]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_mir_build/src/build/matches/mod.rs
Auto merge of #100968 - cjgillot:mir-upvar-vec, r=wesleywiser
[rust.git] / compiler / rustc_mir_build / src / build / matches / mod.rs
1 //! Code related to match expressions. These are sufficiently complex to
2 //! warrant their own module and submodules. :) This main module includes the
3 //! high-level algorithm, the submodules contain the details.
4 //!
5 //! This also includes code for pattern bindings in `let` statements and
6 //! function parameters.
7
8 use crate::build::expr::as_place::PlaceBuilder;
9 use crate::build::scope::DropKind;
10 use crate::build::ForGuard::{self, OutsideGuard, RefWithinGuard};
11 use crate::build::{BlockAnd, BlockAndExtension, Builder};
12 use crate::build::{GuardFrame, GuardFrameLocal, LocalsForNode};
13 use rustc_data_structures::{
14     fx::{FxHashSet, FxIndexMap, FxIndexSet},
15     stack::ensure_sufficient_stack,
16 };
17 use rustc_index::bit_set::BitSet;
18 use rustc_middle::middle::region;
19 use rustc_middle::mir::*;
20 use rustc_middle::thir::{self, *};
21 use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty};
22 use rustc_span::symbol::Symbol;
23 use rustc_span::{BytePos, Pos, Span};
24 use rustc_target::abi::VariantIdx;
25 use smallvec::{smallvec, SmallVec};
26
27 // helper functions, broken out by category:
28 mod simplify;
29 mod test;
30 mod util;
31
32 use std::borrow::Borrow;
33 use std::convert::TryFrom;
34 use std::mem;
35
36 impl<'a, 'tcx> Builder<'a, 'tcx> {
37     pub(crate) fn then_else_break(
38         &mut self,
39         mut block: BasicBlock,
40         expr: &Expr<'tcx>,
41         temp_scope_override: Option<region::Scope>,
42         break_scope: region::Scope,
43         variable_source_info: SourceInfo,
44     ) -> BlockAnd<()> {
45         let this = self;
46         let expr_span = expr.span;
47
48         match expr.kind {
49             ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
50                 let lhs_then_block = unpack!(this.then_else_break(
51                     block,
52                     &this.thir[lhs],
53                     temp_scope_override,
54                     break_scope,
55                     variable_source_info,
56                 ));
57
58                 let rhs_then_block = unpack!(this.then_else_break(
59                     lhs_then_block,
60                     &this.thir[rhs],
61                     temp_scope_override,
62                     break_scope,
63                     variable_source_info,
64                 ));
65
66                 rhs_then_block.unit()
67             }
68             ExprKind::Scope { region_scope, lint_level, value } => {
69                 let region_scope = (region_scope, this.source_info(expr_span));
70                 this.in_scope(region_scope, lint_level, |this| {
71                     this.then_else_break(
72                         block,
73                         &this.thir[value],
74                         temp_scope_override,
75                         break_scope,
76                         variable_source_info,
77                     )
78                 })
79             }
80             ExprKind::Let { expr, ref pat } => this.lower_let_expr(
81                 block,
82                 &this.thir[expr],
83                 pat,
84                 break_scope,
85                 Some(variable_source_info.scope),
86                 variable_source_info.span,
87             ),
88             _ => {
89                 let temp_scope = temp_scope_override.unwrap_or_else(|| this.local_scope());
90                 let mutability = Mutability::Mut;
91                 let place =
92                     unpack!(block = this.as_temp(block, Some(temp_scope), expr, mutability));
93                 let operand = Operand::Move(Place::from(place));
94
95                 let then_block = this.cfg.start_new_block();
96                 let else_block = this.cfg.start_new_block();
97                 let term = TerminatorKind::if_(this.tcx, operand, then_block, else_block);
98
99                 let source_info = this.source_info(expr_span);
100                 this.cfg.terminate(block, source_info, term);
101                 this.break_for_else(else_block, break_scope, source_info);
102
103                 then_block.unit()
104             }
105         }
106     }
107
108     /// Generates MIR for a `match` expression.
109     ///
110     /// The MIR that we generate for a match looks like this.
111     ///
112     /// ```text
113     /// [ 0. Pre-match ]
114     ///        |
115     /// [ 1. Evaluate Scrutinee (expression being matched on) ]
116     /// [ (fake read of scrutinee) ]
117     ///        |
118     /// [ 2. Decision tree -- check discriminants ] <--------+
119     ///        |                                             |
120     ///        | (once a specific arm is chosen)             |
121     ///        |                                             |
122     /// [pre_binding_block]                           [otherwise_block]
123     ///        |                                             |
124     /// [ 3. Create "guard bindings" for arm ]               |
125     /// [ (create fake borrows) ]                            |
126     ///        |                                             |
127     /// [ 4. Execute guard code ]                            |
128     /// [ (read fake borrows) ] --(guard is false)-----------+
129     ///        |
130     ///        | (guard results in true)
131     ///        |
132     /// [ 5. Create real bindings and execute arm ]
133     ///        |
134     /// [ Exit match ]
135     /// ```
136     ///
137     /// All of the different arms have been stacked on top of each other to
138     /// simplify the diagram. For an arm with no guard the blocks marked 3 and
139     /// 4 and the fake borrows are omitted.
140     ///
141     /// We generate MIR in the following steps:
142     ///
143     /// 1. Evaluate the scrutinee and add the fake read of it ([Builder::lower_scrutinee]).
144     /// 2. Create the decision tree ([Builder::lower_match_tree]).
145     /// 3. Determine the fake borrows that are needed from the places that were
146     ///    matched against and create the required temporaries for them
147     ///    ([Builder::calculate_fake_borrows]).
148     /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
149     ///
150     /// ## False edges
151     ///
152     /// We don't want to have the exact structure of the decision tree be
153     /// visible through borrow checking. False edges ensure that the CFG as
154     /// seen by borrow checking doesn't encode this. False edges are added:
155     ///
156     /// * From each pre-binding block to the next pre-binding block.
157     /// * From each otherwise block to the next pre-binding block.
158     #[instrument(level = "debug", skip(self, arms))]
159     pub(crate) fn match_expr(
160         &mut self,
161         destination: Place<'tcx>,
162         span: Span,
163         mut block: BasicBlock,
164         scrutinee: &Expr<'tcx>,
165         arms: &[ArmId],
166     ) -> BlockAnd<()> {
167         let scrutinee_span = scrutinee.span;
168         let scrutinee_place =
169             unpack!(block = self.lower_scrutinee(block, scrutinee, scrutinee_span,));
170
171         let mut arm_candidates = self.create_match_candidates(scrutinee_place.clone(), &arms);
172
173         let match_has_guard = arm_candidates.iter().any(|(_, candidate)| candidate.has_guard);
174         let mut candidates =
175             arm_candidates.iter_mut().map(|(_, candidate)| candidate).collect::<Vec<_>>();
176
177         let match_start_span = span.shrink_to_lo().to(scrutinee.span);
178
179         let fake_borrow_temps = self.lower_match_tree(
180             block,
181             scrutinee_span,
182             match_start_span,
183             match_has_guard,
184             &mut candidates,
185         );
186
187         self.lower_match_arms(
188             destination,
189             scrutinee_place,
190             scrutinee_span,
191             arm_candidates,
192             self.source_info(span),
193             fake_borrow_temps,
194         )
195     }
196
197     /// Evaluate the scrutinee and add the fake read of it.
198     fn lower_scrutinee(
199         &mut self,
200         mut block: BasicBlock,
201         scrutinee: &Expr<'tcx>,
202         scrutinee_span: Span,
203     ) -> BlockAnd<PlaceBuilder<'tcx>> {
204         let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee));
205         // Matching on a `scrutinee_place` with an uninhabited type doesn't
206         // generate any memory reads by itself, and so if the place "expression"
207         // contains unsafe operations like raw pointer dereferences or union
208         // field projections, we wouldn't know to require an `unsafe` block
209         // around a `match` equivalent to `std::intrinsics::unreachable()`.
210         // See issue #47412 for this hole being discovered in the wild.
211         //
212         // HACK(eddyb) Work around the above issue by adding a dummy inspection
213         // of `scrutinee_place`, specifically by applying `ReadForMatch`.
214         //
215         // NOTE: ReadForMatch also checks that the scrutinee is initialized.
216         // This is currently needed to not allow matching on an uninitialized,
217         // uninhabited value. If we get never patterns, those will check that
218         // the place is initialized, and so this read would only be used to
219         // check safety.
220         let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
221         let source_info = self.source_info(scrutinee_span);
222
223         if let Ok(scrutinee_builder) =
224             scrutinee_place_builder.clone().try_upvars_resolved(self.tcx, &self.upvars)
225         {
226             let scrutinee_place = scrutinee_builder.into_place(self.tcx, &self.upvars);
227             self.cfg.push_fake_read(block, source_info, cause_matched_place, scrutinee_place);
228         }
229
230         block.and(scrutinee_place_builder)
231     }
232
233     /// Create the initial `Candidate`s for a `match` expression.
234     fn create_match_candidates<'pat>(
235         &mut self,
236         scrutinee: PlaceBuilder<'tcx>,
237         arms: &'pat [ArmId],
238     ) -> Vec<(&'pat Arm<'tcx>, Candidate<'pat, 'tcx>)>
239     where
240         'a: 'pat,
241     {
242         // Assemble a list of candidates: there is one candidate per pattern,
243         // which means there may be more than one candidate *per arm*.
244         arms.iter()
245             .copied()
246             .map(|arm| {
247                 let arm = &self.thir[arm];
248                 let arm_has_guard = arm.guard.is_some();
249                 let arm_candidate = Candidate::new(scrutinee.clone(), &arm.pattern, arm_has_guard);
250                 (arm, arm_candidate)
251             })
252             .collect()
253     }
254
255     /// Create the decision tree for the match expression, starting from `block`.
256     ///
257     /// Modifies `candidates` to store the bindings and type ascriptions for
258     /// that candidate.
259     ///
260     /// Returns the places that need fake borrows because we bind or test them.
261     fn lower_match_tree<'pat>(
262         &mut self,
263         block: BasicBlock,
264         scrutinee_span: Span,
265         match_start_span: Span,
266         match_has_guard: bool,
267         candidates: &mut [&mut Candidate<'pat, 'tcx>],
268     ) -> Vec<(Place<'tcx>, Local)> {
269         // The set of places that we are creating fake borrows of. If there are
270         // no match guards then we don't need any fake borrows, so don't track
271         // them.
272         let mut fake_borrows = match_has_guard.then(FxIndexSet::default);
273
274         let mut otherwise = None;
275
276         // This will generate code to test scrutinee_place and
277         // branch to the appropriate arm block
278         self.match_candidates(
279             match_start_span,
280             scrutinee_span,
281             block,
282             &mut otherwise,
283             candidates,
284             &mut fake_borrows,
285         );
286
287         if let Some(otherwise_block) = otherwise {
288             // See the doc comment on `match_candidates` for why we may have an
289             // otherwise block. Match checking will ensure this is actually
290             // unreachable.
