]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_mir_transform/src/const_prop_lint.rs
Rollup merge of #103588 - weihanglo:rustdoc/url-redirect, r=notriddle
[rust.git] / compiler / rustc_mir_transform / src / const_prop_lint.rs
1 //! Propagates constants for early reporting of statically known
2 //! assertion failures
3
4 use crate::const_prop::CanConstProp;
5 use crate::const_prop::ConstPropMachine;
6 use crate::const_prop::ConstPropMode;
7 use crate::MirLint;
8 use rustc_const_eval::const_eval::ConstEvalErr;
9 use rustc_const_eval::interpret::Immediate;
10 use rustc_const_eval::interpret::{
11     self, InterpCx, InterpResult, LocalState, LocalValue, MemoryKind, OpTy, Scalar, StackPopCleanup,
12 };
13 use rustc_hir::def::DefKind;
14 use rustc_hir::HirId;
15 use rustc_index::bit_set::BitSet;
16 use rustc_index::vec::IndexVec;
17 use rustc_middle::mir::visit::Visitor;
18 use rustc_middle::mir::{
19     AssertKind, BinOp, Body, Constant, Local, LocalDecl, Location, Operand, Place, Rvalue,
20     SourceInfo, SourceScope, SourceScopeData, Statement, StatementKind, Terminator, TerminatorKind,
21     UnOp, RETURN_PLACE,
22 };
23 use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
24 use rustc_middle::ty::InternalSubsts;
25 use rustc_middle::ty::{self, ConstInt, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeVisitable};
26 use rustc_session::lint;
27 use rustc_span::Span;
28 use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout};
29 use rustc_trait_selection::traits;
30 use std::cell::Cell;
31
32 /// The maximum number of bytes that we'll allocate space for a local or the return value.
33 /// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
34 /// Severely regress performance.
35 const MAX_ALLOC_LIMIT: u64 = 1024;
36 pub struct ConstProp;
37
38 impl<'tcx> MirLint<'tcx> for ConstProp {
39     fn run_lint(&self, tcx: TyCtxt<'tcx>, body: &Body<'tcx>) {
40         // will be evaluated by miri and produce its errors there
41         if body.source.promoted.is_some() {
42             return;
43         }
44
45         let def_id = body.source.def_id().expect_local();
46         let is_fn_like = tcx.def_kind(def_id).is_fn_like();
47         let is_assoc_const = tcx.def_kind(def_id) == DefKind::AssocConst;
48
49         // Only run const prop on functions, methods, closures and associated constants
50         if !is_fn_like && !is_assoc_const {
51             // skip anon_const/statics/consts because they'll be evaluated by miri anyway
52             trace!("ConstProp skipped for {:?}", def_id);
53             return;
54         }
55
56         let is_generator = tcx.type_of(def_id.to_def_id()).is_generator();
57         // FIXME(welseywiser) const prop doesn't work on generators because of query cycles
58         // computing their layout.
59         if is_generator {
60             trace!("ConstProp skipped for generator {:?}", def_id);
61             return;
62         }
63
64         // Check if it's even possible to satisfy the 'where' clauses
65         // for this item.
66         // This branch will never be taken for any normal function.
67         // However, it's possible to `#!feature(trivial_bounds)]` to write
68         // a function with impossible to satisfy clauses, e.g.:
69         // `fn foo() where String: Copy {}`
70         //
71         // We don't usually need to worry about this kind of case,
72         // since we would get a compilation error if the user tried
73         // to call it. However, since we can do const propagation
74         // even without any calls to the function, we need to make
75         // sure that it even makes sense to try to evaluate the body.
76         // If there are unsatisfiable where clauses, then all bets are
77         // off, and we just give up.
78         //
79         // We manually filter the predicates, skipping anything that's not
80         // "global". We are in a potentially generic context
81         // (e.g. we are evaluating a function without substituting generic
82         // parameters, so this filtering serves two purposes:
83         //
84         // 1. We skip evaluating any predicates that we would
85         // never be able prove are unsatisfiable (e.g. `<T as Foo>`
86         // 2. We avoid trying to normalize predicates involving generic
87         // parameters (e.g. `<T as Foo>::MyItem`). This can confuse
88         // the normalization code (leading to cycle errors), since
89         // it's usually never invoked in this way.
