]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_mir/src/transform/const_prop.rs
Auto merge of #81458 - estebank:match-stmt-remove-semi, r=oli-obk
[rust.git] / compiler / rustc_mir / src / transform / const_prop.rs
1 //! Propagates constants for early reporting of statically known
2 //! assertion failures
3
4 use std::cell::Cell;
5
6 use rustc_ast::Mutability;
7 use rustc_data_structures::fx::FxHashSet;
8 use rustc_hir::def::DefKind;
9 use rustc_hir::HirId;
10 use rustc_index::bit_set::BitSet;
11 use rustc_index::vec::IndexVec;
12 use rustc_middle::mir::visit::{
13     MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
14 };
15 use rustc_middle::mir::{
16     AssertKind, BasicBlock, BinOp, Body, ClearCrossCrate, Constant, Local, LocalDecl, LocalKind,
17     Location, Operand, Place, Rvalue, SourceInfo, SourceScope, SourceScopeData, Statement,
18     StatementKind, Terminator, TerminatorKind, UnOp, RETURN_PLACE,
19 };
20 use rustc_middle::ty::layout::{HasTyCtxt, LayoutError, TyAndLayout};
21 use rustc_middle::ty::subst::{InternalSubsts, Subst};
22 use rustc_middle::ty::{
23     self, ConstInt, ConstKind, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeFoldable,
24 };
25 use rustc_session::lint;
26 use rustc_span::{def_id::DefId, Span};
27 use rustc_target::abi::{HasDataLayout, LayoutOf, Size, TargetDataLayout};
28 use rustc_target::spec::abi::Abi;
29 use rustc_trait_selection::traits;
30
31 use crate::const_eval::ConstEvalErr;
32 use crate::interpret::{
33     self, compile_time_machine, AllocId, Allocation, ConstValue, CtfeValidationMode, Frame, ImmTy,
34     Immediate, InterpCx, InterpResult, LocalState, LocalValue, MemPlace, Memory, MemoryKind, OpTy,
35     Operand as InterpOperand, PlaceTy, Pointer, Scalar, ScalarMaybeUninit, StackPopCleanup,
36 };
37 use crate::transform::MirPass;
38
39 /// The maximum number of bytes that we'll allocate space for a local or the return value.
40 /// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
41 /// Severely regress performance.
42 const MAX_ALLOC_LIMIT: u64 = 1024;
43
44 /// Macro for machine-specific `InterpError` without allocation.
45 /// (These will never be shown to the user, but they help diagnose ICEs.)
46 macro_rules! throw_machine_stop_str {
47     ($($tt:tt)*) => {{
48         // We make a new local type for it. The type itself does not carry any information,
49         // but its vtable (for the `MachineStopType` trait) does.
50         struct Zst;
51         // Printing this type shows the desired string.
52         impl std::fmt::Display for Zst {
53             fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
54                 write!(f, $($tt)*)
55             }
56         }
57         impl rustc_middle::mir::interpret::MachineStopType for Zst {}
58         throw_machine_stop!(Zst)
59     }};
60 }
61
62 pub struct ConstProp;
63
64 impl<'tcx> MirPass<'tcx> for ConstProp {
65     fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
66         // will be evaluated by miri and produce its errors there
67         if body.source.promoted.is_some() {
68             return;
69         }
70
71         use rustc_middle::hir::map::blocks::FnLikeNode;
72         let def_id = body.source.def_id().expect_local();
73         let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
74
75         let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
76         let is_assoc_const = tcx.def_kind(def_id.to_def_id()) == DefKind::AssocConst;
77
78         // Only run const prop on functions, methods, closures and associated constants
79         if !is_fn_like && !is_assoc_const {
80             // skip anon_const/statics/consts because they'll be evaluated by miri anyway
81             trace!("ConstProp skipped for {:?}", def_id);
82             return;
83         }
84
85         let is_generator = tcx.type_of(def_id.to_def_id()).is_generator();
86         // FIXME(welseywiser) const prop doesn't work on generators because of query cycles
87         // computing their layout.
88         if is_generator {
89             trace!("ConstProp skipped for generator {:?}", def_id);
90             return;
91         }
92
93         // Check if it's even possible to satisfy the 'where' clauses
94         // for this item.
95         // This branch will never be taken for any normal function.
96         // However, it's possible to `#!feature(trivial_bounds)]` to write
97         // a function with impossible to satisfy clauses, e.g.:
98         // `fn foo() where String: Copy {}`
99         //
100         // We don't usually need to worry about this kind of case,
101         // since we would get a compilation error if the user tried
102         // to call it. However, since we can do const propagation
103         // even without any calls to the function, we need to make
104         // sure that it even makes sense to try to evaluate the body.
105         // If there are unsatisfiable where clauses, then all bets are
106         // off, and we just give up.
107         //
108         // We manually filter the predicates, skipping anything that's not
109         // "global". We are in a potentially generic context
110         // (e.g. we are evaluating a function without substituting generic
111         // parameters, so this filtering serves two purposes:
112         //
113         // 1. We skip evaluating any predicates that we would
114         // never be able prove are unsatisfiable (e.g. `<T as Foo>`
115         // 2. We avoid trying to normalize predicates involving generic
116         // parameters (e.g. `<T as Foo>::MyItem`). This can confuse
117         // the normalization code (leading to cycle errors), since
118         // it's usually never invoked in this way.
119         let predicates = tcx
120             .predicates_of(def_id.to_def_id())
121             .predicates
122             .iter()
123             .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
124         if traits::impossible_predicates(
125             tcx,
126             traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
127         ) {
128             trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
129             return;
130         }
131
132         trace!("ConstProp starting for {:?}", def_id);
133
134         let dummy_body = &Body::new(
135             body.source,
136             body.basic_blocks().clone(),
137             body.source_scopes.clone(),
138             body.local_decls.clone(),
139             Default::default(),
140             body.arg_count,
141             Default::default(),
142             body.span,
143             body.generator_kind,
144         );
145
146         // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
147         // constants, instead of just checking for const-folding succeeding.
148         // That would require an uniform one-def no-mutation analysis
149         // and RPO (or recursing when needing the value of a local).
