]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
Rollup merge of #98576 - lcnr:region-stuff-cool-beans, r=jackh726
[rust.git] / compiler / rustc_lint / src / types.rs
1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::Applicability;
6 use rustc_hir as hir;
7 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
8 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
9 use rustc_middle::ty::subst::SubstsRef;
10 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeFoldable, TypeSuperFoldable};
11 use rustc_span::source_map;
12 use rustc_span::symbol::sym;
13 use rustc_span::{Span, Symbol, DUMMY_SP};
14 use rustc_target::abi::{Abi, WrappingRange};
15 use rustc_target::abi::{Integer, TagEncoding, Variants};
16 use rustc_target::spec::abi::Abi as SpecAbi;
17
18 use std::cmp;
19 use std::iter;
20 use std::ops::ControlFlow;
21 use tracing::debug;
22
23 declare_lint! {
24     /// The `unused_comparisons` lint detects comparisons made useless by
25     /// limits of the types involved.
26     ///
27     /// ### Example
28     ///
29     /// ```rust
30     /// fn foo(x: u8) {
31     ///     x >= 0;
32     /// }
33     /// ```
34     ///
35     /// {{produces}}
36     ///
37     /// ### Explanation
38     ///
39     /// A useless comparison may indicate a mistake, and should be fixed or
40     /// removed.
41     UNUSED_COMPARISONS,
42     Warn,
43     "comparisons made useless by limits of the types involved"
44 }
45
46 declare_lint! {
47     /// The `overflowing_literals` lint detects literal out of range for its
48     /// type.
49     ///
50     /// ### Example
51     ///
52     /// ```rust,compile_fail
53     /// let x: u8 = 1000;
54     /// ```
55     ///
56     /// {{produces}}
57     ///
58     /// ### Explanation
59     ///
60     /// It is usually a mistake to use a literal that overflows the type where
61     /// it is used. Either use a literal that is within range, or change the
62     /// type to be within the range of the literal.
63     OVERFLOWING_LITERALS,
64     Deny,
65     "literal out of range for its type"
66 }
67
68 declare_lint! {
69     /// The `variant_size_differences` lint detects enums with widely varying
70     /// variant sizes.
71     ///
72     /// ### Example
73     ///
74     /// ```rust,compile_fail
75     /// #![deny(variant_size_differences)]
76     /// enum En {
77     ///     V0(u8),
78     ///     VBig([u8; 1024]),
79     /// }
80     /// ```
81     ///
82     /// {{produces}}
83     ///
84     /// ### Explanation
85     ///
86     /// It can be a mistake to add a variant to an enum that is much larger
87     /// than the other variants, bloating the overall size required for all
88     /// variants. This can impact performance and memory usage. This is
89     /// triggered if one variant is more than 3 times larger than the
90     /// second-largest variant.
91     ///
92     /// Consider placing the large variant's contents on the heap (for example
93     /// via [`Box`]) to keep the overall size of the enum itself down.
94     ///
95     /// This lint is "allow" by default because it can be noisy, and may not be
96     /// an actual problem. Decisions about this should be guided with
97     /// profiling and benchmarking.
98     ///
99     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
100     VARIANT_SIZE_DIFFERENCES,
101     Allow,
102     "detects enums with widely varying variant sizes"
103 }
104
105 #[derive(Copy, Clone)]
106 pub struct TypeLimits {
107     /// Id of the last visited negated expression
108     negated_expr_id: Option<hir::HirId>,
109 }
110
111 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
112
113 impl TypeLimits {
114     pub fn new() -> TypeLimits {
115         TypeLimits { negated_expr_id: None }
116     }
117 }
118
119 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
120 /// Returns `true` iff the lint was overridden.
121 fn lint_overflowing_range_endpoint<'tcx>(
122     cx: &LateContext<'tcx>,
123     lit: &hir::Lit,
124     lit_val: u128,
125     max: u128,
126     expr: &'tcx hir::Expr<'tcx>,
127     parent_expr: &'tcx hir::Expr<'tcx>,
128     ty: &str,
129 ) -> bool {
130     // We only want to handle exclusive (`..`) ranges,
131     // which are represented as `ExprKind::Struct`.
132     let mut overwritten = false;
133     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
134         if eps.len() != 2 {
135             return false;
136         }
137         // We can suggest using an inclusive range
138         // (`..=`) instead only if it is the `end` that is
139         // overflowing and only by 1.
140         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
141             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
142                 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
143                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
144                     use ast::{LitIntType, LitKind};
145                     // We need to preserve the literal's suffix,
146                     // as it may determine typing information.
147                     let suffix = match lit.node {
148                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
149                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
150                         LitKind::Int(_, LitIntType::Unsuffixed) => "",
151                         _ => bug!(),
152                     };
153                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
154                     err.span_suggestion(
155                         parent_expr.span,
156                         "use an inclusive range instead",
157                         suggestion,
158                         Applicability::MachineApplicable,
159                     );
160                     err.emit();
161                     overwritten = true;
162                 }
163             });
164         }
165     }
166     overwritten
167 }
168
169 // For `isize` & `usize`, be conservative with the warnings, so that the
170 // warnings are consistent between 32- and 64-bit platforms.
