]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_middle/src/ty/print/pretty.rs
Introduce `ConstAllocation`.
[rust.git] / compiler / rustc_middle / src / ty / print / pretty.rs
1 use crate::mir::interpret::{AllocRange, ConstValue, GlobalAlloc, Pointer, Provenance, Scalar};
2 use crate::ty::subst::{GenericArg, GenericArgKind, Subst};
3 use crate::ty::{self, ConstInt, DefIdTree, ParamConst, ScalarInt, Term, Ty, TyCtxt, TypeFoldable};
4 use rustc_apfloat::ieee::{Double, Single};
5 use rustc_data_structures::fx::FxHashMap;
6 use rustc_data_structures::intern::Interned;
7 use rustc_data_structures::sso::SsoHashSet;
8 use rustc_hir as hir;
9 use rustc_hir::def::{self, CtorKind, DefKind, Namespace};
10 use rustc_hir::def_id::{DefId, DefIdSet, CRATE_DEF_INDEX, LOCAL_CRATE};
11 use rustc_hir::definitions::{DefPathData, DefPathDataName, DisambiguatedDefPathData};
12 use rustc_hir::ItemKind;
13 use rustc_session::config::TrimmedDefPaths;
14 use rustc_session::cstore::{ExternCrate, ExternCrateSource};
15 use rustc_span::symbol::{kw, Ident, Symbol};
16 use rustc_target::abi::Size;
17 use rustc_target::spec::abi::Abi;
18
19 use std::cell::Cell;
20 use std::char;
21 use std::collections::BTreeMap;
22 use std::convert::TryFrom;
23 use std::fmt::{self, Write as _};
24 use std::iter;
25 use std::ops::{ControlFlow, Deref, DerefMut};
26
27 // `pretty` is a separate module only for organization.
28 use super::*;
29
30 macro_rules! p {
31     (@$lit:literal) => {
32         write!(scoped_cx!(), $lit)?
33     };
34     (@write($($data:expr),+)) => {
35         write!(scoped_cx!(), $($data),+)?
36     };
37     (@print($x:expr)) => {
38         scoped_cx!() = $x.print(scoped_cx!())?
39     };
40     (@$method:ident($($arg:expr),*)) => {
41         scoped_cx!() = scoped_cx!().$method($($arg),*)?
42     };
43     ($($elem:tt $(($($args:tt)*))?),+) => {{
44         $(p!(@ $elem $(($($args)*))?);)+
45     }};
46 }
47 macro_rules! define_scoped_cx {
48     ($cx:ident) => {
49         #[allow(unused_macros)]
50         macro_rules! scoped_cx {
51             () => {
52                 $cx
53             };
54         }
55     };
56 }
57
58 thread_local! {
59     static FORCE_IMPL_FILENAME_LINE: Cell<bool> = const { Cell::new(false) };
60     static SHOULD_PREFIX_WITH_CRATE: Cell<bool> = const { Cell::new(false) };
61     static NO_TRIMMED_PATH: Cell<bool> = const { Cell::new(false) };
62     static NO_QUERIES: Cell<bool> = const { Cell::new(false) };
63     static NO_VISIBLE_PATH: Cell<bool> = const { Cell::new(false) };
64 }
65
66 macro_rules! define_helper {
67     ($($(#[$a:meta])* fn $name:ident($helper:ident, $tl:ident);)+) => {
68         $(
69             #[must_use]
70             pub struct $helper(bool);
71
72             impl $helper {
73                 pub fn new() -> $helper {
74                     $helper($tl.with(|c| c.replace(true)))
75                 }
76             }
77
78             $(#[$a])*
79             pub macro $name($e:expr) {
80                 {
81                     let _guard = $helper::new();
82                     $e
83                 }
84             }
85
86             impl Drop for $helper {
87                 fn drop(&mut self) {
88                     $tl.with(|c| c.set(self.0))
89                 }
90             }
91         )+
92     }
93 }
94
95 define_helper!(
96     /// Avoids running any queries during any prints that occur
97     /// during the closure. This may alter the appearance of some
98     /// types (e.g. forcing verbose printing for opaque types).
99     /// This method is used during some queries (e.g. `explicit_item_bounds`
100     /// for opaque types), to ensure that any debug printing that
101     /// occurs during the query computation does not end up recursively
102     /// calling the same query.
103     fn with_no_queries(NoQueriesGuard, NO_QUERIES);
104     /// Force us to name impls with just the filename/line number. We
105     /// normally try to use types. But at some points, notably while printing
106     /// cycle errors, this can result in extra or suboptimal error output,
107     /// so this variable disables that check.
108     fn with_forced_impl_filename_line(ForcedImplGuard, FORCE_IMPL_FILENAME_LINE);
109     /// Adds the `crate::` prefix to paths where appropriate.
110     fn with_crate_prefix(CratePrefixGuard, SHOULD_PREFIX_WITH_CRATE);
111     /// Prevent path trimming if it is turned on. Path trimming affects `Display` impl
112     /// of various rustc types, for example `std::vec::Vec` would be trimmed to `Vec`,
113     /// if no other `Vec` is found.
114     fn with_no_trimmed_paths(NoTrimmedGuard, NO_TRIMMED_PATH);
115     /// Prevent selection of visible paths. `Display` impl of DefId will prefer
116     /// visible (public) reexports of types as paths.
117     fn with_no_visible_paths(NoVisibleGuard, NO_VISIBLE_PATH);
118 );
119
120 /// The "region highlights" are used to control region printing during
121 /// specific error messages. When a "region highlight" is enabled, it
122 /// gives an alternate way to print specific regions. For now, we
123 /// always print those regions using a number, so something like "`'0`".
124 ///
125 /// Regions not selected by the region highlight mode are presently
126 /// unaffected.
127 #[derive(Copy, Clone)]
128 pub struct RegionHighlightMode<'tcx> {
129     tcx: TyCtxt<'tcx>,
130
131     /// If enabled, when we see the selected region, use "`'N`"
132     /// instead of the ordinary behavior.
133     highlight_regions: [Option<(ty::Region<'tcx>, usize)>; 3],
134
135     /// If enabled, when printing a "free region" that originated from
136     /// the given `ty::BoundRegionKind`, print it as "`'1`". Free regions that would ordinarily
137     /// have names print as normal.
138     ///
139     /// This is used when you have a signature like `fn foo(x: &u32,
140     /// y: &'a u32)` and we want to give a name to the region of the
141     /// reference `x`.
142     highlight_bound_region: Option<(ty::BoundRegionKind, usize)>,
143 }
144
145 impl<'tcx> RegionHighlightMode<'tcx> {
146     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
147         Self {
148             tcx,
149             highlight_regions: Default::default(),
150             highlight_bound_region: Default::default(),
151         }
152     }
153
154     /// If `region` and `number` are both `Some`, invokes
155     /// `highlighting_region`.
156     pub fn maybe_highlighting_region(
157         &mut self,
158         region: Option<ty::Region<'tcx>>,
159         number: Option<usize>,
160     ) {
161         if let Some(k) = region {
162             if let Some(n) = number {
163                 self.highlighting_region(k, n);
164             }
165         }
166     }
167
168     /// Highlights the region inference variable `vid` as `'N`.
169     pub fn highlighting_region(&mut self, region: ty::Region<'tcx>, number: usize) {
170         let num_slots = self.highlight_regions.len();
171         let first_avail_slot =
172             self.highlight_regions.iter_mut().find(|s| s.is_none()).unwrap_or_else(|| {
173                 bug!("can only highlight {} placeholders at a time", num_slots,)
174             });
175         *first_avail_slot = Some((region, number));
176     }
177
178     /// Convenience wrapper for `highlighting_region`.
179     pub fn highlighting_region_vid(&mut self, vid: ty::RegionVid, number: usize) {
180         self.highlighting_region(self.tcx.mk_region(ty::ReVar(vid)), number)
181     }
182
183     /// Returns `Some(n)` with the number to use for the given region, if any.
184     fn region_highlighted(&self, region: ty::Region<'_>) -> Option<usize> {
185         self.highlight_regions.iter().find_map(|h| match h {
186             Some((r, n)) if *r == region => Some(*n),
187             _ => None,
188         })
189     }
190
191     /// Highlight the given bound region.
192     /// We can only highlight one bound region at a time. See
193     /// the field `highlight_bound_region` for more detailed notes.
194     pub fn highlighting_bound_region(&mut self, br: ty::BoundRegionKind, number: usize) {
195         assert!(self.highlight_bound_region.is_none());
196         self.highlight_bound_region = Some((br, number));
197     }
198 }
199
200 /// Trait for printers that pretty-print using `fmt::Write` to the printer.
201 pub trait PrettyPrinter<'tcx>:
202     Printer<
203         'tcx,
204         Error = fmt::Error,
205         Path = Self,
206         Region = Self,
207         Type = Self,
208         DynExistential = Self,
209         Const = Self,
210     > + fmt::Write
211 {
212     /// Like `print_def_path` but for value paths.
213     fn print_value_path(
214         self,
215         def_id: DefId,
216         substs: &'tcx [GenericArg<'tcx>],
217     ) -> Result<Self::Path, Self::Error> {
218         self.print_def_path(def_id, substs)
219     }
220
221     fn in_binder<T>(self, value: &ty::Binder<'tcx, T>) -> Result<Self, Self::Error>
222     where
223         T: Print<'tcx, Self, Output = Self, Error = Self::Error> + TypeFoldable<'tcx>,
224     {
225         value.as_ref().skip_binder().print(self)
226     }
227
228     fn wrap_binder<T, F: Fn(&T, Self) -> Result<Self, fmt::Error>>(
229         self,
230         value: &ty::Binder<'tcx, T>,
231         f: F,
232     ) -> Result<Self, Self::Error>
233     where
234         T: Print<'tcx, Self, Output = Self, Error = Self::Error> + TypeFoldable<'tcx>,
235     {
236         f(value.as_ref().skip_binder(), self)
237     }
238
239     /// Prints comma-separated elements.
240     fn comma_sep<T>(mut self, mut elems: impl Iterator<Item = T>) -> Result<Self, Self::Error>
241     where
242         T: Print<'tcx, Self, Output = Self, Error = Self::Error>,
243     {
244         if let Some(first) = elems.next() {
245             self = first.print(self)?;
246             for elem in elems {
247                 self.write_str(", ")?;
248                 self = elem.print(self)?;
249             }
250         }
251         Ok(self)
252     }
253
254     /// Prints `{f: t}` or `{f as t}` depending on the `cast` argument
255     fn typed_value(
256         mut self,
257         f: impl FnOnce(Self) -> Result<Self, Self::Error>,
258         t: impl FnOnce(Self) -> Result<Self, Self::Error>,
259         conversion: &str,
260     ) -> Result<Self::Const, Self::Error> {
261         self.write_str("{")?;
262         self = f(self)?;
263         self.write_str(conversion)?;
264         self = t(self)?;
265         self.write_str("}")?;
266         Ok(self)
267     }
268
269     /// Prints `<...>` around what `f` prints.
270     fn generic_delimiters(
271         self,
272         f: impl FnOnce(Self) -> Result<Self, Self::Error>,
273     ) -> Result<Self, Self::Error>;
274
275     /// Returns `true` if the region should be printed in
276     /// optional positions, e.g., `&'a T` or `dyn Tr + 'b`.
277     /// This is typically the case for all non-`'_` regions.
278     fn should_print_region(&self, region: ty::Region<'_>) -> bool;
279
280     // Defaults (should not be overridden):
281
282     /// If possible, this returns a global path resolving to `def_id` that is visible
283     /// from at least one local module, and returns `true`. If the crate defining `def_id` is
284     /// declared with an `extern crate`, the path is guaranteed to use the `extern crate`.
285     fn try_print_visible_def_path(self, def_id: DefId) -> Result<(Self, bool), Self::Error> {
286         if NO_VISIBLE_PATH.with(|flag| flag.get()) {
287             return Ok((self, false));
288         }
289
290         let mut callers = Vec::new();
291         self.try_print_visible_def_path_recur(def_id, &mut callers)
292     }
293
294     /// Try to see if this path can be trimmed to a unique symbol name.
295     fn try_print_trimmed_def_path(
296         mut self,
297         def_id: DefId,
298     ) -> Result<(Self::Path, bool), Self::Error> {
299         if !self.tcx().sess.opts.debugging_opts.trim_diagnostic_paths
300             || matches!(self.tcx().sess.opts.trimmed_def_paths, TrimmedDefPaths::Never)
301             || NO_TRIMMED_PATH.with(|flag| flag.get())
302             || SHOULD_PREFIX_WITH_CRATE.with(|flag| flag.get())
303         {
304             return Ok((self, false));
305         }
306
307         match self.tcx().trimmed_def_paths(()).get(&def_id) {
308             None => Ok((self, false)),
309             Some(symbol) => {
310                 self.write_str(symbol.as_str())?;
311                 Ok((self, true))
312             }
313         }
314     }
315
316     /// Does the work of `try_print_visible_def_path`, building the
317     /// full definition path recursively before attempting to
318     /// post-process it into the valid and visible version that
319     /// accounts for re-exports.
320     ///
321     /// This method should only be called by itself or
322     /// `try_print_visible_def_path`.
323     ///
324     /// `callers` is a chain of visible_parent's leading to `def_id`,
325     /// to support cycle detection during recursion.
326     ///
327     /// This method returns false if we can't print the visible path, so
328     /// `print_def_path` can fall back on the item's real definition path.
