]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_middle/src/ty/layout.rs
Rollup merge of #86374 - bossmc:enable-static-pie-for-gnu, r=nagisa
[rust.git] / compiler / rustc_middle / src / ty / layout.rs
1 use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
2 use crate::mir::{GeneratorLayout, GeneratorSavedLocal};
3 use crate::ty::normalize_erasing_regions::NormalizationError;
4 use crate::ty::subst::Subst;
5 use crate::ty::{self, subst::SubstsRef, ReprOptions, Ty, TyCtxt, TypeFoldable};
6 use rustc_ast as ast;
7 use rustc_attr as attr;
8 use rustc_hir as hir;
9 use rustc_hir::lang_items::LangItem;
10 use rustc_index::bit_set::BitSet;
11 use rustc_index::vec::{Idx, IndexVec};
12 use rustc_session::{config::OptLevel, DataTypeKind, FieldInfo, SizeKind, VariantInfo};
13 use rustc_span::symbol::Symbol;
14 use rustc_span::{Span, DUMMY_SP};
15 use rustc_target::abi::call::{
16     ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
17 };
18 use rustc_target::abi::*;
19 use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy, Target};
20
21 use std::cmp;
22 use std::fmt;
23 use std::iter;
24 use std::num::NonZeroUsize;
25 use std::ops::Bound;
26
27 use rand::{seq::SliceRandom, SeedableRng};
28 use rand_xoshiro::Xoshiro128StarStar;
29
30 pub fn provide(providers: &mut ty::query::Providers) {
31     *providers =
32         ty::query::Providers { layout_of, fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers };
33 }
34
35 pub trait IntegerExt {
36     fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>;
37     fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer;
38     fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> Integer;
39     fn from_uint_ty<C: HasDataLayout>(cx: &C, uty: ty::UintTy) -> Integer;
40     fn repr_discr<'tcx>(
41         tcx: TyCtxt<'tcx>,
42         ty: Ty<'tcx>,
43         repr: &ReprOptions,
44         min: i128,
45         max: i128,
46     ) -> (Integer, bool);
47 }
48
49 impl IntegerExt for Integer {
50     #[inline]
51     fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> {
52         match (*self, signed) {
53             (I8, false) => tcx.types.u8,
54             (I16, false) => tcx.types.u16,
55             (I32, false) => tcx.types.u32,
56             (I64, false) => tcx.types.u64,
57             (I128, false) => tcx.types.u128,
58             (I8, true) => tcx.types.i8,
59             (I16, true) => tcx.types.i16,
60             (I32, true) => tcx.types.i32,
61             (I64, true) => tcx.types.i64,
62             (I128, true) => tcx.types.i128,
63         }
64     }
65
66     /// Gets the Integer type from an attr::IntType.
67     fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer {
68         let dl = cx.data_layout();
69
70         match ity {
71             attr::SignedInt(ast::IntTy::I8) | attr::UnsignedInt(ast::UintTy::U8) => I8,
72             attr::SignedInt(ast::IntTy::I16) | attr::UnsignedInt(ast::UintTy::U16) => I16,
73             attr::SignedInt(ast::IntTy::I32) | attr::UnsignedInt(ast::UintTy::U32) => I32,
74             attr::SignedInt(ast::IntTy::I64) | attr::UnsignedInt(ast::UintTy::U64) => I64,
75             attr::SignedInt(ast::IntTy::I128) | attr::UnsignedInt(ast::UintTy::U128) => I128,
76             attr::SignedInt(ast::IntTy::Isize) | attr::UnsignedInt(ast::UintTy::Usize) => {
77                 dl.ptr_sized_integer()
78             }
79         }
80     }
81
82     fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> Integer {
83         match ity {
84             ty::IntTy::I8 => I8,
85             ty::IntTy::I16 => I16,
86             ty::IntTy::I32 => I32,
87             ty::IntTy::I64 => I64,
88             ty::IntTy::I128 => I128,
89             ty::IntTy::Isize => cx.data_layout().ptr_sized_integer(),
90         }
91     }
92     fn from_uint_ty<C: HasDataLayout>(cx: &C, ity: ty::UintTy) -> Integer {
93         match ity {
94             ty::UintTy::U8 => I8,
95             ty::UintTy::U16 => I16,
96             ty::UintTy::U32 => I32,
97             ty::UintTy::U64 => I64,
98             ty::UintTy::U128 => I128,
99             ty::UintTy::Usize => cx.data_layout().ptr_sized_integer(),
100         }
101     }
102
103     /// Finds the appropriate Integer type and signedness for the given
104     /// signed discriminant range and `#[repr]` attribute.
105     /// N.B.: `u128` values above `i128::MAX` will be treated as signed, but
106     /// that shouldn't affect anything, other than maybe debuginfo.
107     fn repr_discr<'tcx>(
108         tcx: TyCtxt<'tcx>,
109         ty: Ty<'tcx>,
110         repr: &ReprOptions,
111         min: i128,
112         max: i128,
113     ) -> (Integer, bool) {
114         // Theoretically, negative values could be larger in unsigned representation
115         // than the unsigned representation of the signed minimum. However, if there
116         // are any negative values, the only valid unsigned representation is u128
117         // which can fit all i128 values, so the result remains unaffected.
118         let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128));
119         let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max));
120
121         if let Some(ity) = repr.int {
122             let discr = Integer::from_attr(&tcx, ity);
123             let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
124             if discr < fit {
125                 bug!(
126                     "Integer::repr_discr: `#[repr]` hint too small for \
127                       discriminant range of enum `{}",
128                     ty
129                 )
130             }
131             return (discr, ity.is_signed());
132         }
133
134         let at_least = if repr.c() {
135             // This is usually I32, however it can be different on some platforms,
136             // notably hexagon and arm-none/thumb-none
137             tcx.data_layout().c_enum_min_size
138         } else {
139             // repr(Rust) enums try to be as small as possible
140             I8
141         };
142
143         // If there are no negative values, we can use the unsigned fit.
144         if min >= 0 {
145             (cmp::max(unsigned_fit, at_least), false)
146         } else {
147             (cmp::max(signed_fit, at_least), true)
148         }
149     }
150 }
151
152 pub trait PrimitiveExt {
153     fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
154     fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
155 }
156
157 impl PrimitiveExt for Primitive {
158     #[inline]
159     fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
160         match *self {
161             Int(i, signed) => i.to_ty(tcx, signed),
162             F32 => tcx.types.f32,
163             F64 => tcx.types.f64,
164             Pointer => tcx.mk_mut_ptr(tcx.mk_unit()),
165         }
166     }
167
168     /// Return an *integer* type matching this primitive.
169     /// Useful in particular when dealing with enum discriminants.
170     #[inline]
171     fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
172         match *self {
173             Int(i, signed) => i.to_ty(tcx, signed),
174             Pointer => tcx.types.usize,
175             F32 | F64 => bug!("floats do not have an int type"),
176         }
177     }
178 }
179
180 /// The first half of a fat pointer.
181 ///
182 /// - For a trait object, this is the address of the box.
183 /// - For a slice, this is the base address.
184 pub const FAT_PTR_ADDR: usize = 0;
185
186 /// The second half of a fat pointer.
187 ///
188 /// - For a trait object, this is the address of the vtable.
189 /// - For a slice, this is the length.
190 pub const FAT_PTR_EXTRA: usize = 1;
191
192 /// The maximum supported number of lanes in a SIMD vector.
193 ///
194 /// This value is selected based on backend support:
195 /// * LLVM does not appear to have a vector width limit.
196 /// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
197 pub const MAX_SIMD_LANES: u64 = 1 << 0xF;
198
199 #[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
200 pub enum LayoutError<'tcx> {
201     Unknown(Ty<'tcx>),
202     SizeOverflow(Ty<'tcx>),
203     NormalizationFailure(Ty<'tcx>, NormalizationError<'tcx>),
204 }
205
206 impl<'tcx> fmt::Display for LayoutError<'tcx> {
207     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
208         match *self {
209             LayoutError::Unknown(ty) => write!(f, "the type `{}` has an unknown layout", ty),
210             LayoutError::SizeOverflow(ty) => {
211                 write!(f, "values of the type `{}` are too big for the current architecture", ty)
212             }
213             LayoutError::NormalizationFailure(t, e) => write!(
214                 f,
215                 "unable to determine layout for `{}` because `{}` cannot be normalized",
216                 t,
217                 e.get_type_for_failure()
218             ),
219         }
220     }
221 }
222
223 #[instrument(skip(tcx, query), level = "debug")]
224 fn layout_of<'tcx>(
225     tcx: TyCtxt<'tcx>,
226     query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
227 ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
228     ty::tls::with_related_context(tcx, move |icx| {
229         let (param_env, ty) = query.into_parts();
230         debug!(?ty);
231
232         if !tcx.recursion_limit().value_within_limit(icx.layout_depth) {
233             tcx.sess.fatal(&format!("overflow representing the type `{}`", ty));
234         }
235
236         // Update the ImplicitCtxt to increase the layout_depth
237         let icx = ty::tls::ImplicitCtxt { layout_depth: icx.layout_depth + 1, ..icx.clone() };
238
239         ty::tls::enter_context(&icx, |_| {
240             let param_env = param_env.with_reveal_all_normalized(tcx);
241             let unnormalized_ty = ty;
242
243             // FIXME: We might want to have two different versions of `layout_of`:
244             // One that can be called after typecheck has completed and can use
245             // `normalize_erasing_regions` here and another one that can be called
246             // before typecheck has completed and uses `try_normalize_erasing_regions`.
247             let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
248                 Ok(t) => t,
249                 Err(normalization_error) => {
250                     return Err(LayoutError::NormalizationFailure(ty, normalization_error));
251                 }
252             };
253
254             if ty != unnormalized_ty {
255                 // Ensure this layout is also cached for the normalized type.
256                 return tcx.layout_of(param_env.and(ty));
257             }
258
259             let cx = LayoutCx { tcx, param_env };
260
261             let layout = cx.layout_of_uncached(ty)?;
262             let layout = TyAndLayout { ty, layout };
263
264             cx.record_layout_for_printing(layout);
265
266             // Type-level uninhabitedness should always imply ABI uninhabitedness.
267             if tcx.conservative_is_privately_uninhabited(param_env.and(ty)) {
268                 assert!(layout.abi.is_uninhabited());
269             }
270
271             Ok(layout)
272         })
273     })
274 }
275
276 pub struct LayoutCx<'tcx, C> {
277     pub tcx: C,
278     pub param_env: ty::ParamEnv<'tcx>,
279 }
280
281 #[derive(Copy, Clone, Debug)]
282 enum StructKind {
283     /// A tuple, closure, or univariant which cannot be coerced to unsized.
284     AlwaysSized,
285     /// A univariant, the last field of which may be coerced to unsized.
286     MaybeUnsized,
287     /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag).
288     Prefixed(Size, Align),
289 }
290
291 // Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
292 // This is used to go between `memory_index` (source field order to memory order)
293 // and `inverse_memory_index` (memory order to source field order).
294 // See also `FieldsShape::Arbitrary::memory_index` for more details.
295 // FIXME(eddyb) build a better abstraction for permutations, if possible.
296 fn invert_mapping(map: &[u32]) -> Vec<u32> {
297     let mut inverse = vec![0; map.len()];
298     for i in 0..map.len() {
299         inverse[map[i] as usize] = i as u32;
300     }
301     inverse
302 }
303
304 impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
305     fn scalar_pair(&self, a: Scalar, b: Scalar) -> Layout {
306         let dl = self.data_layout();
307         let b_align = b.value.align(dl);
308         let align = a.value.align(dl).max(b_align).max(dl.aggregate_align);
309         let b_offset = a.value.size(dl).align_to(b_align.abi);
310         let size = (b_offset + b.value.size(dl)).align_to(align.abi);
311
312         // HACK(nox): We iter on `b` and then `a` because `max_by_key`
313         // returns the last maximum.
314         let largest_niche = Niche::from_scalar(dl, b_offset, b)
315             .into_iter()
316             .chain(Niche::from_scalar(dl, Size::ZERO, a))
317             .max_by_key(|niche| niche.available(dl));
318
319         Layout {
320             variants: Variants::Single { index: VariantIdx::new(0) },
321             fields: FieldsShape::Arbitrary {
322                 offsets: vec![Size::ZERO, b_offset],
323                 memory_index: vec![0, 1],
324             },
325             abi: Abi::ScalarPair(a, b),
326             largest_niche,
327             align,
328             size,
329         }
330     }
331
332     fn univariant_uninterned(
333         &self,
334         ty: Ty<'tcx>,
335         fields: &[TyAndLayout<'_>],
336         repr: &ReprOptions,
337         kind: StructKind,
338     ) -> Result<Layout, LayoutError<'tcx>> {
339         let dl = self.data_layout();
340         let pack = repr.pack;
341         if pack.is_some() && repr.align.is_some() {
342             self.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
343             return Err(LayoutError::Unknown(ty));
344         }
345
346         let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
347
348         let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();
349
350         let optimize = !repr.inhibit_struct_field_reordering_opt();
351         if optimize {
352             let end =
353                 if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
354             let optimizing = &mut inverse_memory_index[..end];
355             let field_align = |f: &TyAndLayout<'_>| {
356                 if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi }
357             };
358
359             // If `-Z randomize-layout` was enabled for the type definition we can shuffle
360             // the field ordering to try and catch some code making assumptions about layouts
361             // we don't guarantee
362             if repr.can_randomize_type_layout() {
363                 // `ReprOptions.layout_seed` is a deterministic seed that we can use to
364                 // randomize field ordering with
365                 let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);
366
367                 // Shuffle the ordering of the fields
368                 optimizing.shuffle(&mut rng);
369
370             // Otherwise we just leave things alone and actually optimize the type's fields
371             } else {
372                 match kind {
373                     StructKind::AlwaysSized | StructKind::MaybeUnsized => {
374                         optimizing.sort_by_key(|&x| {
375                             // Place ZSTs first to avoid "interesting offsets",
376                             // especially with only one or two non-ZST fields.
377                             let f = &fields[x as usize];
378                             (!f.is_zst(), cmp::Reverse(field_align(f)))
379                         });
380                     }
381
382                     StructKind::Prefixed(..) => {
383                         // Sort in ascending alignment so that the layout stays optimal
384                         // regardless of the prefix
385                         optimizing.sort_by_key(|&x| field_align(&fields[x as usize]));
386                     }
387                 }
388
389                 // FIXME(Kixiron): We can always shuffle fields within a given alignment class
390                 //                 regardless of the status of `-Z randomize-layout`
391             }
392         }
393
394         // inverse_memory_index holds field indices by increasing memory offset.
395         // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
396         // We now write field offsets to the corresponding offset slot;
397         // field 5 with offset 0 puts 0 in offsets[5].
398         // At the bottom of this function, we invert `inverse_memory_index` to
399         // produce `memory_index` (see `invert_mapping`).
