]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
c0bf64387ff376ab77bad579e4802c70bcc7779e
[rust.git] / compiler / rustc_lint / src / types.rs
1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::Applicability;
6 use rustc_hir as hir;
7 use rustc_hir::def_id::DefId;
8 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
9 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
10 use rustc_middle::ty::subst::SubstsRef;
11 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeFoldable};
12 use rustc_span::source_map;
13 use rustc_span::symbol::sym;
14 use rustc_span::{Span, Symbol, DUMMY_SP};
15 use rustc_target::abi::Abi;
16 use rustc_target::abi::{Integer, TagEncoding, Variants};
17 use rustc_target::spec::abi::Abi as SpecAbi;
18
19 use std::cmp;
20 use std::iter;
21 use std::ops::ControlFlow;
22 use tracing::debug;
23
24 declare_lint! {
25     /// The `unused_comparisons` lint detects comparisons made useless by
26     /// limits of the types involved.
27     ///
28     /// ### Example
29     ///
30     /// ```rust
31     /// fn foo(x: u8) {
32     ///     x >= 0;
33     /// }
34     /// ```
35     ///
36     /// {{produces}}
37     ///
38     /// ### Explanation
39     ///
40     /// A useless comparison may indicate a mistake, and should be fixed or
41     /// removed.
42     UNUSED_COMPARISONS,
43     Warn,
44     "comparisons made useless by limits of the types involved"
45 }
46
47 declare_lint! {
48     /// The `overflowing_literals` lint detects literal out of range for its
49     /// type.
50     ///
51     /// ### Example
52     ///
53     /// ```rust,compile_fail
54     /// let x: u8 = 1000;
55     /// ```
56     ///
57     /// {{produces}}
58     ///
59     /// ### Explanation
60     ///
61     /// It is usually a mistake to use a literal that overflows the type where
62     /// it is used. Either use a literal that is within range, or change the
63     /// type to be within the range of the literal.
64     OVERFLOWING_LITERALS,
65     Deny,
66     "literal out of range for its type"
67 }
68
69 declare_lint! {
70     /// The `variant_size_differences` lint detects enums with widely varying
71     /// variant sizes.
72     ///
73     /// ### Example
74     ///
75     /// ```rust,compile_fail
76     /// #![deny(variant_size_differences)]
77     /// enum En {
78     ///     V0(u8),
79     ///     VBig([u8; 1024]),
80     /// }
81     /// ```
82     ///
83     /// {{produces}}
84     ///
85     /// ### Explanation
86     ///
87     /// It can be a mistake to add a variant to an enum that is much larger
88     /// than the other variants, bloating the overall size required for all
89     /// variants. This can impact performance and memory usage. This is
90     /// triggered if one variant is more than 3 times larger than the
91     /// second-largest variant.
92     ///
93     /// Consider placing the large variant's contents on the heap (for example
94     /// via [`Box`]) to keep the overall size of the enum itself down.
95     ///
96     /// This lint is "allow" by default because it can be noisy, and may not be
97     /// an actual problem. Decisions about this should be guided with
98     /// profiling and benchmarking.
99     ///
100     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
101     VARIANT_SIZE_DIFFERENCES,
102     Allow,
103     "detects enums with widely varying variant sizes"
104 }
105
106 #[derive(Copy, Clone)]
107 pub struct TypeLimits {
108     /// Id of the last visited negated expression
109     negated_expr_id: Option<hir::HirId>,
110 }
111
112 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
113
114 impl TypeLimits {
115     pub fn new() -> TypeLimits {
116         TypeLimits { negated_expr_id: None }
117     }
118 }
119
120 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
121 /// Returns `true` iff the lint was overridden.
122 fn lint_overflowing_range_endpoint<'tcx>(
123     cx: &LateContext<'tcx>,
124     lit: &hir::Lit,
125     lit_val: u128,
126     max: u128,
127     expr: &'tcx hir::Expr<'tcx>,
128     parent_expr: &'tcx hir::Expr<'tcx>,
129     ty: &str,
130 ) -> bool {
131     // We only want to handle exclusive (`..`) ranges,
132     // which are represented as `ExprKind::Struct`.
133     let mut overwritten = false;
134     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
135         if eps.len() != 2 {
136             return false;
137         }
138         // We can suggest using an inclusive range
139         // (`..=`) instead only if it is the `end` that is
140         // overflowing and only by 1.
141         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
142             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
143                 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
144                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
145                     use ast::{LitIntType, LitKind};
146                     // We need to preserve the literal's suffix,
147                     // as it may determine typing information.