329     fn try_print_visible_def_path_recur(
330         mut self,
331         def_id: DefId,
332         callers: &mut Vec<DefId>,
333     ) -> Result<(Self, bool), Self::Error> {
334         define_scoped_cx!(self);
335
336         debug!("try_print_visible_def_path: def_id={:?}", def_id);
337
338         // If `def_id` is a direct or injected extern crate, return the
339         // path to the crate followed by the path to the item within the crate.
340         if def_id.index == CRATE_DEF_INDEX {
341             let cnum = def_id.krate;
342
343             if cnum == LOCAL_CRATE {
344                 return Ok((self.path_crate(cnum)?, true));
345             }
346
347             // In local mode, when we encounter a crate other than
348             // LOCAL_CRATE, execution proceeds in one of two ways:
349             //
350             // 1. For a direct dependency, where user added an
351             //    `extern crate` manually, we put the `extern
352             //    crate` as the parent. So you wind up with
353             //    something relative to the current crate.
354             // 2. For an extern inferred from a path or an indirect crate,
355             //    where there is no explicit `extern crate`, we just prepend
356             //    the crate name.
357             match self.tcx().extern_crate(def_id) {
358                 Some(&ExternCrate { src, dependency_of, span, .. }) => match (src, dependency_of) {
359                     (ExternCrateSource::Extern(def_id), LOCAL_CRATE) => {
360                         // NOTE(eddyb) the only reason `span` might be dummy,
361                         // that we're aware of, is that it's the `std`/`core`
362                         // `extern crate` injected by default.
363                         // FIXME(eddyb) find something better to key this on,
364                         // or avoid ending up with `ExternCrateSource::Extern`,
365                         // for the injected `std`/`core`.
366                         if span.is_dummy() {
367                             return Ok((self.path_crate(cnum)?, true));
368                         }
369
370                         // Disable `try_print_trimmed_def_path` behavior within
371                         // the `print_def_path` call, to avoid infinite recursion
372                         // in cases where the `extern crate foo` has non-trivial
373                         // parents, e.g. it's nested in `impl foo::Trait for Bar`
374                         // (see also issues #55779 and #87932).
375                         self = with_no_visible_paths!(self.print_def_path(def_id, &[])?);
376
377                         return Ok((self, true));
378                     }
379                     (ExternCrateSource::Path, LOCAL_CRATE) => {
380                         return Ok((self.path_crate(cnum)?, true));
381                     }
382                     _ => {}
383                 },
384                 None => {
385                     return Ok((self.path_crate(cnum)?, true));
386                 }
387             }
388         }
389
390         if def_id.is_local() {
391             return Ok((self, false));
392         }
393
394         let visible_parent_map = self.tcx().visible_parent_map(());
395
396         let mut cur_def_key = self.tcx().def_key(def_id);
397         debug!("try_print_visible_def_path: cur_def_key={:?}", cur_def_key);
398
399         // For a constructor, we want the name of its parent rather than <unnamed>.
400         if let DefPathData::Ctor = cur_def_key.disambiguated_data.data {
401             let parent = DefId {
402                 krate: def_id.krate,
403                 index: cur_def_key
404                     .parent
405                     .expect("`DefPathData::Ctor` / `VariantData` missing a parent"),
406             };
407
408             cur_def_key = self.tcx().def_key(parent);
409         }
410
411         let Some(visible_parent) = visible_parent_map.get(&def_id).cloned() else {
412             return Ok((self, false));
413         };
414
415         let actual_parent = self.tcx().parent(def_id);
416         debug!(
417             "try_print_visible_def_path: visible_parent={:?} actual_parent={:?}",
418             visible_parent, actual_parent,
419         );
420
421         let mut data = cur_def_key.disambiguated_data.data;
422         debug!(
423             "try_print_visible_def_path: data={:?} visible_parent={:?} actual_parent={:?}",
424             data, visible_parent, actual_parent,
425         );
426
427         match data {
428             // In order to output a path that could actually be imported (valid and visible),
429             // we need to handle re-exports correctly.
430             //
431             // For example, take `std::os::unix::process::CommandExt`, this trait is actually
432             // defined at `std::sys::unix::ext::process::CommandExt` (at time of writing).
433             //
434             // `std::os::unix` rexports the contents of `std::sys::unix::ext`. `std::sys` is
435             // private so the "true" path to `CommandExt` isn't accessible.
436             //
437             // In this case, the `visible_parent_map` will look something like this:
438             //
439             // (child) -> (parent)
440             // `std::sys::unix::ext::process::CommandExt` -> `std::sys::unix::ext::process`
441             // `std::sys::unix::ext::process` -> `std::sys::unix::ext`
442             // `std::sys::unix::ext` -> `std::os`
443             //
444             // This is correct, as the visible parent of `std::sys::unix::ext` is in fact
445             // `std::os`.
446             //
447             // When printing the path to `CommandExt` and looking at the `cur_def_key` that
448             // corresponds to `std::sys::unix::ext`, we would normally print `ext` and then go
449             // to the parent - resulting in a mangled path like
450             // `std::os::ext::process::CommandExt`.
451             //
452             // Instead, we must detect that there was a re-export and instead print `unix`
453             // (which is the name `std::sys::unix::ext` was re-exported as in `std::os`). To
454             // do this, we compare the parent of `std::sys::unix::ext` (`std::sys::unix`) with
455             // the visible parent (`std::os`). If these do not match, then we iterate over
456             // the children of the visible parent (as was done when computing
457             // `visible_parent_map`), looking for the specific child we currently have and then
458             // have access to the re-exported name.
459             DefPathData::TypeNs(ref mut name) if Some(visible_parent) != actual_parent => {
460                 // Item might be re-exported several times, but filter for the one
461                 // that's public and whose identifier isn't `_`.
462                 let reexport = self
463                     .tcx()
464                     .module_children(visible_parent)
465                     .iter()
466                     .filter(|child| child.res.opt_def_id() == Some(def_id))
467                     .find(|child| child.vis.is_public() && child.ident.name != kw::Underscore)
468                     .map(|child| child.ident.name);
469
470                 if let Some(new_name) = reexport {
471                     *name = new_name;
472                 } else {
473                     // There is no name that is public and isn't `_`, so bail.
474                     return Ok((self, false));
475                 }
476             }
477             // Re-exported `extern crate` (#43189).
478             DefPathData::CrateRoot => {
479                 data = DefPathData::TypeNs(self.tcx().crate_name(def_id.krate));
480             }
481             _ => {}
482         }
483         debug!("try_print_visible_def_path: data={:?}", data);
484
485         if callers.contains(&visible_parent) {
486             return Ok((self, false));
487         }
488         callers.push(visible_parent);
489         // HACK(eddyb) this bypasses `path_append`'s prefix printing to avoid
490         // knowing ahead of time whether the entire path will succeed or not.
491         // To support printers that do not implement `PrettyPrinter`, a `Vec` or
492         // linked list on the stack would need to be built, before any printing.
493         match self.try_print_visible_def_path_recur(visible_parent, callers)? {
494             (cx, false) => return Ok((cx, false)),
495             (cx, true) => self = cx,
496         }
497         callers.pop();
498
499         Ok((self.path_append(Ok, &DisambiguatedDefPathData { data, disambiguator: 0 })?, true))
500     }
501
502     fn pretty_path_qualified(
503         self,
504         self_ty: Ty<'tcx>,
505         trait_ref: Option<ty::TraitRef<'tcx>>,
506     ) -> Result<Self::Path, Self::Error> {
507         if trait_ref.is_none() {
508             // Inherent impls. Try to print `Foo::bar` for an inherent
509             // impl on `Foo`, but fallback to `<Foo>::bar` if self-type is
510             // anything other than a simple path.
511             match self_ty.kind() {
512                 ty::Adt(..)
513                 | ty::Foreign(_)
514                 | ty::Bool
515                 | ty::Char
516                 | ty::Str
517                 | ty::Int(_)
518                 | ty::Uint(_)
519                 | ty::Float(_) => {
520                     return self_ty.print(self);
521                 }
522
523                 _ => {}
524             }
525         }
526
527         self.generic_delimiters(|mut cx| {
528             define_scoped_cx!(cx);
529
530             p!(print(self_ty));
531             if let Some(trait_ref) = trait_ref {
532                 p!(" as ", print(trait_ref.print_only_trait_path()));
533             }
534             Ok(cx)
535         })
536     }
537
538     fn pretty_path_append_impl(
539         mut self,
540         print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
541         self_ty: Ty<'tcx>,
542         trait_ref: Option<ty::TraitRef<'tcx>>,
543     ) -> Result<Self::Path, Self::Error> {
544         self = print_prefix(self)?;
545
546         self.generic_delimiters(|mut cx| {
547             define_scoped_cx!(cx);
548
549             p!("impl ");
550             if let Some(trait_ref) = trait_ref {
551                 p!(print(trait_ref.print_only_trait_path()), " for ");
552             }
553             p!(print(self_ty));
554
555             Ok(cx)
556         })
557     }
558
559     fn pretty_print_type(mut self, ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
560         define_scoped_cx!(self);
561
562         match *ty.kind() {
563             ty::Bool => p!("bool"),
564             ty::Char => p!("char"),
565             ty::Int(t) => p!(write("{}", t.name_str())),
566             ty::Uint(t) => p!(write("{}", t.name_str())),
567             ty::Float(t) => p!(write("{}", t.name_str())),
568             ty::RawPtr(ref tm) => {
569                 p!(write(
570                     "*{} ",
571                     match tm.mutbl {
572                         hir::Mutability::Mut => "mut",
573                         hir::Mutability::Not => "const",
574                     }
575                 ));
576                 p!(print(tm.ty))
577             }
578             ty::Ref(r, ty, mutbl) => {
579                 p!("&");
580                 if self.should_print_region(r) {
581                     p!(print(r), " ");
582                 }
583                 p!(print(ty::TypeAndMut { ty, mutbl }))
584             }
585             ty::Never => p!("!"),
586             ty::Tuple(ref tys) => {
587                 p!("(", comma_sep(tys.iter()));
588                 if tys.len() == 1 {
589                     p!(",");
590                 }
591                 p!(")")
592             }
593             ty::FnDef(def_id, substs) => {
594                 let sig = self.tcx().fn_sig(def_id).subst(self.tcx(), substs);
595                 p!(print(sig), " {{", print_value_path(def_id, substs), "}}");
596             }
597             ty::FnPtr(ref bare_fn) => p!(print(bare_fn)),
598             ty::Infer(infer_ty) => {
599                 let verbose = self.tcx().sess.verbose();
600                 if let ty::TyVar(ty_vid) = infer_ty {
601                     if let Some(name) = self.ty_infer_name(ty_vid) {
602                         p!(write("{}", name))
603                     } else {
604                         if verbose {
605                             p!(write("{:?}", infer_ty))
606                         } else {
607                             p!(write("{}", infer_ty))
608                         }
609                     }
610                 } else {
611                     if verbose { p!(write("{:?}", infer_ty)) } else { p!(write("{}", infer_ty)) }
612                 }
613             }
614             ty::Error(_) => p!("[type error]"),
615             ty::Param(ref param_ty) => p!(print(param_ty)),
616             ty::Bound(debruijn, bound_ty) => match bound_ty.kind {
617                 ty::BoundTyKind::Anon => self.pretty_print_bound_var(debruijn, bound_ty.var)?,
618                 ty::BoundTyKind::Param(p) => p!(write("{}", p)),
619             },
620             ty::Adt(def, substs) => {
621                 p!(print_def_path(def.did, substs));
622             }
623             ty::Dynamic(data, r) => {
624                 let print_r = self.should_print_region(r);
625                 if print_r {
626                     p!("(");
627                 }
628                 p!("dyn ", print(data));
629                 if print_r {
630                     p!(" + ", print(r), ")");
631                 }
632             }
633             ty::Foreign(def_id) => {
634                 p!(print_def_path(def_id, &[]));
635             }
636             ty::Projection(ref data) => p!(print(data)),
637             ty::Placeholder(placeholder) => p!(write("Placeholder({:?})", placeholder)),
638             ty::Opaque(def_id, substs) => {
639                 // FIXME(eddyb) print this with `print_def_path`.
640                 // We use verbose printing in 'NO_QUERIES' mode, to
641                 // avoid needing to call `predicates_of`. This should
642                 // only affect certain debug messages (e.g. messages printed
643                 // from `rustc_middle::ty` during the computation of `tcx.predicates_of`),
644                 // and should have no effect on any compiler output.
645                 if self.tcx().sess.verbose() || NO_QUERIES.with(|q| q.get()) {
646                     p!(write("Opaque({:?}, {:?})", def_id, substs));
647                     return Ok(self);
648                 }
649
650                 return with_no_queries!({
651                     let def_key = self.tcx().def_key(def_id);
652                     if let Some(name) = def_key.disambiguated_data.data.get_opt_name() {
653                         p!(write("{}", name));
654                         // FIXME(eddyb) print this with `print_def_path`.
655                         if !substs.is_empty() {
656                             p!("::");
657                             p!(generic_delimiters(|cx| cx.comma_sep(substs.iter())));
658                         }
659                         return Ok(self);
660                     }
661
662                     self.pretty_print_opaque_impl_type(def_id, substs)
663                 });
664             }
665             ty::Str => p!("str"),
666             ty::Generator(did, substs, movability) => {
667                 p!(write("["));
668                 match movability {
669                     hir::Movability::Movable => {}
670                     hir::Movability::Static => p!("static "),
671                 }
672
673                 if !self.tcx().sess.verbose() {
674                     p!("generator");
675                     // FIXME(eddyb) should use `def_span`.