291             let source_info = self.source_info(scrutinee_span);
292             self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
293         }
294
295         // Link each leaf candidate to the `pre_binding_block` of the next one.
296         let mut previous_candidate: Option<&mut Candidate<'_, '_>> = None;
297
298         for candidate in candidates {
299             candidate.visit_leaves(|leaf_candidate| {
300                 if let Some(ref mut prev) = previous_candidate {
301                     prev.next_candidate_pre_binding_block = leaf_candidate.pre_binding_block;
302                 }
303                 previous_candidate = Some(leaf_candidate);
304             });
305         }
306
307         if let Some(ref borrows) = fake_borrows {
308             self.calculate_fake_borrows(borrows, scrutinee_span)
309         } else {
310             Vec::new()
311         }
312     }
313
314     /// Lower the bindings, guards and arm bodies of a `match` expression.
315     ///
316     /// The decision tree should have already been created
317     /// (by [Builder::lower_match_tree]).
318     ///
319     /// `outer_source_info` is the SourceInfo for the whole match.
320     fn lower_match_arms(
321         &mut self,
322         destination: Place<'tcx>,
323         scrutinee_place_builder: PlaceBuilder<'tcx>,
324         scrutinee_span: Span,
325         arm_candidates: Vec<(&'_ Arm<'tcx>, Candidate<'_, 'tcx>)>,
326         outer_source_info: SourceInfo,
327         fake_borrow_temps: Vec<(Place<'tcx>, Local)>,
328     ) -> BlockAnd<()> {
329         let arm_end_blocks: Vec<_> = arm_candidates
330             .into_iter()
331             .map(|(arm, candidate)| {
332                 debug!("lowering arm {:?}\ncandidate = {:?}", arm, candidate);
333
334                 let arm_source_info = self.source_info(arm.span);
335                 let arm_scope = (arm.scope, arm_source_info);
336                 let match_scope = self.local_scope();
337                 self.in_scope(arm_scope, arm.lint_level, |this| {
338                     // `try_upvars_resolved` may fail if it is unable to resolve the given
339                     // `PlaceBuilder` inside a closure. In this case, we don't want to include
340                     // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
341                     // if the only match arm is a wildcard (`_`).
342                     // Example:
343                     // ```
344                     // let foo = (0, 1);
345                     // let c = || {
346                     //    match foo { _ => () };
347                     // };
348                     // ```
349                     let mut opt_scrutinee_place: Option<(Option<&Place<'tcx>>, Span)> = None;
350                     let scrutinee_place: Place<'tcx>;
351                     if let Ok(scrutinee_builder) =
352                         scrutinee_place_builder.clone().try_upvars_resolved(this.tcx, &this.upvars)
353                     {
354                         scrutinee_place = scrutinee_builder.into_place(this.tcx, &this.upvars);
355                         opt_scrutinee_place = Some((Some(&scrutinee_place), scrutinee_span));
356                     }
357                     let scope = this.declare_bindings(
358                         None,
359                         arm.span,
360                         &arm.pattern,
361                         ArmHasGuard(arm.guard.is_some()),
362                         opt_scrutinee_place,
363                     );
364
365                     let arm_block = this.bind_pattern(
366                         outer_source_info,
367                         candidate,
368                         arm.guard.as_ref(),
369                         &fake_borrow_temps,
370                         scrutinee_span,
371                         Some(arm.span),
372                         Some(arm.scope),
373                         Some(match_scope),
374                     );
375
376                     if let Some(source_scope) = scope {
377                         this.source_scope = source_scope;
378                     }
379
380                     this.expr_into_dest(destination, arm_block, &&this.thir[arm.body])
381                 })
382             })
383             .collect();
384
385         // all the arm blocks will rejoin here
386         let end_block = self.cfg.start_new_block();
387
388         let end_brace = self.source_info(
389             outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
390         );
391         for arm_block in arm_end_blocks {
392             let block = &self.cfg.basic_blocks[arm_block.0];
393             let last_location = block.statements.last().map(|s| s.source_info);
394
395             self.cfg.goto(unpack!(arm_block), last_location.unwrap_or(end_brace), end_block);
396         }
397
398         self.source_scope = outer_source_info.scope;
399
400         end_block.unit()
401     }
402
403     /// Binds the variables and ascribes types for a given `match` arm or
404     /// `let` binding.
405     ///
406     /// Also check if the guard matches, if it's provided.
407     /// `arm_scope` should be `Some` if and only if this is called for a
408     /// `match` arm.
409     fn bind_pattern(
410         &mut self,
411         outer_source_info: SourceInfo,
412         candidate: Candidate<'_, 'tcx>,
413         guard: Option<&Guard<'tcx>>,
414         fake_borrow_temps: &[(Place<'tcx>, Local)],
415         scrutinee_span: Span,
416         arm_span: Option<Span>,
417         arm_scope: Option<region::Scope>,
418         match_scope: Option<region::Scope>,
419     ) -> BasicBlock {
420         if candidate.subcandidates.is_empty() {
421             // Avoid generating another `BasicBlock` when we only have one
422             // candidate.
423             self.bind_and_guard_matched_candidate(
424                 candidate,
425                 &[],
426                 guard,
427                 fake_borrow_temps,
428                 scrutinee_span,
429                 arm_span,
430                 match_scope,
431                 true,
432             )
433         } else {
434             // It's helpful to avoid scheduling drops multiple times to save
435             // drop elaboration from having to clean up the extra drops.
436             //
437             // If we are in a `let` then we only schedule drops for the first
438             // candidate.
439             //
440             // If we're in a `match` arm then we could have a case like so:
441             //
442             // Ok(x) | Err(x) if return => { /* ... */ }
443             //
444             // In this case we don't want a drop of `x` scheduled when we
445             // return: it isn't bound by move until right before enter the arm.
446             // To handle this we instead unschedule it's drop after each time
447             // we lower the guard.
448             let target_block = self.cfg.start_new_block();
449             let mut schedule_drops = true;
450             // We keep a stack of all of the bindings and type ascriptions
451             // from the parent candidates that we visit, that also need to
452             // be bound for each candidate.
453             traverse_candidate(
454                 candidate,
455                 &mut Vec::new(),
456                 &mut |leaf_candidate, parent_bindings| {
457                     if let Some(arm_scope) = arm_scope {
458                         self.clear_top_scope(arm_scope);
459                     }
460                     let binding_end = self.bind_and_guard_matched_candidate(
461                         leaf_candidate,
462                         parent_bindings,
463                         guard,
464                         &fake_borrow_temps,
465                         scrutinee_span,
466                         arm_span,
467                         match_scope,
468                         schedule_drops,
469                     );
470                     if arm_scope.is_none() {
471                         schedule_drops = false;
472                     }
473                     self.cfg.goto(binding_end, outer_source_info, target_block);
474                 },
475                 |inner_candidate, parent_bindings| {
476                     parent_bindings.push((inner_candidate.bindings, inner_candidate.ascriptions));
477                     inner_candidate.subcandidates.into_iter()
478                 },
479                 |parent_bindings| {
480                     parent_bindings.pop();
481                 },
482             );
483
484             target_block
485         }
486     }
487
488     pub(super) fn expr_into_pattern(
489         &mut self,
490         mut block: BasicBlock,
491         irrefutable_pat: &Pat<'tcx>,
492         initializer: &Expr<'tcx>,
493     ) -> BlockAnd<()> {
494         match irrefutable_pat.kind {
495             // Optimize the case of `let x = ...` to write directly into `x`
496             PatKind::Binding { mode: BindingMode::ByValue, var, subpattern: None, .. } => {
497                 let place =
498                     self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
499                 unpack!(block = self.expr_into_dest(place, block, initializer));
500
501                 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
502                 let source_info = self.source_info(irrefutable_pat.span);
503                 self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
504
505                 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
506                 block.unit()
507             }
508
509             // Optimize the case of `let x: T = ...` to write directly
510             // into `x` and then require that `T == typeof(x)`.
511             //
512             // Weirdly, this is needed to prevent the
513             // `intrinsic-move-val.rs` test case from crashing. That
514             // test works with uninitialized values in a rather
515             // dubious way, so it may be that the test is kind of
516             // broken.
517             PatKind::AscribeUserType {
518                 subpattern:
519                     box Pat {
520                         kind:
521                             PatKind::Binding {
522                                 mode: BindingMode::ByValue, var, subpattern: None, ..
523                             },
524                         ..
525                     },
526                 ascription: thir::Ascription { ref annotation, variance: _ },
527             } => {
528                 let place =
529                     self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
530                 unpack!(block = self.expr_into_dest(place, block, initializer));
531
532                 // Inject a fake read, see comments on `FakeReadCause::ForLet`.
533                 let pattern_source_info = self.source_info(irrefutable_pat.span);
534                 let cause_let = FakeReadCause::ForLet(None);
535                 self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);
536
537                 let ty_source_info = self.source_info(annotation.span);
538
539                 let base = self.canonical_user_type_annotations.push(annotation.clone());
540                 self.cfg.push(
541                     block,
542                     Statement {
543                         source_info: ty_source_info,
544                         kind: StatementKind::AscribeUserType(
545                             Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
546                             // We always use invariant as the variance here. This is because the
547                             // variance field from the ascription refers to the variance to use
548                             // when applying the type to the value being matched, but this
549                             // ascription applies rather to the type of the binding. e.g., in this
550                             // example:
551                             //
552                             // ```
553                             // let x: T = <expr>
554                             // ```
555                             //
556                             // We are creating an ascription that defines the type of `x` to be
557                             // exactly `T` (i.e., with invariance). The variance field, in
558                             // contrast, is intended to be used to relate `T` to the type of
559                             // `<expr>`.
560                             ty::Variance::Invariant,
561                         ),
562                     },
563                 );
564
565                 self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
566                 block.unit()
567             }
568
569             _ => {
570                 let place_builder = unpack!(block = self.as_place_builder(block, initializer));
571                 self.place_into_pattern(block, irrefutable_pat, place_builder, true)
572             }
573         }
574     }
575
576     pub(crate) fn place_into_pattern(
577         &mut self,
578         block: BasicBlock,
579         irrefutable_pat: &Pat<'tcx>,
580         initializer: PlaceBuilder<'tcx>,
581         set_match_place: bool,
582     ) -> BlockAnd<()> {
583         let mut candidate = Candidate::new(initializer.clone(), &irrefutable_pat, false);
584         let fake_borrow_temps = self.lower_match_tree(
585             block,
586             irrefutable_pat.span,
587             irrefutable_pat.span,
588             false,
589             &mut [&mut candidate],
590         );
591         // For matches and function arguments, the place that is being matched
592         // can be set when creating the variables. But the place for
593         // let PATTERN = ... might not even exist until we do the assignment.
594         // so we set it here instead.
