1764
1765     /// Parse `"yield" expr?`.
1766     fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
1767         let lo = self.prev_token.span;
1768         let kind = ExprKind::Yield(self.parse_expr_opt()?);
1769         let span = lo.to(self.prev_token.span);
1770         self.sess.gated_spans.gate(sym::generators, span);
1771         let expr = self.mk_expr(span, kind, attrs);
1772         self.maybe_recover_from_bad_qpath(expr)
1773     }
1774
1775     /// Returns a string literal if the next token is a string literal.
1776     /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
1777     /// and returns `None` if the next token is not literal at all.
1778     pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
1779         match self.parse_opt_lit() {
1780             Some(lit) => match lit.kind {
1781                 ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
1782                     style,
1783                     symbol: lit.token.symbol,
1784                     suffix: lit.token.suffix,
1785                     span: lit.span,
1786                     symbol_unescaped,
1787                 }),
1788                 _ => Err(Some(lit)),
1789             },
1790             None => Err(None),
1791         }
1792     }
1793
1794     pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
1795         self.parse_opt_lit().ok_or_else(|| {
1796             if let token::Interpolated(inner) = &self.token.kind {
1797                 let expr = match inner.as_ref() {
1798                     token::NtExpr(expr) => Some(expr),
1799                     token::NtLiteral(expr) => Some(expr),
1800                     _ => None,
1801                 };
1802                 if let Some(expr) = expr {
1803                     if matches!(expr.kind, ExprKind::Err) {
1804                         let mut err = self
1805                             .diagnostic()
1806                             .struct_span_err(self.token.span, "invalid interpolated expression");
1807                         err.downgrade_to_delayed_bug();
1808                         return err;
1809                     }
1810                 }
1811             }
1812             let msg = format!("unexpected token: {}", super::token_descr(&self.token));
1813             self.struct_span_err(self.token.span, &msg)
1814         })
1815     }
1816
1817     /// Matches `lit = true | false | token_lit`.
1818     /// Returns `None` if the next token is not a literal.
1819     pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
1820         let mut recovered = None;
1821         if self.token == token::Dot {
1822             // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
1823             // dot would follow an optional literal, so we do this unconditionally.
1824             recovered = self.look_ahead(1, |next_token| {
1825                 if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
1826                     next_token.kind
1827                 {
1828                     if self.token.span.hi() == next_token.span.lo() {
1829                         let s = String::from("0.") + symbol.as_str();
1830                         let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
1831                         return Some(Token::new(kind, self.token.span.to(next_token.span)));
1832                     }
1833                 }
1834                 None
1835             });
1836             if let Some(token) = &recovered {
1837                 self.bump();
1838                 self.error_float_lits_must_have_int_part(&token);
1839             }
1840         }
1841
1842         let token = recovered.as_ref().unwrap_or(&self.token);
1843         match Lit::from_token(token) {
1844             Ok(lit) => {
1845                 self.bump();
1846                 Some(lit)
1847             }
1848             Err(LitError::NotLiteral) => None,
1849             Err(err) => {
1850                 let span = token.span;
1851                 let token::Literal(lit) = token.kind else {
1852                     unreachable!();
1853                 };
1854                 self.bump();
1855                 self.report_lit_error(err, lit, span);
1856                 // Pack possible quotes and prefixes from the original literal into
1857                 // the error literal's symbol so they can be pretty-printed faithfully.
1858                 let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
1859                 let symbol = Symbol::intern(&suffixless_lit.to_string());
1860                 let lit = token::Lit::new(token::Err, symbol, lit.suffix);
1861                 Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
1862             }
1863         }
1864     }
1865
1866     fn error_float_lits_must_have_int_part(&self, token: &Token) {
1867         self.struct_span_err(token.span, "float literals must have an integer part")
1868             .span_suggestion(
1869                 token.span,
1870                 "must have an integer part",
1871                 pprust::token_to_string(token),
1872                 Applicability::MachineApplicable,
1873             )
1874             .emit();
1875     }
1876
1877     fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
1878         // Checks if `s` looks like i32 or u1234 etc.
1879         fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
1880             s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
1881         }
1882
1883         // Try to lowercase the prefix if it's a valid base prefix.
1884         fn fix_base_capitalisation(s: &str) -> Option<String> {
1885             if let Some(stripped) = s.strip_prefix('B') {
1886                 Some(format!("0b{stripped}"))
1887             } else if let Some(stripped) = s.strip_prefix('O') {
1888                 Some(format!("0o{stripped}"))
1889             } else if let Some(stripped) = s.strip_prefix('X') {
1890                 Some(format!("0x{stripped}"))
1891             } else {
1892                 None
1893             }
1894         }
1895
1896         let token::Lit { kind, suffix, .. } = lit;
1897         match err {
1898             // `NotLiteral` is not an error by itself, so we don't report
1899             // it and give the parser opportunity to try something else.
1900             LitError::NotLiteral => {}
1901             // `LexerError` *is* an error, but it was already reported
1902             // by lexer, so here we don't report it the second time.
1903             LitError::LexerError => {}
1904             LitError::InvalidSuffix => {
1905                 self.expect_no_suffix(
1906                     span,
1907                     &format!("{} {} literal", kind.article(), kind.descr()),
1908                     suffix,
1909                 );
1910             }
1911             LitError::InvalidIntSuffix => {
1912                 let suf = suffix.expect("suffix error with no suffix");
1913                 let suf = suf.as_str();
1914                 if looks_like_width_suffix(&['i', 'u'], &suf) {
1915                     // If it looks like a width, try to be helpful.
1916                     let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
1917                     self.struct_span_err(span, &msg)
1918                         .help("valid widths are 8, 16, 32, 64 and 128")
1919                         .emit();
1920                 } else if let Some(fixed) = fix_base_capitalisation(suf) {
1921                     let msg = "invalid base prefix for number literal";
1922
1923                     self.struct_span_err(span, msg)
1924                         .note("base prefixes (`0xff`, `0b1010`, `0o755`) are lowercase")
1925                         .span_suggestion(
1926                             span,
1927                             "try making the prefix lowercase",
1928                             fixed,
1929                             Applicability::MaybeIncorrect,
1930                         )
1931                         .emit();
1932                 } else {
1933                     let msg = format!("invalid suffix `{suf}` for number literal");
1934                     self.struct_span_err(span, &msg)
1935                         .span_label(span, format!("invalid suffix `{suf}`"))
1936                         .help("the suffix must be one of the numeric types (`u32`, `isize`, `f32`, etc.)")
1937                         .emit();
1938                 }
1939             }
1940             LitError::InvalidFloatSuffix => {
1941                 let suf = suffix.expect("suffix error with no suffix");
1942                 let suf = suf.as_str();
1943                 if looks_like_width_suffix(&['f'], suf) {
1944                     // If it looks like a width, try to be helpful.