90         let predicates = tcx
91             .predicates_of(def_id.to_def_id())
92             .predicates
93             .iter()
94             .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
95         if traits::impossible_predicates(
96             tcx,
97             traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
98         ) {
99             trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
100             return;
101         }
102
103         trace!("ConstProp starting for {:?}", def_id);
104
105         let dummy_body = &Body::new(
106             body.source,
107             (*body.basic_blocks).clone(),
108             body.source_scopes.clone(),
109             body.local_decls.clone(),
110             Default::default(),
111             body.arg_count,
112             Default::default(),
113             body.span,
114             body.generator_kind(),
115             body.tainted_by_errors,
116         );
117
118         // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
119         // constants, instead of just checking for const-folding succeeding.
120         // That would require a uniform one-def no-mutation analysis
121         // and RPO (or recursing when needing the value of a local).
122         let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx);
123         optimization_finder.visit_body(body);
124
125         trace!("ConstProp done for {:?}", def_id);
126     }
127 }
128
129 /// Finds optimization opportunities on the MIR.
130 struct ConstPropagator<'mir, 'tcx> {
131     ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
132     tcx: TyCtxt<'tcx>,
133     param_env: ParamEnv<'tcx>,
134     source_scopes: &'mir IndexVec<SourceScope, SourceScopeData<'tcx>>,
135     local_decls: &'mir IndexVec<Local, LocalDecl<'tcx>>,
136     // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
137     // the last known `SourceInfo` here and just keep revisiting it.
138     source_info: Option<SourceInfo>,
139 }
140
141 impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> {
142     type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
143
144     #[inline]
145     fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
146         err
147     }
148 }
149
150 impl HasDataLayout for ConstPropagator<'_, '_> {
151     #[inline]
152     fn data_layout(&self) -> &TargetDataLayout {
153         &self.tcx.data_layout
154     }
155 }
156
157 impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> {
158     #[inline]
159     fn tcx(&self) -> TyCtxt<'tcx> {
160         self.tcx
161     }
162 }
163
164 impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> {
165     #[inline]
166     fn param_env(&self) -> ty::ParamEnv<'tcx> {
167         self.param_env
168     }
169 }
170
171 impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
172     fn new(
173         body: &Body<'tcx>,
174         dummy_body: &'mir Body<'tcx>,
175         tcx: TyCtxt<'tcx>,
176     ) -> ConstPropagator<'mir, 'tcx> {
177         let def_id = body.source.def_id();
178         let substs = &InternalSubsts::identity_for_item(tcx, def_id);
179         let param_env = tcx.param_env_reveal_all_normalized(def_id);
180
181         let can_const_prop = CanConstProp::check(tcx, param_env, body);
182         let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
183         for (l, mode) in can_const_prop.iter_enumerated() {
184             if *mode == ConstPropMode::OnlyInsideOwnBlock {
185                 only_propagate_inside_block_locals.insert(l);
186             }
187         }
188         let mut ecx = InterpCx::new(
189             tcx,
190             tcx.def_span(def_id),
191             param_env,
192             ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
193         );
194
195         let ret_layout = ecx
196             .layout_of(body.bound_return_ty().subst(tcx, substs))
197             .ok()
198             // Don't bother allocating memory for large values.
199             // I don't know how return types can seem to be unsized but this happens in the
200             // `type/type-unsatisfiable.rs` test.
201             .filter(|ret_layout| {
202                 !ret_layout.is_unsized() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
203             })
204             .unwrap_or_else(|| ecx.layout_of(tcx.types.unit).unwrap());
205
206         let ret = ecx
207             .allocate(ret_layout, MemoryKind::Stack)
208             .expect("couldn't perform small allocation")
209             .into();
210
211         ecx.push_stack_frame(
212             Instance::new(def_id, substs),
213             dummy_body,
214             &ret,
215             StackPopCleanup::Root { cleanup: false },
216         )
217         .expect("failed to push initial stack frame");
218
219         ConstPropagator {
220             ecx,
221             tcx,
222             param_env,
223             source_scopes: &dummy_body.source_scopes,
224             local_decls: &dummy_body.local_decls,
225             source_info: None,
226         }
227     }
228
229     fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
230         let op = match self.ecx.eval_place_to_op(place, None) {
231             Ok(op) => {
232                 if matches!(*op, interpret::Operand::Immediate(Immediate::Uninit)) {
233                     // Make sure nobody accidentally uses this value.