595         if set_match_place {
596             let mut candidate_ref = &candidate;
597             while let Some(next) = {
598                 for binding in &candidate_ref.bindings {
599                     let local = self.var_local_id(binding.var_id, OutsideGuard);
600
601                     let Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
602                         VarBindingForm { opt_match_place: Some((ref mut match_place, _)), .. },
603                     )))) = self.local_decls[local].local_info else {
604                         bug!("Let binding to non-user variable.")
605                     };
606                     // `try_upvars_resolved` may fail if it is unable to resolve the given
607                     // `PlaceBuilder` inside a closure. In this case, we don't want to include
608                     // a scrutinee place. `scrutinee_place_builder` will fail for destructured
609                     // assignments. This is because a closure only captures the precise places
610                     // that it will read and as a result a closure may not capture the entire
611                     // tuple/struct and rather have individual places that will be read in the
612                     // final MIR.
613                     // Example:
614                     // ```
615                     // let foo = (0, 1);
616                     // let c = || {
617                     //    let (v1, v2) = foo;
618                     // };
619                     // ```
620                     if let Ok(match_pair_resolved) =
621                         initializer.clone().try_upvars_resolved(self.tcx, &self.upvars)
622                     {
623                         let place = match_pair_resolved.into_place(self.tcx, &self.upvars);
624                         *match_place = Some(place);
625                     }
626                 }
627                 // All of the subcandidates should bind the same locals, so we
628                 // only visit the first one.
629                 candidate_ref.subcandidates.get(0)
630             } {
631                 candidate_ref = next;
632             }
633         }
634
635         self.bind_pattern(
636             self.source_info(irrefutable_pat.span),
637             candidate,
638             None,
639             &fake_borrow_temps,
640             irrefutable_pat.span,
641             None,
642             None,
643             None,
644         )
645         .unit()
646     }
647
648     /// Declares the bindings of the given patterns and returns the visibility
649     /// scope for the bindings in these patterns, if such a scope had to be
650     /// created. NOTE: Declaring the bindings should always be done in their
651     /// drop scope.
652     pub(crate) fn declare_bindings(
653         &mut self,
654         mut visibility_scope: Option<SourceScope>,
655         scope_span: Span,
656         pattern: &Pat<'tcx>,
657         has_guard: ArmHasGuard,
658         opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
659     ) -> Option<SourceScope> {
660         debug!("declare_bindings: pattern={:?}", pattern);
661         self.visit_primary_bindings(
662             &pattern,
663             UserTypeProjections::none(),
664             &mut |this, mutability, name, mode, var, span, ty, user_ty| {
665                 if visibility_scope.is_none() {
666                     visibility_scope =
667                         Some(this.new_source_scope(scope_span, LintLevel::Inherited, None));
668                 }
669                 let source_info = SourceInfo { span, scope: this.source_scope };
670                 let visibility_scope = visibility_scope.unwrap();
671                 this.declare_binding(
672                     source_info,
673                     visibility_scope,
674                     mutability,
675                     name,
676                     mode,
677                     var,
678                     ty,
679                     user_ty,
680                     has_guard,
681                     opt_match_place.map(|(x, y)| (x.cloned(), y)),
682                     pattern.span,
683                 );
684             },
685         );
686         visibility_scope
687     }
688
689     pub(crate) fn storage_live_binding(
690         &mut self,
691         block: BasicBlock,
692         var: LocalVarId,
693         span: Span,
694         for_guard: ForGuard,
695         schedule_drop: bool,
696     ) -> Place<'tcx> {
697         let local_id = self.var_local_id(var, for_guard);
698         let source_info = self.source_info(span);
699         self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) });
700         // Although there is almost always scope for given variable in corner cases
701         // like #92893 we might get variable with no scope.
702         if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) && schedule_drop{
703             self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
704         }
705         Place::from(local_id)
706     }
707
708     pub(crate) fn schedule_drop_for_binding(
709         &mut self,
710         var: LocalVarId,
711         span: Span,
712         for_guard: ForGuard,
713     ) {
714         let local_id = self.var_local_id(var, for_guard);
715         if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
716             self.schedule_drop(span, region_scope, local_id, DropKind::Value);
717         }
718     }
719
720     /// Visit all of the primary bindings in a patterns, that is, visit the
721     /// leftmost occurrence of each variable bound in a pattern. A variable
722     /// will occur more than once in an or-pattern.
723     pub(super) fn visit_primary_bindings(
724         &mut self,
725         pattern: &Pat<'tcx>,
726         pattern_user_ty: UserTypeProjections,
727         f: &mut impl FnMut(
728             &mut Self,
729             Mutability,
730             Symbol,
731             BindingMode,
732             LocalVarId,
733             Span,
734             Ty<'tcx>,
735             UserTypeProjections,
736         ),
737     ) {
738         debug!(
739             "visit_primary_bindings: pattern={:?} pattern_user_ty={:?}",
740             pattern, pattern_user_ty
741         );
742         match pattern.kind {
743             PatKind::Binding {
744                 mutability,
745                 name,
746                 mode,
747                 var,
748                 ty,
749                 ref subpattern,
750                 is_primary,
751                 ..
752             } => {
753                 if is_primary {
754                     f(self, mutability, name, mode, var, pattern.span, ty, pattern_user_ty.clone());
755                 }
756                 if let Some(subpattern) = subpattern.as_ref() {
757                     self.visit_primary_bindings(subpattern, pattern_user_ty, f);
758                 }
759             }
760
761             PatKind::Array { ref prefix, ref slice, ref suffix }
762             | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
763                 let from = u64::try_from(prefix.len()).unwrap();
764                 let to = u64::try_from(suffix.len()).unwrap();
765                 for subpattern in prefix.iter() {
766                     self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
767                 }
768                 for subpattern in slice {
769                     self.visit_primary_bindings(
770                         subpattern,
771                         pattern_user_ty.clone().subslice(from, to),
772                         f,
773                     );
774                 }
775                 for subpattern in suffix.iter() {
776                     self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
777                 }
778             }
779
780             PatKind::Constant { .. } | PatKind::Range { .. } | PatKind::Wild => {}
781
782             PatKind::Deref { ref subpattern } => {
783                 self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f);
784             }
785
786             PatKind::AscribeUserType {
787                 ref subpattern,
788                 ascription: thir::Ascription { ref annotation, variance: _ },
789             } => {
790                 // This corresponds to something like
791                 //
792                 // ```
793                 // let A::<'a>(_): A<'static> = ...;
794                 // ```
795                 //
796                 // Note that the variance doesn't apply here, as we are tracking the effect
797                 // of `user_ty` on any bindings contained with subpattern.
798
799                 let projection = UserTypeProjection {
800                     base: self.canonical_user_type_annotations.push(annotation.clone()),
801                     projs: Vec::new(),
802                 };
803                 let subpattern_user_ty =
804                     pattern_user_ty.push_projection(&projection, annotation.span);
805                 self.visit_primary_bindings(subpattern, subpattern_user_ty, f)
806             }
807
808             PatKind::Leaf { ref subpatterns } => {
809                 for subpattern in subpatterns {
810                     let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field);
811                     debug!("visit_primary_bindings: subpattern_user_ty={:?}", subpattern_user_ty);
812                     self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
813                 }
814             }
815
816             PatKind::Variant { adt_def, substs: _, variant_index, ref subpatterns } => {
817                 for subpattern in subpatterns {
818                     let subpattern_user_ty =
819                         pattern_user_ty.clone().variant(adt_def, variant_index, subpattern.field);
820                     self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
821                 }
822             }
823             PatKind::Or { ref pats } => {
824                 // In cases where we recover from errors the primary bindings
825                 // may not all be in the leftmost subpattern. For example in
826                 // `let (x | y) = ...`, the primary binding of `y` occurs in
827                 // the right subpattern
828                 for subpattern in pats.iter() {
829                     self.visit_primary_bindings(subpattern, pattern_user_ty.clone(), f);
830                 }
831             }
832         }
833     }
834 }
835
836 #[derive(Debug)]
837 struct Candidate<'pat, 'tcx> {
838     /// [`Span`] of the original pattern that gave rise to this candidate.
839     span: Span,
840
841     /// Whether this `Candidate` has a guard.
842     has_guard: bool,
843
844     /// All of these must be satisfied...
845     match_pairs: SmallVec<[MatchPair<'pat, 'tcx>; 1]>,
846
847     /// ...these bindings established...
848     bindings: Vec<Binding<'tcx>>,
849
850     /// ...and these types asserted...
851     ascriptions: Vec<Ascription<'tcx>>,
852
853     /// ...and if this is non-empty, one of these subcandidates also has to match...
854     subcandidates: Vec<Candidate<'pat, 'tcx>>,
855
856     /// ...and the guard must be evaluated; if it's `false` then branch to `otherwise_block`.
857     otherwise_block: Option<BasicBlock>,
858
859     /// The block before the `bindings` have been established.
860     pre_binding_block: Option<BasicBlock>,
861     /// The pre-binding block of the next candidate.
862     next_candidate_pre_binding_block: Option<BasicBlock>,
863 }
864
865 impl<'tcx, 'pat> Candidate<'pat, 'tcx> {
866     fn new(place: PlaceBuilder<'tcx>, pattern: &'pat Pat<'tcx>, has_guard: bool) -> Self {
867         Candidate {
868             span: pattern.span,
869             has_guard,
870             match_pairs: smallvec![MatchPair { place, pattern }],
871             bindings: Vec::new(),
872             ascriptions: Vec::new(),
873             subcandidates: Vec::new(),
874             otherwise_block: None,
875             pre_binding_block: None,
876             next_candidate_pre_binding_block: None,
877         }
878     }
879
880     /// Visit the leaf candidates (those with no subcandidates) contained in
881     /// this candidate.
882     fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
883         traverse_candidate(
884             self,
885             &mut (),
886             &mut move |c, _| visit_leaf(c),
887             move |c, _| c.subcandidates.iter_mut(),
888             |_| {},
889         );
890     }
891 }
892
893 /// A depth-first traversal of the `Candidate` and all of its recursive
894 /// subcandidates.
895 fn traverse_candidate<'pat, 'tcx: 'pat, C, T, I>(
896     candidate: C,
897     context: &mut T,
898     visit_leaf: &mut impl FnMut(C, &mut T),
899     get_children: impl Copy + Fn(C, &mut T) -> I,
900     complete_children: impl Copy + Fn(&mut T),
901 ) where
902     C: Borrow<Candidate<'pat, 'tcx>>,
903     I: Iterator<Item = C>,
904 {
905     if candidate.borrow().subcandidates.is_empty() {
906         visit_leaf(candidate, context)
907     } else {
908         for child in get_children(candidate, context) {
909             traverse_candidate(child, context, visit_leaf, get_children, complete_children);
910         }
911         complete_children(context)
912     }
913 }
914
915 #[derive(Clone, Debug)]
916 struct Binding<'tcx> {
917     span: Span,
918     source: Place<'tcx>,
919     var_id: LocalVarId,
920     binding_mode: BindingMode,
921 }
922
923 /// Indicates that the type of `source` must be a subtype of the
924 /// user-given type `user_ty`; this is basically a no-op but can
925 /// influence region inference.