150         let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx);
151         optimization_finder.visit_body(body);
152
153         trace!("ConstProp done for {:?}", def_id);
154     }
155 }
156
157 struct ConstPropMachine<'mir, 'tcx> {
158     /// The virtual call stack.
159     stack: Vec<Frame<'mir, 'tcx, (), ()>>,
160     /// `OnlyInsideOwnBlock` locals that were written in the current block get erased at the end.
161     written_only_inside_own_block_locals: FxHashSet<Local>,
162     /// Locals that need to be cleared after every block terminates.
163     only_propagate_inside_block_locals: BitSet<Local>,
164     can_const_prop: IndexVec<Local, ConstPropMode>,
165 }
166
167 impl<'mir, 'tcx> ConstPropMachine<'mir, 'tcx> {
168     fn new(
169         only_propagate_inside_block_locals: BitSet<Local>,
170         can_const_prop: IndexVec<Local, ConstPropMode>,
171     ) -> Self {
172         Self {
173             stack: Vec::new(),
174             written_only_inside_own_block_locals: Default::default(),
175             only_propagate_inside_block_locals,
176             can_const_prop,
177         }
178     }
179 }
180
181 impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> {
182     compile_time_machine!(<'mir, 'tcx>);
183
184     type MemoryKind = !;
185
186     type MemoryExtra = ();
187
188     fn load_mir(
189         _ecx: &InterpCx<'mir, 'tcx, Self>,
190         _instance: ty::InstanceDef<'tcx>,
191     ) -> InterpResult<'tcx, &'tcx Body<'tcx>> {
192         throw_machine_stop_str!("calling functions isn't supported in ConstProp")
193     }
194
195     fn find_mir_or_eval_fn(
196         _ecx: &mut InterpCx<'mir, 'tcx, Self>,
197         _instance: ty::Instance<'tcx>,
198         _abi: Abi,
199         _args: &[OpTy<'tcx>],
200         _ret: Option<(&PlaceTy<'tcx>, BasicBlock)>,
201         _unwind: Option<BasicBlock>,
202     ) -> InterpResult<'tcx, Option<&'mir Body<'tcx>>> {
203         Ok(None)
204     }
205
206     fn call_intrinsic(
207         _ecx: &mut InterpCx<'mir, 'tcx, Self>,
208         _instance: ty::Instance<'tcx>,
209         _args: &[OpTy<'tcx>],
210         _ret: Option<(&PlaceTy<'tcx>, BasicBlock)>,
211         _unwind: Option<BasicBlock>,
212     ) -> InterpResult<'tcx> {
213         throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
214     }
215
216     fn assert_panic(
217         _ecx: &mut InterpCx<'mir, 'tcx, Self>,
218         _msg: &rustc_middle::mir::AssertMessage<'tcx>,
219         _unwind: Option<rustc_middle::mir::BasicBlock>,
220     ) -> InterpResult<'tcx> {
221         bug!("panics terminators are not evaluated in ConstProp")
222     }
223
224     fn ptr_to_int(_mem: &Memory<'mir, 'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx, u64> {
225         throw_unsup!(ReadPointerAsBytes)
226     }
227
228     fn binary_ptr_op(
229         _ecx: &InterpCx<'mir, 'tcx, Self>,
230         _bin_op: BinOp,
231         _left: &ImmTy<'tcx>,
232         _right: &ImmTy<'tcx>,
233     ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
234         // We can't do this because aliasing of memory can differ between const eval and llvm
235         throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
236     }
237
238     fn box_alloc(
239         _ecx: &mut InterpCx<'mir, 'tcx, Self>,
240         _dest: &PlaceTy<'tcx>,
241     ) -> InterpResult<'tcx> {
242         throw_machine_stop_str!("can't const prop heap allocations")
243     }
244
245     fn access_local(
246         _ecx: &InterpCx<'mir, 'tcx, Self>,
247         frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
248         local: Local,
249     ) -> InterpResult<'tcx, InterpOperand<Self::PointerTag>> {
250         let l = &frame.locals[local];
251
252         if l.value == LocalValue::Uninitialized {
253             throw_machine_stop_str!("tried to access an uninitialized local")
254         }
255
256         l.access()
257     }
258
259     fn access_local_mut<'a>(
260         ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
261         frame: usize,
262         local: Local,
263     ) -> InterpResult<'tcx, Result<&'a mut LocalValue<Self::PointerTag>, MemPlace<Self::PointerTag>>>
264     {
265         if ecx.machine.can_const_prop[local] == ConstPropMode::NoPropagation {
266             throw_machine_stop_str!("tried to write to a local that is marked as not propagatable")
267         }
268         if frame == 0 && ecx.machine.only_propagate_inside_block_locals.contains(local) {
269             trace!(
270                 "mutating local {:?} which is restricted to its block. \
271                 Will remove it from const-prop after block is finished.",
272                 local
273             );
274             ecx.machine.written_only_inside_own_block_locals.insert(local);
275         }
276         ecx.machine.stack[frame].locals[local].access_mut()
277     }
278
279     fn before_access_global(
280         _memory_extra: &(),
281         _alloc_id: AllocId,
282         allocation: &Allocation<Self::PointerTag, Self::AllocExtra>,
283         _static_def_id: Option<DefId>,
284         is_write: bool,
285     ) -> InterpResult<'tcx> {
286         if is_write {
287             throw_machine_stop_str!("can't write to global");
288         }
289         // If the static allocation is mutable, then we can't const prop it as its content
290         // might be different at runtime.
291         if allocation.mutability == Mutability::Mut {
292             throw_machine_stop_str!("can't access mutable globals in ConstProp");
293         }
294
295         Ok(())
296     }
297
298     #[inline(always)]
299     fn init_frame_extra(
300         _ecx: &mut InterpCx<'mir, 'tcx, Self>,
301         frame: Frame<'mir, 'tcx>,
302     ) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
303         Ok(frame)
304     }
305
306     #[inline(always)]
307     fn stack(
308         ecx: &'a InterpCx<'mir, 'tcx, Self>,
309     ) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>] {
310         &ecx.machine.stack
311     }
312
313     #[inline(always)]
314     fn stack_mut(
315         ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
316     ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>> {
317         &mut ecx.machine.stack
318     }
319 }
320
321 /// Finds optimization opportunities on the MIR.