1945                     let msg = format!("invalid width `{}` for float literal", &suf[1..]);
1946                     self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
1947                 } else {
1948                     let msg = format!("invalid suffix `{suf}` for float literal");
1949                     self.struct_span_err(span, &msg)
1950                         .span_label(span, format!("invalid suffix `{suf}`"))
1951                         .help("valid suffixes are `f32` and `f64`")
1952                         .emit();
1953                 }
1954             }
1955             LitError::NonDecimalFloat(base) => {
1956                 let descr = match base {
1957                     16 => "hexadecimal",
1958                     8 => "octal",
1959                     2 => "binary",
1960                     _ => unreachable!(),
1961                 };
1962                 self.struct_span_err(span, &format!("{descr} float literal is not supported"))
1963                     .span_label(span, "not supported")
1964                     .emit();
1965             }
1966             LitError::IntTooLarge => {
1967                 self.struct_span_err(span, "integer literal is too large").emit();
1968             }
1969         }
1970     }
1971
1972     pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
1973         if let Some(suf) = suffix {
1974             let mut err = if kind == "a tuple index"
1975                 && [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
1976             {
1977                 // #59553: warn instead of reject out of hand to allow the fix to percolate
1978                 // through the ecosystem when people fix their macros
1979                 let mut err = self
1980                     .sess
1981                     .span_diagnostic
1982                     .struct_span_warn(sp, &format!("suffixes on {kind} are invalid"));
1983                 err.note(&format!(
1984                     "`{}` is *temporarily* accepted on tuple index fields as it was \
1985                         incorrectly accepted on stable for a few releases",
1986                     suf,
1987                 ));
1988                 err.help(
1989                     "on proc macros, you'll want to use `syn::Index::from` or \
1990                         `proc_macro::Literal::*_unsuffixed` for code that will desugar \
1991                         to tuple field access",
1992                 );
1993                 err.note(
1994                     "see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
1995                      for more information",
1996                 );
1997                 err
1998             } else {
1999                 self.struct_span_err(sp, &format!("suffixes on {kind} are invalid"))
2000                     .forget_guarantee()
2001             };
2002             err.span_label(sp, format!("invalid suffix `{suf}`"));
2003             err.emit();
2004         }
2005     }
2006
2007     /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
2008     /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
2009     pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
2010         maybe_whole_expr!(self);
2011
2012         let lo = self.token.span;
2013         let minus_present = self.eat(&token::BinOp(token::Minus));
2014         let lit = self.parse_lit()?;
2015         let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
2016
2017         if minus_present {
2018             Ok(self.mk_expr(
2019                 lo.to(self.prev_token.span),
2020                 self.mk_unary(UnOp::Neg, expr),
2021                 AttrVec::new(),
2022             ))
2023         } else {
2024             Ok(expr)
2025         }
2026     }
2027
2028     fn is_array_like_block(&mut self) -> bool {
2029         self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
2030             && self.look_ahead(2, |t| t == &token::Comma)
2031             && self.look_ahead(3, |t| t.can_begin_expr())
2032     }
2033
2034     /// Emits a suggestion if it looks like the user meant an array but
2035     /// accidentally used braces, causing the code to be interpreted as a block
2036     /// expression.
2037     fn maybe_suggest_brackets_instead_of_braces(
2038         &mut self,
2039         lo: Span,
2040         attrs: AttrVec,
2041     ) -> Option<P<Expr>> {
2042         let mut snapshot = self.create_snapshot_for_diagnostic();
2043         match snapshot.parse_array_or_repeat_expr(attrs, Delimiter::Brace) {
2044             Ok(arr) => {
2045                 let hi = snapshot.prev_token.span;
2046                 self.struct_span_err(arr.span, "this is a block expression, not an array")
2047                     .multipart_suggestion(
2048                         "to make an array, use square brackets instead of curly braces",
2049                         vec![(lo, "[".to_owned()), (hi, "]".to_owned())],
2050                         Applicability::MaybeIncorrect,
2051                     )
2052                     .emit();
2053
2054                 self.restore_snapshot(snapshot);
2055                 Some(self.mk_expr_err(arr.span))
2056             }
2057             Err(e) => {
2058                 e.cancel();
2059                 None
2060             }
2061         }
2062     }
2063
2064     /// Parses a block or unsafe block.
2065     pub(super) fn parse_block_expr(
2066         &mut self,
2067         opt_label: Option<Label>,
2068         lo: Span,
2069         blk_mode: BlockCheckMode,
2070         mut attrs: AttrVec,
2071     ) -> PResult<'a, P<Expr>> {
2072         if self.is_array_like_block() {
2073             if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo, attrs.clone()) {
2074                 return Ok(arr);
2075             }
2076         }
2077
2078         if let Some(label) = opt_label {
2079             self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
2080         }
2081
2082         if self.token.is_whole_block() {
2083             self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
2084                 .span_label(lo.to(self.token.span), "the `block` fragment is within this context")
2085                 .emit();
2086         }
2087
2088         let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
2089         attrs.extend(inner_attrs);
2090         Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
2091     }
2092
2093     /// Parse a block which takes no attributes and has no label
2094     fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> {
2095         let blk = self.parse_block()?;
2096         Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new()))
2097     }
2098
2099     /// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
2100     fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2101         let lo = self.token.span;
2102         let _ = self.parse_late_bound_lifetime_defs()?;
2103         let span_for = lo.to(self.prev_token.span);
2104         let closure = self.parse_closure_expr(attrs)?;
2105
2106         self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
2107             .span_label(closure.span, "the parameters are attached to this closure")
2108             .span_suggestion(
2109                 span_for,
2110                 "remove the parameters",
2111                 "",
2112                 Applicability::MachineApplicable,
2113             )
2114             .emit();
2115
2116         Ok(self.mk_expr_err(lo.to(closure.span)))
2117     }
2118
2119     /// Parses a closure expression (e.g., `move |args| expr`).
2120     fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2121         let lo = self.token.span;
2122
2123         let movability =
2124             if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
2125
2126         let asyncness = if self.token.uninterpolated_span().rust_2018() {
2127             self.parse_asyncness()
2128         } else {
2129             Async::No
2130         };
2131
2132         let capture_clause = self.parse_capture_clause()?;
2133         let decl = self.parse_fn_block_decl()?;
2134         let decl_hi = self.prev_token.span;
2135         let mut body = match decl.output {
2136             FnRetTy::Default(_) => {
2137                 let restrictions = self.restrictions - Restrictions::STMT_EXPR;
2138                 self.parse_expr_res(restrictions, None)?
2139             }
2140             _ => {
2141                 // If an explicit return type is given, require a block to appear (RFC 968).
2142                 let body_lo = self.token.span;
2143                 self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
2144             }
2145         };
2146
2147         if let Async::Yes { span, .. } = asyncness {
2148             // Feature-gate `async ||` closures.
