]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_mir/src/interpret/operator.rs
3737f8781c7ae2a333dc02cfd9405717f4eeabaa
[rust.git] / compiler / rustc_mir / src / interpret / operator.rs
1 use std::convert::TryFrom;
2
3 use rustc_apfloat::Float;
4 use rustc_middle::mir;
5 use rustc_middle::mir::interpret::{InterpResult, Scalar};
6 use rustc_middle::ty::{self, layout::TyAndLayout, FloatTy, Ty};
7 use rustc_target::abi::LayoutOf;
8
9 use super::{ImmTy, Immediate, InterpCx, Machine, PlaceTy};
10
11 impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
12     /// Applies the binary operation `op` to the two operands and writes a tuple of the result
13     /// and a boolean signifying the potential overflow to the destination.
14     pub fn binop_with_overflow(
15         &mut self,
16         op: mir::BinOp,
17         left: &ImmTy<'tcx, M::PointerTag>,
18         right: &ImmTy<'tcx, M::PointerTag>,
19         dest: &PlaceTy<'tcx, M::PointerTag>,
20     ) -> InterpResult<'tcx> {
21         let (val, overflowed, ty) = self.overflowing_binary_op(op, &left, &right)?;
22         debug_assert_eq!(
23             self.tcx.intern_tup(&[ty, self.tcx.types.bool]),
24             dest.layout.ty,
25             "type mismatch for result of {:?}",
26             op,
27         );
28         let val = Immediate::ScalarPair(val.into(), Scalar::from_bool(overflowed).into());
29         self.write_immediate(val, dest)
30     }
31
32     /// Applies the binary operation `op` to the arguments and writes the result to the
33     /// destination.
34     pub fn binop_ignore_overflow(
35         &mut self,
36         op: mir::BinOp,
37         left: &ImmTy<'tcx, M::PointerTag>,
38         right: &ImmTy<'tcx, M::PointerTag>,
39         dest: &PlaceTy<'tcx, M::PointerTag>,
40     ) -> InterpResult<'tcx> {
41         let (val, _overflowed, ty) = self.overflowing_binary_op(op, left, right)?;
42         assert_eq!(ty, dest.layout.ty, "type mismatch for result of {:?}", op);
43         self.write_scalar(val, dest)
44     }
45 }
46
47 impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
48     fn binary_char_op(
49         &self,
50         bin_op: mir::BinOp,
51         l: char,
52         r: char,
53     ) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>) {
54         use rustc_middle::mir::BinOp::*;
55
56         let res = match bin_op {
57             Eq => l == r,
58             Ne => l != r,
59             Lt => l < r,
60             Le => l <= r,
61             Gt => l > r,
62             Ge => l >= r,
63             _ => span_bug!(self.cur_span(), "Invalid operation on char: {:?}", bin_op),
64         };
65         (Scalar::from_bool(res), false, self.tcx.types.bool)
66     }
67
68     fn binary_bool_op(
69         &self,
70         bin_op: mir::BinOp,
71         l: bool,
72         r: bool,
73     ) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>) {
74         use rustc_middle::mir::BinOp::*;
75
76         let res = match bin_op {
77             Eq => l == r,
78             Ne => l != r,
79             Lt => l < r,
80             Le => l <= r,
81             Gt => l > r,
82             Ge => l >= r,
83             BitAnd => l & r,
84             BitOr => l | r,
85             BitXor => l ^ r,
86             _ => span_bug!(self.cur_span(), "Invalid operation on bool: {:?}", bin_op),
87         };
88         (Scalar::from_bool(res), false, self.tcx.types.bool)
89     }
90
91     fn binary_float_op<F: Float + Into<Scalar<M::PointerTag>>>(
92         &self,
93         bin_op: mir::BinOp,
94         ty: Ty<'tcx>,
95         l: F,
96         r: F,
97     ) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>) {
98         use rustc_middle::mir::BinOp::*;
99
100         let (val, ty) = match bin_op {
101             Eq => (Scalar::from_bool(l == r), self.tcx.types.bool),
102             Ne => (Scalar::from_bool(l != r), self.tcx.types.bool),
103             Lt => (Scalar::from_bool(l < r), self.tcx.types.bool),
104             Le => (Scalar::from_bool(l <= r), self.tcx.types.bool),
105             Gt => (Scalar::from_bool(l > r), self.tcx.types.bool),
106             Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool),
107             Add => ((l + r).value.into(), ty),
108             Sub => ((l - r).value.into(), ty),
109             Mul => ((l * r).value.into(), ty),
110             Div => ((l / r).value.into(), ty),
111             Rem => ((l % r).value.into(), ty),
112             _ => span_bug!(self.cur_span(), "invalid float op: `{:?}`", bin_op),
113         };
114         (val, false, ty)
115     }
116
117     fn binary_int_op(
118         &self,
119         bin_op: mir::BinOp,
120         // passing in raw bits
121         l: u128,
122         left_layout: TyAndLayout<'tcx>,
123         r: u128,
124         right_layout: TyAndLayout<'tcx>,
125     ) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)> {
126         use rustc_middle::mir::BinOp::*;
127
128         // Shift ops can have an RHS with a different numeric type.