171 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
172     match int_ty {
173         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
174         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
175         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
176         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
177         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
178         ty::IntTy::I128 => (i128::MIN, i128::MAX),
179     }
180 }
181
182 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
183     let max = match uint_ty {
184         ty::UintTy::Usize => u64::MAX.into(),
185         ty::UintTy::U8 => u8::MAX.into(),
186         ty::UintTy::U16 => u16::MAX.into(),
187         ty::UintTy::U32 => u32::MAX.into(),
188         ty::UintTy::U64 => u64::MAX.into(),
189         ty::UintTy::U128 => u128::MAX,
190     };
191     (0, max)
192 }
193
194 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
195     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
196     let firstch = src.chars().next()?;
197
198     if firstch == '0' {
199         match src.chars().nth(1) {
200             Some('x' | 'b') => return Some(src),
201             _ => return None,
202         }
203     }
204
205     None
206 }
207
208 fn report_bin_hex_error(
209     cx: &LateContext<'_>,
210     expr: &hir::Expr<'_>,
211     ty: attr::IntType,
212     repr_str: String,
213     val: u128,
214     negative: bool,
215 ) {
216     let size = Integer::from_attr(&cx.tcx, ty).size();
217     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
218         let (t, actually) = match ty {
219             attr::IntType::SignedInt(t) => {
220                 let actually = if negative {
221                     -(size.sign_extend(val) as i128)
222                 } else {
223                     size.sign_extend(val) as i128
224                 };
225                 (t.name_str(), actually.to_string())
226             }
227             attr::IntType::UnsignedInt(t) => {
228                 let actually = size.truncate(val);
229                 (t.name_str(), actually.to_string())
230             }
231         };
232         let mut err = lint.build(&format!("literal out of range for `{}`", t));
233         if negative {
234             // If the value is negative,
235             // emits a note about the value itself, apart from the literal.
236             err.note(&format!(
237                 "the literal `{}` (decimal `{}`) does not fit into \
238                  the type `{}`",
239                 repr_str, val, t
240             ));
241             err.note(&format!("and the value `-{}` will become `{}{}`", repr_str, actually, t));
242         } else {
243             err.note(&format!(
244                 "the literal `{}` (decimal `{}`) does not fit into \
245                  the type `{}` and will become `{}{}`",
246                 repr_str, val, t, actually, t
247             ));
248         }
249         if let Some(sugg_ty) =
250             get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
251         {
252             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
253                 let (sans_suffix, _) = repr_str.split_at(pos);
254                 err.span_suggestion(
255                     expr.span,
256                     &format!("consider using the type `{}` instead", sugg_ty),
257                     format!("{}{}", sans_suffix, sugg_ty),
258                     Applicability::MachineApplicable,
259                 );
260             } else {
261                 err.help(&format!("consider using the type `{}` instead", sugg_ty));
262             }
263         }
264         err.emit();
265     });
266 }
267
268 // This function finds the next fitting type and generates a suggestion string.
269 // It searches for fitting types in the following way (`X < Y`):
270 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
271 //  - `-iX` => `iY`
272 //  - `uX` => `uY`
273 //
274 // No suggestion for: `isize`, `usize`.
275 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
276     use ty::IntTy::*;
277     use ty::UintTy::*;
278     macro_rules! find_fit {
279         ($ty:expr, $val:expr, $negative:expr,
280          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
281             {
282                 let _neg = if negative { 1 } else { 0 };
283                 match $ty {
284                     $($type => {
285                         $(if !negative && val <= uint_ty_range($utypes).1 {
286                             return Some($utypes.name_str())
287                         })*
288                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
289                             return Some($itypes.name_str())
290                         })*
291                         None
292                     },)+
293                     _ => None
294                 }
295             }
296         }
297     }
298     match t.kind() {
299         ty::Int(i) => find_fit!(i, val, negative,
300                       I8 => [U8] => [I16, I32, I64, I128],
301                       I16 => [U16] => [I32, I64, I128],
302                       I32 => [U32] => [I64, I128],
303                       I64 => [U64] => [I128],
304                       I128 => [U128] => []),
305         ty::Uint(u) => find_fit!(u, val, negative,
306                       U8 => [U8, U16, U32, U64, U128] => [],
307                       U16 => [U16, U32, U64, U128] => [],
308                       U32 => [U32, U64, U128] => [],
309                       U64 => [U64, U128] => [],
310                       U128 => [U128] => []),
311         _ => None,
312     }
313 }
314
315 fn lint_int_literal<'tcx>(
316     cx: &LateContext<'tcx>,
317     type_limits: &TypeLimits,
318     e: &'tcx hir::Expr<'tcx>,
319     lit: &hir::Lit,
320     t: ty::IntTy,
321     v: u128,
322 ) {
323     let int_type = t.normalize(cx.sess().target.pointer_width);
324     let (min, max) = int_ty_range(int_type);
325     let max = max as u128;
326     let negative = type_limits.negated_expr_id == Some(e.hir_id);
327
328     // Detect literal value out of range [min, max] inclusive
329     // avoiding use of -min to prevent overflow/panic
330     if (negative && v > max + 1) || (!negative && v > max) {
331         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
332             report_bin_hex_error(
333                 cx,
334                 e,
335                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
336                 repr_str,
337                 v,
338                 negative,
339             );
340             return;
341         }
342
343         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
344         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
345             if let hir::ExprKind::Struct(..) = par_e.kind {
346                 if is_range_literal(par_e)
347                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
348                 {
349                     // The overflowing literal lint was overridden.
350                     return;
351                 }
352             }
353         }
354
355         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
356             let mut err = lint.build(&format!("literal out of range for `{}`", t.name_str()));
357             err.note(&format!(
358                 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
359                 cx.sess()
360                     .source_map()
361                     .span_to_snippet(lit.span)
362                     .expect("must get snippet from literal"),
363                 t.name_str(),
364                 min,
365                 max,
366             ));
367             if let Some(sugg_ty) =
368                 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
369             {
370                 err.help(&format!("consider using the type `{}` instead", sugg_ty));
371             }
372             err.emit();
373         });
374     }
375 }
376
377 fn lint_uint_literal<'tcx>(
378     cx: &LateContext<'tcx>,
379     e: &'tcx hir::Expr<'tcx>,
380     lit: &hir::Lit,
381     t: ty::UintTy,
382 ) {
383     let uint_type = t.normalize(cx.sess().target.pointer_width);
384     let (min, max) = uint_ty_range(uint_type);
385     let lit_val: u128 = match lit.node {
386         // _v is u8, within range by definition
387         ast::LitKind::Byte(_v) => return,
388         ast::LitKind::Int(v, _) => v,
389         _ => bug!(),
390     };
391     if lit_val < min || lit_val > max {
392         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
393         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
394             match par_e.kind {
395                 hir::ExprKind::Cast(..) => {
396                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
397                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
398                             lint.build("only `u8` can be cast into `char`")
399                                 .span_suggestion(
400                                     par_e.span,
401                                     "use a `char` literal instead",
402                                     format!("'\\u{{{:X}}}'", lit_val),
403                                     Applicability::MachineApplicable,
404                                 )
405                                 .emit();
406                         });
407                         return;
408                     }
409                 }
410                 hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
411                     let t = t.name_str();
412                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
413                         // The overflowing literal lint was overridden.