2149             self.sess.gated_spans.gate(sym::async_closure, span);
2150         }
2151
2152         if self.token.kind == TokenKind::Semi
2153             && matches!(self.token_cursor.frame.delim_sp, Some((Delimiter::Parenthesis, _)))
2154         {
2155             // It is likely that the closure body is a block but where the
2156             // braces have been removed. We will recover and eat the next
2157             // statements later in the parsing process.
2158             body = self.mk_expr_err(body.span);
2159         }
2160
2161         let body_span = body.span;
2162
2163         let closure = self.mk_expr(
2164             lo.to(body.span),
2165             ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
2166             attrs,
2167         );
2168
2169         // Disable recovery for closure body
2170         let spans =
2171             ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2172         self.current_closure = Some(spans);
2173
2174         Ok(closure)
2175     }
2176
2177     /// Parses an optional `move` prefix to a closure-like construct.
2178     fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2179         if self.eat_keyword(kw::Move) {
2180             // Check for `move async` and recover
2181             if self.check_keyword(kw::Async) {
2182                 let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2183                 Err(self.incorrect_move_async_order_found(move_async_span))
2184             } else {
2185                 Ok(CaptureBy::Value)
2186             }
2187         } else {
2188             Ok(CaptureBy::Ref)
2189         }
2190     }
2191
2192     /// Parses the `|arg, arg|` header of a closure.
2193     fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
2194         let inputs = if self.eat(&token::OrOr) {
2195             Vec::new()
2196         } else {
2197             self.expect(&token::BinOp(token::Or))?;
2198             let args = self
2199                 .parse_seq_to_before_tokens(
2200                     &[&token::BinOp(token::Or), &token::OrOr],
2201                     SeqSep::trailing_allowed(token::Comma),
2202                     TokenExpectType::NoExpect,
2203                     |p| p.parse_fn_block_param(),
2204                 )?
2205                 .0;
2206             self.expect_or()?;
2207             args
2208         };
2209         let output =
2210             self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2211
2212         Ok(P(FnDecl { inputs, output }))
2213     }
2214
2215     /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2216     fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2217         let lo = self.token.span;
2218         let attrs = self.parse_outer_attributes()?;
2219         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2220             let pat = this.parse_pat_no_top_alt(PARAM_EXPECTED)?;
2221             let ty = if this.eat(&token::Colon) {
2222                 this.parse_ty()?
2223             } else {
2224                 this.mk_ty(this.prev_token.span, TyKind::Infer)
2225             };
2226
2227             Ok((
2228                 Param {
2229                     attrs: attrs.into(),
2230                     ty,
2231                     pat,
2232                     span: lo.to(this.token.span),
2233                     id: DUMMY_NODE_ID,
2234                     is_placeholder: false,
2235                 },
2236                 TrailingToken::MaybeComma,
2237             ))
2238         })
2239     }
2240
2241     /// Parses an `if` expression (`if` token already eaten).
2242     fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2243         let lo = self.prev_token.span;
2244         let cond = self.parse_cond_expr()?;
2245
2246         self.parse_if_after_cond(attrs, lo, cond)
2247     }
2248
2249     fn parse_if_after_cond(
2250         &mut self,
2251         attrs: AttrVec,
2252         lo: Span,
2253         mut cond: P<Expr>,
2254     ) -> PResult<'a, P<Expr>> {
2255         let cond_span = cond.span;
2256         // Tries to interpret `cond` as either a missing expression if it's a block,
2257         // or as an unfinished expression if it's a binop and the RHS is a block.
2258         // We could probably add more recoveries here too...
2259         let mut recover_block_from_condition = |this: &mut Self| {
2260             let block = match &mut cond.kind {
2261                 ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2262                     if let ExprKind::Block(_, None) = right.kind => {
2263                         this.error_missing_if_then_block(lo, cond_span.shrink_to_lo().to(*binop_span), true).emit();
2264                         std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi()))
2265                     },
2266                 ExprKind::Block(_, None) => {
2267                     this.error_missing_if_cond(lo, cond_span).emit();
2268                     std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi()))
2269                 }
2270                 _ => {
2271                     return None;
2272                 }
2273             };
2274             if let ExprKind::Block(block, _) = &block.kind {
2275                 Some(block.clone())
2276             } else {
2277                 unreachable!()
2278             }
2279         };
2280         // Parse then block
2281         let thn = if self.token.is_keyword(kw::Else) {
2282             if let Some(block) = recover_block_from_condition(self) {
2283                 block
2284             } else {
2285                 self.error_missing_if_then_block(lo, cond_span, false).emit();
2286                 self.mk_block_err(cond_span.shrink_to_hi())
2287             }
2288         } else {
2289             let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2290             let block = if self.check(&token::OpenDelim(Delimiter::Brace)) {
2291                 self.parse_block()?
2292             } else {
2293                 if let Some(block) = recover_block_from_condition(self) {
2294                     block
2295                 } else {
2296                     // Parse block, which will always fail, but we can add a nice note to the error
2297                     self.parse_block().map_err(|mut err| {
2298                         err.span_note(
2299                             cond_span,
2300                             "the `if` expression is missing a block after this condition",
2301                         );
2302                         err
2303                     })?
2304                 }
2305             };
2306             self.error_on_if_block_attrs(lo, false, block.span, &attrs);
2307             block
2308         };
2309         let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
2310         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
2311     }
2312
2313     fn error_missing_if_then_block(
2314         &self,
2315         if_span: Span,
2316         cond_span: Span,
2317         is_unfinished: bool,
2318     ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
2319         let mut err = self.struct_span_err(
2320             if_span,
2321             "this `if` expression is missing a block after the condition",
2322         );
2323         if is_unfinished {
2324             err.span_help(cond_span, "this binary operation is possibly unfinished");
2325         } else {
2326             err.span_help(cond_span.shrink_to_hi(), "add a block here");
2327         }
2328         err
2329     }
2330
2331     fn error_missing_if_cond(
2332         &self,
2333         lo: Span,
2334         span: Span,
2335     ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
2336         let next_span = self.sess.source_map().next_point(lo);
2337         let mut err = self.struct_span_err(next_span, "missing condition for `if` expression");
2338         err.span_label(next_span, "expected condition here");
2339         err.span_label(
2340             self.sess.source_map().start_point(span),
2341             "if this block is the condition of the `if` expression, then it must be followed by another block"
2342         );
2343         err
2344     }
2345
2346     /// Parses the condition of a `if` or `while` expression.
2347     fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
2348         let cond = self.with_let_management(true, |local_self| {
2349             local_self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)
2350         })?;
2351
2352         if let ExprKind::Let(..) = cond.kind {
2353             // Remove the last feature gating of a `let` expression since it's stable.
2354             self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2355         }
2356
2357         Ok(cond)
2358     }
2359
2360     // Checks if `let` is in an invalid position like `let x = let y = 1;` or
2361     // if the current `let` is in a let_chains context but nested in another
2362     // expression like `if let Some(_) = _opt && [1, 2, 3][let _ = ()] = 1`.
