]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
Rollup merge of #102977 - lukas-code:is-sorted-hrtb, r=m-ou-se
[rust.git] / compiler / rustc_lint / src / types.rs
1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::{fluent, Applicability, DiagnosticMessage};
6 use rustc_hir as hir;
7 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
8 use rustc_macros::LintDiagnostic;
9 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
10 use rustc_middle::ty::subst::SubstsRef;
11 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
12 use rustc_span::source_map;
13 use rustc_span::symbol::sym;
14 use rustc_span::{Span, Symbol};
15 use rustc_target::abi::{Abi, WrappingRange};
16 use rustc_target::abi::{Integer, TagEncoding, Variants};
17 use rustc_target::spec::abi::Abi as SpecAbi;
18
19 use std::cmp;
20 use std::iter;
21 use std::ops::ControlFlow;
22
23 declare_lint! {
24     /// The `unused_comparisons` lint detects comparisons made useless by
25     /// limits of the types involved.
26     ///
27     /// ### Example
28     ///
29     /// ```rust
30     /// fn foo(x: u8) {
31     ///     x >= 0;
32     /// }
33     /// ```
34     ///
35     /// {{produces}}
36     ///
37     /// ### Explanation
38     ///
39     /// A useless comparison may indicate a mistake, and should be fixed or
40     /// removed.
41     UNUSED_COMPARISONS,
42     Warn,
43     "comparisons made useless by limits of the types involved"
44 }
45
46 declare_lint! {
47     /// The `overflowing_literals` lint detects literal out of range for its
48     /// type.
49     ///
50     /// ### Example
51     ///
52     /// ```rust,compile_fail
53     /// let x: u8 = 1000;
54     /// ```
55     ///
56     /// {{produces}}
57     ///
58     /// ### Explanation
59     ///
60     /// It is usually a mistake to use a literal that overflows the type where
61     /// it is used. Either use a literal that is within range, or change the
62     /// type to be within the range of the literal.
63     OVERFLOWING_LITERALS,
64     Deny,
65     "literal out of range for its type"
66 }
67
68 declare_lint! {
69     /// The `variant_size_differences` lint detects enums with widely varying
70     /// variant sizes.
71     ///
72     /// ### Example
73     ///
74     /// ```rust,compile_fail
75     /// #![deny(variant_size_differences)]
76     /// enum En {
77     ///     V0(u8),
78     ///     VBig([u8; 1024]),
79     /// }
80     /// ```
81     ///
82     /// {{produces}}
83     ///
84     /// ### Explanation
85     ///
86     /// It can be a mistake to add a variant to an enum that is much larger
87     /// than the other variants, bloating the overall size required for all
88     /// variants. This can impact performance and memory usage. This is
89     /// triggered if one variant is more than 3 times larger than the
90     /// second-largest variant.
91     ///
92     /// Consider placing the large variant's contents on the heap (for example
93     /// via [`Box`]) to keep the overall size of the enum itself down.
94     ///
95     /// This lint is "allow" by default because it can be noisy, and may not be
96     /// an actual problem. Decisions about this should be guided with
97     /// profiling and benchmarking.
98     ///
99     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
100     VARIANT_SIZE_DIFFERENCES,
101     Allow,
102     "detects enums with widely varying variant sizes"
103 }
104
105 #[derive(Copy, Clone)]
106 pub struct TypeLimits {
107     /// Id of the last visited negated expression
108     negated_expr_id: Option<hir::HirId>,
109 }
110
111 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
112
113 impl TypeLimits {
114     pub fn new() -> TypeLimits {
115         TypeLimits { negated_expr_id: None }
116     }
117 }
118
119 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint (`expr..MAX+1`).
120 /// Returns `true` iff the lint was emitted.
121 fn lint_overflowing_range_endpoint<'tcx>(
122     cx: &LateContext<'tcx>,
123     lit: &hir::Lit,
124     lit_val: u128,
125     max: u128,
126     expr: &'tcx hir::Expr<'tcx>,
127     ty: &str,
128 ) -> bool {
129     // We only want to handle exclusive (`..`) ranges,
130     // which are represented as `ExprKind::Struct`.
131     let par_id = cx.tcx.hir().get_parent_node(expr.hir_id);
132     let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
133     let field_par_id = cx.tcx.hir().get_parent_node(field.hir_id);
134     let Node::Expr(struct_expr) = cx.tcx.hir().get(field_par_id) else { return false };
135     if !is_range_literal(struct_expr) {
136         return false;
137     };
138     let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
139     if eps.len() != 2 {
140         return false;
141     }
142
143     // We can suggest using an inclusive range
144     // (`..=`) instead only if it is the `end` that is
145     // overflowing and only by 1.
146     if !(eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max) {
147         return false;
148     };
149     let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) else { return false };
150
151     cx.struct_span_lint(
152         OVERFLOWING_LITERALS,
153         struct_expr.span,
154         fluent::lint_range_endpoint_out_of_range,
155         |lint| {
156             use ast::{LitIntType, LitKind};
157
158             lint.set_arg("ty", ty);
159
160             // We need to preserve the literal's suffix,
161             // as it may determine typing information.
162             let suffix = match lit.node {
163                 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
164                 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
165                 LitKind::Int(_, LitIntType::Unsuffixed) => "",
166                 _ => bug!(),
167             };
168             let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
169             lint.span_suggestion(
170                 struct_expr.span,
171                 fluent::suggestion,
172                 suggestion,
173                 Applicability::MachineApplicable,
174             );
175
176             lint
177         },
178     );
179
180     // We've just emitted a lint, special cased for `(...)..MAX+1` ranges,
181     // return `true` so the callers don't also emit a lint
182     true
183 }
184
185 // For `isize` & `usize`, be conservative with the warnings, so that the
186 // warnings are consistent between 32- and 64-bit platforms.