148                     let suffix = match lit.node {
149                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
150                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
151                         LitKind::Int(_, LitIntType::Unsuffixed) => "",
152                         _ => bug!(),
153                     };
154                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
155                     err.span_suggestion(
156                         parent_expr.span,
157                         &"use an inclusive range instead",
158                         suggestion,
159                         Applicability::MachineApplicable,
160                     );
161                     err.emit();
162                     overwritten = true;
163                 }
164             });
165         }
166     }
167     overwritten
168 }
169
170 // For `isize` & `usize`, be conservative with the warnings, so that the
171 // warnings are consistent between 32- and 64-bit platforms.
172 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
173     match int_ty {
174         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
175         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
176         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
177         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
178         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
179         ty::IntTy::I128 => (i128::MIN, i128::MAX),
180     }
181 }
182
183 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
184     let max = match uint_ty {
185         ty::UintTy::Usize => u64::MAX.into(),
186         ty::UintTy::U8 => u8::MAX.into(),
187         ty::UintTy::U16 => u16::MAX.into(),
188         ty::UintTy::U32 => u32::MAX.into(),
189         ty::UintTy::U64 => u64::MAX.into(),
190         ty::UintTy::U128 => u128::MAX,
191     };
192     (0, max)
193 }
194
195 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
196     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
197     let firstch = src.chars().next()?;
198
199     if firstch == '0' {
200         match src.chars().nth(1) {
201             Some('x' | 'b') => return Some(src),
202             _ => return None,
203         }
204     }
205
206     None
207 }
208
209 fn report_bin_hex_error(
210     cx: &LateContext<'_>,
211     expr: &hir::Expr<'_>,
212     ty: attr::IntType,
213     repr_str: String,
214     val: u128,
215     negative: bool,
216 ) {
217     let size = Integer::from_attr(&cx.tcx, ty).size();
218     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
219         let (t, actually) = match ty {
220             attr::IntType::SignedInt(t) => {
221                 let actually = if negative {
222                     -(size.sign_extend(val) as i128)
223                 } else {
224                     size.sign_extend(val) as i128
225                 };
226                 (t.name_str(), actually.to_string())
227             }
228             attr::IntType::UnsignedInt(t) => {
229                 let actually = size.truncate(val);
230                 (t.name_str(), actually.to_string())
231             }
232         };
233         let mut err = lint.build(&format!("literal out of range for `{}`", t));
234         if negative {
235             // If the value is negative,
236             // emits a note about the value itself, apart from the literal.
237             err.note(&format!(
238                 "the literal `{}` (decimal `{}`) does not fit into \
239                  the type `{}`",
240                 repr_str, val, t
241             ));
242             err.note(&format!("and the value `-{}` will become `{}{}`", repr_str, actually, t));
243         } else {
244             err.note(&format!(
245                 "the literal `{}` (decimal `{}`) does not fit into \
246                  the type `{}` and will become `{}{}`",
247                 repr_str, val, t, actually, t
248             ));
249         }
250         if let Some(sugg_ty) =
251             get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
252         {
253             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
254                 let (sans_suffix, _) = repr_str.split_at(pos);
255                 err.span_suggestion(
256                     expr.span,
257                     &format!("consider using the type `{}` instead", sugg_ty),
258                     format!("{}{}", sans_suffix, sugg_ty),
259                     Applicability::MachineApplicable,
260                 );
261             } else {
262                 err.help(&format!("consider using the type `{}` instead", sugg_ty));
263             }
264         }
265         err.emit();
266     });
267 }
268
269 // This function finds the next fitting type and generates a suggestion string.
270 // It searches for fitting types in the following way (`X < Y`):
271 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
272 //  - `-iX` => `iY`
273 //  - `uX` => `uY`
274 //
275 // No suggestion for: `isize`, `usize`.