400
401         let mut sized = true;
402         let mut offsets = vec![Size::ZERO; fields.len()];
403         let mut offset = Size::ZERO;
404         let mut largest_niche = None;
405         let mut largest_niche_available = 0;
406
407         if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
408             let prefix_align =
409                 if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
410             align = align.max(AbiAndPrefAlign::new(prefix_align));
411             offset = prefix_size.align_to(prefix_align);
412         }
413
414         for &i in &inverse_memory_index {
415             let field = fields[i as usize];
416             if !sized {
417                 self.tcx.sess.delay_span_bug(
418                     DUMMY_SP,
419                     &format!(
420                         "univariant: field #{} of `{}` comes after unsized field",
421                         offsets.len(),
422                         ty
423                     ),
424                 );
425             }
426
427             if field.is_unsized() {
428                 sized = false;
429             }
430
431             // Invariant: offset < dl.obj_size_bound() <= 1<<61
432             let field_align = if let Some(pack) = pack {
433                 field.align.min(AbiAndPrefAlign::new(pack))
434             } else {
435                 field.align
436             };
437             offset = offset.align_to(field_align.abi);
438             align = align.max(field_align);
439
440             debug!("univariant offset: {:?} field: {:#?}", offset, field);
441             offsets[i as usize] = offset;
442
443             if !repr.hide_niche() {
444                 if let Some(mut niche) = field.largest_niche {
445                     let available = niche.available(dl);
446                     if available > largest_niche_available {
447                         largest_niche_available = available;
448                         niche.offset += offset;
449                         largest_niche = Some(niche);
450                     }
451                 }
452             }
453
454             offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?;
455         }
456
457         if let Some(repr_align) = repr.align {
458             align = align.max(AbiAndPrefAlign::new(repr_align));
459         }
460
461         debug!("univariant min_size: {:?}", offset);
462         let min_size = offset;
463
464         // As stated above, inverse_memory_index holds field indices by increasing offset.
465         // This makes it an already-sorted view of the offsets vec.
466         // To invert it, consider:
467         // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
468         // Field 5 would be the first element, so memory_index is i:
469         // Note: if we didn't optimize, it's already right.
470
471         let memory_index =
472             if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };
473
474         let size = min_size.align_to(align.abi);
475         let mut abi = Abi::Aggregate { sized };
476
477         // Unpack newtype ABIs and find scalar pairs.
478         if sized && size.bytes() > 0 {
479             // All other fields must be ZSTs.
480             let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());
481
482             match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
483                 // We have exactly one non-ZST field.
484                 (Some((i, field)), None, None) => {
485                     // Field fills the struct and it has a scalar or scalar pair ABI.
486                     if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
487                     {
488                         match field.abi {
489                             // For plain scalars, or vectors of them, we can't unpack
490                             // newtypes for `#[repr(C)]`, as that affects C ABIs.
491                             Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
492                                 abi = field.abi;
493                             }
494                             // But scalar pairs are Rust-specific and get
495                             // treated as aggregates by C ABIs anyway.
496                             Abi::ScalarPair(..) => {
497                                 abi = field.abi;
498                             }
499                             _ => {}
500                         }
501                     }
502                 }
503
504                 // Two non-ZST fields, and they're both scalars.
505                 (
506                     Some((i, &TyAndLayout { layout: &Layout { abi: Abi::Scalar(a), .. }, .. })),
507                     Some((j, &TyAndLayout { layout: &Layout { abi: Abi::Scalar(b), .. }, .. })),
508                     None,
509                 ) => {
510                     // Order by the memory placement, not source order.
511                     let ((i, a), (j, b)) =
512                         if offsets[i] < offsets[j] { ((i, a), (j, b)) } else { ((j, b), (i, a)) };
513                     let pair = self.scalar_pair(a, b);
514                     let pair_offsets = match pair.fields {
515                         FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
516                             assert_eq!(memory_index, &[0, 1]);
517                             offsets
518                         }
519                         _ => bug!(),
520                     };
521                     if offsets[i] == pair_offsets[0]
522                         && offsets[j] == pair_offsets[1]
523                         && align == pair.align
524                         && size == pair.size
525                     {
526                         // We can use `ScalarPair` only when it matches our
527                         // already computed layout (including `#[repr(C)]`).
528                         abi = pair.abi;
529                     }
530                 }
531
532                 _ => {}
533             }
534         }
535
536         if fields.iter().any(|f| f.abi.is_uninhabited()) {
537             abi = Abi::Uninhabited;
538         }
539
540         Ok(Layout {
541             variants: Variants::Single { index: VariantIdx::new(0) },
542             fields: FieldsShape::Arbitrary { offsets, memory_index },
543             abi,
544             largest_niche,
545             align,
546             size,
547         })
548     }
549
550     fn layout_of_uncached(&self, ty: Ty<'tcx>) -> Result<&'tcx Layout, LayoutError<'tcx>> {
551         let tcx = self.tcx;
552         let param_env = self.param_env;
553         let dl = self.data_layout();
554         let scalar_unit = |value: Primitive| {
555             let size = value.size(dl);
556             assert!(size.bits() <= 128);
557             Scalar { value, valid_range: WrappingRange { start: 0, end: size.unsigned_int_max() } }
558         };
559         let scalar = |value: Primitive| tcx.intern_layout(Layout::scalar(self, scalar_unit(value)));
560
561         let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| {
562             Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?))
563         };
564         debug_assert!(!ty.has_infer_types_or_consts());
565
566         Ok(match *ty.kind() {
567             // Basic scalars.
568             ty::Bool => tcx.intern_layout(Layout::scalar(
569                 self,
570                 Scalar { value: Int(I8, false), valid_range: WrappingRange { start: 0, end: 1 } },
571             )),
572             ty::Char => tcx.intern_layout(Layout::scalar(
573                 self,
574                 Scalar {
575                     value: Int(I32, false),
576                     valid_range: WrappingRange { start: 0, end: 0x10FFFF },
577                 },
578             )),
579             ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
580             ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
581             ty::Float(fty) => scalar(match fty {
582                 ty::FloatTy::F32 => F32,
583                 ty::FloatTy::F64 => F64,
584             }),
585             ty::FnPtr(_) => {
586                 let mut ptr = scalar_unit(Pointer);
587                 ptr.valid_range = ptr.valid_range.with_start(1);
588                 tcx.intern_layout(Layout::scalar(self, ptr))
589             }
590
591             // The never type.
592             ty::Never => tcx.intern_layout(Layout {
593                 variants: Variants::Single { index: VariantIdx::new(0) },
594                 fields: FieldsShape::Primitive,
595                 abi: Abi::Uninhabited,
596                 largest_niche: None,
597                 align: dl.i8_align,
598                 size: Size::ZERO,
599             }),
600
601             // Potentially-wide pointers.
602             ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
603                 let mut data_ptr = scalar_unit(Pointer);
604                 if !ty.is_unsafe_ptr() {
605                     data_ptr.valid_range = data_ptr.valid_range.with_start(1);
606                 }
607
608                 let pointee = tcx.normalize_erasing_regions(param_env, pointee);
609                 if pointee.is_sized(tcx.at(DUMMY_SP), param_env) {
610                     return Ok(tcx.intern_layout(Layout::scalar(self, data_ptr)));
611                 }
612
613                 let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
614                 let metadata = match unsized_part.kind() {
615                     ty::Foreign(..) => {
616                         return Ok(tcx.intern_layout(Layout::scalar(self, data_ptr)));
617                     }
618                     ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
619                     ty::Dynamic(..) => {
620                         let mut vtable = scalar_unit(Pointer);
621                         vtable.valid_range = vtable.valid_range.with_start(1);
622                         vtable
623                     }
624                     _ => return Err(LayoutError::Unknown(unsized_part)),
625                 };
626
627                 // Effectively a (ptr, meta) tuple.
628                 tcx.intern_layout(self.scalar_pair(data_ptr, metadata))
629             }
630
631             // Arrays and slices.
632             ty::Array(element, mut count) => {
633                 if count.has_projections() {
634                     count = tcx.normalize_erasing_regions(param_env, count);
635                     if count.has_projections() {
636                         return Err(LayoutError::Unknown(ty));
637                     }
638                 }
639
640                 let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
641                 let element = self.layout_of(element)?;
642                 let size =
643                     element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
644
645                 let abi =
646                     if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) {
647                         Abi::Uninhabited
648                     } else {
649                         Abi::Aggregate { sized: true }
650                     };
651
652                 let largest_niche = if count != 0 { element.largest_niche } else { None };
653
654                 tcx.intern_layout(Layout {
655                     variants: Variants::Single { index: VariantIdx::new(0) },
656                     fields: FieldsShape::Array { stride: element.size, count },
657                     abi,
658                     largest_niche,
659                     align: element.align,
660                     size,
661                 })
662             }
663             ty::Slice(element) => {
664                 let element = self.layout_of(element)?;
665                 tcx.intern_layout(Layout {
666                     variants: Variants::Single { index: VariantIdx::new(0) },
667                     fields: FieldsShape::Array { stride: element.size, count: 0 },
668                     abi: Abi::Aggregate { sized: false },
669                     largest_niche: None,
670                     align: element.align,
671                     size: Size::ZERO,
672                 })
673             }
674             ty::Str => tcx.intern_layout(Layout {
675                 variants: Variants::Single { index: VariantIdx::new(0) },
676                 fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
677                 abi: Abi::Aggregate { sized: false },
678                 largest_niche: None,
679                 align: dl.i8_align,
680                 size: Size::ZERO,
681             }),
682
683             // Odd unit types.
684             ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?,
685             ty::Dynamic(..) | ty::Foreign(..) => {
686                 let mut unit = self.univariant_uninterned(
687                     ty,
688                     &[],
689                     &ReprOptions::default(),
690                     StructKind::AlwaysSized,
691                 )?;
692                 match unit.abi {
693                     Abi::Aggregate { ref mut sized } => *sized = false,
694                     _ => bug!(),
695                 }
696                 tcx.intern_layout(unit)
697             }
698
699             ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?,
700
701             ty::Closure(_, ref substs) => {
702                 let tys = substs.as_closure().upvar_tys();
703                 univariant(
704                     &tys.map(|ty| self.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
705                     &ReprOptions::default(),
706                     StructKind::AlwaysSized,
707                 )?
708             }
709
710             ty::Tuple(tys) => {
711                 let kind =
712                     if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
713
714                 univariant(
715                     &tys.iter()
716                         .map(|k| self.layout_of(k.expect_ty()))
717                         .collect::<Result<Vec<_>, _>>()?,
718                     &ReprOptions::default(),
719                     kind,
720                 )?
721             }
722
723             // SIMD vector types.
724             ty::Adt(def, substs) if def.repr.simd() => {
725                 if !def.is_struct() {
726                     // Should have yielded E0517 by now.
727                     tcx.sess.delay_span_bug(
728                         DUMMY_SP,
729                         "#[repr(simd)] was applied to an ADT that is not a struct",
730                     );
731                     return Err(LayoutError::Unknown(ty));
732                 }
733
734                 // Supported SIMD vectors are homogeneous ADTs with at least one field:
735                 //
736                 // * #[repr(simd)] struct S(T, T, T, T);
737                 // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
738                 // * #[repr(simd)] struct S([T; 4])
739                 //
740                 // where T is a primitive scalar (integer/float/pointer).
741
742                 // SIMD vectors with zero fields are not supported.
743                 // (should be caught by typeck)
744                 if def.non_enum_variant().fields.is_empty() {
745                     tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
746                 }
747
748                 // Type of the first ADT field:
749                 let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs);
750
751                 // Heterogeneous SIMD vectors are not supported:
752                 // (should be caught by typeck)
753                 for fi in &def.non_enum_variant().fields {
754                     if fi.ty(tcx, substs) != f0_ty {
755                         tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty));
756                     }
757                 }
758
759                 // The element type and number of elements of the SIMD vector
760                 // are obtained from:
761                 //
762                 // * the element type and length of the single array field, if
763                 // the first field is of array type, or
764                 //
765                 // * the homogenous field type and the number of fields.
766                 let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
767                     // First ADT field is an array:
768
769                     // SIMD vectors with multiple array fields are not supported:
770                     // (should be caught by typeck)
771                     if def.non_enum_variant().fields.len() != 1 {
772                         tcx.sess.fatal(&format!(
773                             "monomorphising SIMD type `{}` with more than one array field",
774                             ty
775                         ));
776                     }
777
778                     // Extract the number of elements from the layout of the array field:
779                     let Ok(TyAndLayout {
780                         layout: Layout { fields: FieldsShape::Array { count, .. }, .. },
781                         ..
782                     }) = self.layout_of(f0_ty) else {
783                         return Err(LayoutError::Unknown(ty));
784                     };
785
786                     (*e_ty, *count, true)
787                 } else {
788                     // First ADT field is not an array:
789                     (f0_ty, def.non_enum_variant().fields.len() as _, false)
790                 };
791
792                 // SIMD vectors of zero length are not supported.
793                 // Additionally, lengths are capped at 2^16 as a fixed maximum backends must
794                 // support.
795                 //
796                 // Can't be caught in typeck if the array length is generic.
797                 if e_len == 0 {
798                     tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
799                 } else if e_len > MAX_SIMD_LANES {
800                     tcx.sess.fatal(&format!(
801                         "monomorphising SIMD type `{}` of length greater than {}",
802                         ty, MAX_SIMD_LANES,
803                     ));
804                 }
805
806                 // Compute the ABI of the element type:
807                 let e_ly = self.layout_of(e_ty)?;
808                 let Abi::Scalar(e_abi) = e_ly.abi else {
809                     // This error isn't caught in typeck, e.g., if
810                     // the element type of the vector is generic.
811                     tcx.sess.fatal(&format!(
812                         "monomorphising SIMD type `{}` with a non-primitive-scalar \
813                         (integer/float/pointer) element type `{}`",
814                         ty, e_ty
815                     ))
816                 };
817
818                 // Compute the size and alignment of the vector:
819                 let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
820                 let align = dl.vector_align(size);
821                 let size = size.align_to(align.abi);
822
823                 // Compute the placement of the vector fields:
824                 let fields = if is_array {
825                     FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }
826                 } else {
827                     FieldsShape::Array { stride: e_ly.size, count: e_len }
828                 };
829
830                 tcx.intern_layout(Layout {
831                     variants: Variants::Single { index: VariantIdx::new(0) },
832                     fields,
833                     abi: Abi::Vector { element: e_abi, count: e_len },
834                     largest_niche: e_ly.largest_niche,
835                     size,
836                     align,
837                 })
838             }
839
840             // ADTs.
841             ty::Adt(def, substs) => {
842                 // Cache the field layouts.
843                 let variants = def
844                     .variants
845                     .iter()
846                     .map(|v| {
847                         v.fields
848                             .iter()
849                             .map(|field| self.layout_of(field.ty(tcx, substs)))
850                             .collect::<Result<Vec<_>, _>>()
851                     })
852                     .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
853
854                 if def.is_union() {
855                     if def.repr.pack.is_some() && def.repr.align.is_some() {
856                         self.tcx.sess.delay_span_bug(
857                             tcx.def_span(def.did),
858                             "union cannot be packed and aligned",
859                         );
860                         return Err(LayoutError::Unknown(ty));
861                     }
862
863                     let mut align =
864                         if def.repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align };
865
866                     if let Some(repr_align) = def.repr.align {
867                         align = align.max(AbiAndPrefAlign::new(repr_align));
868                     }
869
870                     let optimize = !def.repr.inhibit_union_abi_opt();
871                     let mut size = Size::ZERO;
872                     let mut abi = Abi::Aggregate { sized: true };
873                     let index = VariantIdx::new(0);
874                     for field in &variants[index] {
875                         assert!(!field.is_unsized());
876                         align = align.max(field.align);
877
878                         // If all non-ZST fields have the same ABI, forward this ABI
879                         if optimize && !field.is_zst() {
880                             // Normalize scalar_unit to the maximal valid range
881                             let field_abi = match field.abi {
882                                 Abi::Scalar(x) => Abi::Scalar(scalar_unit(x.value)),
883                                 Abi::ScalarPair(x, y) => {
884                                     Abi::ScalarPair(scalar_unit(x.value), scalar_unit(y.value))
885                                 }
886                                 Abi::Vector { element: x, count } => {
887                                     Abi::Vector { element: scalar_unit(x.value), count }
888                                 }
889                                 Abi::Uninhabited | Abi::Aggregate { .. } => {
890                                     Abi::Aggregate { sized: true }
891                                 }
892                             };
893
894                             if size == Size::ZERO {
895                                 // first non ZST: initialize 'abi'
896                                 abi = field_abi;
897                             } else if abi != field_abi {
898                                 // different fields have different ABI: reset to Aggregate
899                                 abi = Abi::Aggregate { sized: true };
900                             }
901                         }
902
903                         size = cmp::max(size, field.size);
904                     }
905
906                     if let Some(pack) = def.repr.pack {
907                         align = align.min(AbiAndPrefAlign::new(pack));
908                     }
909
910                     return Ok(tcx.intern_layout(Layout {
911                         variants: Variants::Single { index },
912                         fields: FieldsShape::Union(
913                             NonZeroUsize::new(variants[index].len())
914                                 .ok_or(LayoutError::Unknown(ty))?,
915                         ),
916                         abi,
917                         largest_niche: None,
918                         align,
919                         size: size.align_to(align.abi),
920                     }));
921                 }
922
923                 // A variant is absent if it's uninhabited and only has ZST fields.