187 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
188     match int_ty {
189         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
190         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
191         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
192         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
193         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
194         ty::IntTy::I128 => (i128::MIN, i128::MAX),
195     }
196 }
197
198 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
199     let max = match uint_ty {
200         ty::UintTy::Usize => u64::MAX.into(),
201         ty::UintTy::U8 => u8::MAX.into(),
202         ty::UintTy::U16 => u16::MAX.into(),
203         ty::UintTy::U32 => u32::MAX.into(),
204         ty::UintTy::U64 => u64::MAX.into(),
205         ty::UintTy::U128 => u128::MAX,
206     };
207     (0, max)
208 }
209
210 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
211     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
212     let firstch = src.chars().next()?;
213
214     if firstch == '0' {
215         match src.chars().nth(1) {
216             Some('x' | 'b') => return Some(src),
217             _ => return None,
218         }
219     }
220
221     None
222 }
223
224 fn report_bin_hex_error(
225     cx: &LateContext<'_>,
226     expr: &hir::Expr<'_>,
227     ty: attr::IntType,
228     repr_str: String,
229     val: u128,
230     negative: bool,
231 ) {
232     let size = Integer::from_attr(&cx.tcx, ty).size();
233     cx.struct_span_lint(
234         OVERFLOWING_LITERALS,
235         expr.span,
236         fluent::lint_overflowing_bin_hex,
237         |lint| {
238             let (t, actually) = match ty {
239                 attr::IntType::SignedInt(t) => {
240                     let actually = if negative {
241                         -(size.sign_extend(val) as i128)
242                     } else {
243                         size.sign_extend(val) as i128
244                     };
245                     (t.name_str(), actually.to_string())
246                 }
247                 attr::IntType::UnsignedInt(t) => {
248                     let actually = size.truncate(val);
249                     (t.name_str(), actually.to_string())
250                 }
251             };
252
253             if negative {
254                 // If the value is negative,
255                 // emits a note about the value itself, apart from the literal.
256                 lint.note(fluent::negative_note);
257                 lint.note(fluent::negative_becomes_note);
258             } else {
259                 lint.note(fluent::positive_note);
260             }
261             if let Some(sugg_ty) =
262                 get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
263             {
264                 lint.set_arg("suggestion_ty", sugg_ty);
265                 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
266                     let (sans_suffix, _) = repr_str.split_at(pos);
267                     lint.span_suggestion(
268                         expr.span,
269                         fluent::suggestion,
270                         format!("{}{}", sans_suffix, sugg_ty),
271                         Applicability::MachineApplicable,
272                     );
273                 } else {
274                     lint.help(fluent::help);
275                 }
276             }
277             lint.set_arg("ty", t)
278                 .set_arg("lit", repr_str)
279                 .set_arg("dec", val)
280                 .set_arg("actually", actually);
281
282             lint
283         },
284     );
285 }
286
287 // This function finds the next fitting type and generates a suggestion string.
288 // It searches for fitting types in the following way (`X < Y`):
289 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
290 //  - `-iX` => `iY`
291 //  - `uX` => `uY`
292 //
293 // No suggestion for: `isize`, `usize`.
294 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
295     use ty::IntTy::*;
296     use ty::UintTy::*;
297     macro_rules! find_fit {
298         ($ty:expr, $val:expr, $negative:expr,
299          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
300             {
301                 let _neg = if negative { 1 } else { 0 };
302                 match $ty {
303                     $($type => {
304                         $(if !negative && val <= uint_ty_range($utypes).1 {
305                             return Some($utypes.name_str())
306                         })*
307                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
308                             return Some($itypes.name_str())
309                         })*
310                         None
311                     },)+
312                     _ => None
313                 }
314             }
315         }
316     }
317     match t.kind() {
318         ty::Int(i) => find_fit!(i, val, negative,
319                       I8 => [U8] => [I16, I32, I64, I128],
320                       I16 => [U16] => [I32, I64, I128],
321                       I32 => [U32] => [I64, I128],
322                       I64 => [U64] => [I128],
323                       I128 => [U128] => []),
324         ty::Uint(u) => find_fit!(u, val, negative,
325                       U8 => [U8, U16, U32, U64, U128] => [],
326                       U16 => [U16, U32, U64, U128] => [],
327                       U32 => [U32, U64, U128] => [],
328                       U64 => [U64, U128] => [],
329                       U128 => [U128] => []),
330         _ => None,
331     }
332 }
333
334 fn lint_int_literal<'tcx>(
335     cx: &LateContext<'tcx>,
336     type_limits: &TypeLimits,
337     e: &'tcx hir::Expr<'tcx>,
338     lit: &hir::Lit,
339     t: ty::IntTy,
340     v: u128,
341 ) {
342     let int_type = t.normalize(cx.sess().target.pointer_width);
343     let (min, max) = int_ty_range(int_type);
344     let max = max as u128;
345     let negative = type_limits.negated_expr_id == Some(e.hir_id);
346
347     // Detect literal value out of range [min, max] inclusive
348     // avoiding use of -min to prevent overflow/panic
349     if (negative && v > max + 1) || (!negative && v > max) {
350         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
351             report_bin_hex_error(
352                 cx,
353                 e,
354                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
355                 repr_str,
356                 v,
357                 negative,
358             );
359             return;
360         }
361
362         if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
363             // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
364             return;
365         }
366
367         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_int, |lint| {
368             lint.set_arg("ty", t.name_str())
369                 .set_arg(
370                     "lit",
371                     cx.sess()
372                         .source_map()
373                         .span_to_snippet(lit.span)
374                         .expect("must get snippet from literal"),
375                 )
376                 .set_arg("min", min)
377                 .set_arg("max", max)
378                 .note(fluent::note);
379
380             if let Some(sugg_ty) =
381                 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
382             {
383                 lint.set_arg("suggestion_ty", sugg_ty);
384                 lint.help(fluent::help);
385             }
386
387             lint
388         });
389     }
390 }
391
392 fn lint_uint_literal<'tcx>(
393     cx: &LateContext<'tcx>,
394     e: &'tcx hir::Expr<'tcx>,
395     lit: &hir::Lit,
396     t: ty::UintTy,
397 ) {
398     let uint_type = t.normalize(cx.sess().target.pointer_width);
399     let (min, max) = uint_ty_range(uint_type);
400     let lit_val: u128 = match lit.node {
401         // _v is u8, within range by definition
402         ast::LitKind::Byte(_v) => return,
403         ast::LitKind::Int(v, _) => v,
404         _ => bug!(),
405     };
406     if lit_val < min || lit_val > max {
407         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
408         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
409             match par_e.kind {
410                 hir::ExprKind::Cast(..) => {
411                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