129         if bin_op == Shl || bin_op == Shr {
130             let signed = left_layout.abi.is_signed();
131             let size = u128::from(left_layout.size.bits());
132             let overflow = r >= size;
133             let r = r % size; // mask to type size
134             let r = u32::try_from(r).unwrap(); // we masked so this will always fit
135             let result = if signed {
136                 let l = self.sign_extend(l, left_layout) as i128;
137                 let result = match bin_op {
138                     Shl => l.checked_shl(r).unwrap(),
139                     Shr => l.checked_shr(r).unwrap(),
140                     _ => bug!("it has already been checked that this is a shift op"),
141                 };
142                 result as u128
143             } else {
144                 match bin_op {
145                     Shl => l.checked_shl(r).unwrap(),
146                     Shr => l.checked_shr(r).unwrap(),
147                     _ => bug!("it has already been checked that this is a shift op"),
148                 }
149             };
150             let truncated = self.truncate(result, left_layout);
151             return Ok((Scalar::from_uint(truncated, left_layout.size), overflow, left_layout.ty));
152         }
153
154         // For the remaining ops, the types must be the same on both sides
155         if left_layout.ty != right_layout.ty {
156             span_bug!(
157                 self.cur_span(),
158                 "invalid asymmetric binary op {:?}: {:?} ({:?}), {:?} ({:?})",
159                 bin_op,
160                 l,
161                 left_layout.ty,
162                 r,
163                 right_layout.ty,
164             )
165         }
166
167         let size = left_layout.size;
168
169         // Operations that need special treatment for signed integers
170         if left_layout.abi.is_signed() {
171             let op: Option<fn(&i128, &i128) -> bool> = match bin_op {
172                 Lt => Some(i128::lt),
173                 Le => Some(i128::le),
174                 Gt => Some(i128::gt),
175                 Ge => Some(i128::ge),
176                 _ => None,
177             };
178             if let Some(op) = op {
179                 let l = self.sign_extend(l, left_layout) as i128;
180                 let r = self.sign_extend(r, right_layout) as i128;
181                 return Ok((Scalar::from_bool(op(&l, &r)), false, self.tcx.types.bool));
182             }
183             let op: Option<fn(i128, i128) -> (i128, bool)> = match bin_op {
184                 Div if r == 0 => throw_ub!(DivisionByZero),
185                 Rem if r == 0 => throw_ub!(RemainderByZero),
186                 Div => Some(i128::overflowing_div),
187                 Rem => Some(i128::overflowing_rem),
188                 Add => Some(i128::overflowing_add),
189                 Sub => Some(i128::overflowing_sub),
190                 Mul => Some(i128::overflowing_mul),
191                 _ => None,
192             };
193             if let Some(op) = op {
194                 let r = self.sign_extend(r, right_layout) as i128;
195                 // We need a special check for overflowing remainder:
196                 // "int_min % -1" overflows and returns 0, but after casting things to a larger int
197                 // type it does *not* overflow nor give an unrepresentable result!
198                 if bin_op == Rem {
199                     if r == -1 && l == (1 << (size.bits() - 1)) {
200                         return Ok((Scalar::from_int(0, size), true, left_layout.ty));
201                     }
202                 }
203                 let l = self.sign_extend(l, left_layout) as i128;
204
205                 let (result, oflo) = op(l, r);
206                 // This may be out-of-bounds for the result type, so we have to truncate ourselves.