924                 // Present uninhabited variants only require space for their fields,
925                 // but *not* an encoding of the discriminant (e.g., a tag value).
926                 // See issue #49298 for more details on the need to leave space
927                 // for non-ZST uninhabited data (mostly partial initialization).
928                 let absent = |fields: &[TyAndLayout<'_>]| {
929                     let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
930                     let is_zst = fields.iter().all(|f| f.is_zst());
931                     uninhabited && is_zst
932                 };
933                 let (present_first, present_second) = {
934                     let mut present_variants = variants
935                         .iter_enumerated()
936                         .filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
937                     (present_variants.next(), present_variants.next())
938                 };
939                 let present_first = match present_first {
940                     Some(present_first) => present_first,
941                     // Uninhabited because it has no variants, or only absent ones.
942                     None if def.is_enum() => {
943                         return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout);
944                     }
945                     // If it's a struct, still compute a layout so that we can still compute the
946                     // field offsets.
947                     None => VariantIdx::new(0),
948                 };
949
950                 let is_struct = !def.is_enum() ||
951                     // Only one variant is present.
952                     (present_second.is_none() &&
953                     // Representation optimizations are allowed.
954                     !def.repr.inhibit_enum_layout_opt());
955                 if is_struct {
956                     // Struct, or univariant enum equivalent to a struct.
957                     // (Typechecking will reject discriminant-sizing attrs.)
958
959                     let v = present_first;
960                     let kind = if def.is_enum() || variants[v].is_empty() {
961                         StructKind::AlwaysSized
962                     } else {
963                         let param_env = tcx.param_env(def.did);
964                         let last_field = def.variants[v].fields.last().unwrap();
965                         let always_sized =
966                             tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env);
967                         if !always_sized {
968                             StructKind::MaybeUnsized
969                         } else {
970                             StructKind::AlwaysSized
971                         }
972                     };
973
974                     let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr, kind)?;
975                     st.variants = Variants::Single { index: v };
976                     let (start, end) = self.tcx.layout_scalar_valid_range(def.did);
977                     match st.abi {
978                         Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
979                             // the asserts ensure that we are not using the
980                             // `#[rustc_layout_scalar_valid_range(n)]`
981                             // attribute to widen the range of anything as that would probably
982                             // result in UB somewhere
983                             // FIXME(eddyb) the asserts are probably not needed,
984                             // as larger validity ranges would result in missed
985                             // optimizations, *not* wrongly assuming the inner
986                             // value is valid. e.g. unions enlarge validity ranges,
987                             // because the values may be uninitialized.
988                             if let Bound::Included(start) = start {
989                                 // FIXME(eddyb) this might be incorrect - it doesn't
990                                 // account for wrap-around (end < start) ranges.
991                                 assert!(scalar.valid_range.start <= start);
992                                 scalar.valid_range.start = start;
993                             }
994                             if let Bound::Included(end) = end {
995                                 // FIXME(eddyb) this might be incorrect - it doesn't
996                                 // account for wrap-around (end < start) ranges.
997                                 assert!(scalar.valid_range.end >= end);
998                                 scalar.valid_range.end = end;
999                             }
1000
1001                             // Update `largest_niche` if we have introduced a larger niche.
1002                             let niche = if def.repr.hide_niche() {
1003                                 None
1004                             } else {
1005                                 Niche::from_scalar(dl, Size::ZERO, *scalar)
1006                             };
1007                             if let Some(niche) = niche {
1008                                 match st.largest_niche {
1009                                     Some(largest_niche) => {
1010                                         // Replace the existing niche even if they're equal,
1011                                         // because this one is at a lower offset.
1012                                         if largest_niche.available(dl) <= niche.available(dl) {
1013                                             st.largest_niche = Some(niche);
1014                                         }
1015                                     }
1016                                     None => st.largest_niche = Some(niche),
1017                                 }
1018                             }
1019                         }
1020                         _ => assert!(
1021                             start == Bound::Unbounded && end == Bound::Unbounded,
1022                             "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}",
1023                             def,
1024                             st,
1025                         ),
1026                     }
1027
1028                     return Ok(tcx.intern_layout(st));
1029                 }
1030
1031                 // At this point, we have handled all unions and
1032                 // structs. (We have also handled univariant enums
1033                 // that allow representation optimization.)
1034                 assert!(def.is_enum());
1035
1036                 // The current code for niche-filling relies on variant indices
1037                 // instead of actual discriminants, so dataful enums with
1038                 // explicit discriminants (RFC #2363) would misbehave.
1039                 let no_explicit_discriminants = def
1040                     .variants
1041                     .iter_enumerated()
1042                     .all(|(i, v)| v.discr == ty::VariantDiscr::Relative(i.as_u32()));
1043
1044                 let mut niche_filling_layout = None;
1045
1046                 // Niche-filling enum optimization.
1047                 if !def.repr.inhibit_enum_layout_opt() && no_explicit_discriminants {
1048                     let mut dataful_variant = None;
1049                     let mut niche_variants = VariantIdx::MAX..=VariantIdx::new(0);
1050
1051                     // Find one non-ZST variant.
1052                     'variants: for (v, fields) in variants.iter_enumerated() {
1053                         if absent(fields) {
1054                             continue 'variants;
1055                         }
1056                         for f in fields {
1057                             if !f.is_zst() {
1058                                 if dataful_variant.is_none() {
1059                                     dataful_variant = Some(v);
1060                                     continue 'variants;
1061                                 } else {
1062                                     dataful_variant = None;
1063                                     break 'variants;
1064                                 }
1065                             }
1066                         }
1067                         niche_variants = *niche_variants.start().min(&v)..=v;
1068                     }
1069
1070                     if niche_variants.start() > niche_variants.end() {
1071                         dataful_variant = None;
1072                     }
1073
1074                     if let Some(i) = dataful_variant {
1075                         let count = (niche_variants.end().as_u32()
1076                             - niche_variants.start().as_u32()
1077                             + 1) as u128;
1078
1079                         // Find the field with the largest niche
1080                         let niche_candidate = variants[i]
1081                             .iter()
1082                             .enumerate()
1083                             .filter_map(|(j, field)| Some((j, field.largest_niche?)))
1084                             .max_by_key(|(_, niche)| niche.available(dl));
1085
1086                         if let Some((field_index, niche, (niche_start, niche_scalar))) =
1087                             niche_candidate.and_then(|(field_index, niche)| {
1088                                 Some((field_index, niche, niche.reserve(self, count)?))
1089                             })
1090                         {
1091                             let mut align = dl.aggregate_align;
1092                             let st = variants
1093                                 .iter_enumerated()
1094                                 .map(|(j, v)| {
1095                                     let mut st = self.univariant_uninterned(
1096                                         ty,
1097                                         v,
1098                                         &def.repr,
1099                                         StructKind::AlwaysSized,
1100                                     )?;
1101                                     st.variants = Variants::Single { index: j };
1102
1103                                     align = align.max(st.align);
1104
1105                                     Ok(st)
1106                                 })
1107                                 .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
1108
1109                             let offset = st[i].fields.offset(field_index) + niche.offset;
1110                             let size = st[i].size;
1111
1112                             let abi = if st.iter().all(|v| v.abi.is_uninhabited()) {
1113                                 Abi::Uninhabited
1114                             } else {
1115                                 match st[i].abi {
1116                                     Abi::Scalar(_) => Abi::Scalar(niche_scalar),
1117                                     Abi::ScalarPair(first, second) => {
1118                                         // We need to use scalar_unit to reset the
1119                                         // valid range to the maximal one for that
1120                                         // primitive, because only the niche is
1121                                         // guaranteed to be initialised, not the
1122                                         // other primitive.
1123                                         if offset.bytes() == 0 {
1124                                             Abi::ScalarPair(niche_scalar, scalar_unit(second.value))
1125                                         } else {
1126                                             Abi::ScalarPair(scalar_unit(first.value), niche_scalar)
1127                                         }
1128                                     }
1129                                     _ => Abi::Aggregate { sized: true },
1130                                 }
1131                             };
1132
1133                             let largest_niche = Niche::from_scalar(dl, offset, niche_scalar);
1134
1135                             niche_filling_layout = Some(Layout {
1136                                 variants: Variants::Multiple {
1137                                     tag: niche_scalar,
1138                                     tag_encoding: TagEncoding::Niche {
1139                                         dataful_variant: i,
1140                                         niche_variants,
1141                                         niche_start,
1142                                     },
1143                                     tag_field: 0,
1144                                     variants: st,
1145                                 },
1146                                 fields: FieldsShape::Arbitrary {
1147                                     offsets: vec![offset],
1148                                     memory_index: vec![0],
1149                                 },
1150                                 abi,
1151                                 largest_niche,
1152                                 size,
1153                                 align,
1154                             });
1155                         }
1156                     }
1157                 }
1158
1159                 let (mut min, mut max) = (i128::MAX, i128::MIN);
1160                 let discr_type = def.repr.discr_type();
1161                 let bits = Integer::from_attr(self, discr_type).size().bits();
1162                 for (i, discr) in def.discriminants(tcx) {
1163                     if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
1164                         continue;
1165                     }
1166                     let mut x = discr.val as i128;
1167                     if discr_type.is_signed() {
1168                         // sign extend the raw representation to be an i128
1169                         x = (x << (128 - bits)) >> (128 - bits);
1170                     }
1171                     if x < min {
1172                         min = x;
1173                     }
1174                     if x > max {
1175                         max = x;
1176                     }
1177                 }
1178                 // We might have no inhabited variants, so pretend there's at least one.
1179                 if (min, max) == (i128::MAX, i128::MIN) {
1180                     min = 0;
1181                     max = 0;
1182                 }
1183                 assert!(min <= max, "discriminant range is {}...{}", min, max);
1184                 let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr, min, max);
1185
1186                 let mut align = dl.aggregate_align;
1187                 let mut size = Size::ZERO;
1188
1189                 // We're interested in the smallest alignment, so start large.
1190                 let mut start_align = Align::from_bytes(256).unwrap();
1191                 assert_eq!(Integer::for_align(dl, start_align), None);
1192
1193                 // repr(C) on an enum tells us to make a (tag, union) layout,
1194                 // so we need to grow the prefix alignment to be at least
1195                 // the alignment of the union. (This value is used both for
1196                 // determining the alignment of the overall enum, and the
1197                 // determining the alignment of the payload after the tag.)
1198                 let mut prefix_align = min_ity.align(dl).abi;
1199                 if def.repr.c() {
1200                     for fields in &variants {
1201                         for field in fields {
1202                             prefix_align = prefix_align.max(field.align.abi);
1203                         }
1204                     }
1205                 }
1206
1207                 // Create the set of structs that represent each variant.
1208                 let mut layout_variants = variants
1209                     .iter_enumerated()
1210                     .map(|(i, field_layouts)| {
1211                         let mut st = self.univariant_uninterned(
1212                             ty,
1213                             &field_layouts,
1214                             &def.repr,
1215                             StructKind::Prefixed(min_ity.size(), prefix_align),
1216                         )?;
1217                         st.variants = Variants::Single { index: i };
1218                         // Find the first field we can't move later
1219                         // to make room for a larger discriminant.
1220                         for field in
1221                             st.fields.index_by_increasing_offset().map(|j| field_layouts[j])
1222                         {
1223                             if !field.is_zst() || field.align.abi.bytes() != 1 {
1224                                 start_align = start_align.min(field.align.abi);
1225                                 break;
1226                             }
1227                         }
1228                         size = cmp::max(size, st.size);
1229                         align = align.max(st.align);
1230                         Ok(st)
1231                     })
1232                     .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
1233
1234                 // Align the maximum variant size to the largest alignment.
1235                 size = size.align_to(align.abi);
1236
1237                 if size.bytes() >= dl.obj_size_bound() {
1238                     return Err(LayoutError::SizeOverflow(ty));
1239                 }
1240
1241                 let typeck_ity = Integer::from_attr(dl, def.repr.discr_type());
1242                 if typeck_ity < min_ity {
1243                     // It is a bug if Layout decided on a greater discriminant size than typeck for
1244                     // some reason at this point (based on values discriminant can take on). Mostly
1245                     // because this discriminant will be loaded, and then stored into variable of
1246                     // type calculated by typeck. Consider such case (a bug): typeck decided on
1247                     // byte-sized discriminant, but layout thinks we need a 16-bit to store all
1248                     // discriminant values. That would be a bug, because then, in codegen, in order
1249                     // to store this 16-bit discriminant into 8-bit sized temporary some of the
1250                     // space necessary to represent would have to be discarded (or layout is wrong
1251                     // on thinking it needs 16 bits)
1252                     bug!(
1253                         "layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
1254                         min_ity,
1255                         typeck_ity
1256                     );
1257                     // However, it is fine to make discr type however large (as an optimisation)
1258                     // after this point â€“ we’ll just truncate the value we load in codegen.
1259                 }
1260
1261                 // Check to see if we should use a different type for the
1262                 // discriminant. We can safely use a type with the same size
1263                 // as the alignment of the first field of each variant.
1264                 // We increase the size of the discriminant to avoid LLVM copying
1265                 // padding when it doesn't need to. This normally causes unaligned
1266                 // load/stores and excessive memcpy/memset operations. By using a
1267                 // bigger integer size, LLVM can be sure about its contents and
1268                 // won't be so conservative.
1269
1270                 // Use the initial field alignment
1271                 let mut ity = if def.repr.c() || def.repr.int.is_some() {
1272                     min_ity
1273                 } else {
1274                     Integer::for_align(dl, start_align).unwrap_or(min_ity)
1275                 };
1276
1277                 // If the alignment is not larger than the chosen discriminant size,
1278                 // don't use the alignment as the final size.
1279                 if ity <= min_ity {
1280                     ity = min_ity;
1281                 } else {
1282                     // Patch up the variants' first few fields.
1283                     let old_ity_size = min_ity.size();
1284                     let new_ity_size = ity.size();
1285                     for variant in &mut layout_variants {
1286                         match variant.fields {
1287                             FieldsShape::Arbitrary { ref mut offsets, .. } => {
1288                                 for i in offsets {
1289                                     if *i <= old_ity_size {
1290                                         assert_eq!(*i, old_ity_size);
1291                                         *i = new_ity_size;
1292                                     }
1293                                 }
1294                                 // We might be making the struct larger.