412                         cx.struct_span_lint(
413                             OVERFLOWING_LITERALS,
414                             par_e.span,
415                             fluent::lint_only_cast_u8_to_char,
416                             |lint| {
417                                 lint.span_suggestion(
418                                     par_e.span,
419                                     fluent::suggestion,
420                                     format!("'\\u{{{:X}}}'", lit_val),
421                                     Applicability::MachineApplicable,
422                                 )
423                             },
424                         );
425                         return;
426                     }
427                 }
428                 _ => {}
429             }
430         }
431         if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
432             // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
433             return;
434         }
435         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
436             report_bin_hex_error(
437                 cx,
438                 e,
439                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
440                 repr_str,
441                 lit_val,
442                 false,
443             );
444             return;
445         }
446         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_uint, |lint| {
447             lint.set_arg("ty", t.name_str())
448                 .set_arg(
449                     "lit",
450                     cx.sess()
451                         .source_map()
452                         .span_to_snippet(lit.span)
453                         .expect("must get snippet from literal"),
454                 )
455                 .set_arg("min", min)
456                 .set_arg("max", max)
457                 .note(fluent::note)
458         });
459     }
460 }
461
462 fn lint_literal<'tcx>(
463     cx: &LateContext<'tcx>,
464     type_limits: &TypeLimits,
465     e: &'tcx hir::Expr<'tcx>,
466     lit: &hir::Lit,
467 ) {
468     match *cx.typeck_results().node_type(e.hir_id).kind() {
469         ty::Int(t) => {
470             match lit.node {
471                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
472                     lint_int_literal(cx, type_limits, e, lit, t, v)
473                 }
474                 _ => bug!(),
475             };
476         }
477         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
478         ty::Float(t) => {
479             let is_infinite = match lit.node {
480                 ast::LitKind::Float(v, _) => match t {
481                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
482                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
483                 },
484                 _ => bug!(),
485             };
486             if is_infinite == Ok(true) {
487                 cx.struct_span_lint(
488                     OVERFLOWING_LITERALS,
489                     e.span,
490                     fluent::lint_overflowing_literal,
491                     |lint| {
492                         lint.set_arg("ty", t.name_str())
493                             .set_arg(
494                                 "lit",
495                                 cx.sess()
496                                     .source_map()
497                                     .span_to_snippet(lit.span)
498                                     .expect("must get snippet from literal"),
499                             )
500                             .note(fluent::note)
501                     },
502                 );
503             }
504         }
505         _ => {}
506     }
507 }
508
509 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
510     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
511         match e.kind {
512             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
513                 // propagate negation, if the negation itself isn't negated
514                 if self.negated_expr_id != Some(e.hir_id) {
515                     self.negated_expr_id = Some(expr.hir_id);
516                 }
517             }
518             hir::ExprKind::Binary(binop, ref l, ref r) => {
519                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
520                     cx.struct_span_lint(
521                         UNUSED_COMPARISONS,
522                         e.span,
523                         fluent::lint_unused_comparisons,
524                         |lint| lint,
525                     );
526                 }
527             }
528             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
529             _ => {}
530         };
531
532         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
533             match binop.node {
534                 hir::BinOpKind::Lt => v > min && v <= max,
535                 hir::BinOpKind::Le => v >= min && v < max,
536                 hir::BinOpKind::Gt => v >= min && v < max,
537                 hir::BinOpKind::Ge => v > min && v <= max,
538                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
539                 _ => bug!(),
540             }
541         }
542
543         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
544             source_map::respan(
545                 binop.span,
546                 match binop.node {
547                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
548                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
549                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
550                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
551                     _ => return binop,
552                 },
553             )
554         }
555
556         fn check_limits(
557             cx: &LateContext<'_>,
558             binop: hir::BinOp,
559             l: &hir::Expr<'_>,
560             r: &hir::Expr<'_>,
561         ) -> bool {
562             let (lit, expr, swap) = match (&l.kind, &r.kind) {
563                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
564                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
565                 _ => return true,
566             };
567             // Normalize the binop so that the literal is always on the RHS in
568             // the comparison
569             let norm_binop = if swap { rev_binop(binop) } else { binop };
570             match *cx.typeck_results().node_type(expr.hir_id).kind() {
571                 ty::Int(int_ty) => {
572                     let (min, max) = int_ty_range(int_ty);
573                     let lit_val: i128 = match lit.kind {
574                         hir::ExprKind::Lit(ref li) => match li.node {
575                             ast::LitKind::Int(
576                                 v,
577                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
578                             ) => v as i128,
579                             _ => return true,
580                         },
581                         _ => bug!(),
582                     };
583                     is_valid(norm_binop, lit_val, min, max)
584                 }
585                 ty::Uint(uint_ty) => {
586                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
587                     let lit_val: u128 = match lit.kind {
588                         hir::ExprKind::Lit(ref li) => match li.node {
589                             ast::LitKind::Int(v, _) => v,
590                             _ => return true,
591                         },
592                         _ => bug!(),
593                     };
594                     is_valid(norm_binop, lit_val, min, max)
595                 }
596                 _ => true,
597             }
598         }
599
600         fn is_comparison(binop: hir::BinOp) -> bool {
601             matches!(
602                 binop.node,
603                 hir::BinOpKind::Eq
604                     | hir::BinOpKind::Lt
605                     | hir::BinOpKind::Le
606                     | hir::BinOpKind::Ne
607                     | hir::BinOpKind::Ge
608                     | hir::BinOpKind::Gt
609             )
610         }
611     }
612 }
613
614 declare_lint! {
615     /// The `improper_ctypes` lint detects incorrect use of types in foreign
616     /// modules.