234                     return None;
235                 }
236                 op
237             }
238             Err(e) => {
239                 trace!("get_const failed: {}", e);
240                 return None;
241             }
242         };
243
244         // Try to read the local as an immediate so that if it is representable as a scalar, we can
245         // handle it as such, but otherwise, just return the value as is.
246         Some(match self.ecx.read_immediate_raw(&op) {
247             Ok(Ok(imm)) => imm.into(),
248             _ => op,
249         })
250     }
251
252     /// Remove `local` from the pool of `Locals`. Allows writing to them,
253     /// but not reading from them anymore.
254     fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
255         ecx.frame_mut().locals[local] = LocalState {
256             value: LocalValue::Live(interpret::Operand::Immediate(interpret::Immediate::Uninit)),
257             layout: Cell::new(None),
258         };
259     }
260
261     fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
262         source_info.scope.lint_root(self.source_scopes)
263     }
264
265     fn use_ecx<F, T>(&mut self, source_info: SourceInfo, f: F) -> Option<T>
266     where
267         F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
268     {
269         // Overwrite the PC -- whatever the interpreter does to it does not make any sense anyway.
270         self.ecx.frame_mut().loc = Err(source_info.span);
271         match f(self) {
272             Ok(val) => Some(val),
273             Err(error) => {
274                 trace!("InterpCx operation failed: {:?}", error);
275                 // Some errors shouldn't come up because creating them causes
276                 // an allocation, which we should avoid. When that happens,
277                 // dedicated error variants should be introduced instead.
278                 assert!(
279                     !error.kind().formatted_string(),
280                     "const-prop encountered formatting error: {}",
281                     error
282                 );
283                 None
284             }
285         }
286     }
287
288     /// Returns the value, if any, of evaluating `c`.
289     fn eval_constant(
290         &mut self,
291         c: &Constant<'tcx>,
292         _source_info: SourceInfo,
293     ) -> Option<OpTy<'tcx>> {
294         // FIXME we need to revisit this for #67176
295         if c.needs_subst() {
296             return None;
297         }
298
299         match self.ecx.const_to_op(&c.literal, None) {
300             Ok(op) => Some(op),
301             Err(error) => {
302                 let tcx = self.ecx.tcx.at(c.span);
303                 let err = ConstEvalErr::new(&self.ecx, error, Some(c.span));
304                 err.report_as_error(tcx, "erroneous constant used");
305                 None
306             }
307         }
308     }
309
310     /// Returns the value, if any, of evaluating `place`.
311     fn eval_place(&mut self, place: Place<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
312         trace!("eval_place(place={:?})", place);
313         self.use_ecx(source_info, |this| this.ecx.eval_place_to_op(place, None))
314     }
315
316     /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
317     /// or `eval_place`, depending on the variant of `Operand` used.
318     fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
319         match *op {
320             Operand::Constant(ref c) => self.eval_constant(c, source_info),
321             Operand::Move(place) | Operand::Copy(place) => self.eval_place(place, source_info),
322         }
323     }
324
325     fn report_assert_as_lint(
326         &self,
327         lint: &'static lint::Lint,
328         source_info: SourceInfo,
329         message: &'static str,
330         panic: AssertKind<impl std::fmt::Debug>,
331     ) {
332         if let Some(lint_root) = self.lint_root(source_info) {
333             self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, message, |lint| {
334                 lint.span_label(source_info.span, format!("{:?}", panic))
335             });
336         }
337     }
338
339     fn check_unary_op(
340         &mut self,
341         op: UnOp,
342         arg: &Operand<'tcx>,
343         source_info: SourceInfo,
344     ) -> Option<()> {
345         if let (val, true) = self.use_ecx(source_info, |this| {
346             let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?;
347             let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?;
348             Ok((val, overflow))
349         })? {
350             // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
351             // appropriate to use.
352             assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
353             self.report_assert_as_lint(
354                 lint::builtin::ARITHMETIC_OVERFLOW,
355                 source_info,
356                 "this arithmetic operation will overflow",
357                 AssertKind::OverflowNeg(val.to_const_int()),
358             );
359             return None;
360         }
361
362         Some(())
363     }
364
365     fn check_binary_op(
366         &mut self,
367         op: BinOp,
368         left: &Operand<'tcx>,
369         right: &Operand<'tcx>,
370         source_info: SourceInfo,
371     ) -> Option<()> {
372         let r = self.use_ecx(source_info, |this| {
373             this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?)