1295                                 if variant.size <= old_ity_size {
1296                                     variant.size = new_ity_size;
1297                                 }
1298                             }
1299                             _ => bug!(),
1300                         }
1301                     }
1302                 }
1303
1304                 let tag_mask = ity.size().unsigned_int_max();
1305                 let tag = Scalar {
1306                     value: Int(ity, signed),
1307                     valid_range: WrappingRange {
1308                         start: (min as u128 & tag_mask),
1309                         end: (max as u128 & tag_mask),
1310                     },
1311                 };
1312                 let mut abi = Abi::Aggregate { sized: true };
1313                 if tag.value.size(dl) == size {
1314                     abi = Abi::Scalar(tag);
1315                 } else {
1316                     // Try to use a ScalarPair for all tagged enums.
1317                     let mut common_prim = None;
1318                     for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) {
1319                         let offsets = match layout_variant.fields {
1320                             FieldsShape::Arbitrary { ref offsets, .. } => offsets,
1321                             _ => bug!(),
1322                         };
1323                         let mut fields =
1324                             iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
1325                         let (field, offset) = match (fields.next(), fields.next()) {
1326                             (None, None) => continue,
1327                             (Some(pair), None) => pair,
1328                             _ => {
1329                                 common_prim = None;
1330                                 break;
1331                             }
1332                         };
1333                         let prim = match field.abi {
1334                             Abi::Scalar(scalar) => scalar.value,
1335                             _ => {
1336                                 common_prim = None;
1337                                 break;
1338                             }
1339                         };
1340                         if let Some(pair) = common_prim {
1341                             // This is pretty conservative. We could go fancier
1342                             // by conflating things like i32 and u32, or even
1343                             // realising that (u8, u8) could just cohabit with
1344                             // u16 or even u32.
1345                             if pair != (prim, offset) {
1346                                 common_prim = None;
1347                                 break;
1348                             }
1349                         } else {
1350                             common_prim = Some((prim, offset));
1351                         }
1352                     }
1353                     if let Some((prim, offset)) = common_prim {
1354                         let pair = self.scalar_pair(tag, scalar_unit(prim));
1355                         let pair_offsets = match pair.fields {
1356                             FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
1357                                 assert_eq!(memory_index, &[0, 1]);
1358                                 offsets
1359                             }
1360                             _ => bug!(),
1361                         };
1362                         if pair_offsets[0] == Size::ZERO
1363                             && pair_offsets[1] == *offset
1364                             && align == pair.align
1365                             && size == pair.size
1366                         {
1367                             // We can use `ScalarPair` only when it matches our
1368                             // already computed layout (including `#[repr(C)]`).
1369                             abi = pair.abi;
1370                         }
1371                     }
1372                 }
1373
1374                 if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
1375                     abi = Abi::Uninhabited;
1376                 }
1377
1378                 let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
1379
1380                 let tagged_layout = Layout {
1381                     variants: Variants::Multiple {
1382                         tag,
1383                         tag_encoding: TagEncoding::Direct,
1384                         tag_field: 0,
1385                         variants: layout_variants,
1386                     },
1387                     fields: FieldsShape::Arbitrary {
1388                         offsets: vec![Size::ZERO],
1389                         memory_index: vec![0],
1390                     },
1391                     largest_niche,
1392                     abi,
1393                     align,
1394                     size,
1395                 };
1396
1397                 let best_layout = match (tagged_layout, niche_filling_layout) {
1398                     (tagged_layout, Some(niche_filling_layout)) => {
1399                         // Pick the smaller layout; otherwise,
1400                         // pick the layout with the larger niche; otherwise,
1401                         // pick tagged as it has simpler codegen.
1402                         cmp::min_by_key(tagged_layout, niche_filling_layout, |layout| {
1403                             let niche_size = layout.largest_niche.map_or(0, |n| n.available(dl));
1404                             (layout.size, cmp::Reverse(niche_size))
1405                         })
1406                     }
1407                     (tagged_layout, None) => tagged_layout,
1408                 };
1409
1410                 tcx.intern_layout(best_layout)
1411             }
1412
1413             // Types with no meaningful known layout.
1414             ty::Projection(_) | ty::Opaque(..) => {
1415                 // NOTE(eddyb) `layout_of` query should've normalized these away,
1416                 // if that was possible, so there's no reason to try again here.
1417                 return Err(LayoutError::Unknown(ty));
1418             }
1419
1420             ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => {
1421                 bug!("Layout::compute: unexpected type `{}`", ty)
1422             }
1423
1424             ty::Bound(..) | ty::Param(_) | ty::Error(_) => {
1425                 return Err(LayoutError::Unknown(ty));
1426             }
1427         })
1428     }
1429 }
1430
1431 /// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
1432 #[derive(Clone, Debug, PartialEq)]
1433 enum SavedLocalEligibility {
1434     Unassigned,
1435     Assigned(VariantIdx),
1436     // FIXME: Use newtype_index so we aren't wasting bytes
1437     Ineligible(Option<u32>),
1438 }
1439
1440 // When laying out generators, we divide our saved local fields into two
1441 // categories: overlap-eligible and overlap-ineligible.
1442 //
1443 // Those fields which are ineligible for overlap go in a "prefix" at the
1444 // beginning of the layout, and always have space reserved for them.
1445 //
1446 // Overlap-eligible fields are only assigned to one variant, so we lay
1447 // those fields out for each variant and put them right after the
1448 // prefix.
1449 //
1450 // Finally, in the layout details, we point to the fields from the
1451 // variants they are assigned to. It is possible for some fields to be
1452 // included in multiple variants. No field ever "moves around" in the
1453 // layout; its offset is always the same.
1454 //
1455 // Also included in the layout are the upvars and the discriminant.
1456 // These are included as fields on the "outer" layout; they are not part
1457 // of any variant.
1458 impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
1459     /// Compute the eligibility and assignment of each local.
1460     fn generator_saved_local_eligibility(
1461         &self,
1462         info: &GeneratorLayout<'tcx>,
1463     ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
1464         use SavedLocalEligibility::*;
1465
1466         let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
1467             IndexVec::from_elem_n(Unassigned, info.field_tys.len());
1468
1469         // The saved locals not eligible for overlap. These will get
1470         // "promoted" to the prefix of our generator.
1471         let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
1472
1473         // Figure out which of our saved locals are fields in only
1474         // one variant. The rest are deemed ineligible for overlap.
1475         for (variant_index, fields) in info.variant_fields.iter_enumerated() {
1476             for local in fields {
1477                 match assignments[*local] {
1478                     Unassigned => {
1479                         assignments[*local] = Assigned(variant_index);
1480                     }
1481                     Assigned(idx) => {
1482                         // We've already seen this local at another suspension
1483                         // point, so it is no longer a candidate.
1484                         trace!(
1485                             "removing local {:?} in >1 variant ({:?}, {:?})",
1486                             local,
1487                             variant_index,
1488                             idx
1489                         );
1490                         ineligible_locals.insert(*local);
1491                         assignments[*local] = Ineligible(None);
1492                     }
1493                     Ineligible(_) => {}
1494                 }
1495             }
1496         }
1497
1498         // Next, check every pair of eligible locals to see if they
1499         // conflict.
1500         for local_a in info.storage_conflicts.rows() {
1501             let conflicts_a = info.storage_conflicts.count(local_a);
1502             if ineligible_locals.contains(local_a) {
1503                 continue;
1504             }
1505
1506             for local_b in info.storage_conflicts.iter(local_a) {
1507                 // local_a and local_b are storage live at the same time, therefore they
1508                 // cannot overlap in the generator layout. The only way to guarantee
1509                 // this is if they are in the same variant, or one is ineligible
1510                 // (which means it is stored in every variant).
1511                 if ineligible_locals.contains(local_b)
1512                     || assignments[local_a] == assignments[local_b]
1513                 {
1514                     continue;
1515                 }
1516
1517                 // If they conflict, we will choose one to make ineligible.
1518                 // This is not always optimal; it's just a greedy heuristic that
1519                 // seems to produce good results most of the time.
1520                 let conflicts_b = info.storage_conflicts.count(local_b);
1521                 let (remove, other) =
1522                     if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
1523                 ineligible_locals.insert(remove);
1524                 assignments[remove] = Ineligible(None);
1525                 trace!("removing local {:?} due to conflict with {:?}", remove, other);
1526             }
1527         }
1528
1529         // Count the number of variants in use. If only one of them, then it is
1530         // impossible to overlap any locals in our layout. In this case it's
1531         // always better to make the remaining locals ineligible, so we can
1532         // lay them out with the other locals in the prefix and eliminate
1533         // unnecessary padding bytes.
1534         {
1535             let mut used_variants = BitSet::new_empty(info.variant_fields.len());
1536             for assignment in &assignments {
1537                 if let Assigned(idx) = assignment {
1538                     used_variants.insert(*idx);
1539                 }
1540             }
1541             if used_variants.count() < 2 {
1542                 for assignment in assignments.iter_mut() {
1543                     *assignment = Ineligible(None);
1544                 }
1545                 ineligible_locals.insert_all();
1546             }
1547         }
1548
1549         // Write down the order of our locals that will be promoted to the prefix.
1550         {
1551             for (idx, local) in ineligible_locals.iter().enumerate() {
1552                 assignments[local] = Ineligible(Some(idx as u32));
1553             }
1554         }
1555         debug!("generator saved local assignments: {:?}", assignments);
1556
1557         (ineligible_locals, assignments)
1558     }
1559
1560     /// Compute the full generator layout.
1561     fn generator_layout(
1562         &self,
1563         ty: Ty<'tcx>,
1564         def_id: hir::def_id::DefId,
1565         substs: SubstsRef<'tcx>,
1566     ) -> Result<&'tcx Layout, LayoutError<'tcx>> {
1567         use SavedLocalEligibility::*;
1568         let tcx = self.tcx;
1569         let subst_field = |ty: Ty<'tcx>| ty.subst(tcx, substs);
1570
1571         let info = match tcx.generator_layout(def_id) {
1572             None => return Err(LayoutError::Unknown(ty)),
1573             Some(info) => info,
1574         };
1575         let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info);
1576
1577         // Build a prefix layout, including "promoting" all ineligible
1578         // locals as part of the prefix. We compute the layout of all of
1579         // these fields at once to get optimal packing.
1580         let tag_index = substs.as_generator().prefix_tys().count();
1581
1582         // `info.variant_fields` already accounts for the reserved variants, so no need to add them.
1583         let max_discr = (info.variant_fields.len() - 1) as u128;
1584         let discr_int = Integer::fit_unsigned(max_discr);
1585         let discr_int_ty = discr_int.to_ty(tcx, false);
1586         let tag = Scalar {
1587             value: Primitive::Int(discr_int, false),
1588             valid_range: WrappingRange { start: 0, end: max_discr },
1589         };
1590         let tag_layout = self.tcx.intern_layout(Layout::scalar(self, tag));
1591         let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout };
1592
1593         let promoted_layouts = ineligible_locals
1594             .iter()
1595             .map(|local| subst_field(info.field_tys[local]))
1596             .map(|ty| tcx.mk_maybe_uninit(ty))
1597             .map(|ty| self.layout_of(ty));
1598         let prefix_layouts = substs
1599             .as_generator()
1600             .prefix_tys()
1601             .map(|ty| self.layout_of(ty))
1602             .chain(iter::once(Ok(tag_layout)))
1603             .chain(promoted_layouts)
1604             .collect::<Result<Vec<_>, _>>()?;
1605         let prefix = self.univariant_uninterned(
1606             ty,
1607             &prefix_layouts,
1608             &ReprOptions::default(),
1609             StructKind::AlwaysSized,
1610         )?;
1611
1612         let (prefix_size, prefix_align) = (prefix.size, prefix.align);
1613
1614         // Split the prefix layout into the "outer" fields (upvars and
1615         // discriminant) and the "promoted" fields. Promoted fields will
1616         // get included in each variant that requested them in
1617         // GeneratorLayout.
1618         debug!("prefix = {:#?}", prefix);
1619         let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
1620             FieldsShape::Arbitrary { mut offsets, memory_index } => {
1621                 let mut inverse_memory_index = invert_mapping(&memory_index);
1622
1623                 // "a" (`0..b_start`) and "b" (`b_start..`) correspond to
1624                 // "outer" and "promoted" fields respectively.
1625                 let b_start = (tag_index + 1) as u32;
1626                 let offsets_b = offsets.split_off(b_start as usize);
1627                 let offsets_a = offsets;
1628
1629                 // Disentangle the "a" and "b" components of `inverse_memory_index`
1630                 // by preserving the order but keeping only one disjoint "half" each.
1631                 // FIXME(eddyb) build a better abstraction for permutations, if possible.
1632                 let inverse_memory_index_b: Vec<_> =
1633                     inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect();
1634                 inverse_memory_index.retain(|&i| i < b_start);
1635                 let inverse_memory_index_a = inverse_memory_index;
1636
1637                 // Since `inverse_memory_index_{a,b}` each only refer to their
1638                 // respective fields, they can be safely inverted
1639                 let memory_index_a = invert_mapping(&inverse_memory_index_a);
1640                 let memory_index_b = invert_mapping(&inverse_memory_index_b);
1641
1642                 let outer_fields =
1643                     FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
1644                 (outer_fields, offsets_b, memory_index_b)
1645             }
1646             _ => bug!(),
1647         };
1648
1649         let mut size = prefix.size;
1650         let mut align = prefix.align;
1651         let variants = info
1652             .variant_fields
1653             .iter_enumerated()
1654             .map(|(index, variant_fields)| {
1655                 // Only include overlap-eligible fields when we compute our variant layout.
1656                 let variant_only_tys = variant_fields
1657                     .iter()
1658                     .filter(|local| match assignments[**local] {
1659                         Unassigned => bug!(),
1660                         Assigned(v) if v == index => true,
1661                         Assigned(_) => bug!("assignment does not match variant"),
1662                         Ineligible(_) => false,
1663                     })
1664                     .map(|local| subst_field(info.field_tys[*local]));
1665
1666                 let mut variant = self.univariant_uninterned(
1667                     ty,
1668                     &variant_only_tys
1669                         .map(|ty| self.layout_of(ty))
1670                         .collect::<Result<Vec<_>, _>>()?,
1671                     &ReprOptions::default(),
1672                     StructKind::Prefixed(prefix_size, prefix_align.abi),
1673                 )?;
1674                 variant.variants = Variants::Single { index };
1675
1676                 let (offsets, memory_index) = match variant.fields {
1677                     FieldsShape::Arbitrary { offsets, memory_index } => (offsets, memory_index),
1678                     _ => bug!(),
1679                 };
1680
1681                 // Now, stitch the promoted and variant-only fields back together in
1682                 // the order they are mentioned by our GeneratorLayout.
1683                 // Because we only use some subset (that can differ between variants)
1684                 // of the promoted fields, we can't just pick those elements of the
1685                 // `promoted_memory_index` (as we'd end up with gaps).
1686                 // So instead, we build an "inverse memory_index", as if all of the
1687                 // promoted fields were being used, but leave the elements not in the
1688                 // subset as `INVALID_FIELD_IDX`, which we can filter out later to
1689                 // obtain a valid (bijective) mapping.