617     ///
618     /// ### Example
619     ///
620     /// ```rust
621     /// extern "C" {
622     ///     static STATIC: String;
623     /// }
624     /// ```
625     ///
626     /// {{produces}}
627     ///
628     /// ### Explanation
629     ///
630     /// The compiler has several checks to verify that types used in `extern`
631     /// blocks are safe and follow certain rules to ensure proper
632     /// compatibility with the foreign interfaces. This lint is issued when it
633     /// detects a probable mistake in a definition. The lint usually should
634     /// provide a description of the issue, along with possibly a hint on how
635     /// to resolve it.
636     IMPROPER_CTYPES,
637     Warn,
638     "proper use of libc types in foreign modules"
639 }
640
641 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
642
643 declare_lint! {
644     /// The `improper_ctypes_definitions` lint detects incorrect use of
645     /// [`extern` function] definitions.
646     ///
647     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
648     ///
649     /// ### Example
650     ///
651     /// ```rust
652     /// # #![allow(unused)]
653     /// pub extern "C" fn str_type(p: &str) { }
654     /// ```
655     ///
656     /// {{produces}}
657     ///
658     /// ### Explanation
659     ///
660     /// There are many parameter and return types that may be specified in an
661     /// `extern` function that are not compatible with the given ABI. This
662     /// lint is an alert that these types should not be used. The lint usually
663     /// should provide a description of the issue, along with possibly a hint
664     /// on how to resolve it.
665     IMPROPER_CTYPES_DEFINITIONS,
666     Warn,
667     "proper use of libc types in foreign item definitions"
668 }
669
670 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
671
672 #[derive(Clone, Copy)]
673 pub(crate) enum CItemKind {
674     Declaration,
675     Definition,
676 }
677
678 struct ImproperCTypesVisitor<'a, 'tcx> {
679     cx: &'a LateContext<'tcx>,
680     mode: CItemKind,
681 }
682
683 enum FfiResult<'tcx> {
684     FfiSafe,
685     FfiPhantom(Ty<'tcx>),
686     FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
687 }
688
689 pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
690     tcx: TyCtxt<'tcx>,
691     def: ty::AdtDef<'tcx>,
692 ) -> bool {
693     tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
694 }
695
696 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
697 /// field.
698 pub fn transparent_newtype_field<'a, 'tcx>(
699     tcx: TyCtxt<'tcx>,
700     variant: &'a ty::VariantDef,
701 ) -> Option<&'a ty::FieldDef> {
702     let param_env = tcx.param_env(variant.def_id);
703     variant.fields.iter().find(|field| {
704         let field_ty = tcx.type_of(field.did);
705         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
706         !is_zst
707     })
708 }
709
710 /// Is type known to be non-null?
711 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
712     let tcx = cx.tcx;
713     match ty.kind() {
714         ty::FnPtr(_) => true,
715         ty::Ref(..) => true,
716         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
717         ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
718             let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
719
720             if marked_non_null {
721                 return true;
722             }
723
724             // `UnsafeCell` has its niche hidden.
725             if def.is_unsafe_cell() {
726                 return false;
727             }
728
729             def.variants()
730                 .iter()
731                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
732                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
733         }
734         _ => false,
735     }
736 }
737
738 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
739 /// If the type passed in was not scalar, returns None.
740 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
741     let tcx = cx.tcx;
742     Some(match *ty.kind() {
743         ty::Adt(field_def, field_substs) => {
744             let inner_field_ty = {
745                 let mut first_non_zst_ty = field_def
746                     .variants()
747                     .iter()
748                     .filter_map(|v| transparent_newtype_field(cx.tcx, v));
749                 debug_assert_eq!(
750                     first_non_zst_ty.clone().count(),
751                     1,
752                     "Wrong number of fields for transparent type"
753                 );
754                 first_non_zst_ty
755                     .next_back()
756                     .expect("No non-zst fields in transparent type.")
757                     .ty(tcx, field_substs)
758             };
759             return get_nullable_type(cx, inner_field_ty);
760         }
761         ty::Int(ty) => tcx.mk_mach_int(ty),
762         ty::Uint(ty) => tcx.mk_mach_uint(ty),
763         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
764         // As these types are always non-null, the nullable equivalent of
765         // Option<T> of these types are their raw pointer counterparts.
766         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
767         ty::FnPtr(..) => {
768             // There is no nullable equivalent for Rust's function pointers -- you
769             // must use an Option<fn(..) -> _> to represent it.
770             ty
771         }
772
773         // We should only ever reach this case if ty_is_known_nonnull is extended
774         // to other types.
775         ref unhandled => {
776             debug!(
777                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
778                 unhandled, ty
779             );
780             return None;
781         }
782     })
783 }
784
785 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
786 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
787 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
788 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
789 /// FIXME: This duplicates code in codegen.