2363     //
2364     // This method expects that the current token is `let`.
2365     fn manage_let_chains_context(&mut self) {
2366         debug_assert!(matches!(self.token.kind, TokenKind::Ident(kw::Let, _)));
2367         let is_in_a_let_chains_context_but_nested_in_other_expr = self.let_expr_allowed
2368             && !matches!(
2369                 self.prev_token.kind,
2370                 TokenKind::AndAnd
2371                     | TokenKind::CloseDelim(Delimiter::Brace)
2372                     | TokenKind::Ident(kw::If, _)
2373                     | TokenKind::Ident(kw::While, _)
2374             );
2375         if !self.let_expr_allowed || is_in_a_let_chains_context_but_nested_in_other_expr {
2376             self.struct_span_err(self.token.span, "expected expression, found `let` statement")
2377                 .emit();
2378         }
2379     }
2380
2381     /// Parses a `let $pat = $expr` pseudo-expression.
2382     /// The `let` token has already been eaten.
2383     fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
2384         let lo = self.prev_token.span;
2385         let pat = self.parse_pat_allow_top_alt(
2386             None,
2387             RecoverComma::Yes,
2388             RecoverColon::Yes,
2389             CommaRecoveryMode::LikelyTuple,
2390         )?;
2391         self.expect(&token::Eq)?;
2392         let expr = self.with_res(self.restrictions | Restrictions::NO_STRUCT_LITERAL, |this| {
2393             this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
2394         })?;
2395         let span = lo.to(expr.span);
2396         self.sess.gated_spans.gate(sym::let_chains, span);
2397         Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span), attrs))
2398     }
2399
2400     /// Parses an `else { ... }` expression (`else` token already eaten).
2401     fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
2402         let else_span = self.prev_token.span; // `else`
2403         let attrs = self.parse_outer_attributes()?.take_for_recovery(); // For recovery.
2404         let expr = if self.eat_keyword(kw::If) {
2405             self.parse_if_expr(AttrVec::new())?
2406         } else if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) {
2407             self.parse_simple_block()?
2408         } else {
2409             let snapshot = self.create_snapshot_for_diagnostic();
2410             let first_tok = super::token_descr(&self.token);
2411             let first_tok_span = self.token.span;
2412             match self.parse_expr() {
2413                 Ok(cond)
2414                 // If it's not a free-standing expression, and is followed by a block,
2415                 // then it's very likely the condition to an `else if`.
2416                     if self.check(&TokenKind::OpenDelim(Delimiter::Brace))
2417                         && classify::expr_requires_semi_to_be_stmt(&cond) =>
2418                 {
2419                     self.struct_span_err(first_tok_span, format!("expected `{{`, found {first_tok}"))
2420                         .span_label(else_span, "expected an `if` or a block after this `else`")
2421                         .span_suggestion(
2422                             cond.span.shrink_to_lo(),
2423                             "add an `if` if this is the condition of a chained `else if` statement",
2424                             "if ",
2425                             Applicability::MaybeIncorrect,
2426                         )
2427                         .emit();
2428                     self.parse_if_after_cond(AttrVec::new(), cond.span.shrink_to_lo(), cond)?
2429                 }
2430                 Err(e) => {
2431                     e.cancel();
2432                     self.restore_snapshot(snapshot);
2433                     self.parse_simple_block()?
2434                 },
2435                 Ok(_) => {
2436                     self.restore_snapshot(snapshot);
2437                     self.parse_simple_block()?
2438                 },
2439             }
2440         };
2441         self.error_on_if_block_attrs(else_span, true, expr.span, &attrs);
2442         Ok(expr)
2443     }
2444
2445     fn error_on_if_block_attrs(
2446         &self,
2447         ctx_span: Span,
2448         is_ctx_else: bool,
2449         branch_span: Span,
2450         attrs: &[ast::Attribute],
2451     ) {
2452         let (span, last) = match attrs {
2453             [] => return,
2454             [x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
2455         };
2456         let ctx = if is_ctx_else { "else" } else { "if" };
2457         self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
2458             .span_label(branch_span, "the attributes are attached to this branch")
2459             .span_label(ctx_span, format!("the branch belongs to this `{ctx}`"))
2460             .span_suggestion(span, "remove the attributes", "", Applicability::MachineApplicable)
2461             .emit();
2462     }
2463
2464     /// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2465     fn parse_for_expr(
2466         &mut self,
2467         opt_label: Option<Label>,
2468         lo: Span,
2469         mut attrs: AttrVec,
2470     ) -> PResult<'a, P<Expr>> {
2471         // Record whether we are about to parse `for (`.
2472         // This is used below for recovery in case of `for ( $stuff ) $block`
2473         // in which case we will suggest `for $stuff $block`.
2474         let begin_paren = match self.token.kind {
2475             token::OpenDelim(Delimiter::Parenthesis) => Some(self.token.span),
2476             _ => None,
2477         };
2478
2479         let pat = self.parse_pat_allow_top_alt(
2480             None,
2481             RecoverComma::Yes,
2482             RecoverColon::Yes,
2483             CommaRecoveryMode::LikelyTuple,
2484         )?;
2485         if !self.eat_keyword(kw::In) {
2486             self.error_missing_in_for_loop();
2487         }
2488         self.check_for_for_in_in_typo(self.prev_token.span);
2489         let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2490
2491         let pat = self.recover_parens_around_for_head(pat, begin_paren);
2492
2493         let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
2494         attrs.extend(iattrs);
2495
2496         let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
2497         Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2498     }
2499
2500     fn error_missing_in_for_loop(&mut self) {
2501         let (span, msg, sugg) = if self.token.is_ident_named(sym::of) {
2502             // Possibly using JS syntax (#75311).
2503             let span = self.token.span;
2504             self.bump();
2505             (span, "try using `in` here instead", "in")
2506         } else {
2507             (self.prev_token.span.between(self.token.span), "try adding `in` here", " in ")
2508         };
2509         self.struct_span_err(span, "missing `in` in `for` loop")
2510             .span_suggestion_short(
2511                 span,
2512                 msg,
2513                 sugg,
2514                 // Has been misleading, at least in the past (closed Issue #48492).
2515                 Applicability::MaybeIncorrect,
2516             )
2517             .emit();
2518     }
2519
2520     /// Parses a `while` or `while let` expression (`while` token already eaten).
2521     fn parse_while_expr(
2522         &mut self,
2523         opt_label: Option<Label>,
2524         lo: Span,
2525         mut attrs: AttrVec,
2526     ) -> PResult<'a, P<Expr>> {
2527         let cond = self.parse_cond_expr().map_err(|mut err| {
2528             err.span_label(lo, "while parsing the condition of this `while` expression");
2529             err
2530         })?;
2531         let (iattrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| {
2532             err.span_label(lo, "while parsing the body of this `while` expression");
2533             err.span_label(cond.span, "this `while` condition successfully parsed");
2534             err
2535         })?;
2536         attrs.extend(iattrs);
2537         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
2538     }
2539
2540     /// Parses `loop { ... }` (`loop` token already eaten).