207                 // If that truncation loses any information, we have an overflow.
208                 let result = result as u128;
209                 let truncated = self.truncate(result, left_layout);
210                 return Ok((
211                     Scalar::from_uint(truncated, size),
212                     oflo || self.sign_extend(truncated, left_layout) != result,
213                     left_layout.ty,
214                 ));
215             }
216         }
217
218         let (val, ty) = match bin_op {
219             Eq => (Scalar::from_bool(l == r), self.tcx.types.bool),
220             Ne => (Scalar::from_bool(l != r), self.tcx.types.bool),
221
222             Lt => (Scalar::from_bool(l < r), self.tcx.types.bool),
223             Le => (Scalar::from_bool(l <= r), self.tcx.types.bool),
224             Gt => (Scalar::from_bool(l > r), self.tcx.types.bool),
225             Ge => (Scalar::from_bool(l >= r), self.tcx.types.bool),
226
227             BitOr => (Scalar::from_uint(l | r, size), left_layout.ty),
228             BitAnd => (Scalar::from_uint(l & r, size), left_layout.ty),
229             BitXor => (Scalar::from_uint(l ^ r, size), left_layout.ty),
230
231             Add | Sub | Mul | Rem | Div => {
232                 assert!(!left_layout.abi.is_signed());
233                 let op: fn(u128, u128) -> (u128, bool) = match bin_op {
234                     Add => u128::overflowing_add,
235                     Sub => u128::overflowing_sub,
236                     Mul => u128::overflowing_mul,
237                     Div if r == 0 => throw_ub!(DivisionByZero),
238                     Rem if r == 0 => throw_ub!(RemainderByZero),
239                     Div => u128::overflowing_div,
240                     Rem => u128::overflowing_rem,
241                     _ => bug!(),
242                 };
243                 let (result, oflo) = op(l, r);
244                 // Truncate to target type.
245                 // If that truncation loses any information, we have an overflow.
246                 let truncated = self.truncate(result, left_layout);
247                 return Ok((
248                     Scalar::from_uint(truncated, size),
249                     oflo || truncated != result,
250                     left_layout.ty,
251                 ));
252             }
253
254             _ => span_bug!(
255                 self.cur_span(),
256                 "invalid binary op {:?}: {:?}, {:?} (both {:?})",
257                 bin_op,
258                 l,
259                 r,
260                 right_layout.ty,
261             ),
262         };
263
264         Ok((val, false, ty))
265     }
266
267     /// Returns the result of the specified operation, whether it overflowed, and
268     /// the result type.
269     pub fn overflowing_binary_op(
270         &self,
271         bin_op: mir::BinOp,
272         left: &ImmTy<'tcx, M::PointerTag>,
273         right: &ImmTy<'tcx, M::PointerTag>,
274     ) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)> {
275         trace!(
276             "Running binary op {:?}: {:?} ({:?}), {:?} ({:?})",
277             bin_op,
278             *left,
279             left.layout.ty,
280             *right,
281             right.layout.ty
282         );
283
284         match left.layout.ty.kind() {
285             ty::Char => {
286                 assert_eq!(left.layout.ty, right.layout.ty);
287                 let left = left.to_scalar()?;
288                 let right = right.to_scalar()?;
289                 Ok(self.binary_char_op(bin_op, left.to_char()?, right.to_char()?))
290             }
291             ty::Bool => {
292                 assert_eq!(left.layout.ty, right.layout.ty);
293                 let left = left.to_scalar()?;
294                 let right = right.to_scalar()?;
295                 Ok(self.binary_bool_op(bin_op, left.to_bool()?, right.to_bool()?))
296             }
297             ty::Float(fty) => {
298                 assert_eq!(left.layout.ty, right.layout.ty);
299                 let ty = left.layout.ty;
300                 let left = left.to_scalar()?;
301                 let right = right.to_scalar()?;
302                 Ok(match fty {
303                     FloatTy::F32 => {
304                         self.binary_float_op(bin_op, ty, left.to_f32()?, right.to_f32()?)
305                     }
306                     FloatTy::F64 => {
307                         self.binary_float_op(bin_op, ty, left.to_f64()?, right.to_f64()?)