276 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
277     use ty::IntTy::*;
278     use ty::UintTy::*;
279     macro_rules! find_fit {
280         ($ty:expr, $val:expr, $negative:expr,
281          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
282             {
283                 let _neg = if negative { 1 } else { 0 };
284                 match $ty {
285                     $($type => {
286                         $(if !negative && val <= uint_ty_range($utypes).1 {
287                             return Some($utypes.name_str())
288                         })*
289                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
290                             return Some($itypes.name_str())
291                         })*
292                         None
293                     },)+
294                     _ => None
295                 }
296             }
297         }
298     }
299     match t.kind() {
300         ty::Int(i) => find_fit!(i, val, negative,
301                       I8 => [U8] => [I16, I32, I64, I128],
302                       I16 => [U16] => [I32, I64, I128],
303                       I32 => [U32] => [I64, I128],
304                       I64 => [U64] => [I128],
305                       I128 => [U128] => []),
306         ty::Uint(u) => find_fit!(u, val, negative,
307                       U8 => [U8, U16, U32, U64, U128] => [],
308                       U16 => [U16, U32, U64, U128] => [],
309                       U32 => [U32, U64, U128] => [],
310                       U64 => [U64, U128] => [],
311                       U128 => [U128] => []),
312         _ => None,
313     }
314 }
315
316 fn lint_int_literal<'tcx>(
317     cx: &LateContext<'tcx>,
318     type_limits: &TypeLimits,
319     e: &'tcx hir::Expr<'tcx>,
320     lit: &hir::Lit,
321     t: ty::IntTy,
322     v: u128,
323 ) {
324     let int_type = t.normalize(cx.sess().target.pointer_width);
325     let (min, max) = int_ty_range(int_type);
326     let max = max as u128;
327     let negative = type_limits.negated_expr_id == Some(e.hir_id);
328
329     // Detect literal value out of range [min, max] inclusive
330     // avoiding use of -min to prevent overflow/panic
331     if (negative && v > max + 1) || (!negative && v > max) {
332         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
333             report_bin_hex_error(
334                 cx,
335                 e,
336                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
337                 repr_str,
338                 v,
339                 negative,
340             );
341             return;
342         }
343
344         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
345         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
346             if let hir::ExprKind::Struct(..) = par_e.kind {
347                 if is_range_literal(par_e)
348                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
349                 {
350                     // The overflowing literal lint was overridden.
351                     return;
352                 }
353             }
354         }
355
356         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
357             let mut err = lint.build(&format!("literal out of range for `{}`", t.name_str()));
358             err.note(&format!(
359                 "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
360                 cx.sess()
361                     .source_map()
362                     .span_to_snippet(lit.span)
363                     .expect("must get snippet from literal"),
364                 t.name_str(),
365                 min,
366                 max,
367             ));
368             if let Some(sugg_ty) =
369                 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
370             {
371                 err.help(&format!("consider using the type `{}` instead", sugg_ty));
372             }
373             err.emit();
374         });
375     }
376 }
377
378 fn lint_uint_literal<'tcx>(
379     cx: &LateContext<'tcx>,
380     e: &'tcx hir::Expr<'tcx>,
381     lit: &hir::Lit,
382     t: ty::UintTy,
383 ) {
384     let uint_type = t.normalize(cx.sess().target.pointer_width);
385     let (min, max) = uint_ty_range(uint_type);
386     let lit_val: u128 = match lit.node {
387         // _v is u8, within range by definition
388         ast::LitKind::Byte(_v) => return,
389         ast::LitKind::Int(v, _) => v,
390         _ => bug!(),
391     };
392     if lit_val < min || lit_val > max {
393         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
394         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
395             match par_e.kind {
396                 hir::ExprKind::Cast(..) => {
397                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
398                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
399                             lint.build("only `u8` can be cast into `char`")
400                                 .span_suggestion(
401                                     par_e.span,
402                                     &"use a `char` literal instead",
403                                     format!("'\\u{{{:X}}}'", lit_val),
404                                     Applicability::MachineApplicable,
405                                 )
406                                 .emit();
407                         });
408                         return;
409                     }
410                 }
411                 hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
412                     let t = t.name_str();
413                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
414                         // The overflowing literal lint was overridden.