676                     if let Some(did) = did.as_local() {
677                         let span = self.tcx().def_span(did);
678                         p!(write(
679                             "@{}",
680                             // This may end up in stderr diagnostics but it may also be emitted
681                             // into MIR. Hence we use the remapped path if available
682                             self.tcx().sess.source_map().span_to_embeddable_string(span)
683                         ));
684                     } else {
685                         p!(write("@"), print_def_path(did, substs));
686                     }
687                 } else {
688                     p!(print_def_path(did, substs));
689                     p!(" upvar_tys=(");
690                     if !substs.as_generator().is_valid() {
691                         p!("unavailable");
692                     } else {
693                         self = self.comma_sep(substs.as_generator().upvar_tys())?;
694                     }
695                     p!(")");
696
697                     if substs.as_generator().is_valid() {
698                         p!(" ", print(substs.as_generator().witness()));
699                     }
700                 }
701
702                 p!("]")
703             }
704             ty::GeneratorWitness(types) => {
705                 p!(in_binder(&types));
706             }
707             ty::Closure(did, substs) => {
708                 p!(write("["));
709                 if !self.tcx().sess.verbose() {
710                     p!(write("closure"));
711                     // FIXME(eddyb) should use `def_span`.
712                     if let Some(did) = did.as_local() {
713                         if self.tcx().sess.opts.debugging_opts.span_free_formats {
714                             p!("@", print_def_path(did.to_def_id(), substs));
715                         } else {
716                             let span = self.tcx().def_span(did);
717                             p!(write(
718                                 "@{}",
719                                 // This may end up in stderr diagnostics but it may also be emitted
720                                 // into MIR. Hence we use the remapped path if available
721                                 self.tcx().sess.source_map().span_to_embeddable_string(span)
722                             ));
723                         }
724                     } else {
725                         p!(write("@"), print_def_path(did, substs));
726                     }
727                 } else {
728                     p!(print_def_path(did, substs));
729                     if !substs.as_closure().is_valid() {
730                         p!(" closure_substs=(unavailable)");
731                         p!(write(" substs={:?}", substs));
732                     } else {
733                         p!(" closure_kind_ty=", print(substs.as_closure().kind_ty()));
734                         p!(
735                             " closure_sig_as_fn_ptr_ty=",
736                             print(substs.as_closure().sig_as_fn_ptr_ty())
737                         );
738                         p!(" upvar_tys=(");
739                         self = self.comma_sep(substs.as_closure().upvar_tys())?;
740                         p!(")");
741                     }
742                 }
743                 p!("]");
744             }
745             ty::Array(ty, sz) => {
746                 p!("[", print(ty), "; ");
747                 if self.tcx().sess.verbose() {
748                     p!(write("{:?}", sz));
749                 } else if let ty::ConstKind::Unevaluated(..) = sz.val() {
750                     // Do not try to evaluate unevaluated constants. If we are const evaluating an
751                     // array length anon const, rustc will (with debug assertions) print the
752                     // constant's path. Which will end up here again.
753                     p!("_");
754                 } else if let Some(n) = sz.val().try_to_bits(self.tcx().data_layout.pointer_size) {
755                     p!(write("{}", n));
756                 } else if let ty::ConstKind::Param(param) = sz.val() {
757                     p!(print(param));
758                 } else {
759                     p!("_");
760                 }
761                 p!("]")
762             }
763             ty::Slice(ty) => p!("[", print(ty), "]"),
764         }
765
766         Ok(self)
767     }
768
769     fn pretty_print_opaque_impl_type(
770         mut self,
771         def_id: DefId,
772         substs: &'tcx ty::List<ty::GenericArg<'tcx>>,
773     ) -> Result<Self::Type, Self::Error> {
774         define_scoped_cx!(self);
775
776         // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
777         // by looking up the projections associated with the def_id.
778         let bounds = self.tcx().explicit_item_bounds(def_id);
779
780         let mut traits = BTreeMap::new();
781         let mut fn_traits = BTreeMap::new();
782         let mut is_sized = false;
783
784         for (predicate, _) in bounds {
785             let predicate = predicate.subst(self.tcx(), substs);
786             let bound_predicate = predicate.kind();
787
788             match bound_predicate.skip_binder() {
789                 ty::PredicateKind::Trait(pred) => {
790                     let trait_ref = bound_predicate.rebind(pred.trait_ref);
791
792                     // Don't print + Sized, but rather + ?Sized if absent.
793                     if Some(trait_ref.def_id()) == self.tcx().lang_items().sized_trait() {
794                         is_sized = true;
795                         continue;
796                     }
797
798                     self.insert_trait_and_projection(trait_ref, None, &mut traits, &mut fn_traits);
799                 }
800                 ty::PredicateKind::Projection(pred) => {
801                     let proj_ref = bound_predicate.rebind(pred);
802                     let trait_ref = proj_ref.required_poly_trait_ref(self.tcx());
803
804                     // Projection type entry -- the def-id for naming, and the ty.
805                     let proj_ty = (proj_ref.projection_def_id(), proj_ref.term());
806
807                     self.insert_trait_and_projection(
808                         trait_ref,
809                         Some(proj_ty),
810                         &mut traits,
811                         &mut fn_traits,
812                     );
813                 }
814                 _ => {}
815             }
816         }
817
818         let mut first = true;
819         // Insert parenthesis around (Fn(A, B) -> C) if the opaque ty has more than one other trait
820         let paren_needed = fn_traits.len() > 1 || traits.len() > 0 || !is_sized;
821
822         p!("impl");
823
824         for (fn_once_trait_ref, entry) in fn_traits {
825             // Get the (single) generic ty (the args) of this FnOnce trait ref.
826             let generics = self.generic_args_to_print(
827                 self.tcx().generics_of(fn_once_trait_ref.def_id()),
828                 fn_once_trait_ref.skip_binder().substs,
829             );
830
831             match (entry.return_ty, generics[0].expect_ty()) {
832                 // We can only print `impl Fn() -> ()` if we have a tuple of args and we recorded
833                 // a return type.
834                 (Some(return_ty), arg_tys) if matches!(arg_tys.kind(), ty::Tuple(_)) => {
835                     let name = if entry.fn_trait_ref.is_some() {
836                         "Fn"
837                     } else if entry.fn_mut_trait_ref.is_some() {
838                         "FnMut"
839                     } else {
840                         "FnOnce"
841                     };
842
843                     p!(
844                         write("{}", if first { " " } else { " + " }),
845                         write("{}{}(", if paren_needed { "(" } else { "" }, name)
846                     );
847
848                     for (idx, ty) in arg_tys.tuple_fields().iter().enumerate() {
849                         if idx > 0 {
850                             p!(", ");
851                         }
852                         p!(print(ty));
853                     }
854
855                     p!(")");
856                     if let Term::Ty(ty) = return_ty.skip_binder() {
857                         if !ty.is_unit() {
858                             p!("-> ", print(return_ty));
859                         }
860                     }
861                     p!(write("{}", if paren_needed { ")" } else { "" }));
862
863                     first = false;
864                 }
865                 // If we got here, we can't print as a `impl Fn(A, B) -> C`. Just record the
866                 // trait_refs we collected in the OpaqueFnEntry as normal trait refs.
867                 _ => {
868                     if entry.has_fn_once {
869                         traits.entry(fn_once_trait_ref).or_default().extend(
870                             // Group the return ty with its def id, if we had one.
871                             entry
872                                 .return_ty
873                                 .map(|ty| (self.tcx().lang_items().fn_once_output().unwrap(), ty)),
874                         );
875                     }
876                     if let Some(trait_ref) = entry.fn_mut_trait_ref {
877                         traits.entry(trait_ref).or_default();
878                     }
879                     if let Some(trait_ref) = entry.fn_trait_ref {
880                         traits.entry(trait_ref).or_default();
881                     }
882                 }
883             }
884         }
885
886         // Print the rest of the trait types (that aren't Fn* family of traits)
887         for (trait_ref, assoc_items) in traits {
888             p!(
889                 write("{}", if first { " " } else { " + " }),
890                 print(trait_ref.skip_binder().print_only_trait_name())
891             );
892
893             let generics = self.generic_args_to_print(
894                 self.tcx().generics_of(trait_ref.def_id()),
895                 trait_ref.skip_binder().substs,
896             );
897
898             if !generics.is_empty() || !assoc_items.is_empty() {
899                 p!("<");
900                 let mut first = true;
901
902                 for ty in generics {
903                     if !first {
904                         p!(", ");
905                     }
906                     p!(print(trait_ref.rebind(*ty)));
907                     first = false;
908                 }
909
910                 for (assoc_item_def_id, term) in assoc_items {
911                     if !first {
912                         p!(", ");
913                     }
914                     p!(write("{} = ", self.tcx().associated_item(assoc_item_def_id).name));
915
916                     match term.skip_binder() {
917                         Term::Ty(ty) => {
918                             // Skip printing `<[generator@] as Generator<_>>::Return` from async blocks
919                             if matches!(
920                               ty.kind(), ty::Projection(ty::ProjectionTy { item_def_id, .. })
921                               if Some(*item_def_id) == self.tcx().lang_items().generator_return()
922                             ) {
923                                 p!("[async output]")
924                             } else {
925                                 p!(print(ty))
926                             }
927                         }
928                         Term::Const(c) => {
929                             p!(print(c));
930                         }
931                     };
932
933                     first = false;
934                 }
935
936                 p!(">");
937             }
938
939             first = false;
940         }
941
942         if !is_sized {
943             p!(write("{}?Sized", if first { " " } else { " + " }));
944         } else if first {
945             p!(" Sized");
946         }
947
948         Ok(self)
949     }
950
951     /// Insert the trait ref and optionally a projection type associated with it into either the
952     /// traits map or fn_traits map, depending on if the trait is in the Fn* family of traits.
953     fn insert_trait_and_projection(
954         &mut self,
955         trait_ref: ty::PolyTraitRef<'tcx>,
956         proj_ty: Option<(DefId, ty::Binder<'tcx, Term<'tcx>>)>,
957         traits: &mut BTreeMap<
958             ty::PolyTraitRef<'tcx>,
959             BTreeMap<DefId, ty::Binder<'tcx, Term<'tcx>>>,
960         >,
961         fn_traits: &mut BTreeMap<ty::PolyTraitRef<'tcx>, OpaqueFnEntry<'tcx>>,
962     ) {
963         let trait_def_id = trait_ref.def_id();
964
965         // If our trait_ref is FnOnce or any of its children, project it onto the parent FnOnce
966         // super-trait ref and record it there.
967         if let Some(fn_once_trait) = self.tcx().lang_items().fn_once_trait() {
968             // If we have a FnOnce, then insert it into
969             if trait_def_id == fn_once_trait {
970                 let entry = fn_traits.entry(trait_ref).or_default();
971                 // Optionally insert the return_ty as well.
972                 if let Some((_, ty)) = proj_ty {
973                     entry.return_ty = Some(ty);
974                 }
975                 entry.has_fn_once = true;
976                 return;
977             } else if Some(trait_def_id) == self.tcx().lang_items().fn_mut_trait() {
978                 let super_trait_ref = crate::traits::util::supertraits(self.tcx(), trait_ref)
979                     .find(|super_trait_ref| super_trait_ref.def_id() == fn_once_trait)
980                     .unwrap();
981
982                 fn_traits.entry(super_trait_ref).or_default().fn_mut_trait_ref = Some(trait_ref);
983                 return;
984             } else if Some(trait_def_id) == self.tcx().lang_items().fn_trait() {
985                 let super_trait_ref = crate::traits::util::supertraits(self.tcx(), trait_ref)
986                     .find(|super_trait_ref| super_trait_ref.def_id() == fn_once_trait)
987                     .unwrap();
988
989                 fn_traits.entry(super_trait_ref).or_default().fn_trait_ref = Some(trait_ref);
990                 return;
991             }
992         }
993
994         // Otherwise, just group our traits and projection types.
995         traits.entry(trait_ref).or_default().extend(proj_ty);
996     }
997
998     fn pretty_print_bound_var(
999         &mut self,
1000         debruijn: ty::DebruijnIndex,
1001         var: ty::BoundVar,
1002     ) -> Result<(), Self::Error> {
1003         if debruijn == ty::INNERMOST {
1004             write!(self, "^{}", var.index())
1005         } else {
1006             write!(self, "^{}_{}", debruijn.index(), var.index())
1007         }
1008     }
1009
1010     fn ty_infer_name(&self, _: ty::TyVid) -> Option<String> {
1011         None
1012     }
1013
1014     fn const_infer_name(&self, _: ty::ConstVid<'tcx>) -> Option<String> {
1015         None
1016     }
1017
1018     fn pretty_print_dyn_existential(
1019         mut self,
1020         predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
1021     ) -> Result<Self::DynExistential, Self::Error> {
1022         // Generate the main trait ref, including associated types.
1023         let mut first = true;
1024
1025         if let Some(principal) = predicates.principal() {
1026             self = self.wrap_binder(&principal, |principal, mut cx| {
1027                 define_scoped_cx!(cx);
1028                 p!(print_def_path(principal.def_id, &[]));
1029
1030                 let mut resugared = false;
1031
1032                 // Special-case `Fn(...) -> ...` and resugar it.
1033                 let fn_trait_kind = cx.tcx().fn_trait_kind_from_lang_item(principal.def_id);
1034                 if !cx.tcx().sess.verbose() && fn_trait_kind.is_some() {
1035                     if let ty::Tuple(tys) = principal.substs.type_at(0).kind() {
1036                         let mut projections = predicates.projection_bounds();
1037                         if let (Some(proj), None) = (projections.next(), projections.next()) {
1038                             p!(pretty_fn_sig(
1039                                 tys,
1040                                 false,
1041                                 proj.skip_binder().term.ty().expect("Return type was a const")
1042                             ));
1043                             resugared = true;
1044                         }
1045                     }
1046                 }
1047
1048                 // HACK(eddyb) this duplicates `FmtPrinter`'s `path_generic_args`,
1049                 // in order to place the projections inside the `<...>`.