322 struct ConstPropagator<'mir, 'tcx> {
323     ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
324     tcx: TyCtxt<'tcx>,
325     param_env: ParamEnv<'tcx>,
326     // FIXME(eddyb) avoid cloning these two fields more than once,
327     // by accessing them through `ecx` instead.
328     source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
329     local_decls: IndexVec<Local, LocalDecl<'tcx>>,
330     // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
331     // the last known `SourceInfo` here and just keep revisiting it.
332     source_info: Option<SourceInfo>,
333 }
334
335 impl<'mir, 'tcx> LayoutOf for ConstPropagator<'mir, 'tcx> {
336     type Ty = Ty<'tcx>;
337     type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
338
339     fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout {
340         self.tcx.layout_of(self.param_env.and(ty))
341     }
342 }
343
344 impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> {
345     #[inline]
346     fn data_layout(&self) -> &TargetDataLayout {
347         &self.tcx.data_layout
348     }
349 }
350
351 impl<'mir, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> {
352     #[inline]
353     fn tcx(&self) -> TyCtxt<'tcx> {
354         self.tcx
355     }
356 }
357
358 impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
359     fn new(
360         body: &Body<'tcx>,
361         dummy_body: &'mir Body<'tcx>,
362         tcx: TyCtxt<'tcx>,
363     ) -> ConstPropagator<'mir, 'tcx> {
364         let def_id = body.source.def_id();
365         let substs = &InternalSubsts::identity_for_item(tcx, def_id);
366         let param_env = tcx.param_env_reveal_all_normalized(def_id);
367
368         let span = tcx.def_span(def_id);
369         // FIXME: `CanConstProp::check` computes the layout of all locals, return those layouts
370         // so we can write them to `ecx.frame_mut().locals.layout, reducing the duplication in
371         // `layout_of` query invocations.
372         let can_const_prop = CanConstProp::check(tcx, param_env, body);
373         let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
374         for (l, mode) in can_const_prop.iter_enumerated() {
375             if *mode == ConstPropMode::OnlyInsideOwnBlock {
376                 only_propagate_inside_block_locals.insert(l);
377             }
378         }
379         let mut ecx = InterpCx::new(
380             tcx,
381             span,
382             param_env,
383             ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
384             (),
385         );
386
387         let ret = ecx
388             .layout_of(body.return_ty().subst(tcx, substs))
389             .ok()
390             // Don't bother allocating memory for ZST types which have no values
391             // or for large values.
392             .filter(|ret_layout| {
393                 !ret_layout.is_zst() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
394             })
395             .map(|ret_layout| ecx.allocate(ret_layout, MemoryKind::Stack).into());
396
397         ecx.push_stack_frame(
398             Instance::new(def_id, substs),
399             dummy_body,
400             ret.as_ref(),
401             StackPopCleanup::None { cleanup: false },
402         )
403         .expect("failed to push initial stack frame");
404
405         ConstPropagator {
406             ecx,
407             tcx,
408             param_env,
409             // FIXME(eddyb) avoid cloning these two fields more than once,
410             // by accessing them through `ecx` instead.
411             source_scopes: body.source_scopes.clone(),
412             //FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it
413             local_decls: body.local_decls.clone(),
414             source_info: None,
415         }
416     }
417
418     fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
419         let op = match self.ecx.eval_place_to_op(place, None) {
420             Ok(op) => op,
421             Err(e) => {
422                 trace!("get_const failed: {}", e);
423                 return None;
424             }
425         };
426
427         // Try to read the local as an immediate so that if it is representable as a scalar, we can
428         // handle it as such, but otherwise, just return the value as is.
429         Some(match self.ecx.try_read_immediate(&op) {
430             Ok(Ok(imm)) => imm.into(),
431             _ => op,
432         })
433     }
434
435     /// Remove `local` from the pool of `Locals`. Allows writing to them,
436     /// but not reading from them anymore.
437     fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
438         ecx.frame_mut().locals[local] =
439             LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) };
440     }
441
442     fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
443         let mut data = &self.source_scopes[source_info.scope];
444         // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
445         // does not work as I thought it would. Needs more investigation and documentation.
446         while data.inlined.is_some() {
447             trace!(?data);
448             data = &self.source_scopes[data.parent_scope.unwrap()];
449         }
450         trace!(?data);
451         match &data.local_data {
452             ClearCrossCrate::Set(data) => Some(data.lint_root),
453             ClearCrossCrate::Clear => None,
454         }
455     }
456
457     fn use_ecx<F, T>(&mut self, f: F) -> Option<T>
458     where
459         F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
460     {
461         match f(self) {
462             Ok(val) => Some(val),
463             Err(error) => {
464                 trace!("InterpCx operation failed: {:?}", error);
465                 // Some errors shouldn't come up because creating them causes
466                 // an allocation, which we should avoid. When that happens,
467                 // dedicated error variants should be introduced instead.
468                 assert!(
469                     !error.kind().formatted_string(),
470                     "const-prop encountered formatting error: {}",
471                     error
472                 );
473                 None
474             }
475         }
476     }
477
478     /// Returns the value, if any, of evaluating `c`.
479     fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
480         // FIXME we need to revisit this for #67176
481         if c.needs_subst() {
482             return None;
483         }
484
485         match self.ecx.const_to_op(c.literal, None) {
486             Ok(op) => Some(op),
487             Err(error) => {
488                 let tcx = self.ecx.tcx.at(c.span);
489                 let err = ConstEvalErr::new(&self.ecx, error, Some(c.span));
490                 if let Some(lint_root) = self.lint_root(source_info) {
491                     let lint_only = match c.literal.val {
492                         // Promoteds must lint and not error as the user didn't ask for them
493                         ConstKind::Unevaluated(_, _, Some(_)) => true,
494                         // Out of backwards compatibility we cannot report hard errors in unused
495                         // generic functions using associated constants of the generic parameters.