414                         return;
415                     }
416                 }
417                 _ => {}
418             }
419         }
420         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
421             report_bin_hex_error(
422                 cx,
423                 e,
424                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
425                 repr_str,
426                 lit_val,
427                 false,
428             );
429             return;
430         }
431         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
432             lint.build(&format!("literal out of range for `{}`", t.name_str()))
433                 .note(&format!(
434                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
435                     cx.sess()
436                         .source_map()
437                         .span_to_snippet(lit.span)
438                         .expect("must get snippet from literal"),
439                     t.name_str(),
440                     min,
441                     max,
442                 ))
443                 .emit();
444         });
445     }
446 }
447
448 fn lint_literal<'tcx>(
449     cx: &LateContext<'tcx>,
450     type_limits: &TypeLimits,
451     e: &'tcx hir::Expr<'tcx>,
452     lit: &hir::Lit,
453 ) {
454     match *cx.typeck_results().node_type(e.hir_id).kind() {
455         ty::Int(t) => {
456             match lit.node {
457                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
458                     lint_int_literal(cx, type_limits, e, lit, t, v)
459                 }
460                 _ => bug!(),
461             };
462         }
463         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
464         ty::Float(t) => {
465             let is_infinite = match lit.node {
466                 ast::LitKind::Float(v, _) => match t {
467                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
468                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
469                 },
470                 _ => bug!(),
471             };
472             if is_infinite == Ok(true) {
473                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
474                     lint.build(&format!("literal out of range for `{}`", t.name_str()))
475                         .note(&format!(
476                             "the literal `{}` does not fit into the type `{}` and will be converted to `{}::INFINITY`",
477                             cx.sess()
478                                 .source_map()
479                                 .span_to_snippet(lit.span)
480                                 .expect("must get snippet from literal"),
481                             t.name_str(),
482                             t.name_str(),
483                         ))
484                         .emit();
485                 });
486             }
487         }
488         _ => {}
489     }
490 }
491
492 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
493     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
494         match e.kind {
495             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
496                 // propagate negation, if the negation itself isn't negated
497                 if self.negated_expr_id != Some(e.hir_id) {
498                     self.negated_expr_id = Some(expr.hir_id);
499                 }
500             }
501             hir::ExprKind::Binary(binop, ref l, ref r) => {
502                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
503                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
504                         lint.build("comparison is useless due to type limits").emit();
505                     });
506                 }
507             }
508             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
509             _ => {}
510         };
511
512         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
513             match binop.node {
514                 hir::BinOpKind::Lt => v > min && v <= max,
515                 hir::BinOpKind::Le => v >= min && v < max,
516                 hir::BinOpKind::Gt => v >= min && v < max,
517                 hir::BinOpKind::Ge => v > min && v <= max,
518                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
519                 _ => bug!(),
520             }
521         }
522
523         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
524             source_map::respan(
525                 binop.span,
526                 match binop.node {
527                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
528                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
529                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
530                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
531                     _ => return binop,
532                 },
533             )
534         }
535
536         fn check_limits(
537             cx: &LateContext<'_>,
538             binop: hir::BinOp,
539             l: &hir::Expr<'_>,
540             r: &hir::Expr<'_>,
541         ) -> bool {
542             let (lit, expr, swap) = match (&l.kind, &r.kind) {
543                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
544                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
545                 _ => return true,
546             };
547             // Normalize the binop so that the literal is always on the RHS in
548             // the comparison
549             let norm_binop = if swap { rev_binop(binop) } else { binop };
550             match *cx.typeck_results().node_type(expr.hir_id).kind() {
551                 ty::Int(int_ty) => {
552                     let (min, max) = int_ty_range(int_ty);
553                     let lit_val: i128 = match lit.kind {
554                         hir::ExprKind::Lit(ref li) => match li.node {
555                             ast::LitKind::Int(
556                                 v,
557                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
558                             ) => v as i128,
559                             _ => return true,
560                         },
561                         _ => bug!(),
562                     };
563                     is_valid(norm_binop, lit_val, min, max)
564                 }
565                 ty::Uint(uint_ty) => {
566                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
567                     let lit_val: u128 = match lit.kind {
568                         hir::ExprKind::Lit(ref li) => match li.node {
569                             ast::LitKind::Int(v, _) => v,
570                             _ => return true,
571                         },
572                         _ => bug!(),
573                     };
574                     is_valid(norm_binop, lit_val, min, max)
575                 }
576                 _ => true,
577             }
578         }
579
580         fn is_comparison(binop: hir::BinOp) -> bool {
581             matches!(
582                 binop.node,
583                 hir::BinOpKind::Eq
584                     | hir::BinOpKind::Lt
585                     | hir::BinOpKind::Le
586                     | hir::BinOpKind::Ne
587                     | hir::BinOpKind::Ge
588                     | hir::BinOpKind::Gt
589             )
590         }
591     }
592 }
593
594 declare_lint! {
595     /// The `improper_ctypes` lint detects incorrect use of types in foreign
596     /// modules.