1050                 if !resugared {
1051                     // Use a type that can't appear in defaults of type parameters.
1052                     let dummy_cx = cx.tcx().mk_ty_infer(ty::FreshTy(0));
1053                     let principal = principal.with_self_ty(cx.tcx(), dummy_cx);
1054
1055                     let args = cx.generic_args_to_print(
1056                         cx.tcx().generics_of(principal.def_id),
1057                         principal.substs,
1058                     );
1059
1060                     // Don't print `'_` if there's no unerased regions.
1061                     let print_regions = args.iter().any(|arg| match arg.unpack() {
1062                         GenericArgKind::Lifetime(r) => !r.is_erased(),
1063                         _ => false,
1064                     });
1065                     let mut args = args.iter().cloned().filter(|arg| match arg.unpack() {
1066                         GenericArgKind::Lifetime(_) => print_regions,
1067                         _ => true,
1068                     });
1069                     let mut projections = predicates.projection_bounds();
1070
1071                     let arg0 = args.next();
1072                     let projection0 = projections.next();
1073                     if arg0.is_some() || projection0.is_some() {
1074                         let args = arg0.into_iter().chain(args);
1075                         let projections = projection0.into_iter().chain(projections);
1076
1077                         p!(generic_delimiters(|mut cx| {
1078                             cx = cx.comma_sep(args)?;
1079                             if arg0.is_some() && projection0.is_some() {
1080                                 write!(cx, ", ")?;
1081                             }
1082                             cx.comma_sep(projections)
1083                         }));
1084                     }
1085                 }
1086                 Ok(cx)
1087             })?;
1088
1089             first = false;
1090         }
1091
1092         define_scoped_cx!(self);
1093
1094         // Builtin bounds.
1095         // FIXME(eddyb) avoid printing twice (needed to ensure
1096         // that the auto traits are sorted *and* printed via cx).
1097         let mut auto_traits: Vec<_> =
1098             predicates.auto_traits().map(|did| (self.tcx().def_path_str(did), did)).collect();
1099
1100         // The auto traits come ordered by `DefPathHash`. While
1101         // `DefPathHash` is *stable* in the sense that it depends on
1102         // neither the host nor the phase of the moon, it depends
1103         // "pseudorandomly" on the compiler version and the target.
1104         //
1105         // To avoid that causing instabilities in compiletest
1106         // output, sort the auto-traits alphabetically.
1107         auto_traits.sort();
1108
1109         for (_, def_id) in auto_traits {
1110             if !first {
1111                 p!(" + ");
1112             }
1113             first = false;
1114
1115             p!(print_def_path(def_id, &[]));
1116         }
1117
1118         Ok(self)
1119     }
1120
1121     fn pretty_fn_sig(
1122         mut self,
1123         inputs: &[Ty<'tcx>],
1124         c_variadic: bool,
1125         output: Ty<'tcx>,
1126     ) -> Result<Self, Self::Error> {
1127         define_scoped_cx!(self);
1128
1129         p!("(", comma_sep(inputs.iter().copied()));
1130         if c_variadic {
1131             if !inputs.is_empty() {
1132                 p!(", ");
1133             }
1134             p!("...");
1135         }
1136         p!(")");
1137         if !output.is_unit() {
1138             p!(" -> ", print(output));
1139         }
1140
1141         Ok(self)
1142     }
1143
1144     fn pretty_print_const(
1145         mut self,
1146         ct: ty::Const<'tcx>,
1147         print_ty: bool,
1148     ) -> Result<Self::Const, Self::Error> {
1149         define_scoped_cx!(self);
1150
1151         if self.tcx().sess.verbose() {
1152             p!(write("Const({:?}: {:?})", ct.val(), ct.ty()));
1153             return Ok(self);
1154         }
1155
1156         macro_rules! print_underscore {
1157             () => {{
1158                 if print_ty {
1159                     self = self.typed_value(
1160                         |mut this| {
1161                             write!(this, "_")?;
1162                             Ok(this)
1163                         },
1164                         |this| this.print_type(ct.ty()),
1165                         ": ",
1166                     )?;
1167                 } else {
1168                     write!(self, "_")?;
1169                 }
1170             }};
1171         }
1172
1173         match ct.val() {
1174             ty::ConstKind::Unevaluated(ty::Unevaluated {
1175                 def,
1176                 substs,
1177                 promoted: Some(promoted),
1178             }) => {
1179                 p!(print_value_path(def.did, substs));
1180                 p!(write("::{:?}", promoted));
1181             }
1182             ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs, promoted: None }) => {
1183                 match self.tcx().def_kind(def.did) {
1184                     DefKind::Static | DefKind::Const | DefKind::AssocConst => {
1185                         p!(print_value_path(def.did, substs))
1186                     }
1187                     _ => {
1188                         if def.is_local() {
1189                             let span = self.tcx().def_span(def.did);
1190                             if let Ok(snip) = self.tcx().sess.source_map().span_to_snippet(span) {
1191                                 p!(write("{}", snip))
1192                             } else {
1193                                 print_underscore!()
1194                             }
1195                         } else {
1196                             print_underscore!()
1197                         }
1198                     }
1199                 }
1200             }
1201             ty::ConstKind::Infer(infer_ct) => {
1202                 match infer_ct {
1203                     ty::InferConst::Var(ct_vid)
1204                         if let Some(name) = self.const_infer_name(ct_vid) =>
1205                             p!(write("{}", name)),
1206                     _ => print_underscore!(),
1207                 }
1208             }
1209             ty::ConstKind::Param(ParamConst { name, .. }) => p!(write("{}", name)),
1210             ty::ConstKind::Value(value) => {
1211                 return self.pretty_print_const_value(value, ct.ty(), print_ty);
1212             }
1213
1214             ty::ConstKind::Bound(debruijn, bound_var) => {
1215                 self.pretty_print_bound_var(debruijn, bound_var)?
1216             }
1217             ty::ConstKind::Placeholder(placeholder) => p!(write("Placeholder({:?})", placeholder)),
1218             ty::ConstKind::Error(_) => p!("[const error]"),
1219         };
1220         Ok(self)
1221     }
1222
1223     fn pretty_print_const_scalar(
1224         self,
1225         scalar: Scalar,
1226         ty: Ty<'tcx>,
1227         print_ty: bool,
1228     ) -> Result<Self::Const, Self::Error> {
1229         match scalar {
1230             Scalar::Ptr(ptr, _size) => self.pretty_print_const_scalar_ptr(ptr, ty, print_ty),
1231             Scalar::Int(int) => self.pretty_print_const_scalar_int(int, ty, print_ty),
1232         }
1233     }
1234
1235     fn pretty_print_const_scalar_ptr(
1236         mut self,
1237         ptr: Pointer,
1238         ty: Ty<'tcx>,
1239         print_ty: bool,
1240     ) -> Result<Self::Const, Self::Error> {
1241         define_scoped_cx!(self);
1242
1243         let (alloc_id, offset) = ptr.into_parts();
1244         match ty.kind() {
1245             // Byte strings (&[u8; N])
1246             ty::Ref(
1247                 _,
1248                 Ty(Interned(
1249                     ty::TyS {
1250                         kind:
1251                             ty::Array(
1252                                 Ty(Interned(ty::TyS { kind: ty::Uint(ty::UintTy::U8), .. }, _)),
1253                                 ty::Const(Interned(
1254                                     ty::ConstS {
1255                                         val: ty::ConstKind::Value(ConstValue::Scalar(int)),
1256                                         ..
1257                                     },
1258                                     _,
1259                                 )),
1260                             ),
1261                         ..
1262                     },
1263                     _,
1264                 )),
1265                 _,
1266             ) => match self.tcx().get_global_alloc(alloc_id) {
1267                 Some(GlobalAlloc::Memory(alloc)) => {
1268                     let len = int.assert_bits(self.tcx().data_layout.pointer_size);
1269                     let range = AllocRange { start: offset, size: Size::from_bytes(len) };
1270                     if let Ok(byte_str) = alloc.inner().get_bytes(&self.tcx(), range) {
1271                         p!(pretty_print_byte_str(byte_str))
1272                     } else {
1273                         p!("<too short allocation>")
1274                     }
1275                 }
1276                 // FIXME: for statics and functions, we could in principle print more detail.
1277                 Some(GlobalAlloc::Static(def_id)) => p!(write("<static({:?})>", def_id)),
1278                 Some(GlobalAlloc::Function(_)) => p!("<function>"),
1279                 None => p!("<dangling pointer>"),
1280             },
1281             ty::FnPtr(_) => {
1282                 // FIXME: We should probably have a helper method to share code with the "Byte strings"
1283                 // printing above (which also has to handle pointers to all sorts of things).
1284                 match self.tcx().get_global_alloc(alloc_id) {
1285                     Some(GlobalAlloc::Function(instance)) => {
1286                         self = self.typed_value(
1287                             |this| this.print_value_path(instance.def_id(), instance.substs),
1288                             |this| this.print_type(ty),
1289                             " as ",
1290                         )?;
1291                     }
1292                     _ => self = self.pretty_print_const_pointer(ptr, ty, print_ty)?,
1293                 }
1294             }
1295             // Any pointer values not covered by a branch above
1296             _ => {
1297                 self = self.pretty_print_const_pointer(ptr, ty, print_ty)?;
1298             }
1299         }
1300         Ok(self)
1301     }
1302
1303     fn pretty_print_const_scalar_int(
1304         mut self,
1305         int: ScalarInt,
1306         ty: Ty<'tcx>,
1307         print_ty: bool,
1308     ) -> Result<Self::Const, Self::Error> {
1309         define_scoped_cx!(self);
1310
1311         match ty.kind() {
1312             // Bool
1313             ty::Bool if int == ScalarInt::FALSE => p!("false"),
1314             ty::Bool if int == ScalarInt::TRUE => p!("true"),
1315             // Float
1316             ty::Float(ty::FloatTy::F32) => {
1317                 p!(write("{}f32", Single::try_from(int).unwrap()))
1318             }
1319             ty::Float(ty::FloatTy::F64) => {
1320                 p!(write("{}f64", Double::try_from(int).unwrap()))
1321             }
1322             // Int
1323             ty::Uint(_) | ty::Int(_) => {
1324                 let int =
1325                     ConstInt::new(int, matches!(ty.kind(), ty::Int(_)), ty.is_ptr_sized_integral());
1326                 if print_ty { p!(write("{:#?}", int)) } else { p!(write("{:?}", int)) }
1327             }
1328             // Char
1329             ty::Char if char::try_from(int).is_ok() => {
1330                 p!(write("{:?}", char::try_from(int).unwrap()))
1331             }
1332             // Pointer types
1333             ty::Ref(..) | ty::RawPtr(_) | ty::FnPtr(_) => {
1334                 let data = int.assert_bits(self.tcx().data_layout.pointer_size);
1335                 self = self.typed_value(
1336                     |mut this| {
1337                         write!(this, "0x{:x}", data)?;
1338                         Ok(this)
1339                     },
1340                     |this| this.print_type(ty),
1341                     " as ",
1342                 )?;
1343             }
1344             // For function type zsts just printing the path is enough
1345             ty::FnDef(d, s) if int == ScalarInt::ZST => {
1346                 p!(print_value_path(*d, s))
1347             }
1348             // Nontrivial types with scalar bit representation
1349             _ => {
1350                 let print = |mut this: Self| {
1351                     if int.size() == Size::ZERO {
1352                         write!(this, "transmute(())")?;
1353                     } else {
1354                         write!(this, "transmute(0x{:x})", int)?;
1355                     }
1356                     Ok(this)
1357                 };
1358                 self = if print_ty {
1359                     self.typed_value(print, |this| this.print_type(ty), ": ")?
1360                 } else {
1361                     print(self)?
1362                 };
1363             }
1364         }
1365         Ok(self)
1366     }
1367
1368     /// This is overridden for MIR printing because we only want to hide alloc ids from users, not
1369     /// from MIR where it is actually useful.
1370     fn pretty_print_const_pointer<Tag: Provenance>(
1371         mut self,
1372         _: Pointer<Tag>,
1373         ty: Ty<'tcx>,
1374         print_ty: bool,
1375     ) -> Result<Self::Const, Self::Error> {
1376         if print_ty {
1377             self.typed_value(
1378                 |mut this| {
1379                     this.write_str("&_")?;
1380                     Ok(this)
1381                 },
1382                 |this| this.print_type(ty),
1383                 ": ",
1384             )
1385         } else {
1386             self.write_str("&_")?;
1387             Ok(self)
1388         }
1389     }
1390
1391     fn pretty_print_byte_str(mut self, byte_str: &'tcx [u8]) -> Result<Self::Const, Self::Error> {
1392         define_scoped_cx!(self);
1393         p!("b\"");
1394         for &c in byte_str {
1395             for e in std::ascii::escape_default(c) {
1396                 self.write_char(e as char)?;
1397             }
1398         }
1399         p!("\"");
1400         Ok(self)
1401     }
1402
1403     fn pretty_print_const_value(
1404         mut self,
1405         ct: ConstValue<'tcx>,
1406         ty: Ty<'tcx>,
1407         print_ty: bool,
1408     ) -> Result<Self::Const, Self::Error> {
1409         define_scoped_cx!(self);
1410
1411         if self.tcx().sess.verbose() {
1412             p!(write("ConstValue({:?}: ", ct), print(ty), ")");
1413             return Ok(self);
1414         }
1415
1416         let u8_type = self.tcx().types.u8;
1417
1418         match (ct, ty.kind()) {
1419             // Byte/string slices, printed as (byte) string literals.