926 #[derive(Clone, Debug)]
927 struct Ascription<'tcx> {
928     source: Place<'tcx>,
929     annotation: CanonicalUserTypeAnnotation<'tcx>,
930     variance: ty::Variance,
931 }
932
933 #[derive(Clone, Debug)]
934 pub(crate) struct MatchPair<'pat, 'tcx> {
935     // this place...
936     place: PlaceBuilder<'tcx>,
937
938     // ... must match this pattern.
939     pattern: &'pat Pat<'tcx>,
940 }
941
942 /// See [`Test`] for more.
943 #[derive(Clone, Debug, PartialEq)]
944 enum TestKind<'tcx> {
945     /// Test what enum variant a value is.
946     Switch {
947         /// The enum type being tested.
948         adt_def: ty::AdtDef<'tcx>,
949         /// The set of variants that we should create a branch for. We also
950         /// create an additional "otherwise" case.
951         variants: BitSet<VariantIdx>,
952     },
953
954     /// Test what value an integer, `bool`, or `char` has.
955     SwitchInt {
956         /// The type of the value that we're testing.
957         switch_ty: Ty<'tcx>,
958         /// The (ordered) set of values that we test for.
959         ///
960         /// For integers and `char`s we create a branch to each of the values in
961         /// `options`, as well as an "otherwise" branch for all other values, even
962         /// in the (rare) case that `options` is exhaustive.
963         ///
964         /// For `bool` we always generate two edges, one for `true` and one for
965         /// `false`.
966         options: FxIndexMap<ConstantKind<'tcx>, u128>,
967     },
968
969     /// Test for equality with value, possibly after an unsizing coercion to
970     /// `ty`,
971     Eq {
972         value: ConstantKind<'tcx>,
973         // Integer types are handled by `SwitchInt`, and constants with ADT
974         // types are converted back into patterns, so this can only be `&str`,
975         // `&[T]`, `f32` or `f64`.
976         ty: Ty<'tcx>,
977     },
978
979     /// Test whether the value falls within an inclusive or exclusive range
980     Range(Box<PatRange<'tcx>>),
981
982     /// Test that the length of the slice is equal to `len`.
983     Len { len: u64, op: BinOp },
984 }
985
986 /// A test to perform to determine which [`Candidate`] matches a value.
987 ///
988 /// [`Test`] is just the test to perform; it does not include the value
989 /// to be tested.
990 #[derive(Debug)]
991 pub(crate) struct Test<'tcx> {
992     span: Span,
993     kind: TestKind<'tcx>,
994 }
995
996 /// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
997 /// a match arm has a guard expression attached to it.
998 #[derive(Copy, Clone, Debug)]
999 pub(crate) struct ArmHasGuard(pub(crate) bool);
1000
1001 ///////////////////////////////////////////////////////////////////////////
1002 // Main matching algorithm
1003
1004 impl<'a, 'tcx> Builder<'a, 'tcx> {
1005     /// The main match algorithm. It begins with a set of candidates
1006     /// `candidates` and has the job of generating code to determine
1007     /// which of these candidates, if any, is the correct one. The
1008     /// candidates are sorted such that the first item in the list
1009     /// has the highest priority. When a candidate is found to match
1010     /// the value, we will set and generate a branch to the appropriate
1011     /// pre-binding block.
1012     ///
1013     /// If we find that *NONE* of the candidates apply, we branch to the
1014     /// `otherwise_block`, setting it to `Some` if required. In principle, this
1015     /// means that the input list was not exhaustive, though at present we
1016     /// sometimes are not smart enough to recognize all exhaustive inputs.
1017     ///
1018     /// It might be surprising that the input can be non-exhaustive.
1019     /// Indeed, initially, it is not, because all matches are
1020     /// exhaustive in Rust. But during processing we sometimes divide
1021     /// up the list of candidates and recurse with a non-exhaustive
1022     /// list. This is important to keep the size of the generated code
1023     /// under control. See [`Builder::test_candidates`] for more details.
1024     ///
1025     /// If `fake_borrows` is `Some`, then places which need fake borrows
1026     /// will be added to it.
1027     ///
1028     /// For an example of a case where we set `otherwise_block`, even for an
1029     /// exhaustive match, consider:
1030     ///
1031     /// ```
1032     /// # fn foo(x: (bool, bool)) {
1033     /// match x {
1034     ///     (true, true) => (),
1035     ///     (_, false) => (),
1036     ///     (false, true) => (),
1037     /// }
1038     /// # }
1039     /// ```
1040     ///
1041     /// For this match, we check if `x.0` matches `true` (for the first
1042     /// arm). If it doesn't match, we check `x.1`. If `x.1` is `true` we check
1043     /// if `x.0` matches `false` (for the third arm). In the (impossible at
1044     /// runtime) case when `x.0` is now `true`, we branch to
1045     /// `otherwise_block`.
1046     fn match_candidates<'pat>(
1047         &mut self,
1048         span: Span,
1049         scrutinee_span: Span,
1050         start_block: BasicBlock,
1051         otherwise_block: &mut Option<BasicBlock>,
1052         candidates: &mut [&mut Candidate<'pat, 'tcx>],
1053         fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
1054     ) {
1055         debug!(
1056             "matched_candidate(span={:?}, candidates={:?}, start_block={:?}, otherwise_block={:?})",
1057             span, candidates, start_block, otherwise_block,
1058         );
1059
1060         // Start by simplifying candidates. Once this process is complete, all
1061         // the match pairs which remain require some form of test, whether it
1062         // be a switch or pattern comparison.
1063         let mut split_or_candidate = false;
1064         for candidate in &mut *candidates {
1065             split_or_candidate |= self.simplify_candidate(candidate);
1066         }
1067
1068         ensure_sufficient_stack(|| {
1069             if split_or_candidate {
1070                 // At least one of the candidates has been split into subcandidates.
1071                 // We need to change the candidate list to include those.
1072                 let mut new_candidates = Vec::new();
1073
1074                 for candidate in candidates {
1075                     candidate.visit_leaves(|leaf_candidate| new_candidates.push(leaf_candidate));
1076                 }
1077                 self.match_simplified_candidates(
1078                     span,
1079                     scrutinee_span,
1080                     start_block,
1081                     otherwise_block,
1082                     &mut *new_candidates,
1083                     fake_borrows,
1084                 );
1085             } else {
1086                 self.match_simplified_candidates(
1087                     span,
1088                     scrutinee_span,
1089                     start_block,
1090                     otherwise_block,
1091                     candidates,
1092                     fake_borrows,
1093                 );
1094             }
1095         });
1096     }
1097
1098     fn match_simplified_candidates(
1099         &mut self,
1100         span: Span,
1101         scrutinee_span: Span,
1102         start_block: BasicBlock,
1103         otherwise_block: &mut Option<BasicBlock>,
1104         candidates: &mut [&mut Candidate<'_, 'tcx>],
1105         fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
1106     ) {
1107         // The candidates are sorted by priority. Check to see whether the
1108         // higher priority candidates (and hence at the front of the slice)
1109         // have satisfied all their match pairs.
1110         let fully_matched = candidates.iter().take_while(|c| c.match_pairs.is_empty()).count();
1111         debug!("match_candidates: {:?} candidates fully matched", fully_matched);
1112         let (matched_candidates, unmatched_candidates) = candidates.split_at_mut(fully_matched);
1113
1114         let block = if !matched_candidates.is_empty() {
1115             let otherwise_block =
1116                 self.select_matched_candidates(matched_candidates, start_block, fake_borrows);
1117
1118             if let Some(last_otherwise_block) = otherwise_block {
1119                 last_otherwise_block
1120             } else {
1121                 // Any remaining candidates are unreachable.
1122                 if unmatched_candidates.is_empty() {
1123                     return;
1124                 }
1125                 self.cfg.start_new_block()
1126             }
1127         } else {
1128             start_block
1129         };
1130
1131         // If there are no candidates that still need testing, we're
1132         // done. Since all matches are exhaustive, execution should
1133         // never reach this point.
1134         if unmatched_candidates.is_empty() {
1135             let source_info = self.source_info(span);
1136             if let Some(otherwise) = *otherwise_block {
1137                 self.cfg.goto(block, source_info, otherwise);
1138             } else {
1139                 *otherwise_block = Some(block);
1140             }
1141             return;
1142         }
1143
1144         // Test for the remaining candidates.
1145         self.test_candidates_with_or(
1146             span,
1147             scrutinee_span,
1148             unmatched_candidates,
1149             block,
1150             otherwise_block,
1151             fake_borrows,
1152         );
1153     }
1154
1155     /// Link up matched candidates.
1156     ///
1157     /// For example, if we have something like this:
1158     ///
1159     /// ```ignore (illustrative)
1160     /// ...
1161     /// Some(x) if cond1 => ...
1162     /// Some(x) => ...
1163     /// Some(x) if cond2 => ...
1164     /// ...
1165     /// ```
1166     ///
1167     /// We generate real edges from:
1168     ///
1169     /// * `start_block` to the [pre-binding block] of the first pattern,
1170     /// * the [otherwise block] of the first pattern to the second pattern,
1171     /// * the [otherwise block] of the third pattern to a block with an
1172     ///   [`Unreachable` terminator](TerminatorKind::Unreachable).
1173     ///
1174     /// In addition, we add fake edges from the otherwise blocks to the
1175     /// pre-binding block of the next candidate in the original set of
1176     /// candidates.
1177     ///
1178     /// [pre-binding block]: Candidate::pre_binding_block
1179     /// [otherwise block]: Candidate::otherwise_block
1180     fn select_matched_candidates(
1181         &mut self,
1182         matched_candidates: &mut [&mut Candidate<'_, 'tcx>],
1183         start_block: BasicBlock,
1184         fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
1185     ) -> Option<BasicBlock> {
1186         debug_assert!(
1187             !matched_candidates.is_empty(),
1188             "select_matched_candidates called with no candidates",
1189         );
1190         debug_assert!(
1191             matched_candidates.iter().all(|c| c.subcandidates.is_empty()),
1192             "subcandidates should be empty in select_matched_candidates",
1193         );
1194
1195         // Insert a borrows of prefixes of places that are bound and are
1196         // behind a dereference projection.
1197         //
1198         // These borrows are taken to avoid situations like the following:
1199         //
1200         // match x[10] {
1201         //     _ if { x = &[0]; false } => (),
1202         //     y => (), // Out of bounds array access!
1203         // }
1204         //
1205         // match *x {
1206         //     // y is bound by reference in the guard and then by copy in the
1207         //     // arm, so y is 2 in the arm!