597     ///
598     /// ### Example
599     ///
600     /// ```rust
601     /// extern "C" {
602     ///     static STATIC: String;
603     /// }
604     /// ```
605     ///
606     /// {{produces}}
607     ///
608     /// ### Explanation
609     ///
610     /// The compiler has several checks to verify that types used in `extern`
611     /// blocks are safe and follow certain rules to ensure proper
612     /// compatibility with the foreign interfaces. This lint is issued when it
613     /// detects a probable mistake in a definition. The lint usually should
614     /// provide a description of the issue, along with possibly a hint on how
615     /// to resolve it.
616     IMPROPER_CTYPES,
617     Warn,
618     "proper use of libc types in foreign modules"
619 }
620
621 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
622
623 declare_lint! {
624     /// The `improper_ctypes_definitions` lint detects incorrect use of
625     /// [`extern` function] definitions.
626     ///
627     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
628     ///
629     /// ### Example
630     ///
631     /// ```rust
632     /// # #![allow(unused)]
633     /// pub extern "C" fn str_type(p: &str) { }
634     /// ```
635     ///
636     /// {{produces}}
637     ///
638     /// ### Explanation
639     ///
640     /// There are many parameter and return types that may be specified in an
641     /// `extern` function that are not compatible with the given ABI. This
642     /// lint is an alert that these types should not be used. The lint usually
643     /// should provide a description of the issue, along with possibly a hint
644     /// on how to resolve it.
645     IMPROPER_CTYPES_DEFINITIONS,
646     Warn,
647     "proper use of libc types in foreign item definitions"
648 }
649
650 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
651
652 #[derive(Clone, Copy)]
653 pub(crate) enum CItemKind {
654     Declaration,
655     Definition,
656 }
657
658 struct ImproperCTypesVisitor<'a, 'tcx> {
659     cx: &'a LateContext<'tcx>,
660     mode: CItemKind,
661 }
662
663 enum FfiResult<'tcx> {
664     FfiSafe,
665     FfiPhantom(Ty<'tcx>),
666     FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
667 }
668
669 pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
670     tcx: TyCtxt<'tcx>,
671     def: ty::AdtDef<'tcx>,
672 ) -> bool {
673     tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
674 }
675
676 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
677 /// field.
678 pub fn transparent_newtype_field<'a, 'tcx>(
679     tcx: TyCtxt<'tcx>,
680     variant: &'a ty::VariantDef,
681 ) -> Option<&'a ty::FieldDef> {
682     let param_env = tcx.param_env(variant.def_id);
683     variant.fields.iter().find(|field| {
684         let field_ty = tcx.type_of(field.did);
685         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
686         !is_zst
687     })
688 }
689
690 /// Is type known to be non-null?
691 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
692     let tcx = cx.tcx;
693     match ty.kind() {
694         ty::FnPtr(_) => true,
695         ty::Ref(..) => true,
696         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
697         ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
698             let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
699
700             if marked_non_null {
701                 return true;
702             }
703
704             // Types with a `#[repr(no_niche)]` attribute have their niche hidden.
705             // The attribute is used by the UnsafeCell for example (the only use so far).
706             if def.repr().hide_niche() {
707                 return false;
708             }
709
710             def.variants()
711                 .iter()
712                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
713                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
714         }
715         _ => false,
716     }
717 }
718
719 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
720 /// If the type passed in was not scalar, returns None.
721 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
722     let tcx = cx.tcx;
723     Some(match *ty.kind() {
724         ty::Adt(field_def, field_substs) => {
725             let inner_field_ty = {
726                 let first_non_zst_ty = field_def
727                     .variants()
728                     .iter()
729                     .filter_map(|v| transparent_newtype_field(cx.tcx, v));
730                 debug_assert_eq!(
731                     first_non_zst_ty.clone().count(),
732                     1,
733                     "Wrong number of fields for transparent type"
734                 );
735                 first_non_zst_ty
736                     .last()
737                     .expect("No non-zst fields in transparent type.")
738                     .ty(tcx, field_substs)
739             };
740             return get_nullable_type(cx, inner_field_ty);
741         }
742         ty::Int(ty) => tcx.mk_mach_int(ty),
743         ty::Uint(ty) => tcx.mk_mach_uint(ty),
744         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
745         // As these types are always non-null, the nullable equivalent of
746         // Option<T> of these types are their raw pointer counterparts.
747         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
748         ty::FnPtr(..) => {
749             // There is no nullable equivalent for Rust's function pointers -- you
750             // must use an Option<fn(..) -> _> to represent it.
751             ty
752         }
753
754         // We should only ever reach this case if ty_is_known_nonnull is extended
755         // to other types.
756         ref unhandled => {
757             debug!(
758                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
759                 unhandled, ty
760             );
761             return None;
762         }
763     })
764 }
765
766 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
767 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
768 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
769 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
770 /// FIXME: This duplicates code in codegen.
771 pub(crate) fn repr_nullable_ptr<'tcx>(
772     cx: &LateContext<'tcx>,
773     ty: Ty<'tcx>,
774     ckind: CItemKind,
775 ) -> Option<Ty<'tcx>> {
776     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
777     if let ty::Adt(ty_def, substs) = ty.kind() {
778         let field_ty = match &ty_def.variants().raw[..] {
779             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
780                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
781                 _ => return None,
782             },
783             _ => return None,
784         };
785
786         if !ty_is_known_nonnull(cx, field_ty, ckind) {
787             return None;
788         }
789
790         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
791         // If the computed size for the field and the enum are different, the nonnull optimization isn't
792         // being applied (and we've got a problem somewhere).
793         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
794         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
795             bug!("improper_ctypes: Option nonnull optimization not applied?");
796         }
797
798         // Return the nullable type this Option-like enum can be safely represented with.
799         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
800         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
801             match field_ty_scalar.valid_range(cx) {
802                 WrappingRange { start: 0, end }
803                     if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
804                 {
805                     return Some(get_nullable_type(cx, field_ty).unwrap());
806                 }
807                 WrappingRange { start: 1, .. } => {
808                     return Some(get_nullable_type(cx, field_ty).unwrap());
809                 }
810                 WrappingRange { start, end } => {
811                     unreachable!("Unhandled start and end range: ({}, {})", start, end)
812                 }
813             };
814         }
815     }
816     None
817 }
818
819 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
820     /// Check if the type is array and emit an unsafe type lint.