790 pub(crate) fn repr_nullable_ptr<'tcx>(
791     cx: &LateContext<'tcx>,
792     ty: Ty<'tcx>,
793     ckind: CItemKind,
794 ) -> Option<Ty<'tcx>> {
795     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
796     if let ty::Adt(ty_def, substs) = ty.kind() {
797         let field_ty = match &ty_def.variants().raw[..] {
798             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
799                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
800                 _ => return None,
801             },
802             _ => return None,
803         };
804
805         if !ty_is_known_nonnull(cx, field_ty, ckind) {
806             return None;
807         }
808
809         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
810         // If the computed size for the field and the enum are different, the nonnull optimization isn't
811         // being applied (and we've got a problem somewhere).
812         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
813         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
814             bug!("improper_ctypes: Option nonnull optimization not applied?");
815         }
816
817         // Return the nullable type this Option-like enum can be safely represented with.
818         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
819         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
820             match field_ty_scalar.valid_range(cx) {
821                 WrappingRange { start: 0, end }
822                     if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
823                 {
824                     return Some(get_nullable_type(cx, field_ty).unwrap());
825                 }
826                 WrappingRange { start: 1, .. } => {
827                     return Some(get_nullable_type(cx, field_ty).unwrap());
828                 }
829                 WrappingRange { start, end } => {
830                     unreachable!("Unhandled start and end range: ({}, {})", start, end)
831                 }
832             };
833         }
834     }
835     None
836 }
837
838 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
839     /// Check if the type is array and emit an unsafe type lint.
840     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
841         if let ty::Array(..) = ty.kind() {
842             self.emit_ffi_unsafe_type_lint(
843                 ty,
844                 sp,
845                 fluent::lint_improper_ctypes_array_reason,
846                 Some(fluent::lint_improper_ctypes_array_help),
847             );
848             true
849         } else {
850             false
851         }
852     }
853
854     /// Checks if the given field's type is "ffi-safe".
855     fn check_field_type_for_ffi(
856         &self,
857         cache: &mut FxHashSet<Ty<'tcx>>,
858         field: &ty::FieldDef,
859         substs: SubstsRef<'tcx>,
860     ) -> FfiResult<'tcx> {
861         let field_ty = field.ty(self.cx.tcx, substs);
862         if field_ty.has_opaque_types() {
863             self.check_type_for_ffi(cache, field_ty)
864         } else {
865             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
866             self.check_type_for_ffi(cache, field_ty)
867         }
868     }
869
870     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
871     fn check_variant_for_ffi(
872         &self,
873         cache: &mut FxHashSet<Ty<'tcx>>,
874         ty: Ty<'tcx>,
875         def: ty::AdtDef<'tcx>,
876         variant: &ty::VariantDef,
877         substs: SubstsRef<'tcx>,
878     ) -> FfiResult<'tcx> {
879         use FfiResult::*;
880
881         if def.repr().transparent() {
882             // Can assume that at most one field is not a ZST, so only check
883             // that field's type for FFI-safety.
884             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
885                 self.check_field_type_for_ffi(cache, field, substs)
886             } else {
887                 // All fields are ZSTs; this means that the type should behave
888                 // like (), which is FFI-unsafe
889                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_struct_zst, help: None }
890             }
891         } else {
892             // We can't completely trust repr(C) markings; make sure the fields are
893             // actually safe.
894             let mut all_phantom = !variant.fields.is_empty();
895             for field in &variant.fields {
896                 match self.check_field_type_for_ffi(cache, &field, substs) {
897                     FfiSafe => {
898                         all_phantom = false;
899                     }
900                     FfiPhantom(..) if def.is_enum() => {
901                         return FfiUnsafe {
902                             ty,
903                             reason: fluent::lint_improper_ctypes_enum_phantomdata,
904                             help: None,
905                         };
906                     }
907                     FfiPhantom(..) => {}
908                     r => return r,
909                 }
910             }
911
912             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
913         }
914     }
915
916     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
917     /// representation which can be exported to C code).
918     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
919         use FfiResult::*;
920
921         let tcx = self.cx.tcx;
922
923         // Protect against infinite recursion, for example
924         // `struct S(*mut S);`.
925         // FIXME: A recursion limit is necessary as well, for irregular
926         // recursive types.
927         if !cache.insert(ty) {
928             return FfiSafe;
929         }
930
931         match *ty.kind() {
932             ty::Adt(def, substs) => {
933                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
934                     if ty.boxed_ty().is_sized(tcx, self.cx.param_env) {
935                         return FfiSafe;
936                     } else {
937                         return FfiUnsafe {
938                             ty,
939                             reason: fluent::lint_improper_ctypes_box,
940                             help: None,
941                         };
942                     }
943                 }
944                 if def.is_phantom_data() {
945                     return FfiPhantom(ty);
946                 }
947                 match def.adt_kind() {
948                     AdtKind::Struct | AdtKind::Union => {
949                         if !def.repr().c() && !def.repr().transparent() {
950                             return FfiUnsafe {
951                                 ty,
952                                 reason: if def.is_struct() {
953                                     fluent::lint_improper_ctypes_struct_layout_reason
954                                 } else {
955                                     fluent::lint_improper_ctypes_union_layout_reason
956                                 },
957                                 help: if def.is_struct() {
958                                     Some(fluent::lint_improper_ctypes_struct_layout_help)
959                                 } else {
960                                     Some(fluent::lint_improper_ctypes_union_layout_help)
961                                 },
962                             };
963                         }
964
965                         let is_non_exhaustive =
966                             def.non_enum_variant().is_field_list_non_exhaustive();
967                         if is_non_exhaustive && !def.did().is_local() {
968                             return FfiUnsafe {
969                                 ty,
970                                 reason: if def.is_struct() {
971                                     fluent::lint_improper_ctypes_struct_non_exhaustive
972                                 } else {
973                                     fluent::lint_improper_ctypes_union_non_exhaustive
974                                 },
975                                 help: None,
976                             };
977                         }
978
979                         if def.non_enum_variant().fields.is_empty() {
980                             return FfiUnsafe {
981                                 ty,
982                                 reason: if def.is_struct() {
983                                     fluent::lint_improper_ctypes_struct_fieldless_reason
984                                 } else {
985                                     fluent::lint_improper_ctypes_union_fieldless_reason
986                                 },
987                                 help: if def.is_struct() {
988                                     Some(fluent::lint_improper_ctypes_struct_fieldless_help)
989                                 } else {
990                                     Some(fluent::lint_improper_ctypes_union_fieldless_help)
991                                 },
992                             };
993                         }
994
995                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
996                     }
997                     AdtKind::Enum => {
998                         if def.variants().is_empty() {
999                             // Empty enums are okay... although sort of useless.