1208         //     y if { y == 1 && (x = &2) == () } => y,
1209         //     _ => 3,
1210         // }
1211         if let Some(fake_borrows) = fake_borrows {
1212             for Binding { source, .. } in
1213                 matched_candidates.iter().flat_map(|candidate| &candidate.bindings)
1214             {
1215                 if let Some(i) =
1216                     source.projection.iter().rposition(|elem| elem == ProjectionElem::Deref)
1217                 {
1218                     let proj_base = &source.projection[..i];
1219
1220                     fake_borrows.insert(Place {
1221                         local: source.local,
1222                         projection: self.tcx.intern_place_elems(proj_base),
1223                     });
1224                 }
1225             }
1226         }
1227
1228         let fully_matched_with_guard = matched_candidates
1229             .iter()
1230             .position(|c| !c.has_guard)
1231             .unwrap_or(matched_candidates.len() - 1);
1232
1233         let (reachable_candidates, unreachable_candidates) =
1234             matched_candidates.split_at_mut(fully_matched_with_guard + 1);
1235
1236         let mut next_prebinding = start_block;
1237
1238         for candidate in reachable_candidates.iter_mut() {
1239             assert!(candidate.otherwise_block.is_none());
1240             assert!(candidate.pre_binding_block.is_none());
1241             candidate.pre_binding_block = Some(next_prebinding);
1242             if candidate.has_guard {
1243                 // Create the otherwise block for this candidate, which is the
1244                 // pre-binding block for the next candidate.
1245                 next_prebinding = self.cfg.start_new_block();
1246                 candidate.otherwise_block = Some(next_prebinding);
1247             }
1248         }
1249
1250         debug!(
1251             "match_candidates: add pre_binding_blocks for unreachable {:?}",
1252             unreachable_candidates,
1253         );
1254         for candidate in unreachable_candidates {
1255             assert!(candidate.pre_binding_block.is_none());
1256             candidate.pre_binding_block = Some(self.cfg.start_new_block());
1257         }
1258
1259         reachable_candidates.last_mut().unwrap().otherwise_block
1260     }
1261
1262     /// Tests a candidate where there are only or-patterns left to test, or
1263     /// forwards to [Builder::test_candidates].
1264     ///
1265     /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
1266     /// so:
1267     ///
1268     /// ```text
1269     /// [ start ]
1270     ///      |
1271     /// [ match P, Q ]
1272     ///      |
1273     ///      +----------------------------------------+------------------------------------+
1274     ///      |                                        |                                    |
1275     ///      V                                        V                                    V
1276     /// [ P matches ]                           [ Q matches ]                        [ otherwise ]
1277     ///      |                                        |                                    |
1278     ///      V                                        V                                    |
1279     /// [ match R, S ]                          [ match R, S ]                             |
1280     ///      |                                        |                                    |
1281     ///      +--------------+------------+            +--------------+------------+        |
1282     ///      |              |            |            |              |            |        |
1283     ///      V              V            V            V              V            V        |
1284     /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ]  |
1285     ///      |              |            |            |              |            |        |
1286     ///      +--------------+------------|------------+--------------+            |        |
1287     ///      |                           |                                        |        |
1288     ///      |                           +----------------------------------------+--------+
1289     ///      |                           |
1290     ///      V                           V
1291     /// [ Success ]                 [ Failure ]
1292     /// ```
1293     ///
1294     /// In practice there are some complications:
1295     ///
1296     /// * If there's a guard, then the otherwise branch of the first match on
1297     ///   `R | S` goes to a test for whether `Q` matches, and the control flow
1298     ///   doesn't merge into a single success block until after the guard is
1299     ///   tested.
1300     /// * If neither `P` or `Q` has any bindings or type ascriptions and there
1301     ///   isn't a match guard, then we create a smaller CFG like:
1302     ///
1303     /// ```text
1304     ///     ...
1305     ///      +---------------+------------+
1306     ///      |               |            |
1307     /// [ P matches ] [ Q matches ] [ otherwise ]
1308     ///      |               |            |
1309     ///      +---------------+            |
1310     ///      |                           ...
1311     /// [ match R, S ]
1312     ///      |
1313     ///     ...
1314     /// ```
1315     fn test_candidates_with_or(
1316         &mut self,
1317         span: Span,
1318         scrutinee_span: Span,
1319         candidates: &mut [&mut Candidate<'_, 'tcx>],
1320         block: BasicBlock,
1321         otherwise_block: &mut Option<BasicBlock>,
1322         fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
1323     ) {
1324         let (first_candidate, remaining_candidates) = candidates.split_first_mut().unwrap();
1325
1326         // All of the or-patterns have been sorted to the end, so if the first
1327         // pattern is an or-pattern we only have or-patterns.
1328         match first_candidate.match_pairs[0].pattern.kind {
1329             PatKind::Or { .. } => (),
1330             _ => {
1331                 self.test_candidates(
1332                     span,
1333                     scrutinee_span,
1334                     candidates,
1335                     block,
1336                     otherwise_block,
1337                     fake_borrows,
1338                 );
1339                 return;
1340             }
1341         }
1342
1343         let match_pairs = mem::take(&mut first_candidate.match_pairs);
1344         first_candidate.pre_binding_block = Some(block);
1345
1346         let mut otherwise = None;
1347         for match_pair in match_pairs {
1348             let PatKind::Or { ref pats } = &match_pair.pattern.kind else {
1349                 bug!("Or-patterns should have been sorted to the end");
1350             };
1351             let or_span = match_pair.pattern.span;
1352             let place = match_pair.place;
1353
1354             first_candidate.visit_leaves(|leaf_candidate| {
1355                 self.test_or_pattern(
1356                     leaf_candidate,
1357                     &mut otherwise,
1358                     pats,
1359                     or_span,
1360                     place.clone(),
1361                     fake_borrows,
1362                 );
1363             });
1364         }
1365
1366         let remainder_start = otherwise.unwrap_or_else(|| self.cfg.start_new_block());
1367
1368         self.match_candidates(
1369             span,
1370             scrutinee_span,
1371             remainder_start,
1372             otherwise_block,
1373             remaining_candidates,
1374             fake_borrows,
1375         )
1376     }
1377
1378     fn test_or_pattern<'pat>(
1379         &mut self,
1380         candidate: &mut Candidate<'pat, 'tcx>,
1381         otherwise: &mut Option<BasicBlock>,
1382         pats: &'pat [Box<Pat<'tcx>>],
1383         or_span: Span,
1384         place: PlaceBuilder<'tcx>,
1385         fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
1386     ) {
1387         debug!("test_or_pattern:\ncandidate={:#?}\npats={:#?}", candidate, pats);
1388         let mut or_candidates: Vec<_> = pats
1389             .iter()
1390             .map(|pat| Candidate::new(place.clone(), pat, candidate.has_guard))
1391             .collect();
1392         let mut or_candidate_refs: Vec<_> = or_candidates.iter_mut().collect();
1393         let otherwise = if candidate.otherwise_block.is_some() {
1394             &mut candidate.otherwise_block
1395         } else {
1396             otherwise
1397         };
1398         self.match_candidates(
1399             or_span,
1400             or_span,
1401             candidate.pre_binding_block.unwrap(),
1402             otherwise,
1403             &mut or_candidate_refs,
1404             fake_borrows,
1405         );
1406         candidate.subcandidates = or_candidates;
1407         self.merge_trivial_subcandidates(candidate, self.source_info(or_span));
1408     }
1409
1410     /// Try to merge all of the subcandidates of the given candidate into one.
1411     /// This avoids exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`.
1412     fn merge_trivial_subcandidates(
1413         &mut self,
1414         candidate: &mut Candidate<'_, 'tcx>,
1415         source_info: SourceInfo,
1416     ) {
1417         if candidate.subcandidates.is_empty() || candidate.has_guard {
1418             // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
1419             return;
1420         }
1421
1422         let mut can_merge = true;
1423
1424         // Not `Iterator::all` because we don't want to short-circuit.
1425         for subcandidate in &mut candidate.subcandidates {
1426             self.merge_trivial_subcandidates(subcandidate, source_info);
1427
1428             // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
1429             can_merge &= subcandidate.subcandidates.is_empty()
1430                 && subcandidate.bindings.is_empty()
1431                 && subcandidate.ascriptions.is_empty();
1432         }
1433
1434         if can_merge {
1435             let any_matches = self.cfg.start_new_block();
1436             for subcandidate in mem::take(&mut candidate.subcandidates) {
1437                 let or_block = subcandidate.pre_binding_block.unwrap();
1438                 self.cfg.goto(or_block, source_info, any_matches);
1439             }
1440             candidate.pre_binding_block = Some(any_matches);
1441         }
1442     }
1443
1444     /// This is the most subtle part of the matching algorithm. At
1445     /// this point, the input candidates have been fully simplified,
1446     /// and so we know that all remaining match-pairs require some
1447     /// sort of test. To decide what test to perform, we take the highest
1448     /// priority candidate (the first one in the list, as of January 2021)
1449     /// and extract the first match-pair from the list. From this we decide
1450     /// what kind of test is needed using [`Builder::test`], defined in the
1451     /// [`test` module](mod@test).
1452     ///
1453     /// *Note:* taking the first match pair is somewhat arbitrary, and
1454     /// we might do better here by choosing more carefully what to
1455     /// test.
1456     ///
1457     /// For example, consider the following possible match-pairs:
1458     ///
1459     /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
1460     /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
1461     /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
1462     /// 4. etc.
1463     ///
1464     /// [`Switch`]: TestKind::Switch
1465     /// [`SwitchInt`]: TestKind::SwitchInt
1466     /// [`Range`]: TestKind::Range
1467     ///
1468     /// Once we know what sort of test we are going to perform, this
1469     /// test may also help us winnow down our candidates. So we walk over
1470     /// the candidates (from high to low priority) and check. This
1471     /// gives us, for each outcome of the test, a transformed list of
1472     /// candidates. For example, if we are testing `x.0`'s variant,
1473     /// and we have a candidate `(x.0 @ Some(v), x.1 @ 22)`,
1474     /// then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)`.
1475     /// Note that the first match-pair is now simpler (and, in fact, irrefutable).
1476     ///
1477     /// But there may also be candidates that the test just doesn't
1478     /// apply to. The classical example involves wildcards:
1479     ///
1480     /// ```
1481     /// # let (x, y, z) = (true, true, true);
1482     /// match (x, y, z) {
1483     ///     (true , _    , true ) => true,  // (0)
1484     ///     (_    , true , _    ) => true,  // (1)
1485     ///     (false, false, _    ) => false, // (2)
1486     ///     (true , _    , false) => false, // (3)
1487     /// }
1488     /// # ;
1489     /// ```
1490     ///
1491     /// In that case, after we test on `x`, there are 2 overlapping candidate
1492     /// sets:
1493     ///
1494     /// - If the outcome is that `x` is true, candidates 0, 1, and 3
1495     /// - If the outcome is that `x` is false, candidates 1 and 2
1496     ///
1497     /// Here, the traditional "decision tree" method would generate 2
1498     /// separate code-paths for the 2 separate cases.