821     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
822         if let ty::Array(..) = ty.kind() {
823             self.emit_ffi_unsafe_type_lint(
824                 ty,
825                 sp,
826                 "passing raw arrays by value is not FFI-safe",
827                 Some("consider passing a pointer to the array"),
828             );
829             true
830         } else {
831             false
832         }
833     }
834
835     /// Checks if the given field's type is "ffi-safe".
836     fn check_field_type_for_ffi(
837         &self,
838         cache: &mut FxHashSet<Ty<'tcx>>,
839         field: &ty::FieldDef,
840         substs: SubstsRef<'tcx>,
841     ) -> FfiResult<'tcx> {
842         let field_ty = field.ty(self.cx.tcx, substs);
843         if field_ty.has_opaque_types() {
844             self.check_type_for_ffi(cache, field_ty)
845         } else {
846             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
847             self.check_type_for_ffi(cache, field_ty)
848         }
849     }
850
851     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
852     fn check_variant_for_ffi(
853         &self,
854         cache: &mut FxHashSet<Ty<'tcx>>,
855         ty: Ty<'tcx>,
856         def: ty::AdtDef<'tcx>,
857         variant: &ty::VariantDef,
858         substs: SubstsRef<'tcx>,
859     ) -> FfiResult<'tcx> {
860         use FfiResult::*;
861
862         if def.repr().transparent() {
863             // Can assume that at most one field is not a ZST, so only check
864             // that field's type for FFI-safety.
865             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
866                 self.check_field_type_for_ffi(cache, field, substs)
867             } else {
868                 // All fields are ZSTs; this means that the type should behave
869                 // like (), which is FFI-unsafe
870                 FfiUnsafe {
871                     ty,
872                     reason: "this struct contains only zero-sized fields".into(),
873                     help: None,
874                 }
875             }
876         } else {
877             // We can't completely trust repr(C) markings; make sure the fields are
878             // actually safe.
879             let mut all_phantom = !variant.fields.is_empty();
880             for field in &variant.fields {
881                 match self.check_field_type_for_ffi(cache, &field, substs) {
882                     FfiSafe => {
883                         all_phantom = false;
884                     }
885                     FfiPhantom(..) if def.is_enum() => {
886                         return FfiUnsafe {
887                             ty,
888                             reason: "this enum contains a PhantomData field".into(),
889                             help: None,
890                         };
891                     }
892                     FfiPhantom(..) => {}
893                     r => return r,
894                 }
895             }
896
897             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
898         }
899     }
900
901     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
902     /// representation which can be exported to C code).
903     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
904         use FfiResult::*;
905
906         let tcx = self.cx.tcx;
907
908         // Protect against infinite recursion, for example
909         // `struct S(*mut S);`.
910         // FIXME: A recursion limit is necessary as well, for irregular
911         // recursive types.
912         if !cache.insert(ty) {
913             return FfiSafe;
914         }
915
916         match *ty.kind() {
917             ty::Adt(def, substs) => {
918                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
919                     if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
920                         return FfiSafe;
921                     } else {
922                         return FfiUnsafe {
923                             ty,
924                             reason: "box cannot be represented as a single pointer".to_string(),
925                             help: None,
926                         };
927                     }
928                 }
929                 if def.is_phantom_data() {
930                     return FfiPhantom(ty);
931                 }
932                 match def.adt_kind() {
933                     AdtKind::Struct | AdtKind::Union => {
934                         let kind = if def.is_struct() { "struct" } else { "union" };
935
936                         if !def.repr().c() && !def.repr().transparent() {
937                             return FfiUnsafe {
938                                 ty,
939                                 reason: format!("this {} has unspecified layout", kind),
940                                 help: Some(format!(
941                                     "consider adding a `#[repr(C)]` or \
942                                              `#[repr(transparent)]` attribute to this {}",
943                                     kind
944                                 )),
945                             };
946                         }
947
948                         let is_non_exhaustive =
949                             def.non_enum_variant().is_field_list_non_exhaustive();
950                         if is_non_exhaustive && !def.did().is_local() {
951                             return FfiUnsafe {
952                                 ty,
953                                 reason: format!("this {} is non-exhaustive", kind),
954                                 help: None,
955                             };
956                         }
957
958                         if def.non_enum_variant().fields.is_empty() {
959                             return FfiUnsafe {
960                                 ty,
961                                 reason: format!("this {} has no fields", kind),
962                                 help: Some(format!("consider adding a member to this {}", kind)),
963                             };
964                         }
965
966                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
967                     }
968                     AdtKind::Enum => {
969                         if def.variants().is_empty() {
970                             // Empty enums are okay... although sort of useless.
971                             return FfiSafe;
972                         }
973
974                         // Check for a repr() attribute to specify the size of the
975                         // discriminant.
976                         if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
977                         {
978                             // Special-case types like `Option<extern fn()>`.
979                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
980                                 return FfiUnsafe {
981                                     ty,
982                                     reason: "enum has no representation hint".into(),
983                                     help: Some(
984                                         "consider adding a `#[repr(C)]`, \
985                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
986                                                 attribute to this enum"
987                                             .into(),
988                                     ),
989                                 };
990                             }
991                         }
992
993                         if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
994                             return FfiUnsafe {
995                                 ty,
996                                 reason: "this enum is non-exhaustive".into(),
997                                 help: None,
998                             };
999                         }
1000
1001                         // Check the contained variants.