496                         _ => c.literal.needs_subst(),
497                     };
498                     if lint_only {
499                         // Out of backwards compatibility we cannot report hard errors in unused
500                         // generic functions using associated constants of the generic parameters.
501                         err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span));
502                     } else {
503                         err.report_as_error(tcx, "erroneous constant used");
504                     }
505                 } else {
506                     err.report_as_error(tcx, "erroneous constant used");
507                 }
508                 None
509             }
510         }
511     }
512
513     /// Returns the value, if any, of evaluating `place`.
514     fn eval_place(&mut self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
515         trace!("eval_place(place={:?})", place);
516         self.use_ecx(|this| this.ecx.eval_place_to_op(place, None))
517     }
518
519     /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
520     /// or `eval_place`, depending on the variant of `Operand` used.
521     fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
522         match *op {
523             Operand::Constant(ref c) => self.eval_constant(c, source_info),
524             Operand::Move(place) | Operand::Copy(place) => self.eval_place(place),
525         }
526     }
527
528     fn report_assert_as_lint(
529         &self,
530         lint: &'static lint::Lint,
531         source_info: SourceInfo,
532         message: &'static str,
533         panic: AssertKind<impl std::fmt::Debug>,
534     ) -> Option<()> {
535         let lint_root = self.lint_root(source_info)?;
536         self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| {
537             let mut err = lint.build(message);
538             err.span_label(source_info.span, format!("{:?}", panic));
539             err.emit()
540         });
541         None
542     }
543
544     fn check_unary_op(
545         &mut self,
546         op: UnOp,
547         arg: &Operand<'tcx>,
548         source_info: SourceInfo,
549     ) -> Option<()> {
550         if let (val, true) = self.use_ecx(|this| {
551             let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?;
552             let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?;
553             Ok((val, overflow))
554         })? {
555             // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
556             // appropriate to use.
557             assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
558             self.report_assert_as_lint(
559                 lint::builtin::ARITHMETIC_OVERFLOW,
560                 source_info,
561                 "this arithmetic operation will overflow",
562                 AssertKind::OverflowNeg(val.to_const_int()),
563             )?;
564         }
565
566         Some(())
567     }
568
569     fn check_binary_op(
570         &mut self,
571         op: BinOp,
572         left: &Operand<'tcx>,
573         right: &Operand<'tcx>,
574         source_info: SourceInfo,
575     ) -> Option<()> {
576         let r = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?));
577         let l = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?));
578         // Check for exceeding shifts *even if* we cannot evaluate the LHS.
579         if op == BinOp::Shr || op == BinOp::Shl {
580             let r = r?;
581             // We need the type of the LHS. We cannot use `place_layout` as that is the type
582             // of the result, which for checked binops is not the same!
583             let left_ty = left.ty(&self.local_decls, self.tcx);
584             let left_size = self.ecx.layout_of(left_ty).ok()?.size;
585             let right_size = r.layout.size;
586             let r_bits = r.to_scalar().ok();
587             // This is basically `force_bits`.
588             let r_bits = r_bits.and_then(|r| r.to_bits_or_ptr(right_size, &self.tcx).ok());
589             if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
590                 debug!("check_binary_op: reporting assert for {:?}", source_info);
591                 self.report_assert_as_lint(
592                     lint::builtin::ARITHMETIC_OVERFLOW,
593                     source_info,
594                     "this arithmetic operation will overflow",
595                     AssertKind::Overflow(
596                         op,
597                         match l {
598                             Some(l) => l.to_const_int(),
599                             // Invent a dummy value, the diagnostic ignores it anyway
600                             None => ConstInt::new(
601                                 ScalarInt::try_from_uint(1_u8, left_size).unwrap(),
602                                 left_ty.is_signed(),
603                                 left_ty.is_ptr_sized_integral(),
604                             ),
605                         },
606                         r.to_const_int(),
607                     ),
608                 )?;
609             }
610         }
611
612         if let (Some(l), Some(r)) = (&l, &r) {
613             // The remaining operators are handled through `overflowing_binary_op`.
614             if self.use_ecx(|this| {
615                 let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?;
616                 Ok(overflow)
617             })? {
618                 self.report_assert_as_lint(
619                     lint::builtin::ARITHMETIC_OVERFLOW,
620                     source_info,
621                     "this arithmetic operation will overflow",
622                     AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
623                 )?;
624             }
625         }
626         Some(())
627     }
628
629     fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) {
630         match *operand {
631             Operand::Copy(l) | Operand::Move(l) => {
632                 if let Some(value) = self.get_const(l) {
633                     if self.should_const_prop(&value) {
634                         // FIXME(felix91gr): this code only handles `Scalar` cases.
635                         // For now, we're not handling `ScalarPair` cases because
636                         // doing so here would require a lot of code duplication.
637                         // We should hopefully generalize `Operand` handling into a fn,
638                         // and use it to do const-prop here and everywhere else
639                         // where it makes sense.
640                         if let interpret::Operand::Immediate(interpret::Immediate::Scalar(
641                             ScalarMaybeUninit::Scalar(scalar),
642                         )) = *value
643                         {
644                             *operand = self.operand_from_scalar(
645                                 scalar,
646                                 value.layout.ty,
647                                 self.source_info.unwrap().span,
648                             );
649                         }
650                     }
651                 }
652             }
653             Operand::Constant(_) => (),
654         }
655     }
656
657     fn const_prop(
658         &mut self,
659         rvalue: &Rvalue<'tcx>,
660         source_info: SourceInfo,
661         place: Place<'tcx>,
662     ) -> Option<()> {
663         // Perform any special handling for specific Rvalue types.
664         // Generally, checks here fall into one of two categories:
665         //   1. Additional checking to provide useful lints to the user
666         //        - In this case, we will do some validation and then fall through to the
667         //          end of the function which evals the assignment.
668         //   2. Working around bugs in other parts of the compiler
669         //        - In this case, we'll return `None` from this function to stop evaluation.
670         match rvalue {
671             // Additional checking: give lints to the user if an overflow would occur.
672             // We do this here and not in the `Assert` terminator as that terminator is
673             // only sometimes emitted (overflow checks can be disabled), but we want to always
674             // lint.