1499     ///
1500     /// In some cases, this duplication can create an exponential amount of
1501     /// code. This is most easily seen by noticing that this method terminates
1502     /// with precisely the reachable arms being reachable - but that problem
1503     /// is trivially NP-complete:
1504     ///
1505     /// ```ignore (illustrative)
1506     /// match (var0, var1, var2, var3, ...) {
1507     ///     (true , _   , _    , false, true, ...) => false,
1508     ///     (_    , true, true , false, _   , ...) => false,
1509     ///     (false, _   , false, false, _   , ...) => false,
1510     ///     ...
1511     ///     _ => true
1512     /// }
1513     /// ```
1514     ///
1515     /// Here the last arm is reachable only if there is an assignment to
1516     /// the variables that does not match any of the literals. Therefore,
1517     /// compilation would take an exponential amount of time in some cases.
1518     ///
1519     /// That kind of exponential worst-case might not occur in practice, but
1520     /// our simplistic treatment of constants and guards would make it occur
1521     /// in very common situations - for example [#29740]:
1522     ///
1523     /// ```ignore (illustrative)
1524     /// match x {
1525     ///     "foo" if foo_guard => ...,
1526     ///     "bar" if bar_guard => ...,
1527     ///     "baz" if baz_guard => ...,
1528     ///     ...
1529     /// }
1530     /// ```
1531     ///
1532     /// [#29740]: https://github.com/rust-lang/rust/issues/29740
1533     ///
1534     /// Here we first test the match-pair `x @ "foo"`, which is an [`Eq` test].
1535     ///
1536     /// [`Eq` test]: TestKind::Eq
1537     ///
1538     /// It might seem that we would end up with 2 disjoint candidate
1539     /// sets, consisting of the first candidate or the other two, but our
1540     /// algorithm doesn't reason about `"foo"` being distinct from the other
1541     /// constants; it considers the latter arms to potentially match after
1542     /// both outcomes, which obviously leads to an exponential number
1543     /// of tests.
1544     ///
1545     /// To avoid these kinds of problems, our algorithm tries to ensure
1546     /// the amount of generated tests is linear. When we do a k-way test,
1547     /// we return an additional "unmatched" set alongside the obvious `k`
1548     /// sets. When we encounter a candidate that would be present in more
1549     /// than one of the sets, we put it and all candidates below it into the
1550     /// "unmatched" set. This ensures these `k+1` sets are disjoint.
1551     ///
1552     /// After we perform our test, we branch into the appropriate candidate
1553     /// set and recurse with `match_candidates`. These sub-matches are
1554     /// obviously non-exhaustive - as we discarded our otherwise set - so
1555     /// we set their continuation to do `match_candidates` on the
1556     /// "unmatched" set (which is again non-exhaustive).
1557     ///
1558     /// If you apply this to the above test, you basically wind up
1559     /// with an if-else-if chain, testing each candidate in turn,
1560     /// which is precisely what we want.
1561     ///
1562     /// In addition to avoiding exponential-time blowups, this algorithm
1563     /// also has the nice property that each guard and arm is only generated
1564     /// once.
1565     fn test_candidates<'pat, 'b, 'c>(
1566         &mut self,
1567         span: Span,
1568         scrutinee_span: Span,
1569         mut candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
1570         block: BasicBlock,
1571         otherwise_block: &mut Option<BasicBlock>,
1572         fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
1573     ) {
1574         // extract the match-pair from the highest priority candidate
1575         let match_pair = &candidates.first().unwrap().match_pairs[0];
1576         let mut test = self.test(match_pair);
1577         let match_place = match_pair.place.clone();
1578
1579         // most of the time, the test to perform is simply a function
1580         // of the main candidate; but for a test like SwitchInt, we
1581         // may want to add cases based on the candidates that are
1582         // available
1583         match test.kind {
1584             TestKind::SwitchInt { switch_ty, ref mut options } => {
1585                 for candidate in candidates.iter() {
1586                     if !self.add_cases_to_switch(&match_place, candidate, switch_ty, options) {
1587                         break;
1588                     }
1589                 }
1590             }
1591             TestKind::Switch { adt_def: _, ref mut variants } => {
1592                 for candidate in candidates.iter() {
1593                     if !self.add_variants_to_switch(&match_place, candidate, variants) {
1594                         break;
1595                     }
1596                 }
1597             }
1598             _ => {}
1599         }
1600
1601         // Insert a Shallow borrow of any places that is switched on.
1602         if let Some(fb) = fake_borrows && let Ok(match_place_resolved) =
1603             match_place.clone().try_upvars_resolved(self.tcx, &self.upvars)
1604         {
1605             let resolved_place = match_place_resolved.into_place(self.tcx, &self.upvars);
1606             fb.insert(resolved_place);
1607         }
1608
1609         // perform the test, branching to one of N blocks. For each of
1610         // those N possible outcomes, create a (initially empty)
1611         // vector of candidates. Those are the candidates that still
1612         // apply if the test has that particular outcome.
1613         debug!("test_candidates: test={:?} match_pair={:?}", test, match_pair);
1614         let mut target_candidates: Vec<Vec<&mut Candidate<'pat, 'tcx>>> = vec![];
1615         target_candidates.resize_with(test.targets(), Default::default);
1616
1617         let total_candidate_count = candidates.len();
1618
1619         // Sort the candidates into the appropriate vector in
1620         // `target_candidates`. Note that at some point we may
1621         // encounter a candidate where the test is not relevant; at
1622         // that point, we stop sorting.
1623         while let Some(candidate) = candidates.first_mut() {
1624             let Some(idx) = self.sort_candidate(&match_place.clone(), &test, candidate) else {
1625                 break;
1626             };
1627             let (candidate, rest) = candidates.split_first_mut().unwrap();
1628             target_candidates[idx].push(candidate);
1629             candidates = rest;
1630         }
1631         // at least the first candidate ought to be tested
1632         assert!(total_candidate_count > candidates.len());
1633         debug!("test_candidates: tested_candidates: {}", total_candidate_count - candidates.len());
1634         debug!("test_candidates: untested_candidates: {}", candidates.len());
1635
1636         // HACK(matthewjasper) This is a closure so that we can let the test
1637         // create its blocks before the rest of the match. This currently
1638         // improves the speed of llvm when optimizing long string literal
1639         // matches
1640         let make_target_blocks = move |this: &mut Self| -> Vec<BasicBlock> {
1641             // The block that we should branch to if none of the
1642             // `target_candidates` match. This is either the block where we
1643             // start matching the untested candidates if there are any,
1644             // otherwise it's the `otherwise_block`.
1645             let remainder_start = &mut None;
1646             let remainder_start =
1647                 if candidates.is_empty() { &mut *otherwise_block } else { remainder_start };
1648
1649             // For each outcome of test, process the candidates that still
1650             // apply. Collect a list of blocks where control flow will
1651             // branch if one of the `target_candidate` sets is not
1652             // exhaustive.
1653             let target_blocks: Vec<_> = target_candidates
1654                 .into_iter()
1655                 .map(|mut candidates| {
1656                     if !candidates.is_empty() {
1657                         let candidate_start = this.cfg.start_new_block();
1658                         this.match_candidates(
1659                             span,
1660                             scrutinee_span,
1661                             candidate_start,
1662                             remainder_start,
1663                             &mut *candidates,
1664                             fake_borrows,
1665                         );
1666                         candidate_start
1667                     } else {
1668                         *remainder_start.get_or_insert_with(|| this.cfg.start_new_block())
1669                     }
1670                 })
1671                 .collect();
1672
1673             if !candidates.is_empty() {
1674                 let remainder_start = remainder_start.unwrap_or_else(|| this.cfg.start_new_block());
1675                 this.match_candidates(
1676                     span,
1677                     scrutinee_span,
1678                     remainder_start,
1679                     otherwise_block,
1680                     candidates,
1681                     fake_borrows,
1682                 );
1683             };
1684
1685             target_blocks
1686         };
1687
1688         self.perform_test(span, scrutinee_span, block, match_place, &test, make_target_blocks);
1689     }
1690
1691     /// Determine the fake borrows that are needed from a set of places that
1692     /// have to be stable across match guards.
1693     ///
1694     /// Returns a list of places that need a fake borrow and the temporary
1695     /// that's used to store the fake borrow.
1696     ///
1697     /// Match exhaustiveness checking is not able to handle the case where the
1698     /// place being matched on is mutated in the guards. We add "fake borrows"
1699     /// to the guards that prevent any mutation of the place being matched.
1700     /// There are a some subtleties:
1701     ///
1702     /// 1. Borrowing `*x` doesn't prevent assigning to `x`. If `x` is a shared
1703     ///    reference, the borrow isn't even tracked. As such we have to add fake
1704     ///    borrows of any prefixes of a place
1705     /// 2. We don't want `match x { _ => (), }` to conflict with mutable
1706     ///    borrows of `x`, so we only add fake borrows for places which are
1707     ///    bound or tested by the match.
1708     /// 3. We don't want the fake borrows to conflict with `ref mut` bindings,
1709     ///    so we use a special BorrowKind for them.
1710     /// 4. The fake borrows may be of places in inactive variants, so it would
1711     ///    be UB to generate code for them. They therefore have to be removed
1712     ///    by a MIR pass run after borrow checking.
1713     fn calculate_fake_borrows<'b>(
1714         &mut self,
1715         fake_borrows: &'b FxIndexSet<Place<'tcx>>,
1716         temp_span: Span,
1717     ) -> Vec<(Place<'tcx>, Local)> {
1718         let tcx = self.tcx;
1719
1720         debug!("add_fake_borrows fake_borrows = {:?}", fake_borrows);
1721
1722         let mut all_fake_borrows = Vec::with_capacity(fake_borrows.len());
1723
1724         // Insert a Shallow borrow of the prefixes of any fake borrows.
1725         for place in fake_borrows {
1726             let mut cursor = place.projection.as_ref();
1727             while let [proj_base @ .., elem] = cursor {
1728                 cursor = proj_base;
1729
1730                 if let ProjectionElem::Deref = elem {
1731                     // Insert a shallow borrow after a deref. For other
1732                     // projections the borrow of prefix_cursor will
1733                     // conflict with any mutation of base.
1734                     all_fake_borrows.push(PlaceRef { local: place.local, projection: proj_base });
1735                 }
1736             }
1737
1738             all_fake_borrows.push(place.as_ref());
1739         }
1740
1741         // Deduplicate
1742         let mut dedup = FxHashSet::default();
1743         all_fake_borrows.retain(|b| dedup.insert(*b));
1744
1745         debug!("add_fake_borrows all_fake_borrows = {:?}", all_fake_borrows);
1746
1747         all_fake_borrows
1748             .into_iter()
1749             .map(|matched_place_ref| {
1750                 let matched_place = Place {
1751                     local: matched_place_ref.local,
1752                     projection: tcx.intern_place_elems(matched_place_ref.projection),
1753                 };
1754                 let fake_borrow_deref_ty = matched_place.ty(&self.local_decls, tcx).ty;
1755                 let fake_borrow_ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, fake_borrow_deref_ty);
1756                 let fake_borrow_temp =
1757                     self.local_decls.push(LocalDecl::new(fake_borrow_ty, temp_span));
1758
1759                 (matched_place, fake_borrow_temp)
1760             })
1761             .collect()
1762     }
1763 }
1764
1765 ///////////////////////////////////////////////////////////////////////////
1766 // Pat binding - used for `let` and function parameters as well.