1000                             return FfiSafe;
1001                         }
1002
1003                         // Check for a repr() attribute to specify the size of the
1004                         // discriminant.
1005                         if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
1006                         {
1007                             // Special-case types like `Option<extern fn()>`.
1008                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
1009                                 return FfiUnsafe {
1010                                     ty,
1011                                     reason: fluent::lint_improper_ctypes_enum_repr_reason,
1012                                     help: Some(fluent::lint_improper_ctypes_enum_repr_help),
1013                                 };
1014                             }
1015                         }
1016
1017                         if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
1018                             return FfiUnsafe {
1019                                 ty,
1020                                 reason: fluent::lint_improper_ctypes_non_exhaustive,
1021                                 help: None,
1022                             };
1023                         }
1024
1025                         // Check the contained variants.
1026                         for variant in def.variants() {
1027                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1028                             if is_non_exhaustive && !variant.def_id.is_local() {
1029                                 return FfiUnsafe {
1030                                     ty,
1031                                     reason: fluent::lint_improper_ctypes_non_exhaustive_variant,
1032                                     help: None,
1033                                 };
1034                             }
1035
1036                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1037                                 FfiSafe => (),
1038                                 r => return r,
1039                             }
1040                         }
1041
1042                         FfiSafe
1043                     }
1044                 }
1045             }
1046
1047             ty::Char => FfiUnsafe {
1048                 ty,
1049                 reason: fluent::lint_improper_ctypes_char_reason,
1050                 help: Some(fluent::lint_improper_ctypes_char_help),
1051             },
1052
1053             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
1054                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_128bit, help: None }
1055             }
1056
1057             // Primitive types with a stable representation.
1058             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1059
1060             ty::Slice(_) => FfiUnsafe {
1061                 ty,
1062                 reason: fluent::lint_improper_ctypes_slice_reason,
1063                 help: Some(fluent::lint_improper_ctypes_slice_help),
1064             },
1065
1066             ty::Dynamic(..) => {
1067                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_dyn, help: None }
1068             }
1069
1070             ty::Str => FfiUnsafe {
1071                 ty,
1072                 reason: fluent::lint_improper_ctypes_str_reason,
1073                 help: Some(fluent::lint_improper_ctypes_str_help),
1074             },
1075
1076             ty::Tuple(..) => FfiUnsafe {
1077                 ty,
1078                 reason: fluent::lint_improper_ctypes_tuple_reason,
1079                 help: Some(fluent::lint_improper_ctypes_tuple_help),
1080             },
1081
1082             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1083                 if {
1084                     matches!(self.mode, CItemKind::Definition)
1085                         && ty.is_sized(self.cx.tcx, self.cx.param_env)
1086                 } =>
1087             {
1088                 FfiSafe
1089             }
1090
1091             ty::RawPtr(ty::TypeAndMut { ty, .. })
1092                 if match ty.kind() {
1093                     ty::Tuple(tuple) => tuple.is_empty(),
1094                     _ => false,
1095                 } =>
1096             {
1097                 FfiSafe
1098             }
1099
1100             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1101                 self.check_type_for_ffi(cache, ty)
1102             }
1103
1104             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1105
1106             ty::FnPtr(sig) => {
1107                 if self.is_internal_abi(sig.abi()) {
1108                     return FfiUnsafe {
1109                         ty,
1110                         reason: fluent::lint_improper_ctypes_fnptr_reason,
1111                         help: Some(fluent::lint_improper_ctypes_fnptr_help),
1112                     };
1113                 }
1114
1115                 let sig = tcx.erase_late_bound_regions(sig);
1116                 if !sig.output().is_unit() {
1117                     let r = self.check_type_for_ffi(cache, sig.output());
1118                     match r {
1119                         FfiSafe => {}
1120                         _ => {
1121                             return r;
1122                         }
1123                     }
1124                 }
1125                 for arg in sig.inputs() {
1126                     let r = self.check_type_for_ffi(cache, *arg);
1127                     match r {
1128                         FfiSafe => {}
1129                         _ => {
1130                             return r;
1131                         }
1132                     }
1133                 }
1134                 FfiSafe
1135             }
1136
1137             ty::Foreign(..) => FfiSafe,
1138
1139             // While opaque types are checked for earlier, if a projection in a struct field
1140             // normalizes to an opaque type, then it will reach this branch.
1141             ty::Opaque(..) => {
1142                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_opaque, help: None }
1143             }
1144
1145             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1146             //  so they are currently ignored for the purposes of this lint.
1147             ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
1148                 FfiSafe
1149             }
1150
1151             ty::Param(..)
1152             | ty::Projection(..)
1153             | ty::Infer(..)
1154             | ty::Bound(..)
1155             | ty::Error(_)
1156             | ty::Closure(..)
1157             | ty::Generator(..)
1158             | ty::GeneratorWitness(..)
1159             | ty::Placeholder(..)