308                     }
309                 })
310             }
311             _ if left.layout.ty.is_integral() => {
312                 // the RHS type can be different, e.g. for shifts -- but it has to be integral, too
313                 assert!(
314                     right.layout.ty.is_integral(),
315                     "Unexpected types for BinOp: {:?} {:?} {:?}",
316                     left.layout.ty,
317                     bin_op,
318                     right.layout.ty
319                 );
320
321                 let l = self.force_bits(left.to_scalar()?, left.layout.size)?;
322                 let r = self.force_bits(right.to_scalar()?, right.layout.size)?;
323                 self.binary_int_op(bin_op, l, left.layout, r, right.layout)
324             }
325             _ if left.layout.ty.is_any_ptr() => {
326                 // The RHS type must be the same *or an integer type* (for `Offset`).
327                 assert!(
328                     right.layout.ty == left.layout.ty || right.layout.ty.is_integral(),
329                     "Unexpected types for BinOp: {:?} {:?} {:?}",
330                     left.layout.ty,
331                     bin_op,
332                     right.layout.ty
333                 );
334
335                 M::binary_ptr_op(self, bin_op, left, right)
336             }
337             _ => span_bug!(
338                 self.cur_span(),
339                 "Invalid MIR: bad LHS type for binop: {:?}",
340                 left.layout.ty
341             ),
342         }
343     }
344
345     /// Typed version of `overflowing_binary_op`, returning an `ImmTy`. Also ignores overflows.
346     #[inline]
347     pub fn binary_op(
348         &self,
349         bin_op: mir::BinOp,
350         left: &ImmTy<'tcx, M::PointerTag>,
351         right: &ImmTy<'tcx, M::PointerTag>,
352     ) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
353         let (val, _overflow, ty) = self.overflowing_binary_op(bin_op, left, right)?;
354         Ok(ImmTy::from_scalar(val, self.layout_of(ty)?))
355     }
356
357     /// Returns the result of the specified operation, whether it overflowed, and
358     /// the result type.
359     pub fn overflowing_unary_op(
360         &self,
361         un_op: mir::UnOp,
362         val: &ImmTy<'tcx, M::PointerTag>,
363     ) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)> {
364         use rustc_middle::mir::UnOp::*;
365
366         let layout = val.layout;
367         let val = val.to_scalar()?;
368         trace!("Running unary op {:?}: {:?} ({:?})", un_op, val, layout.ty);
369
370         match layout.ty.kind() {
371             ty::Bool => {
372                 let val = val.to_bool()?;
373                 let res = match un_op {
374                     Not => !val,
375                     _ => span_bug!(self.cur_span(), "Invalid bool op {:?}", un_op),
376                 };
377                 Ok((Scalar::from_bool(res), false, self.tcx.types.bool))
378             }
379             ty::Float(fty) => {
380                 let res = match (un_op, fty) {
381                     (Neg, FloatTy::F32) => Scalar::from_f32(-val.to_f32()?),
382                     (Neg, FloatTy::F64) => Scalar::from_f64(-val.to_f64()?),
383                     _ => span_bug!(self.cur_span(), "Invalid float op {:?}", un_op),
384                 };
385                 Ok((res, false, layout.ty))
386             }
387             _ => {
388                 assert!(layout.ty.is_integral());
389                 let val = self.force_bits(val, layout.size)?;
390                 let (res, overflow) = match un_op {
391                     Not => (self.truncate(!val, layout), false), // bitwise negation, then truncate
392                     Neg => {
393                         // arithmetic negation
394                         assert!(layout.abi.is_signed());
395                         let val = self.sign_extend(val, layout) as i128;
396                         let (res, overflow) = val.overflowing_neg();
397                         let res = res as u128;
398                         // Truncate to target type.
399                         // If that truncation loses any information, we have an overflow.
400                         let truncated = self.truncate(res, layout);
401                         (truncated, overflow || self.sign_extend(truncated, layout) != res)
402                     }
403                 };
404                 Ok((Scalar::from_uint(res, layout.size), overflow, layout.ty))
405             }
406         }
407     }
408
409     pub fn unary_op(
410         &self,
411         un_op: mir::UnOp,
412         val: &ImmTy<'tcx, M::PointerTag>,
413     ) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
414         let (val, _overflow, ty) = self.overflowing_unary_op(un_op, val)?;
415         Ok(ImmTy::from_scalar(val, self.layout_of(ty)?))
416     }
417 }