675             Rvalue::UnaryOp(op, arg) => {
676                 trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
677                 self.check_unary_op(*op, arg, source_info)?;
678             }
679             Rvalue::BinaryOp(op, left, right) => {
680                 trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
681                 self.check_binary_op(*op, left, right, source_info)?;
682             }
683             Rvalue::CheckedBinaryOp(op, left, right) => {
684                 trace!(
685                     "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
686                     op,
687                     left,
688                     right
689                 );
690                 self.check_binary_op(*op, left, right, source_info)?;
691             }
692
693             // Do not try creating references (#67862)
694             Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
695                 trace!("skipping AddressOf | Ref for {:?}", place);
696
697                 // This may be creating mutable references or immutable references to cells.
698                 // If that happens, the pointed to value could be mutated via that reference.
699                 // Since we aren't tracking references, the const propagator loses track of what
700                 // value the local has right now.
701                 // Thus, all locals that have their reference taken
702                 // must not take part in propagation.
703                 Self::remove_const(&mut self.ecx, place.local);
704
705                 return None;
706             }
707             Rvalue::ThreadLocalRef(def_id) => {
708                 trace!("skipping ThreadLocalRef({:?})", def_id);
709
710                 return None;
711             }
712
713             // There's no other checking to do at this time.
714             Rvalue::Aggregate(..)
715             | Rvalue::Use(..)
716             | Rvalue::Repeat(..)
717             | Rvalue::Len(..)
718             | Rvalue::Cast(..)
719             | Rvalue::Discriminant(..)
720             | Rvalue::NullaryOp(..) => {}
721         }
722
723         // FIXME we need to revisit this for #67176
724         if rvalue.needs_subst() {
725             return None;
726         }
727
728         if self.tcx.sess.opts.debugging_opts.mir_opt_level >= 3 {
729             self.eval_rvalue_with_identities(rvalue, place)
730         } else {
731             self.use_ecx(|this| this.ecx.eval_rvalue_into_place(rvalue, place))
732         }
733     }
734
735     // Attempt to use albegraic identities to eliminate constant expressions
736     fn eval_rvalue_with_identities(
737         &mut self,
738         rvalue: &Rvalue<'tcx>,
739         place: Place<'tcx>,
740     ) -> Option<()> {
741         self.use_ecx(|this| {
742             match rvalue {
743                 Rvalue::BinaryOp(op, left, right) | Rvalue::CheckedBinaryOp(op, left, right) => {
744                     let l = this.ecx.eval_operand(left, None);
745                     let r = this.ecx.eval_operand(right, None);
746
747                     let const_arg = match (l, r) {
748                         (Ok(ref x), Err(_)) | (Err(_), Ok(ref x)) => this.ecx.read_immediate(x)?,
749                         (Err(e), Err(_)) => return Err(e),
750                         (Ok(_), Ok(_)) => {
751                             this.ecx.eval_rvalue_into_place(rvalue, place)?;
752                             return Ok(());
753                         }
754                     };
755
756                     let arg_value =
757                         this.ecx.force_bits(const_arg.to_scalar()?, const_arg.layout.size)?;
758                     let dest = this.ecx.eval_place(place)?;
759
760                     match op {
761                         BinOp::BitAnd => {
762                             if arg_value == 0 {
763                                 this.ecx.write_immediate(*const_arg, &dest)?;
764                             }
765                         }
766                         BinOp::BitOr => {
767                             if arg_value == const_arg.layout.size.truncate(u128::MAX)
768                                 || (const_arg.layout.ty.is_bool() && arg_value == 1)
769                             {
770                                 this.ecx.write_immediate(*const_arg, &dest)?;
771                             }
772                         }
773                         BinOp::Mul => {
774                             if const_arg.layout.ty.is_integral() && arg_value == 0 {
775                                 if let Rvalue::CheckedBinaryOp(_, _, _) = rvalue {
776                                     let val = Immediate::ScalarPair(
777                                         const_arg.to_scalar()?.into(),
778                                         Scalar::from_bool(false).into(),
779                                     );
780                                     this.ecx.write_immediate(val, &dest)?;
781                                 } else {
782                                     this.ecx.write_immediate(*const_arg, &dest)?;
783                                 }
784                             }
785                         }
786                         _ => {
787                             this.ecx.eval_rvalue_into_place(rvalue, place)?;
788                         }
789                     }
790                 }
791                 _ => {
792                     this.ecx.eval_rvalue_into_place(rvalue, place)?;
793                 }
794             }
795
796             Ok(())
797         })
798     }
799
800     /// Creates a new `Operand::Constant` from a `Scalar` value
801     fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
802         Operand::Constant(Box::new(Constant {
803             span,
804             user_ty: None,
805             literal: ty::Const::from_scalar(self.tcx, scalar, ty),
806         }))
807     }
808
809     fn replace_with_const(
810         &mut self,
811         rval: &mut Rvalue<'tcx>,
812         value: &OpTy<'tcx>,
813         source_info: SourceInfo,
814     ) {
815         if let Rvalue::Use(Operand::Constant(c)) = rval {
816             if !matches!(c.literal.val, ConstKind::Unevaluated(..)) {
817                 trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c);
818                 return;
819             }
820         }
821
822         trace!("attempting to replace {:?} with {:?}", rval, value);
823         if let Err(e) = self.ecx.const_validate_operand(
824             value,
825             vec![],
826             // FIXME: is ref tracking too expensive?
827             // FIXME: what is the point of ref tracking if we do not even check the tracked refs?
828             &mut interpret::RefTracking::empty(),
829             CtfeValidationMode::Regular,
830         ) {
831             trace!("validation error, attempt failed: {:?}", e);
832             return;
833         }
834
835         // FIXME> figure out what to do when try_read_immediate fails
836         let imm = self.use_ecx(|this| this.ecx.try_read_immediate(value));
837
838         if let Some(Ok(imm)) = imm {
839             match *imm {
840                 interpret::Immediate::Scalar(ScalarMaybeUninit::Scalar(scalar)) => {
841                     *rval = Rvalue::Use(self.operand_from_scalar(
842                         scalar,
843                         value.layout.ty,
844                         source_info.span,
845                     ));
846                 }
847                 Immediate::ScalarPair(
848                     ScalarMaybeUninit::Scalar(_),
849                     ScalarMaybeUninit::Scalar(_),
850                 ) => {
851                     // Found a value represented as a pair. For now only do const-prop if the type
852                     // of `rvalue` is also a tuple with two scalars.