1160             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1161         }
1162     }
1163
1164     fn emit_ffi_unsafe_type_lint(
1165         &mut self,
1166         ty: Ty<'tcx>,
1167         sp: Span,
1168         note: DiagnosticMessage,
1169         help: Option<DiagnosticMessage>,
1170     ) {
1171         let lint = match self.mode {
1172             CItemKind::Declaration => IMPROPER_CTYPES,
1173             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1174         };
1175
1176         self.cx.struct_span_lint(lint, sp, fluent::lint_improper_ctypes, |lint| {
1177             let item_description = match self.mode {
1178                 CItemKind::Declaration => "block",
1179                 CItemKind::Definition => "fn",
1180             };
1181             lint.set_arg("ty", ty);
1182             lint.set_arg("desc", item_description);
1183             lint.span_label(sp, fluent::label);
1184             if let Some(help) = help {
1185                 lint.help(help);
1186             }
1187             lint.note(note);
1188             if let ty::Adt(def, _) = ty.kind() {
1189                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
1190                     lint.span_note(sp, fluent::note);
1191                 }
1192             }
1193             lint
1194         });
1195     }
1196
1197     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1198         struct ProhibitOpaqueTypes;
1199         impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes {
1200             type BreakTy = Ty<'tcx>;
1201
1202             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1203                 if !ty.has_opaque_types() {
1204                     return ControlFlow::CONTINUE;
1205                 }
1206
1207                 if let ty::Opaque(..) = ty.kind() {
1208                     ControlFlow::Break(ty)
1209                 } else {
1210                     ty.super_visit_with(self)
1211                 }
1212             }
1213         }
1214
1215         if let Some(ty) = self
1216             .cx
1217             .tcx
1218             .normalize_erasing_regions(self.cx.param_env, ty)
1219             .visit_with(&mut ProhibitOpaqueTypes)
1220             .break_value()
1221         {
1222             self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint_improper_ctypes_opaque, None);
1223             true
1224         } else {
1225             false
1226         }
1227     }
1228
1229     fn check_type_for_ffi_and_report_errors(
1230         &mut self,
1231         sp: Span,
1232         ty: Ty<'tcx>,
1233         is_static: bool,
1234         is_return_type: bool,
1235     ) {
1236         // We have to check for opaque types before `normalize_erasing_regions`,
1237         // which will replace opaque types with their underlying concrete type.
1238         if self.check_for_opaque_ty(sp, ty) {
1239             // We've already emitted an error due to an opaque type.
1240             return;
1241         }
1242
1243         // it is only OK to use this function because extern fns cannot have
1244         // any generic types right now:
1245         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1246
1247         // C doesn't really support passing arrays by value - the only way to pass an array by value
1248         // is through a struct. So, first test that the top level isn't an array, and then
1249         // recursively check the types inside.
1250         if !is_static && self.check_for_array_ty(sp, ty) {
1251             return;
1252         }
1253
1254         // Don't report FFI errors for unit return types. This check exists here, and not in
1255         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1256         // happened.
1257         if is_return_type && ty.is_unit() {
1258             return;
1259         }
1260
1261         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1262             FfiResult::FfiSafe => {}
1263             FfiResult::FfiPhantom(ty) => {
1264                 self.emit_ffi_unsafe_type_lint(
1265                     ty,
1266                     sp,
1267                     fluent::lint_improper_ctypes_only_phantomdata,
1268                     None,
1269                 );
1270             }
1271             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1272             // argument, which after substitution, is `()`, then this branch can be hit.
1273             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1274             FfiResult::FfiUnsafe { ty, reason, help } => {
1275                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
1276             }
1277         }
1278     }
1279
1280     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1281         let def_id = self.cx.tcx.hir().local_def_id(id);
1282         let sig = self.cx.tcx.fn_sig(def_id);
1283         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1284
1285         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1286             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1287         }
1288
1289         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1290             let ret_ty = sig.output();
1291             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1292         }
1293     }
1294
1295     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1296         let def_id = self.cx.tcx.hir().local_def_id(id);
1297         let ty = self.cx.tcx.type_of(def_id);
1298         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1299     }
1300
1301     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1302         matches!(
1303             abi,
1304             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1305         )
1306     }
1307 }
1308
1309 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1310     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1311         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1312         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1313
1314         if !vis.is_internal_abi(abi) {
1315             match it.kind {
1316                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1317                     vis.check_foreign_fn(it.hir_id(), decl);
1318                 }
1319                 hir::ForeignItemKind::Static(ref ty, _) => {
1320                     vis.check_foreign_static(it.hir_id(), ty.span);
1321                 }
1322                 hir::ForeignItemKind::Type => (),
1323             }
1324         }
1325     }
1326 }
1327
1328 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1329     fn check_fn(
1330         &mut self,
1331         cx: &LateContext<'tcx>,
1332         kind: hir::intravisit::FnKind<'tcx>,
1333         decl: &'tcx hir::FnDecl<'_>,
1334         _: &'tcx hir::Body<'_>,
1335         _: Span,
1336         hir_id: hir::HirId,
1337     ) {
1338         use hir::intravisit::FnKind;
1339
1340         let abi = match kind {
1341             FnKind::ItemFn(_, _, header, ..) => header.abi,
1342             FnKind::Method(_, sig, ..) => sig.header.abi,
1343             _ => return,
1344         };
1345
1346         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1347         if !vis.is_internal_abi(abi) {
1348             vis.check_foreign_fn(hir_id, decl);
1349         }
1350     }
1351 }
1352
1353 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1354
1355 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1356     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1357         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1358             let t = cx.tcx.type_of(it.owner_id);
1359             let ty = cx.tcx.erase_regions(t);
1360             let Ok(layout) = cx.layout_of(ty) else { return };
1361             let Variants::Multiple {
1362                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1363                 } = &layout.variants else {
1364                 return
1365             };
1366
1367             let tag_size = tag.size(&cx.tcx).bytes();
1368
1369             debug!(
1370                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1371                 t,
1372                 layout.size.bytes(),
1373                 layout
1374             );
1375
1376             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1377                 .map(|(variant, variant_layout)| {
1378                     // Subtract the size of the enum tag.