1002                         for variant in def.variants() {
1003                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1004                             if is_non_exhaustive && !variant.def_id.is_local() {
1005                                 return FfiUnsafe {
1006                                     ty,
1007                                     reason: "this enum has non-exhaustive variants".into(),
1008                                     help: None,
1009                                 };
1010                             }
1011
1012                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1013                                 FfiSafe => (),
1014                                 r => return r,
1015                             }
1016                         }
1017
1018                         FfiSafe
1019                     }
1020                 }
1021             }
1022
1023             ty::Char => FfiUnsafe {
1024                 ty,
1025                 reason: "the `char` type has no C equivalent".into(),
1026                 help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
1027             },
1028
1029             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => FfiUnsafe {
1030                 ty,
1031                 reason: "128-bit integers don't currently have a known stable ABI".into(),
1032                 help: None,
1033             },
1034
1035             // Primitive types with a stable representation.
1036             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1037
1038             ty::Slice(_) => FfiUnsafe {
1039                 ty,
1040                 reason: "slices have no C equivalent".into(),
1041                 help: Some("consider using a raw pointer instead".into()),
1042             },
1043
1044             ty::Dynamic(..) => {
1045                 FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
1046             }
1047
1048             ty::Str => FfiUnsafe {
1049                 ty,
1050                 reason: "string slices have no C equivalent".into(),
1051                 help: Some("consider using `*const u8` and a length instead".into()),
1052             },
1053
1054             ty::Tuple(..) => FfiUnsafe {
1055                 ty,
1056                 reason: "tuples have unspecified layout".into(),
1057                 help: Some("consider using a struct instead".into()),
1058             },
1059
1060             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1061                 if {
1062                     matches!(self.mode, CItemKind::Definition)
1063                         && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1064                 } =>
1065             {
1066                 FfiSafe
1067             }
1068
1069             ty::RawPtr(ty::TypeAndMut { ty, .. })
1070                 if match ty.kind() {
1071                     ty::Tuple(tuple) => tuple.is_empty(),
1072                     _ => false,
1073                 } =>
1074             {
1075                 FfiSafe
1076             }
1077
1078             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1079                 self.check_type_for_ffi(cache, ty)
1080             }
1081
1082             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1083
1084             ty::FnPtr(sig) => {
1085                 if self.is_internal_abi(sig.abi()) {
1086                     return FfiUnsafe {
1087                         ty,
1088                         reason: "this function pointer has Rust-specific calling convention".into(),
1089                         help: Some(
1090                             "consider using an `extern fn(...) -> ...` \
1091                                     function pointer instead"
1092                                 .into(),
1093                         ),
1094                     };
1095                 }
1096
1097                 let sig = tcx.erase_late_bound_regions(sig);
1098                 if !sig.output().is_unit() {
1099                     let r = self.check_type_for_ffi(cache, sig.output());
1100                     match r {
1101                         FfiSafe => {}
1102                         _ => {
1103                             return r;
1104                         }
1105                     }
1106                 }
1107                 for arg in sig.inputs() {
1108                     let r = self.check_type_for_ffi(cache, *arg);
1109                     match r {
1110                         FfiSafe => {}
1111                         _ => {
1112                             return r;
1113                         }
1114                     }
1115                 }
1116                 FfiSafe
1117             }
1118
1119             ty::Foreign(..) => FfiSafe,
1120
1121             // While opaque types are checked for earlier, if a projection in a struct field
1122             // normalizes to an opaque type, then it will reach this branch.
1123             ty::Opaque(..) => {
1124                 FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
1125             }
1126
1127             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1128             //  so they are currently ignored for the purposes of this lint.
1129             ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
1130                 FfiSafe
1131             }
1132
1133             ty::Param(..)
1134             | ty::Projection(..)
1135             | ty::Infer(..)
1136             | ty::Bound(..)
1137             | ty::Error(_)
1138             | ty::Closure(..)
1139             | ty::Generator(..)
1140             | ty::GeneratorWitness(..)
1141             | ty::Placeholder(..)
1142             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1143         }
1144     }
1145
1146     fn emit_ffi_unsafe_type_lint(
1147         &mut self,
1148         ty: Ty<'tcx>,
1149         sp: Span,
1150         note: &str,
1151         help: Option<&str>,
1152     ) {
1153         let lint = match self.mode {
1154             CItemKind::Declaration => IMPROPER_CTYPES,
1155             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1156         };
1157
1158         self.cx.struct_span_lint(lint, sp, |lint| {
1159             let item_description = match self.mode {
1160                 CItemKind::Declaration => "block",
1161                 CItemKind::Definition => "fn",
1162             };
1163             let mut diag = lint.build(&format!(
1164                 "`extern` {} uses type `{}`, which is not FFI-safe",
1165                 item_description, ty
1166             ));
1167             diag.span_label(sp, "not FFI-safe");
1168             if let Some(help) = help {
1169                 diag.help(help);
1170             }
1171             diag.note(note);
1172             if let ty::Adt(def, _) = ty.kind() {
1173                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
1174                     diag.span_note(sp, "the type is defined here");
1175                 }
1176             }
1177             diag.emit();
1178         });
1179     }
1180
1181     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1182         struct ProhibitOpaqueTypes<'a, 'tcx> {
1183             cx: &'a LateContext<'tcx>,
1184         }
1185
1186         impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
1187             type BreakTy = Ty<'tcx>;
1188
1189             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1190                 match ty.kind() {
1191                     ty::Opaque(..) => ControlFlow::Break(ty),
1192                     // Consider opaque types within projections FFI-safe if they do not normalize
1193                     // to more opaque types.
1194                     ty::Projection(..) => {
1195                         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1196
1197                         // If `ty` is an opaque type directly then `super_visit_with` won't invoke
1198                         // this function again.
1199                         if ty.has_opaque_types() {
1200                             self.visit_ty(ty)
1201                         } else {
1202                             ControlFlow::CONTINUE
1203                         }
1204                     }
1205                     _ => ty.super_visit_with(self),
1206                 }
1207             }
1208         }
1209
1210         if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
1211             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
1212             true
1213         } else {
1214             false
1215         }
1216     }
1217
1218     fn check_type_for_ffi_and_report_errors(
1219         &mut self,
1220         sp: Span,
1221         ty: Ty<'tcx>,
1222         is_static: bool,
1223         is_return_type: bool,
1224     ) {
1225         // We have to check for opaque types before `normalize_erasing_regions`,
1226         // which will replace opaque types with their underlying concrete type.