853                     // FIXME: enable the general case stated above ^.
854                     let ty = &value.layout.ty;
855                     // Only do it for tuples
856                     if let ty::Tuple(substs) = ty.kind() {
857                         // Only do it if tuple is also a pair with two scalars
858                         if substs.len() == 2 {
859                             let alloc = self.use_ecx(|this| {
860                                 let ty1 = substs[0].expect_ty();
861                                 let ty2 = substs[1].expect_ty();
862                                 let ty_is_scalar = |ty| {
863                                     this.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar())
864                                         == Some(true)
865                                 };
866                                 if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
867                                     let alloc = this
868                                         .ecx
869                                         .intern_with_temp_alloc(value.layout, |ecx, dest| {
870                                             ecx.write_immediate_to_mplace(*imm, dest)
871                                         })
872                                         .unwrap();
873                                     Ok(Some(alloc))
874                                 } else {
875                                     Ok(None)
876                                 }
877                             });
878
879                             if let Some(Some(alloc)) = alloc {
880                                 // Assign entire constant in a single statement.
881                                 // We can't use aggregates, as we run after the aggregate-lowering `MirPhase`.
882                                 *rval = Rvalue::Use(Operand::Constant(Box::new(Constant {
883                                     span: source_info.span,
884                                     user_ty: None,
885                                     literal: self.ecx.tcx.mk_const(ty::Const {
886                                         ty,
887                                         val: ty::ConstKind::Value(ConstValue::ByRef {
888                                             alloc,
889                                             offset: Size::ZERO,
890                                         }),
891                                     }),
892                                 })));
893                             }
894                         }
895                     }
896                 }
897                 // Scalars or scalar pairs that contain undef values are assumed to not have
898                 // successfully evaluated and are thus not propagated.
899                 _ => {}
900             }
901         }
902     }
903
904     /// Returns `true` if and only if this `op` should be const-propagated into.
905     fn should_const_prop(&mut self, op: &OpTy<'tcx>) -> bool {
906         let mir_opt_level = self.tcx.sess.opts.debugging_opts.mir_opt_level;
907
908         if mir_opt_level == 0 {
909             return false;
910         }
911
912         if !self.tcx.consider_optimizing(|| format!("ConstantPropagation - OpTy: {:?}", op)) {
913             return false;
914         }
915
916         match **op {
917             interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUninit::Scalar(s))) => {
918                 s.is_bits()
919             }
920             interpret::Operand::Immediate(Immediate::ScalarPair(
921                 ScalarMaybeUninit::Scalar(l),
922                 ScalarMaybeUninit::Scalar(r),
923             )) => l.is_bits() && r.is_bits(),
924             _ => false,
925         }
926     }
927 }
928
929 /// The mode that `ConstProp` is allowed to run in for a given `Local`.
930 #[derive(Clone, Copy, Debug, PartialEq)]
931 enum ConstPropMode {
932     /// The `Local` can be propagated into and reads of this `Local` can also be propagated.
933     FullConstProp,
934     /// The `Local` can only be propagated into and from its own block.
935     OnlyInsideOwnBlock,
936     /// The `Local` can be propagated into but reads cannot be propagated.
937     OnlyPropagateInto,
938     /// The `Local` cannot be part of propagation at all. Any statement
939     /// referencing it either for reading or writing will not get propagated.
940     NoPropagation,
941 }
942
943 struct CanConstProp {
944     can_const_prop: IndexVec<Local, ConstPropMode>,
945     // False at the beginning. Once set, no more assignments are allowed to that local.
946     found_assignment: BitSet<Local>,
947     // Cache of locals' information
948     local_kinds: IndexVec<Local, LocalKind>,
949 }
950
951 impl CanConstProp {
952     /// Returns true if `local` can be propagated
953     fn check(
954         tcx: TyCtxt<'tcx>,
955         param_env: ParamEnv<'tcx>,
956         body: &Body<'tcx>,
957     ) -> IndexVec<Local, ConstPropMode> {
958         let mut cpv = CanConstProp {
959             can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
960             found_assignment: BitSet::new_empty(body.local_decls.len()),
961             local_kinds: IndexVec::from_fn_n(
962                 |local| body.local_kind(local),
963                 body.local_decls.len(),
964             ),
965         };
966         for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
967             let ty = body.local_decls[local].ty;
968             match tcx.layout_of(param_env.and(ty)) {
969                 Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {}
970                 // Either the layout fails to compute, then we can't use this local anyway
971                 // or the local is too large, then we don't want to.
972                 _ => {
973                     *val = ConstPropMode::NoPropagation;
974                     continue;
975                 }
976             }
977             // Cannot use args at all
978             // Cannot use locals because if x < y { y - x } else { x - y } would
979             //        lint for x != y
980             // FIXME(oli-obk): lint variables until they are used in a condition
981             // FIXME(oli-obk): lint if return value is constant
982             if cpv.local_kinds[local] == LocalKind::Arg {
983                 *val = ConstPropMode::OnlyPropagateInto;
984                 trace!(
985                     "local {:?} can't be const propagated because it's a function argument",
986                     local
987                 );
988             } else if cpv.local_kinds[local] == LocalKind::Var {
989                 *val = ConstPropMode::OnlyInsideOwnBlock;
990                 trace!(
991                     "local {:?} will only be propagated inside its block, because it's a user variable",
992                     local
993                 );
994             }
995         }
996         cpv.visit_body(&body);
997         cpv.can_const_prop
998     }
999 }
1000
1001 impl<'tcx> Visitor<'tcx> for CanConstProp {
1002     fn visit_local(&mut self, &local: &Local, context: PlaceContext, _: Location) {
1003         use rustc_middle::mir::visit::PlaceContext::*;
1004         match context {
1005             // Projections are fine, because `&mut foo.x` will be caught by
1006             // `MutatingUseContext::Borrow` elsewhere.