2541     fn parse_loop_expr(
2542         &mut self,
2543         opt_label: Option<Label>,
2544         lo: Span,
2545         mut attrs: AttrVec,
2546     ) -> PResult<'a, P<Expr>> {
2547         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2548         attrs.extend(iattrs);
2549         Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
2550     }
2551
2552     pub(crate) fn eat_label(&mut self) -> Option<Label> {
2553         self.token.lifetime().map(|ident| {
2554             self.bump();
2555             Label { ident }
2556         })
2557     }
2558
2559     /// Parses a `match ... { ... }` expression (`match` token already eaten).
2560     fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2561         let match_span = self.prev_token.span;
2562         let lo = self.prev_token.span;
2563         let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
2564         if let Err(mut e) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2565             if self.token == token::Semi {
2566                 e.span_suggestion_short(
2567                     match_span,
2568                     "try removing this `match`",
2569                     "",
2570                     Applicability::MaybeIncorrect, // speculative
2571                 );
2572             }
2573             if self.maybe_recover_unexpected_block_label() {
2574                 e.cancel();
2575                 self.bump();
2576             } else {
2577                 return Err(e);
2578             }
2579         }
2580         attrs.extend(self.parse_inner_attributes()?);
2581
2582         let mut arms: Vec<Arm> = Vec::new();
2583         while self.token != token::CloseDelim(Delimiter::Brace) {
2584             match self.parse_arm() {
2585                 Ok(arm) => arms.push(arm),
2586                 Err(mut e) => {
2587                     // Recover by skipping to the end of the block.
2588                     e.emit();
2589                     self.recover_stmt();
2590                     let span = lo.to(self.token.span);
2591                     if self.token == token::CloseDelim(Delimiter::Brace) {
2592                         self.bump();
2593                     }
2594                     return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
2595                 }
2596             }
2597         }
2598         let hi = self.token.span;
2599         self.bump();
2600         Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
2601     }
2602
2603     /// Attempt to recover from match arm body with statements and no surrounding braces.
2604     fn parse_arm_body_missing_braces(
2605         &mut self,
2606         first_expr: &P<Expr>,
2607         arrow_span: Span,
2608     ) -> Option<P<Expr>> {
2609         if self.token.kind != token::Semi {
2610             return None;
2611         }
2612         let start_snapshot = self.create_snapshot_for_diagnostic();
2613         let semi_sp = self.token.span;
2614         self.bump(); // `;`
2615         let mut stmts =
2616             vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
2617         let err = |this: &mut Parser<'_>, stmts: Vec<ast::Stmt>| {
2618             let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
2619             let mut err = this.struct_span_err(span, "`match` arm body without braces");
2620             let (these, s, are) =
2621                 if stmts.len() > 1 { ("these", "s", "are") } else { ("this", "", "is") };
2622             err.span_label(
2623                 span,
2624                 &format!(
2625                     "{these} statement{s} {are} not surrounded by a body",
2626                     these = these,
2627                     s = s,
2628                     are = are
2629                 ),
2630             );
2631             err.span_label(arrow_span, "while parsing the `match` arm starting here");
2632             if stmts.len() > 1 {
2633                 err.multipart_suggestion(
2634                     &format!("surround the statement{s} with a body"),
2635                     vec![
2636                         (span.shrink_to_lo(), "{ ".to_string()),
2637                         (span.shrink_to_hi(), " }".to_string()),
2638                     ],
2639                     Applicability::MachineApplicable,
2640                 );
2641             } else {
2642                 err.span_suggestion(
2643                     semi_sp,
2644                     "use a comma to end a `match` arm expression",
2645                     ",",
2646                     Applicability::MachineApplicable,
2647                 );
2648             }
2649             err.emit();
2650             this.mk_expr_err(span)
2651         };
2652         // We might have either a `,` -> `;` typo, or a block without braces. We need
2653         // a more subtle parsing strategy.
2654         loop {
2655             if self.token.kind == token::CloseDelim(Delimiter::Brace) {
2656                 // We have reached the closing brace of the `match` expression.
2657                 return Some(err(self, stmts));
2658             }
2659             if self.token.kind == token::Comma {
2660                 self.restore_snapshot(start_snapshot);
2661                 return None;
2662             }
2663             let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
2664             match self.parse_pat_no_top_alt(None) {
2665                 Ok(_pat) => {
2666                     if self.token.kind == token::FatArrow {
2667                         // Reached arm end.
2668                         self.restore_snapshot(pre_pat_snapshot);
2669                         return Some(err(self, stmts));
2670                     }
2671                 }
2672                 Err(err) => {
2673                     err.cancel();
2674                 }
2675             }
2676
2677             self.restore_snapshot(pre_pat_snapshot);
2678             match self.parse_stmt_without_recovery(true, ForceCollect::No) {
2679                 // Consume statements for as long as possible.
2680                 Ok(Some(stmt)) => {
2681                     stmts.push(stmt);
2682                 }
2683                 Ok(None) => {
2684                     self.restore_snapshot(start_snapshot);
2685                     break;
2686                 }
2687                 // We couldn't parse either yet another statement missing it's
2688                 // enclosing block nor the next arm's pattern or closing brace.
2689                 Err(stmt_err) => {
2690                     stmt_err.cancel();
2691                     self.restore_snapshot(start_snapshot);
2692                     break;
2693                 }
2694             }
2695         }
2696         None
2697     }
2698
2699     pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
2700         // Used to check the `let_chains` and `if_let_guard` features mostly by scaning
2701         // `&&` tokens.
2702         fn check_let_expr(expr: &Expr) -> (bool, bool) {
2703             match expr.kind {
2704                 ExprKind::Binary(_, ref lhs, ref rhs) => {
2705                     let lhs_rslt = check_let_expr(lhs);
2706                     let rhs_rslt = check_let_expr(rhs);
2707                     (lhs_rslt.0 || rhs_rslt.0, false)
2708                 }
2709                 ExprKind::Let(..) => (true, true),
2710                 _ => (false, true),
2711             }
2712         }
2713         let attrs = self.parse_outer_attributes()?;
2714         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
2715             let lo = this.token.span;
2716             let pat = this.parse_pat_allow_top_alt(
2717                 None,
2718                 RecoverComma::Yes,
2719                 RecoverColon::Yes,
2720                 CommaRecoveryMode::EitherTupleOrPipe,
2721             )?;
2722             let guard = if this.eat_keyword(kw::If) {
2723                 let if_span = this.prev_token.span;
2724                 let cond = this.with_let_management(true, |local_this| local_this.parse_expr())?;
2725                 let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond);
2726                 if has_let_expr {
2727                     if does_not_have_bin_op {
2728                         // Remove the last feature gating of a `let` expression since it's stable.