374         });
375         let l = self.use_ecx(source_info, |this| {
376             this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?)
377         });
378         // Check for exceeding shifts *even if* we cannot evaluate the LHS.
379         if op == BinOp::Shr || op == BinOp::Shl {
380             let r = r.clone()?;
381             // We need the type of the LHS. We cannot use `place_layout` as that is the type
382             // of the result, which for checked binops is not the same!
383             let left_ty = left.ty(self.local_decls, self.tcx);
384             let left_size = self.ecx.layout_of(left_ty).ok()?.size;
385             let right_size = r.layout.size;
386             let r_bits = r.to_scalar().to_bits(right_size).ok();
387             if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
388                 debug!("check_binary_op: reporting assert for {:?}", source_info);
389                 self.report_assert_as_lint(
390                     lint::builtin::ARITHMETIC_OVERFLOW,
391                     source_info,
392                     "this arithmetic operation will overflow",
393                     AssertKind::Overflow(
394                         op,
395                         match l {
396                             Some(l) => l.to_const_int(),
397                             // Invent a dummy value, the diagnostic ignores it anyway
398                             None => ConstInt::new(
399                                 ScalarInt::try_from_uint(1_u8, left_size).unwrap(),
400                                 left_ty.is_signed(),
401                                 left_ty.is_ptr_sized_integral(),
402                             ),
403                         },
404                         r.to_const_int(),
405                     ),
406                 );
407                 return None;
408             }
409         }
410
411         if let (Some(l), Some(r)) = (l, r) {
412             // The remaining operators are handled through `overflowing_binary_op`.
413             if self.use_ecx(source_info, |this| {
414                 let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, &l, &r)?;
415                 Ok(overflow)
416             })? {
417                 self.report_assert_as_lint(
418                     lint::builtin::ARITHMETIC_OVERFLOW,
419                     source_info,
420                     "this arithmetic operation will overflow",
421                     AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
422                 );
423                 return None;
424             }
425         }
426         Some(())
427     }
428
429     fn const_prop(
430         &mut self,
431         rvalue: &Rvalue<'tcx>,
432         source_info: SourceInfo,
433         place: Place<'tcx>,
434     ) -> Option<()> {
435         // Perform any special handling for specific Rvalue types.
436         // Generally, checks here fall into one of two categories:
437         //   1. Additional checking to provide useful lints to the user
438         //        - In this case, we will do some validation and then fall through to the
439         //          end of the function which evals the assignment.
440         //   2. Working around bugs in other parts of the compiler
441         //        - In this case, we'll return `None` from this function to stop evaluation.
442         match rvalue {
443             // Additional checking: give lints to the user if an overflow would occur.
444             // We do this here and not in the `Assert` terminator as that terminator is
445             // only sometimes emitted (overflow checks can be disabled), but we want to always
446             // lint.
447             Rvalue::UnaryOp(op, arg) => {
448                 trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
449                 self.check_unary_op(*op, arg, source_info)?;
450             }
451             Rvalue::BinaryOp(op, box (left, right)) => {
452                 trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
453                 self.check_binary_op(*op, left, right, source_info)?;
454             }
455             Rvalue::CheckedBinaryOp(op, box (left, right)) => {
456                 trace!(
457                     "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
458                     op,
459                     left,
460                     right
461                 );
462                 self.check_binary_op(*op, left, right, source_info)?;
463             }
464
465             // Do not try creating references (#67862)
466             Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
467                 trace!("skipping AddressOf | Ref for {:?}", place);
468
469                 // This may be creating mutable references or immutable references to cells.
470                 // If that happens, the pointed to value could be mutated via that reference.
471                 // Since we aren't tracking references, the const propagator loses track of what
472                 // value the local has right now.
473                 // Thus, all locals that have their reference taken
474                 // must not take part in propagation.
475                 Self::remove_const(&mut self.ecx, place.local);
476
477                 return None;
478             }
479             Rvalue::ThreadLocalRef(def_id) => {
480                 trace!("skipping ThreadLocalRef({:?})", def_id);
481
482                 return None;
483             }
484
485             // There's no other checking to do at this time.
486             Rvalue::Aggregate(..)
487             | Rvalue::Use(..)
488             | Rvalue::CopyForDeref(..)
489             | Rvalue::Repeat(..)