1420             (
1421                 ConstValue::Slice { data, start, end },
1422                 ty::Ref(_, Ty(Interned(ty::TyS { kind: ty::Slice(t), .. }, _)), _),
1423             ) if *t == u8_type => {
1424                 // The `inspect` here is okay since we checked the bounds, and there are
1425                 // no relocations (we have an active slice reference here). We don't use
1426                 // this result to affect interpreter execution.
1427                 let byte_str =
1428                     data.inner().inspect_with_uninit_and_ptr_outside_interpreter(start..end);
1429                 self.pretty_print_byte_str(byte_str)
1430             }
1431             (
1432                 ConstValue::Slice { data, start, end },
1433                 ty::Ref(_, Ty(Interned(ty::TyS { kind: ty::Str, .. }, _)), _),
1434             ) => {
1435                 // The `inspect` here is okay since we checked the bounds, and there are no
1436                 // relocations (we have an active `str` reference here). We don't use this
1437                 // result to affect interpreter execution.
1438                 let slice =
1439                     data.inner().inspect_with_uninit_and_ptr_outside_interpreter(start..end);
1440                 p!(write("{:?}", String::from_utf8_lossy(slice)));
1441                 Ok(self)
1442             }
1443             (ConstValue::ByRef { alloc, offset }, ty::Array(t, n)) if *t == u8_type => {
1444                 let n = n.val().try_to_bits(self.tcx().data_layout.pointer_size).unwrap();
1445                 // cast is ok because we already checked for pointer size (32 or 64 bit) above
1446                 let range = AllocRange { start: offset, size: Size::from_bytes(n) };
1447
1448                 let byte_str = alloc.inner().get_bytes(&self.tcx(), range).unwrap();
1449                 p!("*");
1450                 p!(pretty_print_byte_str(byte_str));
1451                 Ok(self)
1452             }
1453
1454             // Aggregates, printed as array/tuple/struct/variant construction syntax.
1455             //
1456             // NB: the `has_param_types_or_consts` check ensures that we can use
1457             // the `destructure_const` query with an empty `ty::ParamEnv` without
1458             // introducing ICEs (e.g. via `layout_of`) from missing bounds.
1459             // E.g. `transmute([0usize; 2]): (u8, *mut T)` needs to know `T: Sized`
1460             // to be able to destructure the tuple into `(0u8, *mut T)
1461             //
1462             // FIXME(eddyb) for `--emit=mir`/`-Z dump-mir`, we should provide the
1463             // correct `ty::ParamEnv` to allow printing *all* constant values.
1464             (_, ty::Array(..) | ty::Tuple(..) | ty::Adt(..)) if !ty.has_param_types_or_consts() => {
1465                 let Some(contents) = self.tcx().try_destructure_const(
1466                     ty::ParamEnv::reveal_all()
1467                         .and(self.tcx().mk_const(ty::ConstS { val: ty::ConstKind::Value(ct), ty })),
1468                 ) else {
1469                     // Fall back to debug pretty printing for invalid constants.
1470                     p!(write("{:?}", ct));
1471                     if print_ty {
1472                         p!(": ", print(ty));
1473                     }
1474                     return Ok(self);
1475                 };
1476
1477                 let fields = contents.fields.iter().copied();
1478
1479                 match *ty.kind() {
1480                     ty::Array(..) => {
1481                         p!("[", comma_sep(fields), "]");
1482                     }
1483                     ty::Tuple(..) => {
1484                         p!("(", comma_sep(fields));
1485                         if contents.fields.len() == 1 {
1486                             p!(",");
1487                         }
1488                         p!(")");
1489                     }
1490                     ty::Adt(def, _) if def.variants.is_empty() => {
1491                         self = self.typed_value(
1492                             |mut this| {
1493                                 write!(this, "unreachable()")?;
1494                                 Ok(this)
1495                             },
1496                             |this| this.print_type(ty),
1497                             ": ",
1498                         )?;
1499                     }
1500                     ty::Adt(def, substs) => {
1501                         let variant_idx =
1502                             contents.variant.expect("destructed const of adt without variant idx");
1503                         let variant_def = &def.variants[variant_idx];
1504                         p!(print_value_path(variant_def.def_id, substs));
1505
1506                         match variant_def.ctor_kind {
1507                             CtorKind::Const => {}
1508                             CtorKind::Fn => {
1509                                 p!("(", comma_sep(fields), ")");
1510                             }
1511                             CtorKind::Fictive => {
1512                                 p!(" {{ ");
1513                                 let mut first = true;
1514                                 for (field_def, field) in iter::zip(&variant_def.fields, fields) {
1515                                     if !first {
1516                                         p!(", ");
1517                                     }
1518                                     p!(write("{}: ", field_def.name), print(field));
1519                                     first = false;
1520                                 }
1521                                 p!(" }}");
1522                             }
1523                         }
1524                     }
1525                     _ => unreachable!(),
1526                 }
1527
1528                 Ok(self)
1529             }
1530
1531             (ConstValue::Scalar(scalar), _) => self.pretty_print_const_scalar(scalar, ty, print_ty),
1532
1533             // FIXME(oli-obk): also pretty print arrays and other aggregate constants by reading
1534             // their fields instead of just dumping the memory.
1535             _ => {
1536                 // fallback
1537                 p!(write("{:?}", ct));
1538                 if print_ty {
1539                     p!(": ", print(ty));
1540                 }
1541                 Ok(self)
1542             }
1543         }
1544     }
1545 }
1546
1547 // HACK(eddyb) boxed to avoid moving around a large struct by-value.
1548 pub struct FmtPrinter<'a, 'tcx>(Box<FmtPrinterData<'a, 'tcx>>);
1549
1550 pub struct FmtPrinterData<'a, 'tcx> {
1551     tcx: TyCtxt<'tcx>,
1552     fmt: String,
1553
1554     empty_path: bool,
1555     in_value: bool,
1556     pub print_alloc_ids: bool,
1557
1558     used_region_names: FxHashSet<Symbol>,
1559     region_index: usize,
1560     binder_depth: usize,
1561     printed_type_count: usize,
1562
1563     pub region_highlight_mode: RegionHighlightMode<'tcx>,
1564
1565     pub ty_infer_name_resolver: Option<Box<dyn Fn(ty::TyVid) -> Option<String> + 'a>>,
1566     pub const_infer_name_resolver: Option<Box<dyn Fn(ty::ConstVid<'tcx>) -> Option<String> + 'a>>,
1567 }
1568
1569 impl<'a, 'tcx> Deref for FmtPrinter<'a, 'tcx> {
1570     type Target = FmtPrinterData<'a, 'tcx>;
1571     fn deref(&self) -> &Self::Target {
1572         &self.0
1573     }
1574 }
1575
1576 impl DerefMut for FmtPrinter<'_, '_> {
1577     fn deref_mut(&mut self) -> &mut Self::Target {
1578         &mut self.0
1579     }
1580 }
1581
1582 impl<'a, 'tcx> FmtPrinter<'a, 'tcx> {
1583     pub fn new(tcx: TyCtxt<'tcx>, ns: Namespace) -> Self {
1584         FmtPrinter(Box::new(FmtPrinterData {
1585             tcx,
1586             // Estimated reasonable capacity to allocate upfront based on a few
1587             // benchmarks.
1588             fmt: String::with_capacity(64),
1589             empty_path: false,
1590             in_value: ns == Namespace::ValueNS,
1591             print_alloc_ids: false,
1592             used_region_names: Default::default(),
1593             region_index: 0,
1594             binder_depth: 0,
1595             printed_type_count: 0,
1596             region_highlight_mode: RegionHighlightMode::new(tcx),
1597             ty_infer_name_resolver: None,
1598             const_infer_name_resolver: None,
1599         }))
1600     }
1601
1602     pub fn into_buffer(self) -> String {
1603         self.0.fmt
1604     }
1605 }
1606
1607 // HACK(eddyb) get rid of `def_path_str` and/or pass `Namespace` explicitly always
1608 // (but also some things just print a `DefId` generally so maybe we need this?)
1609 fn guess_def_namespace(tcx: TyCtxt<'_>, def_id: DefId) -> Namespace {
1610     match tcx.def_key(def_id).disambiguated_data.data {
1611         DefPathData::TypeNs(..) | DefPathData::CrateRoot | DefPathData::ImplTrait => {
1612             Namespace::TypeNS
1613         }
1614
1615         DefPathData::ValueNs(..)
1616         | DefPathData::AnonConst
1617         | DefPathData::ClosureExpr
1618         | DefPathData::Ctor => Namespace::ValueNS,
1619
1620         DefPathData::MacroNs(..) => Namespace::MacroNS,
1621
1622         _ => Namespace::TypeNS,
1623     }
1624 }
1625
1626 impl<'t> TyCtxt<'t> {
1627     /// Returns a string identifying this `DefId`. This string is
1628     /// suitable for user output.
1629     pub fn def_path_str(self, def_id: DefId) -> String {
1630         self.def_path_str_with_substs(def_id, &[])
1631     }
1632
1633     pub fn def_path_str_with_substs(self, def_id: DefId, substs: &'t [GenericArg<'t>]) -> String {
1634         let ns = guess_def_namespace(self, def_id);
1635         debug!("def_path_str: def_id={:?}, ns={:?}", def_id, ns);
1636         FmtPrinter::new(self, ns).print_def_path(def_id, substs).unwrap().into_buffer()
1637     }
1638 }
1639
1640 impl fmt::Write for FmtPrinter<'_, '_> {
1641     fn write_str(&mut self, s: &str) -> fmt::Result {
1642         self.fmt.push_str(s);
1643         Ok(())
1644     }
1645 }
1646
1647 impl<'tcx> Printer<'tcx> for FmtPrinter<'_, 'tcx> {
1648     type Error = fmt::Error;
1649
1650     type Path = Self;
1651     type Region = Self;
1652     type Type = Self;
1653     type DynExistential = Self;
1654     type Const = Self;
1655
1656     fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
1657         self.tcx
1658     }
1659
1660     fn print_def_path(
1661         mut self,
1662         def_id: DefId,
1663         substs: &'tcx [GenericArg<'tcx>],
1664     ) -> Result<Self::Path, Self::Error> {
1665         define_scoped_cx!(self);
1666
1667         if substs.is_empty() {
1668             match self.try_print_trimmed_def_path(def_id)? {
1669                 (cx, true) => return Ok(cx),
1670                 (cx, false) => self = cx,
1671             }
1672
1673             match self.try_print_visible_def_path(def_id)? {
1674                 (cx, true) => return Ok(cx),
1675                 (cx, false) => self = cx,
1676             }
1677         }
1678
1679         let key = self.tcx.def_key(def_id);
1680         if let DefPathData::Impl = key.disambiguated_data.data {
1681             // Always use types for non-local impls, where types are always
1682             // available, and filename/line-number is mostly uninteresting.
1683             let use_types = !def_id.is_local() || {
1684                 // Otherwise, use filename/line-number if forced.
1685                 let force_no_types = FORCE_IMPL_FILENAME_LINE.with(|f| f.get());
1686                 !force_no_types
1687             };
1688
1689             if !use_types {
1690                 // If no type info is available, fall back to
1691                 // pretty printing some span information. This should
1692                 // only occur very early in the compiler pipeline.
1693                 let parent_def_id = DefId { index: key.parent.unwrap(), ..def_id };
1694                 let span = self.tcx.def_span(def_id);
1695
1696                 self = self.print_def_path(parent_def_id, &[])?;
1697
1698                 // HACK(eddyb) copy of `path_append` to avoid
1699                 // constructing a `DisambiguatedDefPathData`.
1700                 if !self.empty_path {
1701                     write!(self, "::")?;
1702                 }
1703                 write!(
1704                     self,
1705                     "<impl at {}>",
1706                     // This may end up in stderr diagnostics but it may also be emitted
1707                     // into MIR. Hence we use the remapped path if available
1708                     self.tcx.sess.source_map().span_to_embeddable_string(span)
1709                 )?;
1710                 self.empty_path = false;
1711
1712                 return Ok(self);
1713             }
1714         }
1715
1716         self.default_print_def_path(def_id, substs)
1717     }
1718
1719     fn print_region(self, region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
1720         self.pretty_print_region(region)
1721     }
1722
1723     fn print_type(mut self, ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
1724         let type_length_limit = self.tcx.type_length_limit();
1725         if type_length_limit.value_within_limit(self.printed_type_count) {
1726             self.printed_type_count += 1;
1727             self.pretty_print_type(ty)
1728         } else {
1729             write!(self, "...")?;
1730             Ok(self)
1731         }
1732     }
1733
1734     fn print_dyn_existential(
1735         self,
1736         predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
1737     ) -> Result<Self::DynExistential, Self::Error> {
1738         self.pretty_print_dyn_existential(predicates)
1739     }
1740
1741     fn print_const(self, ct: ty::Const<'tcx>) -> Result<Self::Const, Self::Error> {
1742         self.pretty_print_const(ct, true)
1743     }
1744
1745     fn path_crate(mut self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
1746         self.empty_path = true;
1747         if cnum == LOCAL_CRATE {
1748             if self.tcx.sess.rust_2018() {
1749                 // We add the `crate::` keyword on Rust 2018, only when desired.