2729                         this.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
2730                     }
2731                     let span = if_span.to(cond.span);
2732                     this.sess.gated_spans.gate(sym::if_let_guard, span);
2733                 }
2734                 Some(cond)
2735             } else {
2736                 None
2737             };
2738             let arrow_span = this.token.span;
2739             if let Err(mut err) = this.expect(&token::FatArrow) {
2740                 // We might have a `=>` -> `=` or `->` typo (issue #89396).
2741                 if TokenKind::FatArrow
2742                     .similar_tokens()
2743                     .map_or(false, |similar_tokens| similar_tokens.contains(&this.token.kind))
2744                 {
2745                     err.span_suggestion(
2746                         this.token.span,
2747                         "try using a fat arrow here",
2748                         "=>",
2749                         Applicability::MaybeIncorrect,
2750                     );
2751                     err.emit();
2752                     this.bump();
2753                 } else {
2754                     return Err(err);
2755                 }
2756             }
2757             let arm_start_span = this.token.span;
2758
2759             let expr = this.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
2760                 err.span_label(arrow_span, "while parsing the `match` arm starting here");
2761                 err
2762             })?;
2763
2764             let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
2765                 && this.token != token::CloseDelim(Delimiter::Brace);
2766
2767             let hi = this.prev_token.span;
2768
2769             if require_comma {
2770                 let sm = this.sess.source_map();
2771                 if let Some(body) = this.parse_arm_body_missing_braces(&expr, arrow_span) {
2772                     let span = body.span;
2773                     return Ok((
2774                         ast::Arm {
2775                             attrs: attrs.into(),
2776                             pat,
2777                             guard,
2778                             body,
2779                             span,
2780                             id: DUMMY_NODE_ID,
2781                             is_placeholder: false,
2782                         },
2783                         TrailingToken::None,
2784                     ));
2785                 }
2786                 this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)])
2787                     .or_else(|mut err| {
2788                         if this.token == token::FatArrow {
2789                             if let Ok(expr_lines) = sm.span_to_lines(expr.span)
2790                             && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
2791                             && arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
2792                             && expr_lines.lines.len() == 2
2793                             {
2794                                 // We check whether there's any trailing code in the parse span,
2795                                 // if there isn't, we very likely have the following:
2796                                 //
2797                                 // X |     &Y => "y"
2798                                 //   |        --    - missing comma
2799                                 //   |        |
2800                                 //   |        arrow_span
2801                                 // X |     &X => "x"
2802                                 //   |      - ^^ self.token.span
2803                                 //   |      |
2804                                 //   |      parsed until here as `"y" & X`
2805                                 err.span_suggestion_short(
2806                                     arm_start_span.shrink_to_hi(),
2807                                     "missing a comma here to end this `match` arm",
2808                                     ",",
2809                                     Applicability::MachineApplicable,
2810                                 );
2811                                 return Err(err);
2812                             }
2813                         } else {
2814                             // FIXME(compiler-errors): We could also recover `; PAT =>` here
2815
2816                             // Try to parse a following `PAT =>`, if successful
2817                             // then we should recover.
2818                             let mut snapshot = this.create_snapshot_for_diagnostic();
2819                             let pattern_follows = snapshot
2820                                 .parse_pat_allow_top_alt(
2821                                     None,
2822                                     RecoverComma::Yes,
2823                                     RecoverColon::Yes,
2824                                     CommaRecoveryMode::EitherTupleOrPipe,
2825                                 )
2826                                 .map_err(|err| err.cancel())
2827                                 .is_ok();
2828                             if pattern_follows && snapshot.check(&TokenKind::FatArrow) {
2829                                 err.cancel();
2830                                 this.struct_span_err(
2831                                     hi.shrink_to_hi(),
2832                                     "expected `,` following `match` arm",
2833                                 )
2834                                 .span_suggestion(
2835                                     hi.shrink_to_hi(),
2836                                     "missing a comma here to end this `match` arm",
2837                                     ",",
2838                                     Applicability::MachineApplicable,
2839                                 )
2840                                 .emit();
2841                                 return Ok(true);
2842                             }
2843                         }
2844                         err.span_label(arrow_span, "while parsing the `match` arm starting here");
2845                         Err(err)
2846                     })?;
2847             } else {
2848                 this.eat(&token::Comma);
2849             }
2850
2851             Ok((
2852                 ast::Arm {
2853                     attrs: attrs.into(),
2854                     pat,
2855                     guard,
2856                     body: expr,
2857                     span: lo.to(hi),
2858                     id: DUMMY_NODE_ID,
2859                     is_placeholder: false,
2860                 },
2861                 TrailingToken::None,
2862             ))
2863         })
2864     }
2865
2866     /// Parses a `try {...}` expression (`try` token already eaten).
2867     fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2868         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2869         attrs.extend(iattrs);
2870         if self.eat_keyword(kw::Catch) {
2871             let mut error = self.struct_span_err(
2872                 self.prev_token.span,
2873                 "keyword `catch` cannot follow a `try` block",
2874             );
2875             error.help("try using `match` on the result of the `try` block instead");
2876             error.emit();
2877             Err(error)
2878         } else {
2879             let span = span_lo.to(body.span);
2880             self.sess.gated_spans.gate(sym::try_blocks, span);
2881             Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
2882         }
2883     }
2884
2885     fn is_do_catch_block(&self) -> bool {
2886         self.token.is_keyword(kw::Do)
2887             && self.is_keyword_ahead(1, &[kw::Catch])
2888             && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2889             && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
2890     }
2891
2892     fn is_do_yeet(&self) -> bool {
2893         self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
2894     }
2895
2896     fn is_try_block(&self) -> bool {
2897         self.token.is_keyword(kw::Try)
2898             && self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2899             && self.token.uninterpolated_span().rust_2018()
2900     }
2901
2902     /// Parses an `async move? {...}` expression.
2903     fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
2904         let lo = self.token.span;
2905         self.expect_keyword(kw::Async)?;
2906         let capture_clause = self.parse_capture_clause()?;
2907         let (iattrs, body) = self.parse_inner_attrs_and_block()?;
2908         attrs.extend(iattrs);
2909         let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
2910         Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
2911     }
2912
2913     fn is_async_block(&self) -> bool {
2914         self.token.is_keyword(kw::Async)
2915             && ((
2916                 // `async move {`
2917                 self.is_keyword_ahead(1, &[kw::Move])
2918                     && self.look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace))
2919             ) || (
2920                 // `async {`
2921                 self.look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace))
2922             ))
2923     }
2924
2925     fn is_certainly_not_a_block(&self) -> bool {
2926         self.look_ahead(1, |t| t.is_ident())
2927             && (
2928                 // `{ ident, ` cannot start a block.