1690                 const INVALID_FIELD_IDX: u32 = !0;
1691                 let mut combined_inverse_memory_index =
1692                     vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()];
1693                 let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
1694                 let combined_offsets = variant_fields
1695                     .iter()
1696                     .enumerate()
1697                     .map(|(i, local)| {
1698                         let (offset, memory_index) = match assignments[*local] {
1699                             Unassigned => bug!(),
1700                             Assigned(_) => {
1701                                 let (offset, memory_index) =
1702                                     offsets_and_memory_index.next().unwrap();
1703                                 (offset, promoted_memory_index.len() as u32 + memory_index)
1704                             }
1705                             Ineligible(field_idx) => {
1706                                 let field_idx = field_idx.unwrap() as usize;
1707                                 (promoted_offsets[field_idx], promoted_memory_index[field_idx])
1708                             }
1709                         };
1710                         combined_inverse_memory_index[memory_index as usize] = i as u32;
1711                         offset
1712                     })
1713                     .collect();
1714
1715                 // Remove the unused slots and invert the mapping to obtain the
1716                 // combined `memory_index` (also see previous comment).
1717                 combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX);
1718                 let combined_memory_index = invert_mapping(&combined_inverse_memory_index);
1719
1720                 variant.fields = FieldsShape::Arbitrary {
1721                     offsets: combined_offsets,
1722                     memory_index: combined_memory_index,
1723                 };
1724
1725                 size = size.max(variant.size);
1726                 align = align.max(variant.align);
1727                 Ok(variant)
1728             })
1729             .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
1730
1731         size = size.align_to(align.abi);
1732
1733         let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited())
1734         {
1735             Abi::Uninhabited
1736         } else {
1737             Abi::Aggregate { sized: true }
1738         };
1739
1740         let layout = tcx.intern_layout(Layout {
1741             variants: Variants::Multiple {
1742                 tag,
1743                 tag_encoding: TagEncoding::Direct,
1744                 tag_field: tag_index,
1745                 variants,
1746             },
1747             fields: outer_fields,
1748             abi,
1749             largest_niche: prefix.largest_niche,
1750             size,
1751             align,
1752         });
1753         debug!("generator layout ({:?}): {:#?}", ty, layout);
1754         Ok(layout)
1755     }
1756
1757     /// This is invoked by the `layout_of` query to record the final
1758     /// layout of each type.
1759     #[inline(always)]
1760     fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) {
1761         // If we are running with `-Zprint-type-sizes`, maybe record layouts
1762         // for dumping later.
1763         if self.tcx.sess.opts.debugging_opts.print_type_sizes {
1764             self.record_layout_for_printing_outlined(layout)
1765         }
1766     }
1767
1768     fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) {
1769         // Ignore layouts that are done with non-empty environments or
1770         // non-monomorphic layouts, as the user only wants to see the stuff
1771         // resulting from the final codegen session.
1772         if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() {
1773             return;
1774         }
1775
1776         // (delay format until we actually need it)
1777         let record = |kind, packed, opt_discr_size, variants| {
1778             let type_desc = format!("{:?}", layout.ty);
1779             self.tcx.sess.code_stats.record_type_size(
1780                 kind,
1781                 type_desc,
1782                 layout.align.abi,
1783                 layout.size,
1784                 packed,
1785                 opt_discr_size,
1786                 variants,
1787             );
1788         };
1789
1790         let adt_def = match *layout.ty.kind() {
1791             ty::Adt(ref adt_def, _) => {
1792                 debug!("print-type-size t: `{:?}` process adt", layout.ty);
1793                 adt_def
1794             }
1795
1796             ty::Closure(..) => {
1797                 debug!("print-type-size t: `{:?}` record closure", layout.ty);
1798                 record(DataTypeKind::Closure, false, None, vec![]);
1799                 return;
1800             }
1801
1802             _ => {
1803                 debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
1804                 return;
1805             }
1806         };
1807
1808         let adt_kind = adt_def.adt_kind();
1809         let adt_packed = adt_def.repr.pack.is_some();
1810
1811         let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
1812             let mut min_size = Size::ZERO;
1813             let field_info: Vec<_> = flds
1814                 .iter()
1815                 .enumerate()
1816                 .map(|(i, &name)| {
1817                     let field_layout = layout.field(self, i);
1818                     let offset = layout.fields.offset(i);
1819                     let field_end = offset + field_layout.size;
1820                     if min_size < field_end {
1821                         min_size = field_end;
1822                     }
1823                     FieldInfo {
1824                         name: name.to_string(),
1825                         offset: offset.bytes(),
1826                         size: field_layout.size.bytes(),
1827                         align: field_layout.align.abi.bytes(),
1828                     }
1829                 })
1830                 .collect();
1831
1832             VariantInfo {
1833                 name: n.map(|n| n.to_string()),
1834                 kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
1835                 align: layout.align.abi.bytes(),
1836                 size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
1837                 fields: field_info,
1838             }
1839         };
1840
1841         match layout.variants {
1842             Variants::Single { index } => {
1843                 if !adt_def.variants.is_empty() && layout.fields != FieldsShape::Primitive {
1844                     debug!(
1845                         "print-type-size `{:#?}` variant {}",
1846                         layout, adt_def.variants[index].name
1847                     );
1848                     let variant_def = &adt_def.variants[index];
1849                     let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
1850                     record(
1851                         adt_kind.into(),
1852                         adt_packed,
1853                         None,
1854                         vec![build_variant_info(Some(variant_def.name), &fields, layout)],
1855                     );
1856                 } else {
1857                     // (This case arises for *empty* enums; so give it
1858                     // zero variants.)
1859                     record(adt_kind.into(), adt_packed, None, vec![]);
1860                 }
1861             }
1862
1863             Variants::Multiple { tag, ref tag_encoding, .. } => {
1864                 debug!(
1865                     "print-type-size `{:#?}` adt general variants def {}",
1866                     layout.ty,
1867                     adt_def.variants.len()
1868                 );
1869                 let variant_infos: Vec<_> = adt_def
1870                     .variants
1871                     .iter_enumerated()
1872                     .map(|(i, variant_def)| {
1873                         let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
1874                         build_variant_info(
1875                             Some(variant_def.name),
1876                             &fields,
1877                             layout.for_variant(self, i),
1878                         )
1879                     })
1880                     .collect();
1881                 record(
1882                     adt_kind.into(),
1883                     adt_packed,
1884                     match tag_encoding {
1885                         TagEncoding::Direct => Some(tag.value.size(self)),
1886                         _ => None,
1887                     },
1888                     variant_infos,
1889                 );
1890             }
1891         }
1892     }
1893 }
1894
1895 /// Type size "skeleton", i.e., the only information determining a type's size.
1896 /// While this is conservative, (aside from constant sizes, only pointers,
1897 /// newtypes thereof and null pointer optimized enums are allowed), it is
1898 /// enough to statically check common use cases of transmute.
1899 #[derive(Copy, Clone, Debug)]
1900 pub enum SizeSkeleton<'tcx> {
1901     /// Any statically computable Layout.
1902     Known(Size),
1903
1904     /// A potentially-fat pointer.
1905     Pointer {
1906         /// If true, this pointer is never null.
1907         non_zero: bool,
1908         /// The type which determines the unsized metadata, if any,
1909         /// of this pointer. Either a type parameter or a projection
1910         /// depending on one, with regions erased.
1911         tail: Ty<'tcx>,
1912     },
1913 }
1914
1915 impl<'tcx> SizeSkeleton<'tcx> {
1916     pub fn compute(
1917         ty: Ty<'tcx>,
1918         tcx: TyCtxt<'tcx>,
1919         param_env: ty::ParamEnv<'tcx>,
1920     ) -> Result<SizeSkeleton<'tcx>, LayoutError<'tcx>> {
1921         debug_assert!(!ty.has_infer_types_or_consts());
1922
1923         // First try computing a static layout.
1924         let err = match tcx.layout_of(param_env.and(ty)) {
1925             Ok(layout) => {
1926                 return Ok(SizeSkeleton::Known(layout.size));
1927             }
1928             Err(err) => err,
1929         };
1930
1931         match *ty.kind() {
1932             ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
1933                 let non_zero = !ty.is_unsafe_ptr();
1934                 let tail = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
1935                 match tail.kind() {
1936                     ty::Param(_) | ty::Projection(_) => {
1937                         debug_assert!(tail.has_param_types_or_consts());
1938                         Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) })
1939                     }
1940                     _ => bug!(
1941                         "SizeSkeleton::compute({}): layout errored ({}), yet \
1942                               tail `{}` is not a type parameter or a projection",
1943                         ty,
1944                         err,
1945                         tail
1946                     ),
1947                 }
1948             }
1949
1950             ty::Adt(def, substs) => {
1951                 // Only newtypes and enums w/ nullable pointer optimization.
1952                 if def.is_union() || def.variants.is_empty() || def.variants.len() > 2 {
1953                     return Err(err);
1954                 }
1955
1956                 // Get a zero-sized variant or a pointer newtype.
1957                 let zero_or_ptr_variant = |i| {
1958                     let i = VariantIdx::new(i);
1959                     let fields = def.variants[i]
1960                         .fields
1961                         .iter()
1962                         .map(|field| SizeSkeleton::compute(field.ty(tcx, substs), tcx, param_env));
1963                     let mut ptr = None;
1964                     for field in fields {
1965                         let field = field?;
1966                         match field {
1967                             SizeSkeleton::Known(size) => {
1968                                 if size.bytes() > 0 {
1969                                     return Err(err);
1970                                 }
1971                             }
1972                             SizeSkeleton::Pointer { .. } => {
1973                                 if ptr.is_some() {
1974                                     return Err(err);
1975                                 }
1976                                 ptr = Some(field);
1977                             }
1978                         }
1979                     }
1980                     Ok(ptr)
1981                 };
1982
1983                 let v0 = zero_or_ptr_variant(0)?;
1984                 // Newtype.
1985                 if def.variants.len() == 1 {
1986                     if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 {
1987                         return Ok(SizeSkeleton::Pointer {
1988                             non_zero: non_zero
1989                                 || match tcx.layout_scalar_valid_range(def.did) {
1990                                     (Bound::Included(start), Bound::Unbounded) => start > 0,
1991                                     (Bound::Included(start), Bound::Included(end)) => {
1992                                         0 < start && start < end
1993                                     }
1994                                     _ => false,
1995                                 },
1996                             tail,
1997                         });
1998                     } else {
1999                         return Err(err);
2000                     }
2001                 }
2002
2003                 let v1 = zero_or_ptr_variant(1)?;
2004                 // Nullable pointer enum optimization.
2005                 match (v0, v1) {
2006                     (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None)
2007                     | (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => {
2008                         Ok(SizeSkeleton::Pointer { non_zero: false, tail })
2009                     }
2010                     _ => Err(err),
2011                 }
2012             }
2013
2014             ty::Projection(_) | ty::Opaque(..) => {
2015                 let normalized = tcx.normalize_erasing_regions(param_env, ty);
2016                 if ty == normalized {
2017                     Err(err)
2018                 } else {
2019                     SizeSkeleton::compute(normalized, tcx, param_env)
2020                 }
2021             }
2022
2023             _ => Err(err),
2024         }
2025     }
2026
2027     pub fn same_size(self, other: SizeSkeleton<'_>) -> bool {
2028         match (self, other) {
2029             (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b,
2030             (SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => {
2031                 a == b
2032             }
2033             _ => false,
2034         }
2035     }
2036 }
2037
2038 pub trait HasTyCtxt<'tcx>: HasDataLayout {
2039     fn tcx(&self) -> TyCtxt<'tcx>;
2040 }
2041
2042 pub trait HasParamEnv<'tcx> {
2043     fn param_env(&self) -> ty::ParamEnv<'tcx>;
2044 }
2045
2046 impl<'tcx> HasDataLayout for TyCtxt<'tcx> {
2047     #[inline]
2048     fn data_layout(&self) -> &TargetDataLayout {
2049         &self.data_layout
2050     }
2051 }
2052
2053 impl<'tcx> HasTargetSpec for TyCtxt<'tcx> {
2054     fn target_spec(&self) -> &Target {
2055         &self.sess.target
2056     }
2057 }
2058
2059 impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> {
2060     #[inline]
2061     fn tcx(&self) -> TyCtxt<'tcx> {
2062         *self
2063     }
2064 }
2065
2066 impl<'tcx> HasDataLayout for ty::query::TyCtxtAt<'tcx> {
2067     #[inline]
2068     fn data_layout(&self) -> &TargetDataLayout {
2069         &self.data_layout
2070     }
2071 }
2072
2073 impl<'tcx> HasTargetSpec for ty::query::TyCtxtAt<'tcx> {
2074     fn target_spec(&self) -> &Target {
2075         &self.sess.target
2076     }
2077 }
2078
2079 impl<'tcx> HasTyCtxt<'tcx> for ty::query::TyCtxtAt<'tcx> {
2080     #[inline]
2081     fn tcx(&self) -> TyCtxt<'tcx> {
2082         **self
2083     }
2084 }
2085
2086 impl<'tcx, C> HasParamEnv<'tcx> for LayoutCx<'tcx, C> {
2087     fn param_env(&self) -> ty::ParamEnv<'tcx> {
2088         self.param_env
2089     }
2090 }
2091
2092 impl<'tcx, T: HasDataLayout> HasDataLayout for LayoutCx<'tcx, T> {
2093     fn data_layout(&self) -> &TargetDataLayout {
2094         self.tcx.data_layout()
2095     }
2096 }
2097
2098 impl<'tcx, T: HasTargetSpec> HasTargetSpec for LayoutCx<'tcx, T> {
2099     fn target_spec(&self) -> &Target {
2100         self.tcx.target_spec()
2101     }
2102 }
2103
2104 impl<'tcx, T: HasTyCtxt<'tcx>> HasTyCtxt<'tcx> for LayoutCx<'tcx, T> {
2105     fn tcx(&self) -> TyCtxt<'tcx> {
2106         self.tcx.tcx()
2107     }
2108 }
2109
2110 pub trait MaybeResult<T> {
2111     type Error;
2112
2113     fn from(x: Result<T, Self::Error>) -> Self;
2114     fn to_result(self) -> Result<T, Self::Error>;
2115 }
2116
2117 impl<T> MaybeResult<T> for T {
2118     type Error = !;
2119
2120     fn from(Ok(x): Result<T, Self::Error>) -> Self {
2121         x
2122     }
2123     fn to_result(self) -> Result<T, Self::Error> {
2124         Ok(self)
2125     }
2126 }
2127
2128 impl<T, E> MaybeResult<T> for Result<T, E> {
2129     type Error = E;
2130
2131     fn from(x: Result<T, Self::Error>) -> Self {
2132         x
2133     }
2134     fn to_result(self) -> Result<T, Self::Error> {
2135         self
2136     }
2137 }
2138
2139 pub type TyAndLayout<'tcx> = rustc_target::abi::TyAndLayout<'tcx, Ty<'tcx>>;
2140
2141 /// Trait for contexts that want to be able to compute layouts of types.
2142 /// This automatically gives access to `LayoutOf`, through a blanket `impl`.
2143 pub trait LayoutOfHelpers<'tcx>: HasDataLayout + HasTyCtxt<'tcx> + HasParamEnv<'tcx> {
2144     /// The `TyAndLayout`-wrapping type (or `TyAndLayout` itself), which will be
2145     /// returned from `layout_of` (see also `handle_layout_err`).
2146     type LayoutOfResult: MaybeResult<TyAndLayout<'tcx>>;
2147
2148     /// `Span` to use for `tcx.at(span)`, from `layout_of`.
2149     // FIXME(eddyb) perhaps make this mandatory to get contexts to track it better?