1750                 if SHOULD_PREFIX_WITH_CRATE.with(|flag| flag.get()) {
1751                     write!(self, "{}", kw::Crate)?;
1752                     self.empty_path = false;
1753                 }
1754             }
1755         } else {
1756             write!(self, "{}", self.tcx.crate_name(cnum))?;
1757             self.empty_path = false;
1758         }
1759         Ok(self)
1760     }
1761
1762     fn path_qualified(
1763         mut self,
1764         self_ty: Ty<'tcx>,
1765         trait_ref: Option<ty::TraitRef<'tcx>>,
1766     ) -> Result<Self::Path, Self::Error> {
1767         self = self.pretty_path_qualified(self_ty, trait_ref)?;
1768         self.empty_path = false;
1769         Ok(self)
1770     }
1771
1772     fn path_append_impl(
1773         mut self,
1774         print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
1775         _disambiguated_data: &DisambiguatedDefPathData,
1776         self_ty: Ty<'tcx>,
1777         trait_ref: Option<ty::TraitRef<'tcx>>,
1778     ) -> Result<Self::Path, Self::Error> {
1779         self = self.pretty_path_append_impl(
1780             |mut cx| {
1781                 cx = print_prefix(cx)?;
1782                 if !cx.empty_path {
1783                     write!(cx, "::")?;
1784                 }
1785
1786                 Ok(cx)
1787             },
1788             self_ty,
1789             trait_ref,
1790         )?;
1791         self.empty_path = false;
1792         Ok(self)
1793     }
1794
1795     fn path_append(
1796         mut self,
1797         print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
1798         disambiguated_data: &DisambiguatedDefPathData,
1799     ) -> Result<Self::Path, Self::Error> {
1800         self = print_prefix(self)?;
1801
1802         // Skip `::{{extern}}` blocks and `::{{constructor}}` on tuple/unit structs.
1803         if let DefPathData::ForeignMod | DefPathData::Ctor = disambiguated_data.data {
1804             return Ok(self);
1805         }
1806
1807         let name = disambiguated_data.data.name();
1808         if !self.empty_path {
1809             write!(self, "::")?;
1810         }
1811
1812         if let DefPathDataName::Named(name) = name {
1813             if Ident::with_dummy_span(name).is_raw_guess() {
1814                 write!(self, "r#")?;
1815             }
1816         }
1817
1818         let verbose = self.tcx.sess.verbose();
1819         disambiguated_data.fmt_maybe_verbose(&mut self, verbose)?;
1820
1821         self.empty_path = false;
1822
1823         Ok(self)
1824     }
1825
1826     fn path_generic_args(
1827         mut self,
1828         print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
1829         args: &[GenericArg<'tcx>],
1830     ) -> Result<Self::Path, Self::Error> {
1831         self = print_prefix(self)?;
1832
1833         // Don't print `'_` if there's no unerased regions.
1834         let print_regions = self.tcx.sess.verbose()
1835             || args.iter().any(|arg| match arg.unpack() {
1836                 GenericArgKind::Lifetime(r) => !r.is_erased(),
1837                 _ => false,
1838             });
1839         let args = args.iter().cloned().filter(|arg| match arg.unpack() {
1840             GenericArgKind::Lifetime(_) => print_regions,
1841             _ => true,
1842         });
1843
1844         if args.clone().next().is_some() {
1845             if self.in_value {
1846                 write!(self, "::")?;
1847             }
1848             self.generic_delimiters(|cx| cx.comma_sep(args))
1849         } else {
1850             Ok(self)
1851         }
1852     }
1853 }
1854
1855 impl<'tcx> PrettyPrinter<'tcx> for FmtPrinter<'_, 'tcx> {
1856     fn ty_infer_name(&self, id: ty::TyVid) -> Option<String> {
1857         self.0.ty_infer_name_resolver.as_ref().and_then(|func| func(id))
1858     }
1859
1860     fn const_infer_name(&self, id: ty::ConstVid<'tcx>) -> Option<String> {
1861         self.0.const_infer_name_resolver.as_ref().and_then(|func| func(id))
1862     }
1863
1864     fn print_value_path(
1865         mut self,
1866         def_id: DefId,
1867         substs: &'tcx [GenericArg<'tcx>],
1868     ) -> Result<Self::Path, Self::Error> {
1869         let was_in_value = std::mem::replace(&mut self.in_value, true);
1870         self = self.print_def_path(def_id, substs)?;
1871         self.in_value = was_in_value;
1872
1873         Ok(self)
1874     }
1875
1876     fn in_binder<T>(self, value: &ty::Binder<'tcx, T>) -> Result<Self, Self::Error>
1877     where
1878         T: Print<'tcx, Self, Output = Self, Error = Self::Error> + TypeFoldable<'tcx>,
1879     {
1880         self.pretty_in_binder(value)
1881     }
1882
1883     fn wrap_binder<T, C: Fn(&T, Self) -> Result<Self, Self::Error>>(
1884         self,
1885         value: &ty::Binder<'tcx, T>,
1886         f: C,
1887     ) -> Result<Self, Self::Error>
1888     where
1889         T: Print<'tcx, Self, Output = Self, Error = Self::Error> + TypeFoldable<'tcx>,
1890     {
1891         self.pretty_wrap_binder(value, f)
1892     }
1893
1894     fn typed_value(
1895         mut self,
1896         f: impl FnOnce(Self) -> Result<Self, Self::Error>,
1897         t: impl FnOnce(Self) -> Result<Self, Self::Error>,
1898         conversion: &str,
1899     ) -> Result<Self::Const, Self::Error> {
1900         self.write_str("{")?;
1901         self = f(self)?;
1902         self.write_str(conversion)?;
1903         let was_in_value = std::mem::replace(&mut self.in_value, false);
1904         self = t(self)?;
1905         self.in_value = was_in_value;
1906         self.write_str("}")?;
1907         Ok(self)
1908     }
1909
1910     fn generic_delimiters(
1911         mut self,
1912         f: impl FnOnce(Self) -> Result<Self, Self::Error>,
1913     ) -> Result<Self, Self::Error> {
1914         write!(self, "<")?;
1915
1916         let was_in_value = std::mem::replace(&mut self.in_value, false);
1917         let mut inner = f(self)?;
1918         inner.in_value = was_in_value;
1919
1920         write!(inner, ">")?;
1921         Ok(inner)
1922     }
1923
1924     fn should_print_region(&self, region: ty::Region<'_>) -> bool {
1925         let highlight = self.region_highlight_mode;
1926         if highlight.region_highlighted(region).is_some() {
1927             return true;
1928         }
1929
1930         if self.tcx.sess.verbose() {
1931             return true;
1932         }
1933
1934         let identify_regions = self.tcx.sess.opts.debugging_opts.identify_regions;
1935
1936         match *region {
1937             ty::ReEarlyBound(ref data) => {
1938                 data.name != kw::Empty && data.name != kw::UnderscoreLifetime
1939             }
1940
1941             ty::ReLateBound(_, ty::BoundRegion { kind: br, .. })
1942             | ty::ReFree(ty::FreeRegion { bound_region: br, .. })
1943             | ty::RePlaceholder(ty::Placeholder { name: br, .. }) => {
1944                 if let ty::BrNamed(_, name) = br {
1945                     if name != kw::Empty && name != kw::UnderscoreLifetime {
1946                         return true;
1947                     }
1948                 }
1949
1950                 if let Some((region, _)) = highlight.highlight_bound_region {
1951                     if br == region {
1952                         return true;
1953                     }
1954                 }
1955
1956                 false
1957             }
1958
1959             ty::ReVar(_) if identify_regions => true,
1960
1961             ty::ReVar(_) | ty::ReErased => false,
1962
1963             ty::ReStatic | ty::ReEmpty(_) => true,
1964         }
1965     }
1966
1967     fn pretty_print_const_pointer<Tag: Provenance>(
1968         self,
1969         p: Pointer<Tag>,
1970         ty: Ty<'tcx>,
1971         print_ty: bool,
1972     ) -> Result<Self::Const, Self::Error> {
1973         let print = |mut this: Self| {
1974             define_scoped_cx!(this);
1975             if this.print_alloc_ids {
1976                 p!(write("{:?}", p));
1977             } else {
1978                 p!("&_");
1979             }
1980             Ok(this)
1981         };
1982         if print_ty {
1983             self.typed_value(print, |this| this.print_type(ty), ": ")
1984         } else {
1985             print(self)
1986         }
1987     }
1988 }
1989
1990 // HACK(eddyb) limited to `FmtPrinter` because of `region_highlight_mode`.
1991 impl FmtPrinter<'_, '_> {
1992     pub fn pretty_print_region(mut self, region: ty::Region<'_>) -> Result<Self, fmt::Error> {
1993         define_scoped_cx!(self);
1994
1995         // Watch out for region highlights.
1996         let highlight = self.region_highlight_mode;
1997         if let Some(n) = highlight.region_highlighted(region) {
1998             p!(write("'{}", n));
1999             return Ok(self);
2000         }
2001
2002         if self.tcx.sess.verbose() {
2003             p!(write("{:?}", region));
2004             return Ok(self);
2005         }
2006
2007         let identify_regions = self.tcx.sess.opts.debugging_opts.identify_regions;
2008
2009         // These printouts are concise.  They do not contain all the information
2010         // the user might want to diagnose an error, but there is basically no way
2011         // to fit that into a short string.  Hence the recommendation to use
2012         // `explain_region()` or `note_and_explain_region()`.
2013         match *region {
2014             ty::ReEarlyBound(ref data) => {
2015                 if data.name != kw::Empty {
2016                     p!(write("{}", data.name));
2017                     return Ok(self);
2018                 }
2019             }
2020             ty::ReLateBound(_, ty::BoundRegion { kind: br, .. })
2021             | ty::ReFree(ty::FreeRegion { bound_region: br, .. })
2022             | ty::RePlaceholder(ty::Placeholder { name: br, .. }) => {
2023                 if let ty::BrNamed(_, name) = br {
2024                     if name != kw::Empty && name != kw::UnderscoreLifetime {
2025                         p!(write("{}", name));
2026                         return Ok(self);
2027                     }
2028                 }
2029
2030                 if let Some((region, counter)) = highlight.highlight_bound_region {
2031                     if br == region {
2032                         p!(write("'{}", counter));
2033                         return Ok(self);
2034                     }
2035                 }
2036             }
2037             ty::ReVar(region_vid) if identify_regions => {
2038                 p!(write("{:?}", region_vid));
2039                 return Ok(self);
2040             }
2041             ty::ReVar(_) => {}
2042             ty::ReErased => {}
2043             ty::ReStatic => {
2044                 p!("'static");
2045                 return Ok(self);
2046             }
2047             ty::ReEmpty(ty::UniverseIndex::ROOT) => {
2048                 p!("'<empty>");
2049                 return Ok(self);
2050             }
2051             ty::ReEmpty(ui) => {
2052                 p!(write("'<empty:{:?}>", ui));
2053                 return Ok(self);
2054             }
2055         }
2056
2057         p!("'_");
2058
2059         Ok(self)
2060     }
2061 }
2062
2063 /// Folds through bound vars and placeholders, naming them
2064 struct RegionFolder<'a, 'tcx> {
2065     tcx: TyCtxt<'tcx>,
2066     current_index: ty::DebruijnIndex,
2067     region_map: BTreeMap<ty::BoundRegion, ty::Region<'tcx>>,
2068     name: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
2069 }
2070
2071 impl<'a, 'tcx> ty::TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
2072     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
2073         self.tcx
2074     }
2075
2076     fn fold_binder<T: TypeFoldable<'tcx>>(
2077         &mut self,
2078         t: ty::Binder<'tcx, T>,
2079     ) -> ty::Binder<'tcx, T> {
2080         self.current_index.shift_in(1);
2081         let t = t.super_fold_with(self);
2082         self.current_index.shift_out(1);
2083         t
2084     }
2085
2086     fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
2087         match *t.kind() {
2088             _ if t.has_vars_bound_at_or_above(self.current_index) || t.has_placeholders() => {
2089                 return t.super_fold_with(self);
2090             }
2091             _ => {}
2092         }
2093         t
2094     }
2095
2096     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
2097         let name = &mut self.name;
2098         let region = match *r {
2099             ty::ReLateBound(_, br) => *self.region_map.entry(br).or_insert_with(|| name(br)),
2100             ty::RePlaceholder(ty::PlaceholderRegion { name: kind, .. }) => {
2101                 // If this is an anonymous placeholder, don't rename. Otherwise, in some
2102                 // async fns, we get a `for<'r> Send` bound
2103                 match kind {
2104                     ty::BrAnon(_) | ty::BrEnv => r,
2105                     _ => {
2106                         // Index doesn't matter, since this is just for naming and these never get bound
2107                         let br = ty::BoundRegion { var: ty::BoundVar::from_u32(0), kind };
2108                         *self.region_map.entry(br).or_insert_with(|| name(br))
2109                     }
2110                 }
2111             }
2112             _ => return r,
2113         };
2114         if let ty::ReLateBound(debruijn1, br) = *region {
2115             assert_eq!(debruijn1, ty::INNERMOST);
2116             self.tcx.mk_region(ty::ReLateBound(self.current_index, br))
2117         } else {
2118             region
2119         }
2120     }
2121 }
2122
2123 // HACK(eddyb) limited to `FmtPrinter` because of `binder_depth`,
2124 // `region_index` and `used_region_names`.
2125 impl<'tcx> FmtPrinter<'_, 'tcx> {
2126     pub fn name_all_regions<T>(
2127         mut self,
2128         value: &ty::Binder<'tcx, T>,
2129     ) -> Result<(Self, T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>), fmt::Error>
2130     where
2131         T: Print<'tcx, Self, Output = Self, Error = fmt::Error> + TypeFoldable<'tcx>,
2132     {
2133         fn name_by_region_index(index: usize) -> Symbol {
2134             match index {
2135                 0 => Symbol::intern("'r"),
2136                 1 => Symbol::intern("'s"),
2137                 i => Symbol::intern(&format!("'t{}", i - 2)),
2138             }
2139         }
2140
2141         // Replace any anonymous late-bound regions with named
2142         // variants, using new unique identifiers, so that we can
2143         // clearly differentiate between named and unnamed regions in
2144         // the output. We'll probably want to tweak this over time to
2145         // decide just how much information to give.