1007             MutatingUse(MutatingUseContext::Projection)
1008             // These are just stores, where the storing is not propagatable, but there may be later
1009             // mutations of the same local via `Store`
1010             | MutatingUse(MutatingUseContext::Call)
1011             // Actual store that can possibly even propagate a value
1012             | MutatingUse(MutatingUseContext::Store) => {
1013                 if !self.found_assignment.insert(local) {
1014                     match &mut self.can_const_prop[local] {
1015                         // If the local can only get propagated in its own block, then we don't have
1016                         // to worry about multiple assignments, as we'll nuke the const state at the
1017                         // end of the block anyway, and inside the block we overwrite previous
1018                         // states as applicable.
1019                         ConstPropMode::OnlyInsideOwnBlock => {}
1020                         ConstPropMode::NoPropagation => {}
1021                         ConstPropMode::OnlyPropagateInto => {}
1022                         other @ ConstPropMode::FullConstProp => {
1023                             trace!(
1024                                 "local {:?} can't be propagated because of multiple assignments. Previous state: {:?}",
1025                                 local, other,
1026                             );
1027                             *other = ConstPropMode::OnlyInsideOwnBlock;
1028                         }
1029                     }
1030                 }
1031             }
1032             // Reading constants is allowed an arbitrary number of times
1033             NonMutatingUse(NonMutatingUseContext::Copy)
1034             | NonMutatingUse(NonMutatingUseContext::Move)
1035             | NonMutatingUse(NonMutatingUseContext::Inspect)
1036             | NonMutatingUse(NonMutatingUseContext::Projection)
1037             | NonUse(_) => {}
1038
1039             // These could be propagated with a smarter analysis or just some careful thinking about
1040             // whether they'd be fine right now.
1041             MutatingUse(MutatingUseContext::AsmOutput)
1042             | MutatingUse(MutatingUseContext::Yield)
1043             | MutatingUse(MutatingUseContext::Drop)
1044             | MutatingUse(MutatingUseContext::Retag)
1045             // These can't ever be propagated under any scheme, as we can't reason about indirect
1046             // mutation.
1047             | NonMutatingUse(NonMutatingUseContext::SharedBorrow)
1048             | NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
1049             | NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
1050             | NonMutatingUse(NonMutatingUseContext::AddressOf)
1051             | MutatingUse(MutatingUseContext::Borrow)
1052             | MutatingUse(MutatingUseContext::AddressOf) => {
1053                 trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
1054                 self.can_const_prop[local] = ConstPropMode::NoPropagation;
1055             }
1056         }
1057     }
1058 }
1059
1060 impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> {
1061     fn tcx(&self) -> TyCtxt<'tcx> {
1062         self.tcx
1063     }
1064
1065     fn visit_body(&mut self, body: &mut Body<'tcx>) {
1066         for (bb, data) in body.basic_blocks_mut().iter_enumerated_mut() {
1067             self.visit_basic_block_data(bb, data);
1068         }
1069     }
1070
1071     fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
1072         self.super_operand(operand, location);
1073
1074         // Only const prop copies and moves on `mir_opt_level=2` as doing so
1075         // currently slightly increases compile time in some cases.
1076         if self.tcx.sess.opts.debugging_opts.mir_opt_level >= 2 {
1077             self.propagate_operand(operand)
1078         }
1079     }
1080
1081     fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
1082         trace!("visit_constant: {:?}", constant);
1083         self.super_constant(constant, location);
1084         self.eval_constant(constant, self.source_info.unwrap());
1085     }
1086
1087     fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
1088         trace!("visit_statement: {:?}", statement);
1089         let source_info = statement.source_info;
1090         self.source_info = Some(source_info);
1091         if let StatementKind::Assign(box (place, ref mut rval)) = statement.kind {
1092             let can_const_prop = self.ecx.machine.can_const_prop[place.local];
1093             if let Some(()) = self.const_prop(rval, source_info, place) {
1094                 // This will return None if the above `const_prop` invocation only "wrote" a
1095                 // type whose creation requires no write. E.g. a generator whose initial state
1096                 // consists solely of uninitialized memory (so it doesn't capture any locals).
1097                 if let Some(ref value) = self.get_const(place) {
1098                     if self.should_const_prop(value) {
1099                         trace!("replacing {:?} with {:?}", rval, value);
1100                         self.replace_with_const(rval, value, source_info);
1101                         if can_const_prop == ConstPropMode::FullConstProp
1102                             || can_const_prop == ConstPropMode::OnlyInsideOwnBlock
1103                         {
1104                             trace!("propagated into {:?}", place);
1105                         }
1106                     }
1107                 }
1108                 match can_const_prop {
1109                     ConstPropMode::OnlyInsideOwnBlock => {
1110                         trace!(
1111                             "found local restricted to its block. \
1112                                 Will remove it from const-prop after block is finished. Local: {:?}",
1113                             place.local
1114                         );
1115                     }
1116                     ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
1117                         trace!("can't propagate into {:?}", place);
1118                         if place.local != RETURN_PLACE {
1119                             Self::remove_const(&mut self.ecx, place.local);
1120                         }
1121                     }
1122                     ConstPropMode::FullConstProp => {}
1123                 }
1124             } else {
1125                 // Const prop failed, so erase the destination, ensuring that whatever happens
1126                 // from here on, does not know about the previous value.
1127                 // This is important in case we have
1128                 // ```rust
1129                 // let mut x = 42;
1130                 // x = SOME_MUTABLE_STATIC;
1131                 // // x must now be uninit
1132                 // ```
1133                 // FIXME: we overzealously erase the entire local, because that's easier to
1134                 // implement.
1135                 trace!(
1136                     "propagation into {:?} failed.