2150     #[inline]
2151     fn layout_tcx_at_span(&self) -> Span {
2152         DUMMY_SP
2153     }
2154
2155     /// Helper used for `layout_of`, to adapt `tcx.layout_of(...)` into a
2156     /// `Self::LayoutOfResult` (which does not need to be a `Result<...>`).
2157     ///
2158     /// Most `impl`s, which propagate `LayoutError`s, should simply return `err`,
2159     /// but this hook allows e.g. codegen to return only `TyAndLayout` from its
2160     /// `cx.layout_of(...)`, without any `Result<...>` around it to deal with
2161     /// (and any `LayoutError`s are turned into fatal errors or ICEs).
2162     fn handle_layout_err(
2163         &self,
2164         err: LayoutError<'tcx>,
2165         span: Span,
2166         ty: Ty<'tcx>,
2167     ) -> <Self::LayoutOfResult as MaybeResult<TyAndLayout<'tcx>>>::Error;
2168 }
2169
2170 /// Blanket extension trait for contexts that can compute layouts of types.
2171 pub trait LayoutOf<'tcx>: LayoutOfHelpers<'tcx> {
2172     /// Computes the layout of a type. Note that this implicitly
2173     /// executes in "reveal all" mode, and will normalize the input type.
2174     #[inline]
2175     fn layout_of(&self, ty: Ty<'tcx>) -> Self::LayoutOfResult {
2176         self.spanned_layout_of(ty, DUMMY_SP)
2177     }
2178
2179     /// Computes the layout of a type, at `span`. Note that this implicitly
2180     /// executes in "reveal all" mode, and will normalize the input type.
2181     // FIXME(eddyb) avoid passing information like this, and instead add more
2182     // `TyCtxt::at`-like APIs to be able to do e.g. `cx.at(span).layout_of(ty)`.
2183     #[inline]
2184     fn spanned_layout_of(&self, ty: Ty<'tcx>, span: Span) -> Self::LayoutOfResult {
2185         let span = if !span.is_dummy() { span } else { self.layout_tcx_at_span() };
2186         let tcx = self.tcx().at(span);
2187
2188         MaybeResult::from(
2189             tcx.layout_of(self.param_env().and(ty))
2190                 .map_err(|err| self.handle_layout_err(err, span, ty)),
2191         )
2192     }
2193 }
2194
2195 impl<'tcx, C: LayoutOfHelpers<'tcx>> LayoutOf<'tcx> for C {}
2196
2197 impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx, TyCtxt<'tcx>> {
2198     type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
2199
2200     #[inline]
2201     fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
2202         err
2203     }
2204 }
2205
2206 impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx, ty::query::TyCtxtAt<'tcx>> {
2207     type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
2208
2209     #[inline]
2210     fn layout_tcx_at_span(&self) -> Span {
2211         self.tcx.span
2212     }
2213
2214     #[inline]
2215     fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
2216         err
2217     }
2218 }
2219
2220 impl<'tcx, C> TyAbiInterface<'tcx, C> for Ty<'tcx>
2221 where
2222     C: HasTyCtxt<'tcx> + HasParamEnv<'tcx>,
2223 {
2224     fn ty_and_layout_for_variant(
2225         this: TyAndLayout<'tcx>,
2226         cx: &C,
2227         variant_index: VariantIdx,
2228     ) -> TyAndLayout<'tcx> {
2229         let layout = match this.variants {
2230             Variants::Single { index }
2231                 // If all variants but one are uninhabited, the variant layout is the enum layout.
2232                 if index == variant_index &&
2233                 // Don't confuse variants of uninhabited enums with the enum itself.
2234                 // For more details see https://github.com/rust-lang/rust/issues/69763.
2235                 this.fields != FieldsShape::Primitive =>
2236             {
2237                 this.layout
2238             }
2239
2240             Variants::Single { index } => {
2241                 let tcx = cx.tcx();
2242                 let param_env = cx.param_env();
2243
2244                 // Deny calling for_variant more than once for non-Single enums.
2245                 if let Ok(original_layout) = tcx.layout_of(param_env.and(this.ty)) {
2246                     assert_eq!(original_layout.variants, Variants::Single { index });
2247                 }
2248
2249                 let fields = match this.ty.kind() {
2250                     ty::Adt(def, _) if def.variants.is_empty() =>
2251                         bug!("for_variant called on zero-variant enum"),
2252                     ty::Adt(def, _) => def.variants[variant_index].fields.len(),
2253                     _ => bug!(),
2254                 };
2255                 tcx.intern_layout(Layout {
2256                     variants: Variants::Single { index: variant_index },
2257                     fields: match NonZeroUsize::new(fields) {
2258                         Some(fields) => FieldsShape::Union(fields),
2259                         None => FieldsShape::Arbitrary { offsets: vec![], memory_index: vec![] },
2260                     },
2261                     abi: Abi::Uninhabited,
2262                     largest_niche: None,
2263                     align: tcx.data_layout.i8_align,
2264                     size: Size::ZERO,
2265                 })
2266             }
2267
2268             Variants::Multiple { ref variants, .. } => &variants[variant_index],
2269         };
2270
2271         assert_eq!(layout.variants, Variants::Single { index: variant_index });
2272
2273         TyAndLayout { ty: this.ty, layout }
2274     }
2275
2276     fn ty_and_layout_field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> TyAndLayout<'tcx> {
2277         enum TyMaybeWithLayout<'tcx> {
2278             Ty(Ty<'tcx>),
2279             TyAndLayout(TyAndLayout<'tcx>),
2280         }
2281
2282         fn field_ty_or_layout<'tcx>(
2283             this: TyAndLayout<'tcx>,
2284             cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
2285             i: usize,
2286         ) -> TyMaybeWithLayout<'tcx> {
2287             let tcx = cx.tcx();
2288             let tag_layout = |tag: Scalar| -> TyAndLayout<'tcx> {
2289                 let layout = Layout::scalar(cx, tag);
2290                 TyAndLayout { layout: tcx.intern_layout(layout), ty: tag.value.to_ty(tcx) }
2291             };
2292
2293             match *this.ty.kind() {
2294                 ty::Bool
2295                 | ty::Char
2296                 | ty::Int(_)
2297                 | ty::Uint(_)
2298                 | ty::Float(_)
2299                 | ty::FnPtr(_)
2300                 | ty::Never
2301                 | ty::FnDef(..)
2302                 | ty::GeneratorWitness(..)
2303                 | ty::Foreign(..)
2304                 | ty::Dynamic(..) => bug!("TyAndLayout::field({:?}): not applicable", this),
2305
2306                 // Potentially-fat pointers.
2307                 ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
2308                     assert!(i < this.fields.count());
2309
2310                     // Reuse the fat `*T` type as its own thin pointer data field.
2311                     // This provides information about, e.g., DST struct pointees
2312                     // (which may have no non-DST form), and will work as long
2313                     // as the `Abi` or `FieldsShape` is checked by users.
2314                     if i == 0 {
2315                         let nil = tcx.mk_unit();
2316                         let unit_ptr_ty = if this.ty.is_unsafe_ptr() {
2317                             tcx.mk_mut_ptr(nil)
2318                         } else {
2319                             tcx.mk_mut_ref(tcx.lifetimes.re_static, nil)
2320                         };
2321
2322                         // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing
2323                         // the `Result` should always work because the type is
2324                         // always either `*mut ()` or `&'static mut ()`.
2325                         return TyMaybeWithLayout::TyAndLayout(TyAndLayout {
2326                             ty: this.ty,
2327                             ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
2328                         });
2329                     }
2330
2331                     match tcx.struct_tail_erasing_lifetimes(pointee, cx.param_env()).kind() {
2332                         ty::Slice(_) | ty::Str => TyMaybeWithLayout::Ty(tcx.types.usize),
2333                         ty::Dynamic(_, _) => {
2334                             TyMaybeWithLayout::Ty(tcx.mk_imm_ref(
2335                                 tcx.lifetimes.re_static,
2336                                 tcx.mk_array(tcx.types.usize, 3),
2337                             ))
2338                             /* FIXME: use actual fn pointers
2339                             Warning: naively computing the number of entries in the
2340                             vtable by counting the methods on the trait + methods on
2341                             all parent traits does not work, because some methods can
2342                             be not object safe and thus excluded from the vtable.
2343                             Increase this counter if you tried to implement this but
2344                             failed to do it without duplicating a lot of code from
2345                             other places in the compiler: 2
2346                             tcx.mk_tup(&[
2347                                 tcx.mk_array(tcx.types.usize, 3),
2348                                 tcx.mk_array(Option<fn()>),
2349                             ])
2350                             */
2351                         }
2352                         _ => bug!("TyAndLayout::field({:?}): not applicable", this),
2353                     }
2354                 }
2355
2356                 // Arrays and slices.
2357                 ty::Array(element, _) | ty::Slice(element) => TyMaybeWithLayout::Ty(element),
2358                 ty::Str => TyMaybeWithLayout::Ty(tcx.types.u8),
2359
2360                 // Tuples, generators and closures.
2361                 ty::Closure(_, ref substs) => field_ty_or_layout(
2362                     TyAndLayout { ty: substs.as_closure().tupled_upvars_ty(), ..this },
2363                     cx,
2364                     i,
2365                 ),
2366
2367                 ty::Generator(def_id, ref substs, _) => match this.variants {
2368                     Variants::Single { index } => TyMaybeWithLayout::Ty(
2369                         substs
2370                             .as_generator()
2371                             .state_tys(def_id, tcx)
2372                             .nth(index.as_usize())
2373                             .unwrap()
2374                             .nth(i)
2375                             .unwrap(),
2376                     ),
2377                     Variants::Multiple { tag, tag_field, .. } => {
2378                         if i == tag_field {
2379                             return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
2380                         }
2381                         TyMaybeWithLayout::Ty(substs.as_generator().prefix_tys().nth(i).unwrap())
2382                     }
2383                 },
2384
2385                 ty::Tuple(tys) => TyMaybeWithLayout::Ty(tys[i].expect_ty()),
2386
2387                 // ADTs.
2388                 ty::Adt(def, substs) => {
2389                     match this.variants {
2390                         Variants::Single { index } => {
2391                             TyMaybeWithLayout::Ty(def.variants[index].fields[i].ty(tcx, substs))
2392                         }
2393
2394                         // Discriminant field for enums (where applicable).
2395                         Variants::Multiple { tag, .. } => {
2396                             assert_eq!(i, 0);
2397                             return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
2398                         }
2399                     }
2400                 }
2401
2402                 ty::Projection(_)
2403                 | ty::Bound(..)
2404                 | ty::Placeholder(..)
2405                 | ty::Opaque(..)
2406                 | ty::Param(_)
2407                 | ty::Infer(_)
2408                 | ty::Error(_) => bug!("TyAndLayout::field: unexpected type `{}`", this.ty),
2409             }
2410         }
2411
2412         match field_ty_or_layout(this, cx, i) {
2413             TyMaybeWithLayout::Ty(field_ty) => {
2414                 cx.tcx().layout_of(cx.param_env().and(field_ty)).unwrap_or_else(|e| {
2415                     bug!(
2416                         "failed to get layout for `{}`: {},\n\
2417                          despite it being a field (#{}) of an existing layout: {:#?}",
2418                         field_ty,
2419                         e,
2420                         i,
2421                         this
2422                     )
2423                 })
2424             }
2425             TyMaybeWithLayout::TyAndLayout(field_layout) => field_layout,
2426         }
2427     }
2428
2429     fn ty_and_layout_pointee_info_at(
2430         this: TyAndLayout<'tcx>,
2431         cx: &C,
2432         offset: Size,
2433     ) -> Option<PointeeInfo> {
2434         let tcx = cx.tcx();
2435         let param_env = cx.param_env();
2436
2437         let addr_space_of_ty = |ty: Ty<'tcx>| {
2438             if ty.is_fn() { cx.data_layout().instruction_address_space } else { AddressSpace::DATA }
2439         };
2440
2441         let pointee_info = match *this.ty.kind() {
2442             ty::RawPtr(mt) if offset.bytes() == 0 => {
2443                 tcx.layout_of(param_env.and(mt.ty)).ok().map(|layout| PointeeInfo {
2444                     size: layout.size,
2445                     align: layout.align.abi,
2446                     safe: None,
2447                     address_space: addr_space_of_ty(mt.ty),
2448                 })
2449             }
2450             ty::FnPtr(fn_sig) if offset.bytes() == 0 => {
2451                 tcx.layout_of(param_env.and(tcx.mk_fn_ptr(fn_sig))).ok().map(|layout| PointeeInfo {
2452                     size: layout.size,
2453                     align: layout.align.abi,
2454                     safe: None,
2455                     address_space: cx.data_layout().instruction_address_space,
2456                 })
2457             }
2458             ty::Ref(_, ty, mt) if offset.bytes() == 0 => {
2459                 let address_space = addr_space_of_ty(ty);
2460                 let kind = if tcx.sess.opts.optimize == OptLevel::No {
2461                     // Use conservative pointer kind if not optimizing. This saves us the
2462                     // Freeze/Unpin queries, and can save time in the codegen backend (noalias
2463                     // attributes in LLVM have compile-time cost even in unoptimized builds).
2464                     PointerKind::Shared
2465                 } else {
2466                     match mt {
2467                         hir::Mutability::Not => {
2468                             if ty.is_freeze(tcx.at(DUMMY_SP), cx.param_env()) {
2469                                 PointerKind::Frozen
2470                             } else {
2471                                 PointerKind::Shared
2472                             }
2473                         }
2474                         hir::Mutability::Mut => {
2475                             // References to self-referential structures should not be considered
2476                             // noalias, as another pointer to the structure can be obtained, that
2477                             // is not based-on the original reference. We consider all !Unpin
2478                             // types to be potentially self-referential here.
2479                             if ty.is_unpin(tcx.at(DUMMY_SP), cx.param_env()) {
2480                                 PointerKind::UniqueBorrowed
2481                             } else {
2482                                 PointerKind::Shared
2483                             }
2484                         }
2485                     }
2486                 };
2487
2488                 tcx.layout_of(param_env.and(ty)).ok().map(|layout| PointeeInfo {
2489                     size: layout.size,
2490                     align: layout.align.abi,
2491                     safe: Some(kind),
2492                     address_space,
2493                 })
2494             }
2495
2496             _ => {
2497                 let mut data_variant = match this.variants {
2498                     // Within the discriminant field, only the niche itself is
2499                     // always initialized, so we only check for a pointer at its
2500                     // offset.
2501                     //
2502                     // If the niche is a pointer, it's either valid (according
2503                     // to its type), or null (which the niche field's scalar
2504                     // validity range encodes).  This allows using
2505                     // `dereferenceable_or_null` for e.g., `Option<&T>`, and
2506                     // this will continue to work as long as we don't start
2507                     // using more niches than just null (e.g., the first page of
2508                     // the address space, or unaligned pointers).
2509                     Variants::Multiple {
2510                         tag_encoding: TagEncoding::Niche { dataful_variant, .. },
2511                         tag_field,
2512                         ..
2513                     } if this.fields.offset(tag_field) == offset => {
2514                         Some(this.for_variant(cx, dataful_variant))
2515                     }
2516                     _ => Some(this),
2517                 };
2518
2519                 if let Some(variant) = data_variant {
2520                     // We're not interested in any unions.
2521                     if let FieldsShape::Union(_) = variant.fields {
2522                         data_variant = None;
2523                     }
2524                 }
2525
2526                 let mut result = None;
2527
2528                 if let Some(variant) = data_variant {
2529                     let ptr_end = offset + Pointer.size(cx);
2530                     for i in 0..variant.fields.count() {
2531                         let field_start = variant.fields.offset(i);
2532                         if field_start <= offset {
2533                             let field = variant.field(cx, i);
2534                             result = field.to_result().ok().and_then(|field| {
2535                                 if ptr_end <= field_start + field.size {
2536                                     // We found the right field, look inside it.