2146         if self.binder_depth == 0 {
2147             self.prepare_late_bound_region_info(value);
2148         }
2149
2150         let mut empty = true;
2151         let mut start_or_continue = |cx: &mut Self, start: &str, cont: &str| {
2152             let w = if empty {
2153                 empty = false;
2154                 start
2155             } else {
2156                 cont
2157             };
2158             let _ = write!(cx, "{}", w);
2159         };
2160         let do_continue = |cx: &mut Self, cont: Symbol| {
2161             let _ = write!(cx, "{}", cont);
2162         };
2163
2164         define_scoped_cx!(self);
2165
2166         let mut region_index = self.region_index;
2167         // If we want to print verbosly, then print *all* binders, even if they
2168         // aren't named. Eventually, we might just want this as the default, but
2169         // this is not *quite* right and changes the ordering of some output
2170         // anyways.
2171         let (new_value, map) = if self.tcx().sess.verbose() {
2172             // anon index + 1 (BrEnv takes 0) -> name
2173             let mut region_map: BTreeMap<u32, Symbol> = BTreeMap::default();
2174             let bound_vars = value.bound_vars();
2175             for var in bound_vars {
2176                 match var {
2177                     ty::BoundVariableKind::Region(ty::BrNamed(_, name)) => {
2178                         start_or_continue(&mut self, "for<", ", ");
2179                         do_continue(&mut self, name);
2180                     }
2181                     ty::BoundVariableKind::Region(ty::BrAnon(i)) => {
2182                         start_or_continue(&mut self, "for<", ", ");
2183                         let name = loop {
2184                             let name = name_by_region_index(region_index);
2185                             region_index += 1;
2186                             if !self.used_region_names.contains(&name) {
2187                                 break name;
2188                             }
2189                         };
2190                         do_continue(&mut self, name);
2191                         region_map.insert(i + 1, name);
2192                     }
2193                     ty::BoundVariableKind::Region(ty::BrEnv) => {
2194                         start_or_continue(&mut self, "for<", ", ");
2195                         let name = loop {
2196                             let name = name_by_region_index(region_index);
2197                             region_index += 1;
2198                             if !self.used_region_names.contains(&name) {
2199                                 break name;
2200                             }
2201                         };
2202                         do_continue(&mut self, name);
2203                         region_map.insert(0, name);
2204                     }
2205                     _ => continue,
2206                 }
2207             }
2208             start_or_continue(&mut self, "", "> ");
2209
2210             self.tcx.replace_late_bound_regions(value.clone(), |br| {
2211                 let kind = match br.kind {
2212                     ty::BrNamed(_, _) => br.kind,
2213                     ty::BrAnon(i) => {
2214                         let name = region_map[&(i + 1)];
2215                         ty::BrNamed(DefId::local(CRATE_DEF_INDEX), name)
2216                     }
2217                     ty::BrEnv => {
2218                         let name = region_map[&0];
2219                         ty::BrNamed(DefId::local(CRATE_DEF_INDEX), name)
2220                     }
2221                 };
2222                 self.tcx.mk_region(ty::ReLateBound(
2223                     ty::INNERMOST,
2224                     ty::BoundRegion { var: br.var, kind },
2225                 ))
2226             })
2227         } else {
2228             let tcx = self.tcx;
2229             let mut name = |br: ty::BoundRegion| {
2230                 start_or_continue(&mut self, "for<", ", ");
2231                 let kind = match br.kind {
2232                     ty::BrNamed(_, name) => {
2233                         do_continue(&mut self, name);
2234                         br.kind
2235                     }
2236                     ty::BrAnon(_) | ty::BrEnv => {
2237                         let name = loop {
2238                             let name = name_by_region_index(region_index);
2239                             region_index += 1;
2240                             if !self.used_region_names.contains(&name) {
2241                                 break name;
2242                             }
2243                         };
2244                         do_continue(&mut self, name);
2245                         ty::BrNamed(DefId::local(CRATE_DEF_INDEX), name)
2246                     }
2247                 };
2248                 tcx.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BoundRegion { var: br.var, kind }))
2249             };
2250             let mut folder = RegionFolder {
2251                 tcx,
2252                 current_index: ty::INNERMOST,
2253                 name: &mut name,
2254                 region_map: BTreeMap::new(),
2255             };
2256             let new_value = value.clone().skip_binder().fold_with(&mut folder);
2257             let region_map = folder.region_map;
2258             start_or_continue(&mut self, "", "> ");
2259             (new_value, region_map)
2260         };
2261
2262         self.binder_depth += 1;
2263         self.region_index = region_index;
2264         Ok((self, new_value, map))
2265     }
2266
2267     pub fn pretty_in_binder<T>(self, value: &ty::Binder<'tcx, T>) -> Result<Self, fmt::Error>
2268     where
2269         T: Print<'tcx, Self, Output = Self, Error = fmt::Error> + TypeFoldable<'tcx>,
2270     {
2271         let old_region_index = self.region_index;
2272         let (new, new_value, _) = self.name_all_regions(value)?;
2273         let mut inner = new_value.print(new)?;
2274         inner.region_index = old_region_index;
2275         inner.binder_depth -= 1;
2276         Ok(inner)
2277     }
2278
2279     pub fn pretty_wrap_binder<T, C: Fn(&T, Self) -> Result<Self, fmt::Error>>(
2280         self,
2281         value: &ty::Binder<'tcx, T>,
2282         f: C,
2283     ) -> Result<Self, fmt::Error>
2284     where
2285         T: Print<'tcx, Self, Output = Self, Error = fmt::Error> + TypeFoldable<'tcx>,
2286     {
2287         let old_region_index = self.region_index;
2288         let (new, new_value, _) = self.name_all_regions(value)?;
2289         let mut inner = f(&new_value, new)?;
2290         inner.region_index = old_region_index;
2291         inner.binder_depth -= 1;
2292         Ok(inner)
2293     }
2294
2295     #[instrument(skip(self), level = "debug")]
2296     fn prepare_late_bound_region_info<T>(&mut self, value: &ty::Binder<'tcx, T>)
2297     where
2298         T: TypeFoldable<'tcx>,
2299     {
2300         struct LateBoundRegionNameCollector<'a, 'tcx> {
2301             used_region_names: &'a mut FxHashSet<Symbol>,
2302             type_collector: SsoHashSet<Ty<'tcx>>,
2303         }
2304
2305         impl<'tcx> ty::fold::TypeVisitor<'tcx> for LateBoundRegionNameCollector<'_, 'tcx> {
2306             type BreakTy = ();
2307
2308             #[instrument(skip(self), level = "trace")]
2309             fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
2310                 trace!("address: {:p}", r.0.0);
2311                 if let ty::ReLateBound(_, ty::BoundRegion { kind: ty::BrNamed(_, name), .. }) = *r {
2312                     self.used_region_names.insert(name);
2313                 } else if let ty::RePlaceholder(ty::PlaceholderRegion {
2314                     name: ty::BrNamed(_, name),
2315                     ..
2316                 }) = *r
2317                 {
2318                     self.used_region_names.insert(name);
2319                 }
2320                 r.super_visit_with(self)
2321             }
2322
2323             // We collect types in order to prevent really large types from compiling for
2324             // a really long time. See issue #83150 for why this is necessary.
2325             #[instrument(skip(self), level = "trace")]
2326             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
2327                 let not_previously_inserted = self.type_collector.insert(ty);
2328                 if not_previously_inserted {
2329                     ty.super_visit_with(self)
2330                 } else {
2331                     ControlFlow::CONTINUE
2332                 }
2333             }
2334         }
2335
2336         self.used_region_names.clear();
2337         let mut collector = LateBoundRegionNameCollector {
2338             used_region_names: &mut self.used_region_names,
2339             type_collector: SsoHashSet::new(),
2340         };
2341         value.visit_with(&mut collector);
2342         self.region_index = 0;
2343     }
2344 }
2345
2346 impl<'tcx, T, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::Binder<'tcx, T>
2347 where
2348     T: Print<'tcx, P, Output = P, Error = P::Error> + TypeFoldable<'tcx>,
2349 {
2350     type Output = P;
2351     type Error = P::Error;
2352     fn print(&self, cx: P) -> Result<Self::Output, Self::Error> {
2353         cx.in_binder(self)
2354     }
2355 }
2356
2357 impl<'tcx, T, U, P: PrettyPrinter<'tcx>> Print<'tcx, P> for ty::OutlivesPredicate<T, U>
2358 where
2359     T: Print<'tcx, P, Output = P, Error = P::Error>,
2360     U: Print<'tcx, P, Output = P, Error = P::Error>,
2361 {
2362     type Output = P;
2363     type Error = P::Error;
2364     fn print(&self, mut cx: P) -> Result<Self::Output, Self::Error> {
2365         define_scoped_cx!(cx);
2366         p!(print(self.0), ": ", print(self.1));
2367         Ok(cx)
2368     }
2369 }
2370
2371 macro_rules! forward_display_to_print {
2372     ($($ty:ty),+) => {
2373         // Some of the $ty arguments may not actually use 'tcx
2374         $(#[allow(unused_lifetimes)] impl<'tcx> fmt::Display for $ty {
2375             fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2376                 ty::tls::with(|tcx| {
2377                     let cx = tcx.lift(*self)
2378                         .expect("could not lift for printing")
2379                         .print(FmtPrinter::new(tcx, Namespace::TypeNS))?;
2380                     f.write_str(&cx.into_buffer())?;
2381                     Ok(())
2382                 })
2383             }
2384         })+
2385     };
2386 }
2387
2388 macro_rules! define_print_and_forward_display {
2389     (($self:ident, $cx:ident): $($ty:ty $print:block)+) => {
2390         $(impl<'tcx, P: PrettyPrinter<'tcx>> Print<'tcx, P> for $ty {
2391             type Output = P;
2392             type Error = fmt::Error;
2393             fn print(&$self, $cx: P) -> Result<Self::Output, Self::Error> {
2394                 #[allow(unused_mut)]
2395                 let mut $cx = $cx;
2396                 define_scoped_cx!($cx);
2397                 let _: () = $print;
2398                 #[allow(unreachable_code)]
2399                 Ok($cx)
2400             }
2401         })+
2402
2403         forward_display_to_print!($($ty),+);
2404     };
2405 }
2406
2407 // HACK(eddyb) this is separate because `ty::RegionKind` doesn't need lifting.
2408 impl<'tcx> fmt::Display for ty::Region<'tcx> {
2409     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2410         ty::tls::with(|tcx| {
2411             f.write_str(&self.print(FmtPrinter::new(tcx, Namespace::TypeNS))?.into_buffer())
2412         })
2413     }
2414 }
2415
2416 /// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2417 /// the trait path. That is, it will print `Trait<U>` instead of
2418 /// `<T as Trait<U>>`.
2419 #[derive(Copy, Clone, TypeFoldable, Lift)]
2420 pub struct TraitRefPrintOnlyTraitPath<'tcx>(ty::TraitRef<'tcx>);
2421
2422 impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitPath<'tcx> {
2423     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2424         fmt::Display::fmt(self, f)
2425     }
2426 }
2427
2428 /// Wrapper type for `ty::TraitRef` which opts-in to pretty printing only
2429 /// the trait name. That is, it will print `Trait` instead of
2430 /// `<T as Trait<U>>`.
2431 #[derive(Copy, Clone, TypeFoldable, Lift)]
2432 pub struct TraitRefPrintOnlyTraitName<'tcx>(ty::TraitRef<'tcx>);
2433
2434 impl<'tcx> fmt::Debug for TraitRefPrintOnlyTraitName<'tcx> {
2435     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2436         fmt::Display::fmt(self, f)
2437     }
2438 }
2439
2440 impl<'tcx> ty::TraitRef<'tcx> {
2441     pub fn print_only_trait_path(self) -> TraitRefPrintOnlyTraitPath<'tcx> {
2442         TraitRefPrintOnlyTraitPath(self)
2443     }
2444
2445     pub fn print_only_trait_name(self) -> TraitRefPrintOnlyTraitName<'tcx> {
2446         TraitRefPrintOnlyTraitName(self)
2447     }
2448 }
2449
2450 impl<'tcx> ty::Binder<'tcx, ty::TraitRef<'tcx>> {
2451     pub fn print_only_trait_path(self) -> ty::Binder<'tcx, TraitRefPrintOnlyTraitPath<'tcx>> {
2452         self.map_bound(|tr| tr.print_only_trait_path())
2453     }
2454 }
2455
2456 #[derive(Copy, Clone, TypeFoldable, Lift)]
2457 pub struct TraitPredPrintModifiersAndPath<'tcx>(ty::TraitPredicate<'tcx>);
2458
2459 impl<'tcx> fmt::Debug for TraitPredPrintModifiersAndPath<'tcx> {
2460     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2461         fmt::Display::fmt(self, f)
2462     }
2463 }
2464
2465 impl<'tcx> ty::TraitPredicate<'tcx> {
2466     pub fn print_modifiers_and_trait_path(self) -> TraitPredPrintModifiersAndPath<'tcx> {
2467         TraitPredPrintModifiersAndPath(self)
2468     }
2469 }
2470
2471 impl<'tcx> ty::PolyTraitPredicate<'tcx> {
2472     pub fn print_modifiers_and_trait_path(
2473         self,
2474     ) -> ty::Binder<'tcx, TraitPredPrintModifiersAndPath<'tcx>> {
2475         self.map_bound(TraitPredPrintModifiersAndPath)
2476     }
2477 }
2478
2479 forward_display_to_print! {
2480     Ty<'tcx>,
2481     &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
2482     ty::Const<'tcx>,
2483
2484     // HACK(eddyb) these are exhaustive instead of generic,
2485     // because `for<'tcx>` isn't possible yet.