1379                     let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
1380
1381                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1382                     bytes
1383                 })
1384                 .enumerate()
1385                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1386                     if size > l {
1387                         (size, l, idx)
1388                     } else if size > s {
1389                         (l, size, li)
1390                     } else {
1391                         (l, s, li)
1392                     }
1393                 });
1394
1395             // We only warn if the largest variant is at least thrice as large as
1396             // the second-largest.
1397             if largest > slargest * 3 && slargest > 0 {
1398                 cx.struct_span_lint(
1399                     VARIANT_SIZE_DIFFERENCES,
1400                     enum_definition.variants[largest_index].span,
1401                     fluent::lint_variant_size_differences,
1402                     |lint| lint.set_arg("largest", largest),
1403                 );
1404             }
1405         }
1406     }
1407 }
1408
1409 declare_lint! {
1410     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1411     /// to an atomic operation that does not support that ordering.
1412     ///
1413     /// ### Example
1414     ///
1415     /// ```rust,compile_fail
1416     /// # use core::sync::atomic::{AtomicU8, Ordering};
1417     /// let atom = AtomicU8::new(0);
1418     /// let value = atom.load(Ordering::Release);
1419     /// # let _ = value;
1420     /// ```
1421     ///
1422     /// {{produces}}
1423     ///
1424     /// ### Explanation
1425     ///
1426     /// Some atomic operations are only supported for a subset of the
1427     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1428     /// an unconditional panic at runtime, which is detected by this lint.
1429     ///
1430     /// This lint will trigger in the following cases: (where `AtomicType` is an
1431     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1432     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1433     ///
1434     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1435     ///   `AtomicType::store`.
1436     ///
1437     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1438     ///   `AtomicType::load`.
1439     ///
1440     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1441     ///   `core::sync::atomic::compiler_fence`.
1442     ///
1443     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1444     ///   ordering for any of `AtomicType::compare_exchange`,
1445     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1446     INVALID_ATOMIC_ORDERING,
1447     Deny,
1448     "usage of invalid atomic ordering in atomic operations and memory fences"
1449 }
1450
1451 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1452
1453 impl InvalidAtomicOrdering {
1454     fn inherent_atomic_method_call<'hir>(
1455         cx: &LateContext<'_>,
1456         expr: &Expr<'hir>,
1457         recognized_names: &[Symbol], // used for fast path calculation
1458     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1459         const ATOMIC_TYPES: &[Symbol] = &[
1460             sym::AtomicBool,
1461             sym::AtomicPtr,
1462             sym::AtomicUsize,
1463             sym::AtomicU8,
1464             sym::AtomicU16,
1465             sym::AtomicU32,
1466             sym::AtomicU64,
1467             sym::AtomicU128,
1468             sym::AtomicIsize,
1469             sym::AtomicI8,
1470             sym::AtomicI16,
1471             sym::AtomicI32,
1472             sym::AtomicI64,
1473             sym::AtomicI128,
1474         ];
1475         if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
1476             && recognized_names.contains(&method_path.ident.name)
1477             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1478             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1479             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1480             // skip extension traits, only lint functions from the standard library
1481             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1482             && let parent = cx.tcx.parent(adt.did())
1483             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1484             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1485         {
1486             return Some((method_path.ident.name, args));
1487         }
1488         None
1489     }
1490
1491     fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1492         let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1493         let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
1494         let tcx = cx.tcx;
1495         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1496         let name = tcx.item_name(did);
1497         let parent = tcx.parent(did);
1498         [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1499             |&ordering| {
1500                 name == ordering
1501                     && (Some(parent) == atomic_ordering
1502                             // needed in case this is a ctor, not a variant
1503                             || tcx.opt_parent(parent) == atomic_ordering)
1504             },
1505         )
1506     }
1507
1508     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1509         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1510             && let Some((ordering_arg, invalid_ordering, msg)) = match method {
1511                 sym::load => Some((&args[0], sym::Release, fluent::lint_atomic_ordering_load)),
1512                 sym::store => Some((&args[1], sym::Acquire, fluent::lint_atomic_ordering_store)),
1513                 _ => None,
1514             }
1515             && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1516             && (ordering == invalid_ordering || ordering == sym::AcqRel)
1517         {
1518             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, msg, |lint| {
1519                 lint.help(fluent::help)
1520             });
1521         }
1522     }
1523
1524     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1525         if let ExprKind::Call(ref func, ref args) = expr.kind
1526             && let ExprKind::Path(ref func_qpath) = func.kind
1527             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1528             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1529             && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
1530         {
1531             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, fluent::lint_atomic_ordering_fence, |lint| {
1532                 lint
1533                     .help(fluent::help)
1534             });
1535         }
1536     }
1537
1538     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1539         let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1540             else {return };
1541
1542         let fail_order_arg = match method {
1543             sym::fetch_update => &args[1],
1544             sym::compare_exchange | sym::compare_exchange_weak => &args[3],
1545             _ => return,
1546         };
1547
1548         let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1549
1550         if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1551             #[derive(LintDiagnostic)]
1552             #[diag(lint_atomic_ordering_invalid)]
1553             #[help]
1554             struct InvalidAtomicOrderingDiag {
1555                 method: Symbol,
1556                 #[label]
1557                 fail_order_arg_span: Span,
1558             }
1559
1560             cx.emit_spanned_lint(
1561                 INVALID_ATOMIC_ORDERING,
1562                 fail_order_arg.span,
1563                 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1564             );
1565         }
1566     }
1567 }
1568
1569 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1570     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1571         Self::check_atomic_load_store(cx, expr);
1572         Self::check_memory_fence(cx, expr);
1573         Self::check_atomic_compare_exchange(cx, expr);
1574     }
1575 }