1137                         Nuking the entire site from orbit, it's the only way to be sure",
1138                     place,
1139                 );
1140                 Self::remove_const(&mut self.ecx, place.local);
1141             }
1142         } else {
1143             match statement.kind {
1144                 StatementKind::SetDiscriminant { ref place, .. } => {
1145                     match self.ecx.machine.can_const_prop[place.local] {
1146                         ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
1147                             if self.use_ecx(|this| this.ecx.statement(statement)).is_some() {
1148                                 trace!("propped discriminant into {:?}", place);
1149                             } else {
1150                                 Self::remove_const(&mut self.ecx, place.local);
1151                             }
1152                         }
1153                         ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
1154                             Self::remove_const(&mut self.ecx, place.local);
1155                         }
1156                     }
1157                 }
1158                 StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
1159                     let frame = self.ecx.frame_mut();
1160                     frame.locals[local].value =
1161                         if let StatementKind::StorageLive(_) = statement.kind {
1162                             LocalValue::Uninitialized
1163                         } else {
1164                             LocalValue::Dead
1165                         };
1166                 }
1167                 _ => {}
1168             }
1169         }
1170
1171         self.super_statement(statement, location);
1172     }
1173
1174     fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
1175         let source_info = terminator.source_info;
1176         self.source_info = Some(source_info);
1177         self.super_terminator(terminator, location);
1178         match &mut terminator.kind {
1179             TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => {
1180                 if let Some(ref value) = self.eval_operand(&cond, source_info) {
1181                     trace!("assertion on {:?} should be {:?}", value, expected);
1182                     let expected = ScalarMaybeUninit::from(Scalar::from_bool(*expected));
1183                     let value_const = self.ecx.read_scalar(&value).unwrap();
1184                     if expected != value_const {
1185                         enum DbgVal<T> {
1186                             Val(T),
1187                             Underscore,
1188                         }
1189                         impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
1190                             fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1191                                 match self {
1192                                     Self::Val(val) => val.fmt(fmt),
1193                                     Self::Underscore => fmt.write_str("_"),
1194                                 }
1195                             }
1196                         }
1197                         let mut eval_to_int = |op| {
1198                             // This can be `None` if the lhs wasn't const propagated and we just
1199                             // triggered the assert on the value of the rhs.
1200                             match self.eval_operand(op, source_info) {
1201                                 Some(op) => DbgVal::Val(
1202                                     self.ecx.read_immediate(&op).unwrap().to_const_int(),
1203                                 ),
1204                                 None => DbgVal::Underscore,
1205                             }
1206                         };
1207                         let msg = match msg {
1208                             AssertKind::DivisionByZero(op) => {
1209                                 Some(AssertKind::DivisionByZero(eval_to_int(op)))
1210                             }
1211                             AssertKind::RemainderByZero(op) => {
1212                                 Some(AssertKind::RemainderByZero(eval_to_int(op)))
1213                             }
1214                             AssertKind::BoundsCheck { ref len, ref index } => {
1215                                 let len = eval_to_int(len);
1216                                 let index = eval_to_int(index);
1217                                 Some(AssertKind::BoundsCheck { len, index })
1218                             }
1219                             // Overflow is are already covered by checks on the binary operators.
1220                             AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None,
1221                             // Need proper const propagator for these.
1222                             _ => None,
1223                         };
1224                         // Poison all places this operand references so that further code
1225                         // doesn't use the invalid value
1226                         match cond {
1227                             Operand::Move(ref place) | Operand::Copy(ref place) => {
1228                                 Self::remove_const(&mut self.ecx, place.local);
1229                             }
1230                             Operand::Constant(_) => {}
1231                         }
1232                         if let Some(msg) = msg {
1233                             self.report_assert_as_lint(
1234                                 lint::builtin::UNCONDITIONAL_PANIC,
1235                                 source_info,
1236                                 "this operation will panic at runtime",
1237                                 msg,
1238                             );
1239                         }
1240                     } else {
1241                         if self.should_const_prop(value) {
1242                             if let ScalarMaybeUninit::Scalar(scalar) = value_const {
1243                                 *cond = self.operand_from_scalar(
1244                                     scalar,
1245                                     self.tcx.types.bool,
1246                                     source_info.span,
1247                                 );
1248                             }
1249                         }
1250                     }
1251                 }
1252             }
1253             TerminatorKind::SwitchInt { ref mut discr, .. } => {
1254                 // FIXME: This is currently redundant with `visit_operand`, but sadly
1255                 // always visiting operands currently causes a perf regression in LLVM codegen, so
1256                 // `visit_operand` currently only runs for propagates places for `mir_opt_level=3`.
1257                 self.propagate_operand(discr)
1258             }
1259             // None of these have Operands to const-propagate.
1260             TerminatorKind::Goto { .. }
1261             | TerminatorKind::Resume
1262             | TerminatorKind::Abort
1263             | TerminatorKind::Return
1264             | TerminatorKind::Unreachable
1265             | TerminatorKind::Drop { .. }
1266             | TerminatorKind::DropAndReplace { .. }
1267             | TerminatorKind::Yield { .. }
1268             | TerminatorKind::GeneratorDrop
1269             | TerminatorKind::FalseEdge { .. }
1270             | TerminatorKind::FalseUnwind { .. }
1271             | TerminatorKind::InlineAsm { .. } => {}
1272             // Every argument in our function calls have already been propagated in `visit_operand`.
1273             //
1274             // NOTE: because LLVM codegen gives slight performance regressions with it, so this is
1275             // gated on `mir_opt_level=2`.
1276             TerminatorKind::Call { .. } => {}
1277         }
1278
1279         // We remove all Locals which are restricted in propagation to their containing blocks and
1280         // which were modified in the current block.
1281         // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
1282         let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
1283         for &local in locals.iter() {
1284             Self::remove_const(&mut self.ecx, local);
1285         }
1286         locals.clear();
1287         // Put it back so we reuse the heap of the storage
1288         self.ecx.machine.written_only_inside_own_block_locals = locals;
1289         if cfg!(debug_assertions) {
1290             // Ensure we are correctly erasing locals with the non-debug-assert logic.
1291             for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
1292                 assert!(
1293                     self.get_const(local.into()).is_none()
1294                         || self
1295                             .layout_of(self.local_decls[local].ty)
1296                             .map_or(true, |layout| layout.is_zst())
1297                 )
1298             }
1299         }
1300     }
1301 }