2537                                     let field_info =
2538                                         field.pointee_info_at(cx, offset - field_start);
2539                                     field_info
2540                                 } else {
2541                                     None
2542                                 }
2543                             });
2544                             if result.is_some() {
2545                                 break;
2546                             }
2547                         }
2548                     }
2549                 }
2550
2551                 // FIXME(eddyb) This should be for `ptr::Unique<T>`, not `Box<T>`.
2552                 if let Some(ref mut pointee) = result {
2553                     if let ty::Adt(def, _) = this.ty.kind() {
2554                         if def.is_box() && offset.bytes() == 0 {
2555                             pointee.safe = Some(PointerKind::UniqueOwned);
2556                         }
2557                     }
2558                 }
2559
2560                 result
2561             }
2562         };
2563
2564         debug!(
2565             "pointee_info_at (offset={:?}, type kind: {:?}) => {:?}",
2566             offset,
2567             this.ty.kind(),
2568             pointee_info
2569         );
2570
2571         pointee_info
2572     }
2573 }
2574
2575 impl<'tcx> ty::Instance<'tcx> {
2576     // NOTE(eddyb) this is private to avoid using it from outside of
2577     // `fn_abi_of_instance` - any other uses are either too high-level
2578     // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead),
2579     // or should go through `FnAbi` instead, to avoid losing any
2580     // adjustments `fn_abi_of_instance` might be performing.
2581     fn fn_sig_for_fn_abi(
2582         &self,
2583         tcx: TyCtxt<'tcx>,
2584         param_env: ty::ParamEnv<'tcx>,
2585     ) -> ty::PolyFnSig<'tcx> {
2586         let ty = self.ty(tcx, param_env);
2587         match *ty.kind() {
2588             ty::FnDef(..) => {
2589                 // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering
2590                 // parameters unused if they show up in the signature, but not in the `mir::Body`
2591                 // (i.e. due to being inside a projection that got normalized, see
2592                 // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping
2593                 // track of a polymorphization `ParamEnv` to allow normalizing later.
2594                 let mut sig = match *ty.kind() {
2595                     ty::FnDef(def_id, substs) => tcx
2596                         .normalize_erasing_regions(tcx.param_env(def_id), tcx.fn_sig(def_id))
2597                         .subst(tcx, substs),
2598                     _ => unreachable!(),
2599                 };
2600
2601                 if let ty::InstanceDef::VtableShim(..) = self.def {
2602                     // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`.
2603                     sig = sig.map_bound(|mut sig| {
2604                         let mut inputs_and_output = sig.inputs_and_output.to_vec();
2605                         inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]);
2606                         sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output);
2607                         sig
2608                     });
2609                 }
2610                 sig
2611             }
2612             ty::Closure(def_id, substs) => {
2613                 let sig = substs.as_closure().sig();
2614
2615                 let bound_vars = tcx.mk_bound_variable_kinds(
2616                     sig.bound_vars()
2617                         .iter()
2618                         .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
2619                 );
2620                 let br = ty::BoundRegion {
2621                     var: ty::BoundVar::from_usize(bound_vars.len() - 1),
2622                     kind: ty::BoundRegionKind::BrEnv,
2623                 };
2624                 let env_region = ty::ReLateBound(ty::INNERMOST, br);
2625                 let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap();
2626
2627                 let sig = sig.skip_binder();
2628                 ty::Binder::bind_with_vars(
2629                     tcx.mk_fn_sig(
2630                         iter::once(env_ty).chain(sig.inputs().iter().cloned()),
2631                         sig.output(),
2632                         sig.c_variadic,
2633                         sig.unsafety,
2634                         sig.abi,
2635                     ),
2636                     bound_vars,
2637                 )
2638             }
2639             ty::Generator(_, substs, _) => {
2640                 let sig = substs.as_generator().poly_sig();
2641
2642                 let bound_vars = tcx.mk_bound_variable_kinds(
2643                     sig.bound_vars()
2644                         .iter()
2645                         .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
2646                 );
2647                 let br = ty::BoundRegion {
2648                     var: ty::BoundVar::from_usize(bound_vars.len() - 1),
2649                     kind: ty::BoundRegionKind::BrEnv,
2650                 };
2651                 let env_region = ty::ReLateBound(ty::INNERMOST, br);
2652                 let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);
2653
2654                 let pin_did = tcx.require_lang_item(LangItem::Pin, None);
2655                 let pin_adt_ref = tcx.adt_def(pin_did);
2656                 let pin_substs = tcx.intern_substs(&[env_ty.into()]);
2657                 let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs);
2658
2659                 let sig = sig.skip_binder();
2660                 let state_did = tcx.require_lang_item(LangItem::GeneratorState, None);
2661                 let state_adt_ref = tcx.adt_def(state_did);
2662                 let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]);
2663                 let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
2664                 ty::Binder::bind_with_vars(
2665                     tcx.mk_fn_sig(
2666                         [env_ty, sig.resume_ty].iter(),
2667                         &ret_ty,
2668                         false,
2669                         hir::Unsafety::Normal,
2670                         rustc_target::spec::abi::Abi::Rust,
2671                     ),
2672                     bound_vars,
2673                 )
2674             }
2675             _ => bug!("unexpected type {:?} in Instance::fn_sig", ty),
2676         }
2677     }
2678 }
2679
2680 /// Calculates whether a function's ABI can unwind or not.
2681 ///
2682 /// This takes two primary parameters:
2683 ///
2684 /// * `codegen_fn_attr_flags` - these are flags calculated as part of the
2685 ///   codegen attrs for a defined function. For function pointers this set of
2686 ///   flags is the empty set. This is only applicable for Rust-defined
2687 ///   functions, and generally isn't needed except for small optimizations where
2688 ///   we try to say a function which otherwise might look like it could unwind
2689 ///   doesn't actually unwind (such as for intrinsics and such).
2690 ///
2691 /// * `abi` - this is the ABI that the function is defined with. This is the
2692 ///   primary factor for determining whether a function can unwind or not.
2693 ///
2694 /// Note that in this case unwinding is not necessarily panicking in Rust. Rust
2695 /// panics are implemented with unwinds on most platform (when
2696 /// `-Cpanic=unwind`), but this also accounts for `-Cpanic=abort` build modes.
2697 /// Notably unwinding is disallowed for more non-Rust ABIs unless it's
2698 /// specifically in the name (e.g. `"C-unwind"`). Unwinding within each ABI is
2699 /// defined for each ABI individually, but it always corresponds to some form of
2700 /// stack-based unwinding (the exact mechanism of which varies
2701 /// platform-by-platform).
2702 ///
2703 /// Rust functions are classfied whether or not they can unwind based on the
2704 /// active "panic strategy". In other words Rust functions are considered to
2705 /// unwind in `-Cpanic=unwind` mode and cannot unwind in `-Cpanic=abort` mode.
2706 /// Note that Rust supports intermingling panic=abort and panic=unwind code, but
2707 /// only if the final panic mode is panic=abort. In this scenario any code
2708 /// previously compiled assuming that a function can unwind is still correct, it
2709 /// just never happens to actually unwind at runtime.
2710 ///
2711 /// This function's answer to whether or not a function can unwind is quite
2712 /// impactful throughout the compiler. This affects things like:
2713 ///
2714 /// * Calling a function which can't unwind means codegen simply ignores any
2715 ///   associated unwinding cleanup.
2716 /// * Calling a function which can unwind from a function which can't unwind
2717 ///   causes the `abort_unwinding_calls` MIR pass to insert a landing pad that
2718 ///   aborts the process.
2719 /// * This affects whether functions have the LLVM `nounwind` attribute, which
2720 ///   affects various optimizations and codegen.
2721 ///
2722 /// FIXME: this is actually buggy with respect to Rust functions. Rust functions
2723 /// compiled with `-Cpanic=unwind` and referenced from another crate compiled
2724 /// with `-Cpanic=abort` will look like they can't unwind when in fact they
2725 /// might (from a foreign exception or similar).
2726 #[inline]
2727 pub fn fn_can_unwind<'tcx>(
2728     tcx: TyCtxt<'tcx>,
2729     codegen_fn_attr_flags: CodegenFnAttrFlags,
2730     abi: SpecAbi,
2731 ) -> bool {
2732     // Special attribute for functions which can't unwind.
2733     if codegen_fn_attr_flags.contains(CodegenFnAttrFlags::NEVER_UNWIND) {
2734         return false;
2735     }
2736
2737     // Otherwise if this isn't special then unwinding is generally determined by
2738     // the ABI of the itself. ABIs like `C` have variants which also
2739     // specifically allow unwinding (`C-unwind`), but not all platform-specific
2740     // ABIs have such an option. Otherwise the only other thing here is Rust
2741     // itself, and those ABIs are determined by the panic strategy configured
2742     // for this compilation.
2743     //
2744     // Unfortunately at this time there's also another caveat. Rust [RFC
2745     // 2945][rfc] has been accepted and is in the process of being implemented
2746     // and stabilized. In this interim state we need to deal with historical
2747     // rustc behavior as well as plan for future rustc behavior.
2748     //
2749     // Historically functions declared with `extern "C"` were marked at the
2750     // codegen layer as `nounwind`. This happened regardless of `panic=unwind`
2751     // or not. This is UB for functions in `panic=unwind` mode that then
2752     // actually panic and unwind. Note that this behavior is true for both
2753     // externally declared functions as well as Rust-defined function.
2754     //
2755     // To fix this UB rustc would like to change in the future to catch unwinds
2756     // from function calls that may unwind within a Rust-defined `extern "C"`
2757     // function and forcibly abort the process, thereby respecting the
2758     // `nounwind` attribut emitted for `extern "C"`. This behavior change isn't
2759     // ready to roll out, so determining whether or not the `C` family of ABIs
2760     // unwinds is conditional not only on their definition but also whether the
2761     // `#![feature(c_unwind)]` feature gate is active.
2762     //
2763     // Note that this means that unlike historical compilers rustc now, by
2764     // default, unconditionally thinks that the `C` ABI may unwind. This will
2765     // prevent some optimization opportunities, however, so we try to scope this
2766     // change and only assume that `C` unwinds with `panic=unwind` (as opposed
2767     // to `panic=abort`).
2768     //
2769     // Eventually the check against `c_unwind` here will ideally get removed and
2770     // this'll be a little cleaner as it'll be a straightforward check of the
2771     // ABI.
2772     //
2773     // [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md
2774     use SpecAbi::*;
2775     match abi {
2776         C { unwind } | Stdcall { unwind } | System { unwind } | Thiscall { unwind } => {
2777             unwind
2778                 || (!tcx.features().c_unwind && tcx.sess.panic_strategy() == PanicStrategy::Unwind)
2779         }
2780         Cdecl
2781         | Fastcall
2782         | Vectorcall
2783         | Aapcs
2784         | Win64
2785         | SysV64
2786         | PtxKernel
2787         | Msp430Interrupt
2788         | X86Interrupt
2789         | AmdGpuKernel
2790         | EfiApi
2791         | AvrInterrupt
2792         | AvrNonBlockingInterrupt
2793         | CCmseNonSecureCall
2794         | Wasm
2795         | RustIntrinsic
2796         | PlatformIntrinsic
2797         | Unadjusted => false,
2798         Rust | RustCall => tcx.sess.panic_strategy() == PanicStrategy::Unwind,
2799     }
2800 }
2801
2802 #[inline]
2803 pub fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv {
2804     use rustc_target::spec::abi::Abi::*;
2805     match tcx.sess.target.adjust_abi(abi) {
2806         RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust,
2807
2808         // It's the ABI's job to select this, not ours.
2809         System { .. } => bug!("system abi should be selected elsewhere"),
2810         EfiApi => bug!("eficall abi should be selected elsewhere"),
2811
2812         Stdcall { .. } => Conv::X86Stdcall,
2813         Fastcall => Conv::X86Fastcall,
2814         Vectorcall => Conv::X86VectorCall,
2815         Thiscall { .. } => Conv::X86ThisCall,
2816         C { .. } => Conv::C,
2817         Unadjusted => Conv::C,
2818         Win64 => Conv::X86_64Win64,
2819         SysV64 => Conv::X86_64SysV,
2820         Aapcs => Conv::ArmAapcs,
2821         CCmseNonSecureCall => Conv::CCmseNonSecureCall,
2822         PtxKernel => Conv::PtxKernel,
2823         Msp430Interrupt => Conv::Msp430Intr,
2824         X86Interrupt => Conv::X86Intr,
2825         AmdGpuKernel => Conv::AmdGpuKernel,
2826         AvrInterrupt => Conv::AvrInterrupt,
2827         AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt,
2828         Wasm => Conv::C,
2829
2830         // These API constants ought to be more specific...
2831         Cdecl => Conv::C,
2832     }
2833 }
2834
2835 /// Error produced by attempting to compute or adjust a `FnAbi`.
2836 #[derive(Clone, Debug, HashStable)]
2837 pub enum FnAbiError<'tcx> {
2838     /// Error produced by a `layout_of` call, while computing `FnAbi` initially.
2839     Layout(LayoutError<'tcx>),
2840
2841     /// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI.
2842     AdjustForForeignAbi(call::AdjustForForeignAbiError),
2843 }
2844
2845 impl<'tcx> From<LayoutError<'tcx>> for FnAbiError<'tcx> {
2846     fn from(err: LayoutError<'tcx>) -> Self {
2847         Self::Layout(err)
2848     }
2849 }
2850
2851 impl From<call::AdjustForForeignAbiError> for FnAbiError<'_> {
2852     fn from(err: call::AdjustForForeignAbiError) -> Self {
2853         Self::AdjustForForeignAbi(err)
2854     }
2855 }
2856
2857 impl<'tcx> fmt::Display for FnAbiError<'tcx> {
2858     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2859         match self {
2860             Self::Layout(err) => err.fmt(f),
2861             Self::AdjustForForeignAbi(err) => err.fmt(f),
2862         }
2863     }
2864 }
2865
2866 // FIXME(eddyb) maybe use something like this for an unified `fn_abi_of`, not
2867 // just for error handling.
2868 #[derive(Debug)]
2869 pub enum FnAbiRequest<'tcx> {
2870     OfFnPtr { sig: ty::PolyFnSig<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
2871     OfInstance { instance: ty::Instance<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
2872 }
2873
2874 /// Trait for contexts that want to be able to compute `FnAbi`s.
2875 /// This automatically gives access to `FnAbiOf`, through a blanket `impl`.
2876 pub trait FnAbiOfHelpers<'tcx>: LayoutOfHelpers<'tcx> {
2877     /// The `&FnAbi`-wrapping type (or `&FnAbi` itself), which will be
2878     /// returned from `fn_abi_of_*` (see also `handle_fn_abi_err`).
2879     type FnAbiOfResult: MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>;
2880
2881     /// Helper used for `fn_abi_of_*`, to adapt `tcx.fn_abi_of_*(...)` into a
2882     /// `Self::FnAbiOfResult` (which does not need to be a `Result<...>`).
2883     ///
2884     /// Most `impl`s, which propagate `FnAbiError`s, should simply return `err`,
2885     /// but this hook allows e.g. codegen to return only `&FnAbi` from its
2886     /// `cx.fn_abi_of_*(...)`, without any `Result<...>` around it to deal with
2887     /// (and any `FnAbiError`s are turned into fatal errors or ICEs).