1227         if self.check_for_opaque_ty(sp, ty) {
1228             // We've already emitted an error due to an opaque type.
1229             return;
1230         }
1231
1232         // it is only OK to use this function because extern fns cannot have
1233         // any generic types right now:
1234         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1235
1236         // C doesn't really support passing arrays by value - the only way to pass an array by value
1237         // is through a struct. So, first test that the top level isn't an array, and then
1238         // recursively check the types inside.
1239         if !is_static && self.check_for_array_ty(sp, ty) {
1240             return;
1241         }
1242
1243         // Don't report FFI errors for unit return types. This check exists here, and not in
1244         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1245         // happened.
1246         if is_return_type && ty.is_unit() {
1247             return;
1248         }
1249
1250         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1251             FfiResult::FfiSafe => {}
1252             FfiResult::FfiPhantom(ty) => {
1253                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
1254             }
1255             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1256             // argument, which after substitution, is `()`, then this branch can be hit.
1257             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1258             FfiResult::FfiUnsafe { ty, reason, help } => {
1259                 self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
1260             }
1261         }
1262     }
1263
1264     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1265         let def_id = self.cx.tcx.hir().local_def_id(id);
1266         let sig = self.cx.tcx.fn_sig(def_id);
1267         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1268
1269         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1270             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1271         }
1272
1273         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1274             let ret_ty = sig.output();
1275             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1276         }
1277     }
1278
1279     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1280         let def_id = self.cx.tcx.hir().local_def_id(id);
1281         let ty = self.cx.tcx.type_of(def_id);
1282         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1283     }
1284
1285     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1286         matches!(
1287             abi,
1288             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1289         )
1290     }
1291 }
1292
1293 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1294     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1295         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1296         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1297
1298         if !vis.is_internal_abi(abi) {
1299             match it.kind {
1300                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1301                     vis.check_foreign_fn(it.hir_id(), decl);
1302                 }
1303                 hir::ForeignItemKind::Static(ref ty, _) => {
1304                     vis.check_foreign_static(it.hir_id(), ty.span);
1305                 }
1306                 hir::ForeignItemKind::Type => (),
1307             }
1308         }
1309     }
1310 }
1311
1312 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1313     fn check_fn(
1314         &mut self,
1315         cx: &LateContext<'tcx>,
1316         kind: hir::intravisit::FnKind<'tcx>,
1317         decl: &'tcx hir::FnDecl<'_>,
1318         _: &'tcx hir::Body<'_>,
1319         _: Span,
1320         hir_id: hir::HirId,
1321     ) {
1322         use hir::intravisit::FnKind;
1323
1324         let abi = match kind {
1325             FnKind::ItemFn(_, _, header, ..) => header.abi,
1326             FnKind::Method(_, sig, ..) => sig.header.abi,
1327             _ => return,
1328         };
1329
1330         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1331         if !vis.is_internal_abi(abi) {
1332             vis.check_foreign_fn(hir_id, decl);
1333         }
1334     }
1335 }
1336
1337 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1338
1339 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1340     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1341         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1342             let t = cx.tcx.type_of(it.def_id);
1343             let ty = cx.tcx.erase_regions(t);
1344             let Ok(layout) = cx.layout_of(ty) else { return };
1345             let Variants::Multiple {
1346                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1347                 } = &layout.variants else {
1348                 return
1349             };
1350
1351             let tag_size = tag.size(&cx.tcx).bytes();
1352
1353             debug!(
1354                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1355                 t,
1356                 layout.size.bytes(),
1357                 layout
1358             );
1359
1360             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1361                 .map(|(variant, variant_layout)| {
1362                     // Subtract the size of the enum tag.
1363                     let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
1364
1365                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1366                     bytes
1367                 })
1368                 .enumerate()
1369                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1370                     if size > l {
1371                         (size, l, idx)
1372                     } else if size > s {
1373                         (l, size, li)
1374                     } else {
1375                         (l, s, li)
1376                     }
1377                 });
1378
1379             // We only warn if the largest variant is at least thrice as large as
1380             // the second-largest.
1381             if largest > slargest * 3 && slargest > 0 {
1382                 cx.struct_span_lint(
1383                     VARIANT_SIZE_DIFFERENCES,
1384                     enum_definition.variants[largest_index].span,
1385                     |lint| {
1386                         lint.build(&format!(
1387                             "enum variant is more than three times \
1388                                           larger ({} bytes) than the next largest",
1389                             largest
1390                         ))
1391                         .emit();
1392                     },
1393                 );
1394             }
1395         }
1396     }
1397 }
1398
1399 declare_lint! {
1400     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1401     /// to an atomic operation that does not support that ordering.
1402     ///
1403     /// ### Example
1404     ///
1405     /// ```rust,compile_fail
1406     /// # use core::sync::atomic::{AtomicU8, Ordering};
1407     /// let atom = AtomicU8::new(0);
1408     /// let value = atom.load(Ordering::Release);
1409     /// # let _ = value;
1410     /// ```
1411     ///
1412     /// {{produces}}
1413     ///
1414     /// ### Explanation
1415     ///
1416     /// Some atomic operations are only supported for a subset of the
1417     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1418     /// an unconditional panic at runtime, which is detected by this lint.
1419     ///
1420     /// This lint will trigger in the following cases: (where `AtomicType` is an
1421     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1422     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1423     ///
1424     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1425     ///   `AtomicType::store`.
1426     ///
1427     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1428     ///   `AtomicType::load`.
1429     ///
1430     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1431     ///   `core::sync::atomic::compiler_fence`.