490             | Rvalue::Len(..)
491             | Rvalue::Cast(..)
492             | Rvalue::ShallowInitBox(..)
493             | Rvalue::Discriminant(..)
494             | Rvalue::NullaryOp(..) => {}
495         }
496
497         // FIXME we need to revisit this for #67176
498         if rvalue.needs_subst() {
499             return None;
500         }
501         if !rvalue
502             .ty(&self.ecx.frame().body.local_decls, *self.ecx.tcx)
503             .is_sized(*self.ecx.tcx, self.param_env)
504         {
505             // the interpreter doesn't support unsized locals (only unsized arguments),
506             // but rustc does (in a kinda broken way), so we have to skip them here
507             return None;
508         }
509
510         self.use_ecx(source_info, |this| this.ecx.eval_rvalue_into_place(rvalue, place))
511     }
512 }
513
514 impl<'tcx> Visitor<'tcx> for ConstPropagator<'_, 'tcx> {
515     fn visit_body(&mut self, body: &Body<'tcx>) {
516         for (bb, data) in body.basic_blocks.iter_enumerated() {
517             self.visit_basic_block_data(bb, data);
518         }
519     }
520
521     fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
522         self.super_operand(operand, location);
523     }
524
525     fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) {
526         trace!("visit_constant: {:?}", constant);
527         self.super_constant(constant, location);
528         self.eval_constant(constant, self.source_info.unwrap());
529     }
530
531     fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
532         trace!("visit_statement: {:?}", statement);
533         let source_info = statement.source_info;
534         self.source_info = Some(source_info);
535         if let StatementKind::Assign(box (place, ref rval)) = statement.kind {
536             let can_const_prop = self.ecx.machine.can_const_prop[place.local];
537             if let Some(()) = self.const_prop(rval, source_info, place) {
538                 match can_const_prop {
539                     ConstPropMode::OnlyInsideOwnBlock => {
540                         trace!(
541                             "found local restricted to its block. \
542                                 Will remove it from const-prop after block is finished. Local: {:?}",
543                             place.local
544                         );
545                     }
546                     ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
547                         trace!("can't propagate into {:?}", place);
548                         if place.local != RETURN_PLACE {
549                             Self::remove_const(&mut self.ecx, place.local);
550                         }
551                     }
552                     ConstPropMode::FullConstProp => {}
553                 }
554             } else {
555                 // Const prop failed, so erase the destination, ensuring that whatever happens
556                 // from here on, does not know about the previous value.
557                 // This is important in case we have
558                 // ```rust
559                 // let mut x = 42;
560                 // x = SOME_MUTABLE_STATIC;
561                 // // x must now be uninit
562                 // ```
563                 // FIXME: we overzealously erase the entire local, because that's easier to
564                 // implement.
565                 trace!(
566                     "propagation into {:?} failed.
567                         Nuking the entire site from orbit, it's the only way to be sure",
568                     place,
569                 );
570                 Self::remove_const(&mut self.ecx, place.local);
571             }
572         } else {
573             match statement.kind {
574                 StatementKind::SetDiscriminant { ref place, .. } => {
575                     match self.ecx.machine.can_const_prop[place.local] {
576                         ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
577                             if self
578                                 .use_ecx(source_info, |this| this.ecx.statement(statement))
579                                 .is_some()
580                             {
581                                 trace!("propped discriminant into {:?}", place);
582                             } else {
583                                 Self::remove_const(&mut self.ecx, place.local);
584                             }
585                         }
586                         ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
587                             Self::remove_const(&mut self.ecx, place.local);
588                         }
589                     }
590                 }
591                 StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
592                     let frame = self.ecx.frame_mut();
593                     frame.locals[local].value =
594                         if let StatementKind::StorageLive(_) = statement.kind {
595                             LocalValue::Live(interpret::Operand::Immediate(
596                                 interpret::Immediate::Uninit,
597                             ))
598                         } else {
599                             LocalValue::Dead
600                         };
601                 }
602                 _ => {}
603             }
604         }
605
606         self.super_statement(statement, location);
607     }
608
609     fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
610         let source_info = terminator.source_info;
611         self.source_info = Some(source_info);
612         self.super_terminator(terminator, location);
613         match &terminator.kind {
614             TerminatorKind::Assert { expected, ref msg, ref cond, .. } => {
615                 if let Some(ref value) = self.eval_operand(&cond, source_info) {
616                     trace!("assertion on {:?} should be {:?}", value, expected);
617                     let expected = Scalar::from_bool(*expected);
618                     let Ok(value_const) = self.ecx.read_scalar(&value) else {
619                         // FIXME should be used use_ecx rather than a local match... but we have
620                         // quite a few of these read_scalar/read_immediate that need fixing.