1767
1768 impl<'a, 'tcx> Builder<'a, 'tcx> {
1769     pub(crate) fn lower_let_expr(
1770         &mut self,
1771         mut block: BasicBlock,
1772         expr: &Expr<'tcx>,
1773         pat: &Pat<'tcx>,
1774         else_target: region::Scope,
1775         source_scope: Option<SourceScope>,
1776         span: Span,
1777     ) -> BlockAnd<()> {
1778         let expr_span = expr.span;
1779         let expr_place_builder = unpack!(block = self.lower_scrutinee(block, expr, expr_span));
1780         let wildcard = Pat::wildcard_from_ty(pat.ty);
1781         let mut guard_candidate = Candidate::new(expr_place_builder.clone(), &pat, false);
1782         let mut otherwise_candidate = Candidate::new(expr_place_builder.clone(), &wildcard, false);
1783         let fake_borrow_temps = self.lower_match_tree(
1784             block,
1785             pat.span,
1786             pat.span,
1787             false,
1788             &mut [&mut guard_candidate, &mut otherwise_candidate],
1789         );
1790         let mut opt_expr_place: Option<(Option<&Place<'tcx>>, Span)> = None;
1791         let expr_place: Place<'tcx>;
1792         if let Ok(expr_builder) = expr_place_builder.try_upvars_resolved(self.tcx, &self.upvars) {
1793             expr_place = expr_builder.into_place(self.tcx, &self.upvars);
1794             opt_expr_place = Some((Some(&expr_place), expr_span));
1795         }
1796         let otherwise_post_guard_block = otherwise_candidate.pre_binding_block.unwrap();
1797         self.break_for_else(otherwise_post_guard_block, else_target, self.source_info(expr_span));
1798
1799         self.declare_bindings(
1800             source_scope,
1801             pat.span.to(span),
1802             pat,
1803             ArmHasGuard(false),
1804             opt_expr_place,
1805         );
1806
1807         let post_guard_block = self.bind_pattern(
1808             self.source_info(pat.span),
1809             guard_candidate,
1810             None,
1811             &fake_borrow_temps,
1812             expr.span,
1813             None,
1814             None,
1815             None,
1816         );
1817
1818         post_guard_block.unit()
1819     }
1820
1821     /// Initializes each of the bindings from the candidate by
1822     /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
1823     /// any, and then branches to the arm. Returns the block for the case where
1824     /// the guard succeeds.
1825     ///
1826     /// Note: we do not check earlier that if there is a guard,
1827     /// there cannot be move bindings. We avoid a use-after-move by only
1828     /// moving the binding once the guard has evaluated to true (see below).
1829     fn bind_and_guard_matched_candidate<'pat>(
1830         &mut self,
1831         candidate: Candidate<'pat, 'tcx>,
1832         parent_bindings: &[(Vec<Binding<'tcx>>, Vec<Ascription<'tcx>>)],
1833         guard: Option<&Guard<'tcx>>,
1834         fake_borrows: &[(Place<'tcx>, Local)],
1835         scrutinee_span: Span,
1836         arm_span: Option<Span>,
1837         match_scope: Option<region::Scope>,
1838         schedule_drops: bool,
1839     ) -> BasicBlock {
1840         debug!("bind_and_guard_matched_candidate(candidate={:?})", candidate);
1841
1842         debug_assert!(candidate.match_pairs.is_empty());
1843
1844         let candidate_source_info = self.source_info(candidate.span);
1845
1846         let mut block = candidate.pre_binding_block.unwrap();
1847
1848         if candidate.next_candidate_pre_binding_block.is_some() {
1849             let fresh_block = self.cfg.start_new_block();
1850             self.false_edges(
1851                 block,
1852                 fresh_block,
1853                 candidate.next_candidate_pre_binding_block,
1854                 candidate_source_info,
1855             );
1856             block = fresh_block;
1857         }
1858
1859         self.ascribe_types(
1860             block,
1861             parent_bindings
1862                 .iter()
1863                 .flat_map(|(_, ascriptions)| ascriptions)
1864                 .cloned()
1865                 .chain(candidate.ascriptions),
1866         );
1867
1868         // rust-lang/rust#27282: The `autoref` business deserves some
1869         // explanation here.
1870         //
1871         // The intent of the `autoref` flag is that when it is true,
1872         // then any pattern bindings of type T will map to a `&T`
1873         // within the context of the guard expression, but will
1874         // continue to map to a `T` in the context of the arm body. To
1875         // avoid surfacing this distinction in the user source code
1876         // (which would be a severe change to the language and require
1877         // far more revision to the compiler), when `autoref` is true,
1878         // then any occurrence of the identifier in the guard
1879         // expression will automatically get a deref op applied to it.
1880         //
1881         // So an input like:
1882         //
1883         // ```
1884         // let place = Foo::new();
1885         // match place { foo if inspect(foo)
1886         //     => feed(foo), ...  }
1887         // ```
1888         //
1889         // will be treated as if it were really something like:
1890         //
1891         // ```
1892         // let place = Foo::new();
1893         // match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
1894         //     => { let tmp2 = place; feed(tmp2) }, ... }
1895         //
1896         // And an input like:
1897         //
1898         // ```
1899         // let place = Foo::new();
1900         // match place { ref mut foo if inspect(foo)
1901         //     => feed(foo), ...  }
1902         // ```
1903         //
1904         // will be treated as if it were really something like:
1905         //
1906         // ```
1907         // let place = Foo::new();
1908         // match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
1909         //     => { let tmp2 = &mut place; feed(tmp2) }, ... }
1910         // ```
1911         //
1912         // In short, any pattern binding will always look like *some*
1913         // kind of `&T` within the guard at least in terms of how the
1914         // MIR-borrowck views it, and this will ensure that guard
1915         // expressions cannot mutate their the match inputs via such
1916         // bindings. (It also ensures that guard expressions can at
1917         // most *copy* values from such bindings; non-Copy things
1918         // cannot be moved via pattern bindings in guard expressions.)
1919         //
1920         // ----
1921         //
1922         // Implementation notes (under assumption `autoref` is true).
1923         //
1924         // To encode the distinction above, we must inject the
1925         // temporaries `tmp1` and `tmp2`.
1926         //
1927         // There are two cases of interest: binding by-value, and binding by-ref.
1928         //
1929         // 1. Binding by-value: Things are simple.
1930         //
1931         //    * Establishing `tmp1` creates a reference into the
1932         //      matched place. This code is emitted by
1933         //      bind_matched_candidate_for_guard.
1934         //
1935         //    * `tmp2` is only initialized "lazily", after we have
1936         //      checked the guard. Thus, the code that can trigger
1937         //      moves out of the candidate can only fire after the
1938         //      guard evaluated to true. This initialization code is
1939         //      emitted by bind_matched_candidate_for_arm.
1940         //
1941         // 2. Binding by-reference: Things are tricky.
1942         //
1943         //    * Here, the guard expression wants a `&&` or `&&mut`
1944         //      into the original input. This means we need to borrow
1945         //      the reference that we create for the arm.
1946         //    * So we eagerly create the reference for the arm and then take a
1947         //      reference to that.
1948         if let Some(guard) = guard {
1949             let tcx = self.tcx;
1950             let bindings = parent_bindings
1951                 .iter()
1952                 .flat_map(|(bindings, _)| bindings)
1953                 .chain(&candidate.bindings);
1954
1955             self.bind_matched_candidate_for_guard(block, schedule_drops, bindings.clone());
1956             let guard_frame = GuardFrame {
1957                 locals: bindings.map(|b| GuardFrameLocal::new(b.var_id, b.binding_mode)).collect(),
1958             };
1959             debug!("entering guard building context: {:?}", guard_frame);
1960             self.guard_context.push(guard_frame);
1961
1962             let re_erased = tcx.lifetimes.re_erased;
1963             let scrutinee_source_info = self.source_info(scrutinee_span);
1964             for &(place, temp) in fake_borrows {
1965                 let borrow = Rvalue::Ref(re_erased, BorrowKind::Shallow, place);
1966                 self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
1967             }
1968
1969             let arm_span = arm_span.unwrap();
1970             let match_scope = match_scope.unwrap();
1971             let mut guard_span = rustc_span::DUMMY_SP;
1972
1973             let (post_guard_block, otherwise_post_guard_block) =
1974                 self.in_if_then_scope(match_scope, |this| match *guard {
1975                     Guard::If(e) => {
1976                         let e = &this.thir[e];
1977                         guard_span = e.span;
1978                         this.then_else_break(
1979                             block,
1980                             e,
1981                             None,
1982                             match_scope,
1983                             this.source_info(arm_span),
1984                         )
1985                     }
1986                     Guard::IfLet(ref pat, scrutinee) => {
1987                         let s = &this.thir[scrutinee];
1988                         guard_span = s.span;
1989                         this.lower_let_expr(block, s, pat, match_scope, None, arm_span)
1990                     }
1991                 });
1992
1993             let source_info = self.source_info(guard_span);
1994             let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
1995             let guard_frame = self.guard_context.pop().unwrap();
1996             debug!("Exiting guard building context with locals: {:?}", guard_frame);
1997
1998             for &(_, temp) in fake_borrows {
1999                 let cause = FakeReadCause::ForMatchGuard;
2000                 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
2001             }
2002
2003             let otherwise_block = candidate.otherwise_block.unwrap_or_else(|| {
2004                 let unreachable = self.cfg.start_new_block();
2005                 self.cfg.terminate(unreachable, source_info, TerminatorKind::Unreachable);
2006                 unreachable
2007             });
2008             self.false_edges(
2009                 otherwise_post_guard_block,
2010                 otherwise_block,
2011                 candidate.next_candidate_pre_binding_block,
2012                 source_info,
2013             );
2014
2015             // We want to ensure that the matched candidates are bound
2016             // after we have confirmed this candidate *and* any
2017             // associated guard; Binding them on `block` is too soon,
2018             // because that would be before we've checked the result
2019             // from the guard.