1432     ///
1433     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1434     ///   ordering for any of `AtomicType::compare_exchange`,
1435     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1436     ///
1437     /// - Passing in a pair of orderings to `AtomicType::compare_exchange`,
1438     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`
1439     ///   where the failure ordering is stronger than the success ordering.
1440     INVALID_ATOMIC_ORDERING,
1441     Deny,
1442     "usage of invalid atomic ordering in atomic operations and memory fences"
1443 }
1444
1445 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1446
1447 impl InvalidAtomicOrdering {
1448     fn inherent_atomic_method_call<'hir>(
1449         cx: &LateContext<'_>,
1450         expr: &Expr<'hir>,
1451         recognized_names: &[Symbol], // used for fast path calculation
1452     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1453         const ATOMIC_TYPES: &[Symbol] = &[
1454             sym::AtomicBool,
1455             sym::AtomicPtr,
1456             sym::AtomicUsize,
1457             sym::AtomicU8,
1458             sym::AtomicU16,
1459             sym::AtomicU32,
1460             sym::AtomicU64,
1461             sym::AtomicU128,
1462             sym::AtomicIsize,
1463             sym::AtomicI8,
1464             sym::AtomicI16,
1465             sym::AtomicI32,
1466             sym::AtomicI64,
1467             sym::AtomicI128,
1468         ];
1469         if let ExprKind::MethodCall(ref method_path, args, _) = &expr.kind
1470             && recognized_names.contains(&method_path.ident.name)
1471             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1472             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1473             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1474             // skip extension traits, only lint functions from the standard library
1475             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1476             && let parent = cx.tcx.parent(adt.did())
1477             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1478             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1479         {
1480             return Some((method_path.ident.name, args));
1481         }
1482         None
1483     }
1484
1485     fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1486         let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1487         let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
1488         let tcx = cx.tcx;
1489         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1490         let name = tcx.item_name(did);
1491         let parent = tcx.parent(did);
1492         [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1493             |&ordering| {
1494                 name == ordering
1495                     && (Some(parent) == atomic_ordering
1496                             // needed in case this is a ctor, not a variant
1497                             || tcx.opt_parent(parent) == atomic_ordering)
1498             },
1499         )
1500     }
1501
1502     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1503         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1504             && let Some((ordering_arg, invalid_ordering)) = match method {
1505                 sym::load => Some((&args[1], sym::Release)),
1506                 sym::store => Some((&args[2], sym::Acquire)),
1507                 _ => None,
1508             }
1509             && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1510             && (ordering == invalid_ordering || ordering == sym::AcqRel)
1511         {
1512             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1513                 if method == sym::load {
1514                     diag.build("atomic loads cannot have `Release` or `AcqRel` ordering")
1515                         .help("consider using ordering modes `Acquire`, `SeqCst` or `Relaxed`")
1516                         .emit()
1517                 } else {
1518                     debug_assert_eq!(method, sym::store);
1519                     diag.build("atomic stores cannot have `Acquire` or `AcqRel` ordering")
1520                         .help("consider using ordering modes `Release`, `SeqCst` or `Relaxed`")
1521                         .emit();
1522                 }
1523             });
1524         }
1525     }
1526
1527     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1528         if let ExprKind::Call(ref func, ref args) = expr.kind
1529             && let ExprKind::Path(ref func_qpath) = func.kind
1530             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1531             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1532             && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
1533         {
1534             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
1535                 diag.build("memory fences cannot have `Relaxed` ordering")
1536                     .help("consider using ordering modes `Acquire`, `Release`, `AcqRel` or `SeqCst`")
1537                     .emit();
1538             });
1539         }
1540     }
1541
1542     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1543         let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1544             else {return };
1545
1546         let (success_order_arg, fail_order_arg) = match method {
1547             sym::fetch_update => (&args[1], &args[2]),
1548             sym::compare_exchange | sym::compare_exchange_weak => (&args[3], &args[4]),
1549             _ => return,
1550         };
1551
1552         let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1553
1554         if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1555             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, fail_order_arg.span, |diag| {
1556                 diag.build(&format!(
1557                     "`{method}`'s failure ordering may not be `Release` or `AcqRel`, \
1558                     since a failed `{method}` does not result in a write",
1559                 ))
1560                 .span_label(fail_order_arg.span, "invalid failure ordering")
1561                 .help("consider using `Acquire` or `Relaxed` failure ordering instead")
1562                 .emit();
1563             });
1564         }
1565
1566         let Some(success_ordering) = Self::match_ordering(cx, success_order_arg) else { return };
1567
1568         if matches!(
1569             (success_ordering, fail_ordering),
1570             (sym::Relaxed | sym::Release, sym::Acquire)
1571                 | (sym::Relaxed | sym::Release | sym::Acquire | sym::AcqRel, sym::SeqCst)
1572         ) {
1573             let success_suggestion =
1574                 if success_ordering == sym::Release && fail_ordering == sym::Acquire {
1575                     sym::AcqRel
1576                 } else {
1577                     fail_ordering
1578                 };
1579             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, success_order_arg.span, |diag| {
1580                 diag.build(&format!(
1581                     "`{method}`'s success ordering must be at least as strong as its failure ordering"
1582                 ))
1583                 .span_label(fail_order_arg.span, format!("`{fail_ordering}` failure ordering"))
1584                 .span_label(success_order_arg.span, format!("`{success_ordering}` success ordering"))
1585                 .span_suggestion_short(
1586                     success_order_arg.span,
1587                     format!("consider using `{success_suggestion}` success ordering instead"),
1588                     format!("std::sync::atomic::Ordering::{success_suggestion}"),
1589                     Applicability::MaybeIncorrect,
1590                 )
1591                 .emit();
1592             });
1593         }
1594     }
1595 }
1596
1597 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1598     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1599         Self::check_atomic_load_store(cx, expr);
1600         Self::check_memory_fence(cx, expr);
1601         Self::check_atomic_compare_exchange(cx, expr);
1602     }
1603 }