2929                 self.look_ahead(2, |t| t == &token::Comma)
2930                     || self.look_ahead(2, |t| t == &token::Colon)
2931                         && (
2932                             // `{ ident: token, ` cannot start a block.
2933                             self.look_ahead(4, |t| t == &token::Comma) ||
2934                 // `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
2935                 self.look_ahead(3, |t| !t.can_begin_type())
2936                         )
2937             )
2938     }
2939
2940     fn maybe_parse_struct_expr(
2941         &mut self,
2942         qself: Option<&ast::QSelf>,
2943         path: &ast::Path,
2944         attrs: &AttrVec,
2945     ) -> Option<PResult<'a, P<Expr>>> {
2946         let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
2947         if struct_allowed || self.is_certainly_not_a_block() {
2948             if let Err(err) = self.expect(&token::OpenDelim(Delimiter::Brace)) {
2949                 return Some(Err(err));
2950             }
2951             let expr = self.parse_struct_expr(qself.cloned(), path.clone(), attrs.clone(), true);
2952             if let (Ok(expr), false) = (&expr, struct_allowed) {
2953                 // This is a struct literal, but we don't can't accept them here.
2954                 self.error_struct_lit_not_allowed_here(path.span, expr.span);
2955             }
2956             return Some(expr);
2957         }
2958         None
2959     }
2960
2961     fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
2962         self.struct_span_err(sp, "struct literals are not allowed here")
2963             .multipart_suggestion(
2964                 "surround the struct literal with parentheses",
2965                 vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
2966                 Applicability::MachineApplicable,
2967             )
2968             .emit();
2969     }
2970
2971     pub(super) fn parse_struct_fields(
2972         &mut self,
2973         pth: ast::Path,
2974         recover: bool,
2975         close_delim: Delimiter,
2976     ) -> PResult<'a, (Vec<ExprField>, ast::StructRest, bool)> {
2977         let mut fields = Vec::new();
2978         let mut base = ast::StructRest::None;
2979         let mut recover_async = false;
2980
2981         let mut async_block_err = |e: &mut Diagnostic, span: Span| {
2982             recover_async = true;
2983             e.span_label(span, "`async` blocks are only allowed in Rust 2018 or later");
2984             e.help_use_latest_edition();
2985         };
2986
2987         while self.token != token::CloseDelim(close_delim) {
2988             if self.eat(&token::DotDot) {
2989                 let exp_span = self.prev_token.span;
2990                 // We permit `.. }` on the left-hand side of a destructuring assignment.
2991                 if self.check(&token::CloseDelim(close_delim)) {
2992                     base = ast::StructRest::Rest(self.prev_token.span.shrink_to_hi());
2993                     break;
2994                 }
2995                 match self.parse_expr() {
2996                     Ok(e) => base = ast::StructRest::Base(e),
2997                     Err(mut e) if recover => {
2998                         e.emit();
2999                         self.recover_stmt();
3000                     }
3001                     Err(e) => return Err(e),
3002                 }
3003                 self.recover_struct_comma_after_dotdot(exp_span);
3004                 break;
3005             }
3006
3007             let recovery_field = self.find_struct_error_after_field_looking_code();
3008             let parsed_field = match self.parse_expr_field() {
3009                 Ok(f) => Some(f),
3010                 Err(mut e) => {
3011                     if pth == kw::Async {
3012                         async_block_err(&mut e, pth.span);
3013                     } else {
3014                         e.span_label(pth.span, "while parsing this struct");
3015                     }
3016                     e.emit();
3017
3018                     // If the next token is a comma, then try to parse
3019                     // what comes next as additional fields, rather than
3020                     // bailing out until next `}`.
3021                     if self.token != token::Comma {
3022                         self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3023                         if self.token != token::Comma {
3024                             break;
3025                         }
3026                     }
3027                     None
3028                 }
3029             };
3030
3031             let is_shorthand = parsed_field.as_ref().map_or(false, |f| f.is_shorthand);
3032             // A shorthand field can be turned into a full field with `:`.
3033             // We should point this out.
3034             self.check_or_expected(!is_shorthand, TokenType::Token(token::Colon));
3035
3036             match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) {
3037                 Ok(_) => {
3038                     if let Some(f) = parsed_field.or(recovery_field) {
3039                         // Only include the field if there's no parse error for the field name.
3040                         fields.push(f);
3041                     }
3042                 }
3043                 Err(mut e) => {
3044                     if pth == kw::Async {
3045                         async_block_err(&mut e, pth.span);
3046                     } else {
3047                         e.span_label(pth.span, "while parsing this struct");
3048                         if let Some(f) = recovery_field {
3049                             fields.push(f);
3050                             e.span_suggestion(
3051                                 self.prev_token.span.shrink_to_hi(),
3052                                 "try adding a comma",
3053                                 ",",
3054                                 Applicability::MachineApplicable,
3055                             );
3056                         } else if is_shorthand
3057                             && (AssocOp::from_token(&self.token).is_some()
3058                                 || matches!(&self.token.kind, token::OpenDelim(_))
3059                                 || self.token.kind == token::Dot)
3060                         {
3061                             // Looks like they tried to write a shorthand, complex expression.
3062                             let ident = parsed_field.expect("is_shorthand implies Some").ident;
3063                             e.span_suggestion(
3064                                 ident.span.shrink_to_lo(),
3065                                 "try naming a field",
3066                                 &format!("{ident}: "),
3067                                 Applicability::HasPlaceholders,
3068                             );
3069                         }
3070                     }
3071                     if !recover {
3072                         return Err(e);
3073                     }
3074                     e.emit();
3075                     self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3076                     self.eat(&token::Comma);
3077                 }
3078             }
3079         }
3080         Ok((fields, base, recover_async))
3081     }
3082
3083     /// Precondition: already parsed the '{'.
3084     pub(super) fn parse_struct_expr(
3085         &mut self,
3086         qself: Option<ast::QSelf>,
3087         pth: ast::Path,
3088         attrs: AttrVec,
3089         recover: bool,
3090     ) -> PResult<'a, P<Expr>> {
3091         let lo = pth.span;
3092         let (fields, base, recover_async) =
3093             self.parse_struct_fields(pth.clone(), recover, Delimiter::Brace)?;
3094         let span = lo.to(self.token.span);
3095         self.expect(&token::CloseDelim(Delimiter::Brace))?;
3096         let expr = if recover_async {
3097             ExprKind::Err
3098         } else {
3099             ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base }))
3100         };
3101         Ok(self.mk_expr(span, expr, attrs))
3102     }
3103
3104     /// Use in case of error after field-looking code: `S { foo: () with a }`.