2020             //
2021             // But binding them on the arm is *too late*, because
2022             // then all of the candidates for a single arm would be
2023             // bound in the same place, that would cause a case like:
2024             //
2025             // ```rust
2026             // match (30, 2) {
2027             //     (mut x, 1) | (2, mut x) if { true } => { ... }
2028             //     ...                                 // ^^^^^^^ (this is `arm_block`)
2029             // }
2030             // ```
2031             //
2032             // would yield an `arm_block` something like:
2033             //
2034             // ```
2035             // StorageLive(_4);        // _4 is `x`
2036             // _4 = &mut (_1.0: i32);  // this is handling `(mut x, 1)` case
2037             // _4 = &mut (_1.1: i32);  // this is handling `(2, mut x)` case
2038             // ```
2039             //
2040             // and that is clearly not correct.
2041             let by_value_bindings = parent_bindings
2042                 .iter()
2043                 .flat_map(|(bindings, _)| bindings)
2044                 .chain(&candidate.bindings)
2045                 .filter(|binding| matches!(binding.binding_mode, BindingMode::ByValue));
2046             // Read all of the by reference bindings to ensure that the
2047             // place they refer to can't be modified by the guard.
2048             for binding in by_value_bindings.clone() {
2049                 let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
2050                 let cause = FakeReadCause::ForGuardBinding;
2051                 self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
2052             }
2053             assert!(schedule_drops, "patterns with guards must schedule drops");
2054             self.bind_matched_candidate_for_arm_body(post_guard_block, true, by_value_bindings);
2055
2056             post_guard_block
2057         } else {
2058             // (Here, it is not too early to bind the matched
2059             // candidate on `block`, because there is no guard result
2060             // that we have to inspect before we bind them.)
2061             self.bind_matched_candidate_for_arm_body(
2062                 block,
2063                 schedule_drops,
2064                 parent_bindings
2065                     .iter()
2066                     .flat_map(|(bindings, _)| bindings)
2067                     .chain(&candidate.bindings),
2068             );
2069             block
2070         }
2071     }
2072
2073     /// Append `AscribeUserType` statements onto the end of `block`
2074     /// for each ascription
2075     fn ascribe_types(
2076         &mut self,
2077         block: BasicBlock,
2078         ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
2079     ) {
2080         for ascription in ascriptions {
2081             let source_info = self.source_info(ascription.annotation.span);
2082
2083             let base = self.canonical_user_type_annotations.push(ascription.annotation);
2084             self.cfg.push(
2085                 block,
2086                 Statement {
2087                     source_info,
2088                     kind: StatementKind::AscribeUserType(
2089                         Box::new((
2090                             ascription.source,
2091                             UserTypeProjection { base, projs: Vec::new() },
2092                         )),
2093                         ascription.variance,
2094                     ),
2095                 },
2096             );
2097         }
2098     }
2099
2100     fn bind_matched_candidate_for_guard<'b>(
2101         &mut self,
2102         block: BasicBlock,
2103         schedule_drops: bool,
2104         bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2105     ) where
2106         'tcx: 'b,
2107     {
2108         debug!("bind_matched_candidate_for_guard(block={:?})", block);
2109
2110         // Assign each of the bindings. Since we are binding for a
2111         // guard expression, this will never trigger moves out of the
2112         // candidate.
2113         let re_erased = self.tcx.lifetimes.re_erased;
2114         for binding in bindings {
2115             debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
2116             let source_info = self.source_info(binding.span);
2117
2118             // For each pattern ident P of type T, `ref_for_guard` is
2119             // a reference R: &T pointing to the location matched by
2120             // the pattern, and every occurrence of P within a guard
2121             // denotes *R.
2122             let ref_for_guard = self.storage_live_binding(
2123                 block,
2124                 binding.var_id,
2125                 binding.span,
2126                 RefWithinGuard,
2127                 schedule_drops,
2128             );
2129             match binding.binding_mode {
2130                 BindingMode::ByValue => {
2131                     let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
2132                     self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2133                 }
2134                 BindingMode::ByRef(borrow_kind) => {
2135                     let value_for_arm = self.storage_live_binding(
2136                         block,
2137                         binding.var_id,
2138                         binding.span,
2139                         OutsideGuard,
2140                         schedule_drops,
2141                     );
2142
2143                     let rvalue = Rvalue::Ref(re_erased, borrow_kind, binding.source);
2144                     self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
2145                     let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
2146                     self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
2147                 }
2148             }
2149         }
2150     }
2151
2152     fn bind_matched_candidate_for_arm_body<'b>(
2153         &mut self,
2154         block: BasicBlock,
2155         schedule_drops: bool,
2156         bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
2157     ) where
2158         'tcx: 'b,
2159     {
2160         debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
2161
2162         let re_erased = self.tcx.lifetimes.re_erased;
2163         // Assign each of the bindings. This may trigger moves out of the candidate.
2164         for binding in bindings {
2165             let source_info = self.source_info(binding.span);
2166             let local = self.storage_live_binding(
2167                 block,
2168                 binding.var_id,
2169                 binding.span,
2170                 OutsideGuard,
2171                 schedule_drops,
2172             );
2173             if schedule_drops {
2174                 self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
2175             }
2176             let rvalue = match binding.binding_mode {
2177                 BindingMode::ByValue => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
2178                 BindingMode::ByRef(borrow_kind) => {
2179                     Rvalue::Ref(re_erased, borrow_kind, binding.source)
2180                 }
2181             };
2182             self.cfg.push_assign(block, source_info, local, rvalue);
2183         }
2184     }
2185
2186     /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
2187     /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
2188     /// first local is a binding for occurrences of `var` in the guard, which
2189     /// will have type `&T`. The second local is a binding for occurrences of
2190     /// `var` in the arm body, which will have type `T`.
2191     fn declare_binding(
2192         &mut self,
2193         source_info: SourceInfo,
2194         visibility_scope: SourceScope,
2195         mutability: Mutability,
2196         name: Symbol,
2197         mode: BindingMode,
2198         var_id: LocalVarId,
2199         var_ty: Ty<'tcx>,
2200         user_ty: UserTypeProjections,
2201         has_guard: ArmHasGuard,
2202         opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
2203         pat_span: Span,
2204     ) {
2205         debug!(
2206             "declare_binding(var_id={:?}, name={:?}, mode={:?}, var_ty={:?}, \
2207              visibility_scope={:?}, source_info={:?})",
2208             var_id, name, mode, var_ty, visibility_scope, source_info
2209         );
2210
2211         let tcx = self.tcx;
2212         let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
2213         let binding_mode = match mode {
2214             BindingMode::ByValue => ty::BindingMode::BindByValue(mutability),
2215             BindingMode::ByRef(_) => ty::BindingMode::BindByReference(mutability),
2216         };
2217         debug!("declare_binding: user_ty={:?}", user_ty);
2218         let local = LocalDecl::<'tcx> {
2219             mutability,
2220             ty: var_ty,
2221             user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) },
2222             source_info,
2223             internal: false,
2224             is_block_tail: None,
2225             local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
2226                 VarBindingForm {
2227                     binding_mode,
2228                     // hypothetically, `visit_primary_bindings` could try to unzip
2229                     // an outermost hir::Ty as we descend, matching up
2230                     // idents in pat; but complex w/ unclear UI payoff.
2231                     // Instead, just abandon providing diagnostic info.
2232                     opt_ty_info: None,
2233                     opt_match_place,
2234                     pat_span,
2235                 },
2236             ))))),
2237         };
2238         let for_arm_body = self.local_decls.push(local);
2239         self.var_debug_info.push(VarDebugInfo {
2240             name,
2241             source_info: debug_source_info,
2242             value: VarDebugInfoContents::Place(for_arm_body.into()),
2243         });
2244         let locals = if has_guard.0 {
2245             let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
2246                 // This variable isn't mutated but has a name, so has to be
2247                 // immutable to avoid the unused mut lint.
2248                 mutability: Mutability::Not,
2249                 ty: tcx.mk_imm_ref(tcx.lifetimes.re_erased, var_ty),
2250                 user_ty: None,
2251                 source_info,
2252                 internal: false,
2253                 is_block_tail: None,
2254                 local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(
2255                     BindingForm::RefForGuard,
2256                 )))),
2257             });
2258             self.var_debug_info.push(VarDebugInfo {
2259                 name,
2260                 source_info: debug_source_info,
2261                 value: VarDebugInfoContents::Place(ref_for_guard.into()),
2262             });
2263             LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
2264         } else {
2265             LocalsForNode::One(for_arm_body)
2266         };
2267         debug!("declare_binding: vars={:?}", locals);
2268         self.var_indices.insert(var_id, locals);
2269     }
2270
2271     pub(crate) fn ast_let_else(
2272         &mut self,
2273         mut block: BasicBlock,
2274         init: &Expr<'tcx>,
2275         initializer_span: Span,
2276         else_block: BlockId,
2277         visibility_scope: Option<SourceScope>,
2278         remainder_scope: region::Scope,
2279         remainder_span: Span,
2280         pattern: &Pat<'tcx>,
2281     ) -> BlockAnd<()> {
2282         let else_block_span = self.thir[else_block].span;
2283         let (matching, failure) = self.in_if_then_scope(remainder_scope, |this| {
2284             let scrutinee = unpack!(block = this.lower_scrutinee(block, init, initializer_span));
2285             let pat = Pat { ty: init.ty, span: else_block_span, kind: PatKind::Wild };
2286             let mut wildcard = Candidate::new(scrutinee.clone(), &pat, false);
2287             this.declare_bindings(
2288                 visibility_scope,
2289                 remainder_span,
2290                 pattern,
2291                 ArmHasGuard(false),
2292                 Some((None, initializer_span)),
2293             );
2294             let mut candidate = Candidate::new(scrutinee.clone(), pattern, false);
2295             let fake_borrow_temps = this.lower_match_tree(
2296                 block,
2297                 initializer_span,
2298                 pattern.span,
2299                 false,
2300                 &mut [&mut candidate, &mut wildcard],
2301             );
2302             // This block is for the matching case
2303             let matching = this.bind_pattern(
2304                 this.source_info(pattern.span),
2305                 candidate,
2306                 None,
2307                 &fake_borrow_temps,
2308                 initializer_span,
2309                 None,
2310                 None,
2311                 None,
2312             );
2313             // This block is for the failure case
2314             let failure = this.bind_pattern(
2315                 this.source_info(else_block_span),
2316                 wildcard,
2317                 None,
2318                 &fake_borrow_temps,
2319                 initializer_span,
2320                 None,
2321                 None,
2322                 None,
2323             );
2324             this.break_for_else(failure, remainder_scope, this.source_info(initializer_span));
2325             matching.unit()
2326         });
2327
2328         // This place is not really used because this destination place
2329         // should never be used to take values at the end of the failure
2330         // block.
2331         let dummy_place = self.temp(self.tcx.types.never, else_block_span);
2332         let failure_block;
2333         unpack!(
2334             failure_block = self.ast_block(
2335                 dummy_place,
2336                 failure,
2337                 else_block,
2338                 self.source_info(else_block_span),
2339             )
2340         );
2341         self.cfg.terminate(
2342             failure_block,
2343             self.source_info(else_block_span),
2344             TerminatorKind::Unreachable,
2345         );
2346         matching.unit()
2347     }
2348 }