2486     ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>,
2487     ty::Binder<'tcx, ty::TraitRef<'tcx>>,
2488     ty::Binder<'tcx, ty::ExistentialTraitRef<'tcx>>,
2489     ty::Binder<'tcx, TraitRefPrintOnlyTraitPath<'tcx>>,
2490     ty::Binder<'tcx, TraitRefPrintOnlyTraitName<'tcx>>,
2491     ty::Binder<'tcx, ty::FnSig<'tcx>>,
2492     ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2493     ty::Binder<'tcx, TraitPredPrintModifiersAndPath<'tcx>>,
2494     ty::Binder<'tcx, ty::SubtypePredicate<'tcx>>,
2495     ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
2496     ty::Binder<'tcx, ty::OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>>,
2497     ty::Binder<'tcx, ty::OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>>,
2498
2499     ty::OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>,
2500     ty::OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>
2501 }
2502
2503 define_print_and_forward_display! {
2504     (self, cx):
2505
2506     &'tcx ty::List<Ty<'tcx>> {
2507         p!("{{", comma_sep(self.iter()), "}}")
2508     }
2509
2510     ty::TypeAndMut<'tcx> {
2511         p!(write("{}", self.mutbl.prefix_str()), print(self.ty))
2512     }
2513
2514     ty::ExistentialTraitRef<'tcx> {
2515         // Use a type that can't appear in defaults of type parameters.
2516         let dummy_self = cx.tcx().mk_ty_infer(ty::FreshTy(0));
2517         let trait_ref = self.with_self_ty(cx.tcx(), dummy_self);
2518         p!(print(trait_ref.print_only_trait_path()))
2519     }
2520
2521     ty::ExistentialProjection<'tcx> {
2522         let name = cx.tcx().associated_item(self.item_def_id).name;
2523         p!(write("{} = ", name), print(self.term))
2524     }
2525
2526     ty::ExistentialPredicate<'tcx> {
2527         match *self {
2528             ty::ExistentialPredicate::Trait(x) => p!(print(x)),
2529             ty::ExistentialPredicate::Projection(x) => p!(print(x)),
2530             ty::ExistentialPredicate::AutoTrait(def_id) => {
2531                 p!(print_def_path(def_id, &[]));
2532             }
2533         }
2534     }
2535
2536     ty::FnSig<'tcx> {
2537         p!(write("{}", self.unsafety.prefix_str()));
2538
2539         if self.abi != Abi::Rust {
2540             p!(write("extern {} ", self.abi));
2541         }
2542
2543         p!("fn", pretty_fn_sig(self.inputs(), self.c_variadic, self.output()));
2544     }
2545
2546     ty::TraitRef<'tcx> {
2547         p!(write("<{} as {}>", self.self_ty(), self.print_only_trait_path()))
2548     }
2549
2550     TraitRefPrintOnlyTraitPath<'tcx> {
2551         p!(print_def_path(self.0.def_id, self.0.substs));
2552     }
2553
2554     TraitRefPrintOnlyTraitName<'tcx> {
2555         p!(print_def_path(self.0.def_id, &[]));
2556     }
2557
2558     TraitPredPrintModifiersAndPath<'tcx> {
2559         if let ty::BoundConstness::ConstIfConst = self.0.constness {
2560             p!("~const ")
2561         }
2562
2563         if let ty::ImplPolarity::Negative = self.0.polarity {
2564             p!("!")
2565         }
2566
2567         p!(print(self.0.trait_ref.print_only_trait_path()));
2568     }
2569
2570     ty::ParamTy {
2571         p!(write("{}", self.name))
2572     }
2573
2574     ty::ParamConst {
2575         p!(write("{}", self.name))
2576     }
2577
2578     ty::SubtypePredicate<'tcx> {
2579         p!(print(self.a), " <: ", print(self.b))
2580     }
2581
2582     ty::CoercePredicate<'tcx> {
2583         p!(print(self.a), " -> ", print(self.b))
2584     }
2585
2586     ty::TraitPredicate<'tcx> {
2587         p!(print(self.trait_ref.self_ty()), ": ");
2588         if let ty::BoundConstness::ConstIfConst = self.constness {
2589             p!("~const ");
2590         }
2591         p!(print(self.trait_ref.print_only_trait_path()))
2592     }
2593
2594     ty::ProjectionPredicate<'tcx> {
2595         p!(print(self.projection_ty), " == ", print(self.term))
2596     }
2597
2598     ty::Term<'tcx> {
2599       match self {
2600         ty::Term::Ty(ty) => p!(print(ty)),
2601         ty::Term::Const(c) => p!(print(c)),
2602       }
2603     }
2604
2605     ty::ProjectionTy<'tcx> {
2606         p!(print_def_path(self.item_def_id, self.substs));
2607     }
2608
2609     ty::ClosureKind {
2610         match *self {
2611             ty::ClosureKind::Fn => p!("Fn"),
2612             ty::ClosureKind::FnMut => p!("FnMut"),
2613             ty::ClosureKind::FnOnce => p!("FnOnce"),
2614         }
2615     }
2616
2617     ty::Predicate<'tcx> {
2618         let binder = self.kind();
2619         p!(print(binder))
2620     }
2621
2622     ty::PredicateKind<'tcx> {
2623         match *self {
2624             ty::PredicateKind::Trait(ref data) => {
2625                 p!(print(data))
2626             }
2627             ty::PredicateKind::Subtype(predicate) => p!(print(predicate)),
2628             ty::PredicateKind::Coerce(predicate) => p!(print(predicate)),
2629             ty::PredicateKind::RegionOutlives(predicate) => p!(print(predicate)),
2630             ty::PredicateKind::TypeOutlives(predicate) => p!(print(predicate)),
2631             ty::PredicateKind::Projection(predicate) => p!(print(predicate)),
2632             ty::PredicateKind::WellFormed(arg) => p!(print(arg), " well-formed"),
2633             ty::PredicateKind::ObjectSafe(trait_def_id) => {
2634                 p!("the trait `", print_def_path(trait_def_id, &[]), "` is object-safe")
2635             }
2636             ty::PredicateKind::ClosureKind(closure_def_id, _closure_substs, kind) => {
2637                 p!("the closure `",
2638                 print_value_path(closure_def_id, &[]),
2639                 write("` implements the trait `{}`", kind))
2640             }
2641             ty::PredicateKind::ConstEvaluatable(uv) => {
2642                 p!("the constant `", print_value_path(uv.def.did, uv.substs), "` can be evaluated")
2643             }
2644             ty::PredicateKind::ConstEquate(c1, c2) => {
2645                 p!("the constant `", print(c1), "` equals `", print(c2), "`")
2646             }
2647             ty::PredicateKind::TypeWellFormedFromEnv(ty) => {
2648                 p!("the type `", print(ty), "` is found in the environment")
2649             }
2650         }
2651     }
2652
2653     GenericArg<'tcx> {
2654         match self.unpack() {
2655             GenericArgKind::Lifetime(lt) => p!(print(lt)),
2656             GenericArgKind::Type(ty) => p!(print(ty)),
2657             GenericArgKind::Const(ct) => p!(print(ct)),
2658         }
2659     }
2660 }
2661
2662 fn for_each_def(tcx: TyCtxt<'_>, mut collect_fn: impl for<'b> FnMut(&'b Ident, Namespace, DefId)) {
2663     // Iterate all local crate items no matter where they are defined.
2664     let hir = tcx.hir();
2665     for item in hir.items() {
2666         if item.ident.name.as_str().is_empty() || matches!(item.kind, ItemKind::Use(_, _)) {
2667             continue;
2668         }
2669
2670         let def_id = item.def_id.to_def_id();
2671         let ns = tcx.def_kind(def_id).ns().unwrap_or(Namespace::TypeNS);
2672         collect_fn(&item.ident, ns, def_id);
2673     }
2674
2675     // Now take care of extern crate items.
2676     let queue = &mut Vec::new();
2677     let mut seen_defs: DefIdSet = Default::default();
2678
2679     for &cnum in tcx.crates(()).iter() {
2680         let def_id = DefId { krate: cnum, index: CRATE_DEF_INDEX };
2681
2682         // Ignore crates that are not direct dependencies.
2683         match tcx.extern_crate(def_id) {
2684             None => continue,
2685             Some(extern_crate) => {
2686                 if !extern_crate.is_direct() {
2687                     continue;
2688                 }
2689             }
2690         }
2691
2692         queue.push(def_id);
2693     }
2694
2695     // Iterate external crate defs but be mindful about visibility
2696     while let Some(def) = queue.pop() {
2697         for child in tcx.module_children(def).iter() {
2698             if !child.vis.is_public() {
2699                 continue;
2700             }
2701
2702             match child.res {
2703                 def::Res::Def(DefKind::AssocTy, _) => {}
2704                 def::Res::Def(DefKind::TyAlias, _) => {}
2705                 def::Res::Def(defkind, def_id) => {
2706                     if let Some(ns) = defkind.ns() {
2707                         collect_fn(&child.ident, ns, def_id);
2708                     }
2709
2710                     if matches!(defkind, DefKind::Mod | DefKind::Enum | DefKind::Trait)
2711                         && seen_defs.insert(def_id)
2712                     {
2713                         queue.push(def_id);
2714                     }
2715                 }
2716                 _ => {}
2717             }
2718         }
2719     }
2720 }
2721
2722 /// The purpose of this function is to collect public symbols names that are unique across all
2723 /// crates in the build. Later, when printing about types we can use those names instead of the
2724 /// full exported path to them.
2725 ///
2726 /// So essentially, if a symbol name can only be imported from one place for a type, and as
2727 /// long as it was not glob-imported anywhere in the current crate, we can trim its printed
2728 /// path and print only the name.
2729 ///
2730 /// This has wide implications on error messages with types, for example, shortening
2731 /// `std::vec::Vec` to just `Vec`, as long as there is no other `Vec` importable anywhere.
2732 ///
2733 /// The implementation uses similar import discovery logic to that of 'use' suggestions.
2734 fn trimmed_def_paths(tcx: TyCtxt<'_>, (): ()) -> FxHashMap<DefId, Symbol> {
2735     let mut map: FxHashMap<DefId, Symbol> = FxHashMap::default();
2736
2737     if let TrimmedDefPaths::GoodPath = tcx.sess.opts.trimmed_def_paths {
2738         // For good paths causing this bug, the `rustc_middle::ty::print::with_no_trimmed_paths`
2739         // wrapper can be used to suppress this query, in exchange for full paths being formatted.
2740         tcx.sess.delay_good_path_bug("trimmed_def_paths constructed");
2741     }
2742
2743     let unique_symbols_rev: &mut FxHashMap<(Namespace, Symbol), Option<DefId>> =
2744         &mut FxHashMap::default();
2745
2746     for symbol_set in tcx.resolutions(()).glob_map.values() {
2747         for symbol in symbol_set {
2748             unique_symbols_rev.insert((Namespace::TypeNS, *symbol), None);
2749             unique_symbols_rev.insert((Namespace::ValueNS, *symbol), None);
2750             unique_symbols_rev.insert((Namespace::MacroNS, *symbol), None);
2751         }
2752     }
2753
2754     for_each_def(tcx, |ident, ns, def_id| {
2755         use std::collections::hash_map::Entry::{Occupied, Vacant};
2756
2757         match unique_symbols_rev.entry((ns, ident.name)) {
2758             Occupied(mut v) => match v.get() {
2759                 None => {}
2760                 Some(existing) => {
2761                     if *existing != def_id {
2762                         v.insert(None);
2763                     }
2764                 }
2765             },
2766             Vacant(v) => {
2767                 v.insert(Some(def_id));
2768             }
2769         }
2770     });
2771
2772     for ((_, symbol), opt_def_id) in unique_symbols_rev.drain() {
2773         use std::collections::hash_map::Entry::{Occupied, Vacant};
2774
2775         if let Some(def_id) = opt_def_id {
2776             match map.entry(def_id) {
2777                 Occupied(mut v) => {
2778                     // A single DefId can be known under multiple names (e.g.,
2779                     // with a `pub use ... as ...;`). We need to ensure that the
2780                     // name placed in this map is chosen deterministically, so
2781                     // if we find multiple names (`symbol`) resolving to the
2782                     // same `def_id`, we prefer the lexicographically smallest
2783                     // name.
2784                     //
2785                     // Any stable ordering would be fine here though.
2786                     if *v.get() != symbol {
2787                         if v.get().as_str() > symbol.as_str() {
2788                             v.insert(symbol);
2789                         }
2790                     }
2791                 }
2792                 Vacant(v) => {
2793                     v.insert(symbol);
2794                 }
2795             }
2796         }
2797     }
2798
2799     map
2800 }
2801
2802 pub fn provide(providers: &mut ty::query::Providers) {
2803     *providers = ty::query::Providers { trimmed_def_paths, ..*providers };
2804 }
2805
2806 #[derive(Default)]
2807 pub struct OpaqueFnEntry<'tcx> {
2808     // The trait ref is already stored as a key, so just track if we have it as a real predicate
2809     has_fn_once: bool,
2810     fn_mut_trait_ref: Option<ty::PolyTraitRef<'tcx>>,
2811     fn_trait_ref: Option<ty::PolyTraitRef<'tcx>>,
2812     return_ty: Option<ty::Binder<'tcx, Term<'tcx>>>,
2813 }