3105     fn find_struct_error_after_field_looking_code(&self) -> Option<ExprField> {
3106         match self.token.ident() {
3107             Some((ident, is_raw))
3108                 if (is_raw || !ident.is_reserved())
3109                     && self.look_ahead(1, |t| *t == token::Colon) =>
3110             {
3111                 Some(ast::ExprField {
3112                     ident,
3113                     span: self.token.span,
3114                     expr: self.mk_expr_err(self.token.span),
3115                     is_shorthand: false,
3116                     attrs: AttrVec::new(),
3117                     id: DUMMY_NODE_ID,
3118                     is_placeholder: false,
3119                 })
3120             }
3121             _ => None,
3122         }
3123     }
3124
3125     fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
3126         if self.token != token::Comma {
3127             return;
3128         }
3129         self.struct_span_err(
3130             span.to(self.prev_token.span),
3131             "cannot use a comma after the base struct",
3132         )
3133         .span_suggestion_short(
3134             self.token.span,
3135             "remove this comma",
3136             "",
3137             Applicability::MachineApplicable,
3138         )
3139         .note("the base struct must always be the last field")
3140         .emit();
3141         self.recover_stmt();
3142     }
3143
3144     /// Parses `ident (COLON expr)?`.
3145     fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3146         let attrs = self.parse_outer_attributes()?;
3147         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3148             let lo = this.token.span;
3149
3150             // Check if a colon exists one ahead. This means we're parsing a fieldname.
3151             let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3152             let (ident, expr) = if is_shorthand {
3153                 // Mimic `x: x` for the `x` field shorthand.
3154                 let ident = this.parse_ident_common(false)?;
3155                 let path = ast::Path::from_ident(ident);
3156                 (ident, this.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
3157             } else {
3158                 let ident = this.parse_field_name()?;
3159                 this.error_on_eq_field_init(ident);
3160                 this.bump(); // `:`
3161                 (ident, this.parse_expr()?)
3162             };
3163
3164             Ok((
3165                 ast::ExprField {
3166                     ident,
3167                     span: lo.to(expr.span),
3168                     expr,
3169                     is_shorthand,
3170                     attrs: attrs.into(),
3171                     id: DUMMY_NODE_ID,
3172                     is_placeholder: false,
3173                 },
3174                 TrailingToken::MaybeComma,
3175             ))
3176         })
3177     }
3178
3179     /// Check for `=`. This means the source incorrectly attempts to
3180     /// initialize a field with an eq rather than a colon.
3181     fn error_on_eq_field_init(&self, field_name: Ident) {
3182         if self.token != token::Eq {
3183             return;
3184         }
3185
3186         self.struct_span_err(self.token.span, "expected `:`, found `=`")
3187             .span_suggestion(
3188                 field_name.span.shrink_to_hi().to(self.token.span),
3189                 "replace equals symbol with a colon",
3190                 ":",
3191                 Applicability::MachineApplicable,
3192             )
3193             .emit();
3194     }
3195
3196     fn err_dotdotdot_syntax(&self, span: Span) {
3197         self.struct_span_err(span, "unexpected token: `...`")
3198             .span_suggestion(
3199                 span,
3200                 "use `..` for an exclusive range",
3201                 "..",
3202                 Applicability::MaybeIncorrect,
3203             )
3204             .span_suggestion(
3205                 span,
3206                 "or `..=` for an inclusive range",
3207                 "..=",
3208                 Applicability::MaybeIncorrect,
3209             )
3210             .emit();
3211     }
3212
3213     fn err_larrow_operator(&self, span: Span) {
3214         self.struct_span_err(span, "unexpected token: `<-`")
3215             .span_suggestion(
3216                 span,
3217                 "if you meant to write a comparison against a negative value, add a \
3218              space in between `<` and `-`",
3219                 "< -",
3220                 Applicability::MaybeIncorrect,
3221             )
3222             .emit();
3223     }
3224
3225     fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3226         ExprKind::AssignOp(binop, lhs, rhs)
3227     }
3228
3229     fn mk_range(
3230         &mut self,
3231         start: Option<P<Expr>>,
3232         end: Option<P<Expr>>,
3233         limits: RangeLimits,
3234     ) -> ExprKind {
3235         if end.is_none() && limits == RangeLimits::Closed {
3236             self.inclusive_range_with_incorrect_end(self.prev_token.span);
3237             ExprKind::Err
3238         } else {
3239             ExprKind::Range(start, end, limits)
3240         }
3241     }
3242
3243     fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
3244         ExprKind::Unary(unop, expr)
3245     }
3246
3247     fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
3248         ExprKind::Binary(binop, lhs, rhs)
3249     }
3250
3251     fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
3252         ExprKind::Index(expr, idx)
3253     }
3254
3255     fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
3256         ExprKind::Call(f, args)
3257     }
3258
3259     fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> {
3260         let span = lo.to(self.prev_token.span);
3261         let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
3262         self.recover_from_await_method_call();
3263         await_expr
3264     }
3265
3266     pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
3267         P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
3268     }
3269
3270     pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
3271         self.mk_expr(span, ExprKind::Err, AttrVec::new())
3272     }
3273
3274     /// Create expression span ensuring the span of the parent node
3275     /// is larger than the span of lhs and rhs, including the attributes.
3276     fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span {
3277         lhs.attrs
3278             .iter()
3279             .find(|a| a.style == AttrStyle::Outer)
3280             .map_or(lhs_span, |a| a.span)
3281             .to(rhs_span)
3282     }
3283
3284     fn collect_tokens_for_expr(
3285         &mut self,
3286         attrs: AttrWrapper,
3287         f: impl FnOnce(&mut Self, Vec<ast::Attribute>) -> PResult<'a, P<Expr>>,
3288     ) -> PResult<'a, P<Expr>> {
3289         self.collect_tokens_trailing_token(attrs, ForceCollect::No, |this, attrs| {
3290             let res = f(this, attrs)?;
3291             let trailing = if this.restrictions.contains(Restrictions::STMT_EXPR)
3292                 && this.token.kind == token::Semi
3293             {
3294                 TrailingToken::Semi
3295             } else {
3296                 // FIXME - pass this through from the place where we know
3297                 // we need a comma, rather than assuming that `#[attr] expr,`
3298                 // always captures a trailing comma
3299                 TrailingToken::MaybeComma
3300             };
3301             Ok((res, trailing))
3302         })
3303     }
3304
3305     // Calls `f` with the internal `let_expr_allowed` set to `let_expr_allowed` and then
3306     // sets the internal `let_expr_allowed` back to its original value.
3307     fn with_let_management<T>(
3308         &mut self,
3309         let_expr_allowed: bool,
3310         f: impl FnOnce(&mut Self) -> T,
3311     ) -> T {
3312         let last_let_expr_allowed = mem::replace(&mut self.let_expr_allowed, let_expr_allowed);
3313         let rslt = f(self);
3314         self.let_expr_allowed = last_let_expr_allowed;
3315         rslt
3316     }
3317 }