2888     fn handle_fn_abi_err(
2889         &self,
2890         err: FnAbiError<'tcx>,
2891         span: Span,
2892         fn_abi_request: FnAbiRequest<'tcx>,
2893     ) -> <Self::FnAbiOfResult as MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>>::Error;
2894 }
2895
2896 /// Blanket extension trait for contexts that can compute `FnAbi`s.
2897 pub trait FnAbiOf<'tcx>: FnAbiOfHelpers<'tcx> {
2898     /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers.
2899     ///
2900     /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance`
2901     /// instead, where the instance is an `InstanceDef::Virtual`.
2902     #[inline]
2903     fn fn_abi_of_fn_ptr(
2904         &self,
2905         sig: ty::PolyFnSig<'tcx>,
2906         extra_args: &'tcx ty::List<Ty<'tcx>>,
2907     ) -> Self::FnAbiOfResult {
2908         // FIXME(eddyb) get a better `span` here.
2909         let span = self.layout_tcx_at_span();
2910         let tcx = self.tcx().at(span);
2911
2912         MaybeResult::from(tcx.fn_abi_of_fn_ptr(self.param_env().and((sig, extra_args))).map_err(
2913             |err| self.handle_fn_abi_err(err, span, FnAbiRequest::OfFnPtr { sig, extra_args }),
2914         ))
2915     }
2916
2917     /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for
2918     /// direct calls to an `fn`.
2919     ///
2920     /// NB: that includes virtual calls, which are represented by "direct calls"
2921     /// to an `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`).
2922     #[inline]
2923     fn fn_abi_of_instance(
2924         &self,
2925         instance: ty::Instance<'tcx>,
2926         extra_args: &'tcx ty::List<Ty<'tcx>>,
2927     ) -> Self::FnAbiOfResult {
2928         // FIXME(eddyb) get a better `span` here.
2929         let span = self.layout_tcx_at_span();
2930         let tcx = self.tcx().at(span);
2931
2932         MaybeResult::from(
2933             tcx.fn_abi_of_instance(self.param_env().and((instance, extra_args))).map_err(|err| {
2934                 // HACK(eddyb) at least for definitions of/calls to `Instance`s,
2935                 // we can get some kind of span even if one wasn't provided.
2936                 // However, we don't do this early in order to avoid calling
2937                 // `def_span` unconditionally (which may have a perf penalty).
2938                 let span = if !span.is_dummy() { span } else { tcx.def_span(instance.def_id()) };
2939                 self.handle_fn_abi_err(err, span, FnAbiRequest::OfInstance { instance, extra_args })
2940             }),
2941         )
2942     }
2943 }
2944
2945 impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {}
2946
2947 fn fn_abi_of_fn_ptr<'tcx>(
2948     tcx: TyCtxt<'tcx>,
2949     query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
2950 ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
2951     let (param_env, (sig, extra_args)) = query.into_parts();
2952
2953     LayoutCx { tcx, param_env }.fn_abi_new_uncached(
2954         sig,
2955         extra_args,
2956         None,
2957         CodegenFnAttrFlags::empty(),
2958         false,
2959     )
2960 }
2961
2962 fn fn_abi_of_instance<'tcx>(
2963     tcx: TyCtxt<'tcx>,
2964     query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
2965 ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
2966     let (param_env, (instance, extra_args)) = query.into_parts();
2967
2968     let sig = instance.fn_sig_for_fn_abi(tcx, param_env);
2969
2970     let caller_location = if instance.def.requires_caller_location(tcx) {
2971         Some(tcx.caller_location_ty())
2972     } else {
2973         None
2974     };
2975
2976     let attrs = tcx.codegen_fn_attrs(instance.def_id()).flags;
2977
2978     LayoutCx { tcx, param_env }.fn_abi_new_uncached(
2979         sig,
2980         extra_args,
2981         caller_location,
2982         attrs,
2983         matches!(instance.def, ty::InstanceDef::Virtual(..)),
2984     )
2985 }
2986
2987 impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
2988     // FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
2989     // arguments of this method, into a separate `struct`.
2990     fn fn_abi_new_uncached(
2991         &self,
2992         sig: ty::PolyFnSig<'tcx>,
2993         extra_args: &[Ty<'tcx>],
2994         caller_location: Option<Ty<'tcx>>,
2995         codegen_fn_attr_flags: CodegenFnAttrFlags,
2996         // FIXME(eddyb) replace this with something typed, like an `enum`.
2997         force_thin_self_ptr: bool,
2998     ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
2999         debug!("fn_abi_new_uncached({:?}, {:?})", sig, extra_args);
3000
3001         let sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, sig);
3002
3003         let conv = conv_from_spec_abi(self.tcx(), sig.abi);
3004
3005         let mut inputs = sig.inputs();
3006         let extra_args = if sig.abi == RustCall {
3007             assert!(!sig.c_variadic && extra_args.is_empty());
3008
3009             if let Some(input) = sig.inputs().last() {
3010                 if let ty::Tuple(tupled_arguments) = input.kind() {
3011                     inputs = &sig.inputs()[0..sig.inputs().len() - 1];
3012                     tupled_arguments.iter().map(|k| k.expect_ty()).collect()
3013                 } else {
3014                     bug!(
3015                         "argument to function with \"rust-call\" ABI \
3016                             is not a tuple"
3017                     );
3018                 }
3019             } else {
3020                 bug!(
3021                     "argument to function with \"rust-call\" ABI \
3022                         is not a tuple"
3023                 );
3024             }
3025         } else {
3026             assert!(sig.c_variadic || extra_args.is_empty());
3027             extra_args.to_vec()
3028         };
3029
3030         let target = &self.tcx.sess.target;
3031         let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc");
3032         let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu";
3033         let linux_s390x_gnu_like =
3034             target.os == "linux" && target.arch == "s390x" && target_env_gnu_like;
3035         let linux_sparc64_gnu_like =
3036             target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like;
3037         let linux_powerpc_gnu_like =
3038             target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like;
3039         use SpecAbi::*;
3040         let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall);
3041
3042         // Handle safe Rust thin and fat pointers.
3043         let adjust_for_rust_scalar = |attrs: &mut ArgAttributes,
3044                                       scalar: Scalar,
3045                                       layout: TyAndLayout<'tcx>,
3046                                       offset: Size,
3047                                       is_return: bool| {
3048             // Booleans are always an i1 that needs to be zero-extended.
3049             if scalar.is_bool() {
3050                 attrs.ext(ArgExtension::Zext);
3051                 return;
3052             }
3053
3054             // Only pointer types handled below.
3055             if scalar.value != Pointer {
3056                 return;
3057             }
3058
3059             if !scalar.valid_range.contains(0) {
3060                 attrs.set(ArgAttribute::NonNull);
3061             }
3062
3063             if let Some(pointee) = layout.pointee_info_at(self, offset) {
3064                 if let Some(kind) = pointee.safe {
3065                     attrs.pointee_align = Some(pointee.align);
3066
3067                     // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable
3068                     // for the entire duration of the function as they can be deallocated
3069                     // at any time. Set their valid size to 0.
3070                     attrs.pointee_size = match kind {
3071                         PointerKind::UniqueOwned => Size::ZERO,
3072                         _ => pointee.size,
3073                     };
3074
3075                     // `Box` pointer parameters never alias because ownership is transferred
3076                     // `&mut` pointer parameters never alias other parameters,
3077                     // or mutable global data
3078                     //
3079                     // `&T` where `T` contains no `UnsafeCell<U>` is immutable,
3080                     // and can be marked as both `readonly` and `noalias`, as
3081                     // LLVM's definition of `noalias` is based solely on memory
3082                     // dependencies rather than pointer equality
3083                     //
3084                     // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute
3085                     // for UniqueBorrowed arguments, so that the codegen backend can decide whether
3086                     // or not to actually emit the attribute. It can also be controlled with the
3087                     // `-Zmutable-noalias` debugging option.
3088                     let no_alias = match kind {
3089                         PointerKind::Shared | PointerKind::UniqueBorrowed => false,
3090                         PointerKind::UniqueOwned => true,
3091                         PointerKind::Frozen => !is_return,
3092                     };
3093                     if no_alias {
3094                         attrs.set(ArgAttribute::NoAlias);
3095                     }
3096
3097                     if kind == PointerKind::Frozen && !is_return {
3098                         attrs.set(ArgAttribute::ReadOnly);
3099                     }
3100
3101                     if kind == PointerKind::UniqueBorrowed && !is_return {
3102                         attrs.set(ArgAttribute::NoAliasMutRef);
3103                     }
3104                 }
3105             }
3106         };
3107
3108         let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, FnAbiError<'tcx>> {
3109             let is_return = arg_idx.is_none();
3110
3111             let layout = self.layout_of(ty)?;
3112             let layout = if force_thin_self_ptr && arg_idx == Some(0) {
3113                 // Don't pass the vtable, it's not an argument of the virtual fn.
3114                 // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait`
3115                 // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen
3116                 make_thin_self_ptr(self, layout)
3117             } else {
3118                 layout
3119             };
3120
3121             let mut arg = ArgAbi::new(self, layout, |layout, scalar, offset| {
3122                 let mut attrs = ArgAttributes::new();
3123                 adjust_for_rust_scalar(&mut attrs, scalar, *layout, offset, is_return);
3124                 attrs
3125             });
3126
3127             if arg.layout.is_zst() {
3128                 // For some forsaken reason, x86_64-pc-windows-gnu
3129                 // doesn't ignore zero-sized struct arguments.
3130                 // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}.
3131                 if is_return
3132                     || rust_abi
3133                     || (!win_x64_gnu
3134                         && !linux_s390x_gnu_like
3135                         && !linux_sparc64_gnu_like
3136                         && !linux_powerpc_gnu_like)
3137                 {
3138                     arg.mode = PassMode::Ignore;
3139                 }
3140             }
3141
3142             Ok(arg)
3143         };
3144
3145         let mut fn_abi = FnAbi {
3146             ret: arg_of(sig.output(), None)?,
3147             args: inputs
3148                 .iter()
3149                 .cloned()
3150                 .chain(extra_args)
3151                 .chain(caller_location)
3152                 .enumerate()
3153                 .map(|(i, ty)| arg_of(ty, Some(i)))
3154                 .collect::<Result<_, _>>()?,
3155             c_variadic: sig.c_variadic,
3156             fixed_count: inputs.len(),
3157             conv,
3158             can_unwind: fn_can_unwind(self.tcx(), codegen_fn_attr_flags, sig.abi),
3159         };
3160         self.fn_abi_adjust_for_abi(&mut fn_abi, sig.abi)?;
3161         debug!("fn_abi_new_uncached = {:?}", fn_abi);
3162         Ok(self.tcx.arena.alloc(fn_abi))
3163     }
3164
3165     fn fn_abi_adjust_for_abi(
3166         &self,
3167         fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>,
3168         abi: SpecAbi,
3169     ) -> Result<(), FnAbiError<'tcx>> {
3170         if abi == SpecAbi::Unadjusted {
3171             return Ok(());
3172         }
3173
3174         if abi == SpecAbi::Rust
3175             || abi == SpecAbi::RustCall
3176             || abi == SpecAbi::RustIntrinsic
3177             || abi == SpecAbi::PlatformIntrinsic
3178         {
3179             let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| {
3180                 if arg.is_ignore() {
3181                     return;
3182                 }
3183
3184                 match arg.layout.abi {
3185                     Abi::Aggregate { .. } => {}
3186
3187                     // This is a fun case! The gist of what this is doing is
3188                     // that we want callers and callees to always agree on the
3189                     // ABI of how they pass SIMD arguments. If we were to *not*
3190                     // make these arguments indirect then they'd be immediates
3191                     // in LLVM, which means that they'd used whatever the
3192                     // appropriate ABI is for the callee and the caller. That
3193                     // means, for example, if the caller doesn't have AVX
3194                     // enabled but the callee does, then passing an AVX argument
3195                     // across this boundary would cause corrupt data to show up.
3196                     //
3197                     // This problem is fixed by unconditionally passing SIMD
3198                     // arguments through memory between callers and callees
3199                     // which should get them all to agree on ABI regardless of
3200                     // target feature sets. Some more information about this
3201                     // issue can be found in #44367.
3202                     //
3203                     // Note that the platform intrinsic ABI is exempt here as
3204                     // that's how we connect up to LLVM and it's unstable
3205                     // anyway, we control all calls to it in libstd.
3206                     Abi::Vector { .. }
3207                         if abi != SpecAbi::PlatformIntrinsic
3208                             && self.tcx.sess.target.simd_types_indirect =>
3209                     {
3210                         arg.make_indirect();
3211                         return;
3212                     }
3213
3214                     _ => return,
3215                 }
3216
3217                 // Pass and return structures up to 2 pointers in size by value, matching `ScalarPair`.
3218                 // LLVM will usually pass these in 2 registers, which is more efficient than by-ref.
3219                 let max_by_val_size = Pointer.size(self) * 2;
3220                 let size = arg.layout.size;
3221
3222                 if arg.layout.is_unsized() || size > max_by_val_size {
3223                     arg.make_indirect();
3224                 } else {
3225                     // We want to pass small aggregates as immediates, but using
3226                     // a LLVM aggregate type for this leads to bad optimizations,
3227                     // so we pick an appropriately sized integer type instead.
3228                     arg.cast_to(Reg { kind: RegKind::Integer, size });
3229                 }
3230             };
3231             fixup(&mut fn_abi.ret);
3232             for arg in &mut fn_abi.args {
3233                 fixup(arg);
3234             }
3235         } else {
3236             fn_abi.adjust_for_foreign_abi(self, abi)?;
3237         }
3238
3239         Ok(())
3240     }
3241 }
3242
3243 fn make_thin_self_ptr<'tcx>(
3244     cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
3245     layout: TyAndLayout<'tcx>,
3246 ) -> TyAndLayout<'tcx> {
3247     let tcx = cx.tcx();
3248     let fat_pointer_ty = if layout.is_unsized() {
3249         // unsized `self` is passed as a pointer to `self`
3250         // FIXME (mikeyhew) change this to use &own if it is ever added to the language
3251         tcx.mk_mut_ptr(layout.ty)
3252     } else {
3253         match layout.abi {
3254             Abi::ScalarPair(..) => (),
3255             _ => bug!("receiver type has unsupported layout: {:?}", layout),
3256         }
3257
3258         // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self>
3259         // with a Scalar (not ScalarPair) ABI. This is a hack that is understood
3260         // elsewhere in the compiler as a method on a `dyn Trait`.
3261         // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we
3262         // get a built-in pointer type
3263         let mut fat_pointer_layout = layout;
3264         'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr()
3265             && !fat_pointer_layout.ty.is_region_ptr()
3266         {
3267             for i in 0..fat_pointer_layout.fields.count() {
3268                 let field_layout = fat_pointer_layout.field(cx, i);
3269
3270                 if !field_layout.is_zst() {
3271                     fat_pointer_layout = field_layout;
3272                     continue 'descend_newtypes;
3273                 }
3274             }
3275
3276             bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout);
3277         }
3278
3279         fat_pointer_layout.ty
3280     };
3281
3282     // we now have a type like `*mut RcBox<dyn Trait>`
3283     // change its layout to that of `*mut ()`, a thin pointer, but keep the same type
3284     // this is understood as a special case elsewhere in the compiler
3285     let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit());
3286
3287     TyAndLayout {
3288         ty: fat_pointer_ty,
3289
3290         // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result`
3291         // should always work because the type is always `*mut ()`.
3292         ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
3293     }
3294 }