621                         return
622                     };
623                     if expected != value_const {
624                         enum DbgVal<T> {
625                             Val(T),
626                             Underscore,
627                         }
628                         impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
629                             fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
630                                 match self {
631                                     Self::Val(val) => val.fmt(fmt),
632                                     Self::Underscore => fmt.write_str("_"),
633                                 }
634                             }
635                         }
636                         let mut eval_to_int = |op| {
637                             // This can be `None` if the lhs wasn't const propagated and we just
638                             // triggered the assert on the value of the rhs.
639                             self.eval_operand(op, source_info)
640                                 .and_then(|op| self.ecx.read_immediate(&op).ok())
641                                 .map_or(DbgVal::Underscore, |op| DbgVal::Val(op.to_const_int()))
642                         };
643                         let msg = match msg {
644                             AssertKind::DivisionByZero(op) => {
645                                 Some(AssertKind::DivisionByZero(eval_to_int(op)))
646                             }
647                             AssertKind::RemainderByZero(op) => {
648                                 Some(AssertKind::RemainderByZero(eval_to_int(op)))
649                             }
650                             AssertKind::Overflow(bin_op @ (BinOp::Div | BinOp::Rem), op1, op2) => {
651                                 // Division overflow is *UB* in the MIR, and different than the
652                                 // other overflow checks.
653                                 Some(AssertKind::Overflow(
654                                     *bin_op,
655                                     eval_to_int(op1),
656                                     eval_to_int(op2),
657                                 ))
658                             }
659                             AssertKind::BoundsCheck { ref len, ref index } => {
660                                 let len = eval_to_int(len);
661                                 let index = eval_to_int(index);
662                                 Some(AssertKind::BoundsCheck { len, index })
663                             }
664                             // Remaining overflow errors are already covered by checks on the binary operators.
665                             AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None,
666                             // Need proper const propagator for these.
667                             _ => None,
668                         };
669                         // Poison all places this operand references so that further code
670                         // doesn't use the invalid value
671                         match cond {
672                             Operand::Move(ref place) | Operand::Copy(ref place) => {
673                                 Self::remove_const(&mut self.ecx, place.local);
674                             }
675                             Operand::Constant(_) => {}
676                         }
677                         if let Some(msg) = msg {
678                             self.report_assert_as_lint(
679                                 lint::builtin::UNCONDITIONAL_PANIC,
680                                 source_info,
681                                 "this operation will panic at runtime",
682                                 msg,
683                             );
684                         }
685                     }
686                 }
687             }
688             // None of these have Operands to const-propagate.
689             TerminatorKind::Goto { .. }
690             | TerminatorKind::Resume
691             | TerminatorKind::Abort
692             | TerminatorKind::Return
693             | TerminatorKind::Unreachable
694             | TerminatorKind::Drop { .. }
695             | TerminatorKind::DropAndReplace { .. }
696             | TerminatorKind::Yield { .. }
697             | TerminatorKind::GeneratorDrop
698             | TerminatorKind::FalseEdge { .. }
699             | TerminatorKind::FalseUnwind { .. }
700             | TerminatorKind::SwitchInt { .. }
701             | TerminatorKind::Call { .. }
702             | TerminatorKind::InlineAsm { .. } => {}
703         }
704
705         // We remove all Locals which are restricted in propagation to their containing blocks and
706         // which were modified in the current block.
707         // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
708         let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
709         for &local in locals.iter() {
710             Self::remove_const(&mut self.ecx, local);
711         }
712         locals.clear();
713         // Put it back so we reuse the heap of the storage
714         self.ecx.machine.written_only_inside_own_block_locals = locals;
715         if cfg!(debug_assertions) {
716             // Ensure we are correctly erasing locals with the non-debug-assert logic.
717             for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
718                 assert!(
719                     self.get_const(local.into()).is_none()
720                         || self
721                             .layout_of(self.local_decls[local].ty)
722                             .map_or(true, |layout| layout.is_zst())
723                 )
724             }
725         }
726     }
727 }