415                         return;
416                     }
417                 }
418                 _ => {}
419             }
420         }
421         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
422             report_bin_hex_error(
423                 cx,
424                 e,
425                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
426                 repr_str,
427                 lit_val,
428                 false,
429             );
430             return;
431         }
432         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
433             lint.build(&format!("literal out of range for `{}`", t.name_str()))
434                 .note(&format!(
435                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
436                     cx.sess()
437                         .source_map()
438                         .span_to_snippet(lit.span)
439                         .expect("must get snippet from literal"),
440                     t.name_str(),
441                     min,
442                     max,
443                 ))
444                 .emit()
445         });
446     }
447 }
448
449 fn lint_literal<'tcx>(
450     cx: &LateContext<'tcx>,
451     type_limits: &TypeLimits,
452     e: &'tcx hir::Expr<'tcx>,
453     lit: &hir::Lit,
454 ) {
455     match *cx.typeck_results().node_type(e.hir_id).kind() {
456         ty::Int(t) => {
457             match lit.node {
458                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
459                     lint_int_literal(cx, type_limits, e, lit, t, v)
460                 }
461                 _ => bug!(),
462             };
463         }
464         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
465         ty::Float(t) => {
466             let is_infinite = match lit.node {
467                 ast::LitKind::Float(v, _) => match t {
468                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
469                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
470                 },
471                 _ => bug!(),
472             };
473             if is_infinite == Ok(true) {
474                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
475                     lint.build(&format!("literal out of range for `{}`", t.name_str()))
476                         .note(&format!(
477                             "the literal `{}` does not fit into the type `{}` and will be converted to `{}::INFINITY`",
478                             cx.sess()
479                                 .source_map()
480                                 .span_to_snippet(lit.span)
481                                 .expect("must get snippet from literal"),
482                             t.name_str(),
483                             t.name_str(),
484                         ))
485                         .emit();
486                 });
487             }
488         }
489         _ => {}
490     }
491 }
492
493 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
494     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
495         match e.kind {
496             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
497                 // propagate negation, if the negation itself isn't negated
498                 if self.negated_expr_id != Some(e.hir_id) {
499                     self.negated_expr_id = Some(expr.hir_id);
500                 }
501             }
502             hir::ExprKind::Binary(binop, ref l, ref r) => {
503                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
504                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
505                         lint.build("comparison is useless due to type limits").emit()
506                     });
507                 }
508             }
509             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
510             _ => {}
511         };
512
513         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
514             match binop.node {
515                 hir::BinOpKind::Lt => v > min && v <= max,
516                 hir::BinOpKind::Le => v >= min && v < max,
517                 hir::BinOpKind::Gt => v >= min && v < max,
518                 hir::BinOpKind::Ge => v > min && v <= max,
519                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
520                 _ => bug!(),
521             }
522         }
523
524         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
525             source_map::respan(
526                 binop.span,
527                 match binop.node {
528                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
529                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
530                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
531                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
532                     _ => return binop,
533                 },
534             )
535         }
536
537         fn check_limits(
538             cx: &LateContext<'_>,
539             binop: hir::BinOp,
540             l: &hir::Expr<'_>,
541             r: &hir::Expr<'_>,
542         ) -> bool {
543             let (lit, expr, swap) = match (&l.kind, &r.kind) {
544                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
545                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
546                 _ => return true,
547             };
548             // Normalize the binop so that the literal is always on the RHS in
549             // the comparison
550             let norm_binop = if swap { rev_binop(binop) } else { binop };
551             match *cx.typeck_results().node_type(expr.hir_id).kind() {
552                 ty::Int(int_ty) => {
553                     let (min, max) = int_ty_range(int_ty);
554                     let lit_val: i128 = match lit.kind {
555                         hir::ExprKind::Lit(ref li) => match li.node {
556                             ast::LitKind::Int(
557                                 v,
558                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
559                             ) => v as i128,
560                             _ => return true,
561                         },
562                         _ => bug!(),
563                     };
564                     is_valid(norm_binop, lit_val, min, max)
565                 }
566                 ty::Uint(uint_ty) => {
567                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
568                     let lit_val: u128 = match lit.kind {
569                         hir::ExprKind::Lit(ref li) => match li.node {
570                             ast::LitKind::Int(v, _) => v,
571                             _ => return true,
572                         },
573                         _ => bug!(),
574                     };
575                     is_valid(norm_binop, lit_val, min, max)
576                 }
577                 _ => true,
578             }
579         }
580
581         fn is_comparison(binop: hir::BinOp) -> bool {
582             matches!(
583                 binop.node,
584                 hir::BinOpKind::Eq
585                     | hir::BinOpKind::Lt
586                     | hir::BinOpKind::Le
587                     | hir::BinOpKind::Ne
588                     | hir::BinOpKind::Ge
589                     | hir::BinOpKind::Gt
590             )
591         }
592     }
593 }
594
595 declare_lint! {
596     /// The `improper_ctypes` lint detects incorrect use of types in foreign
597     /// modules.
598     ///
599     /// ### Example
600     ///
601     /// ```rust
602     /// extern "C" {
603     ///     static STATIC: String;
604     /// }
605     /// ```
606     ///
607     /// {{produces}}
608     ///
609     /// ### Explanation
610     ///
611     /// The compiler has several checks to verify that types used in `extern`
612     /// blocks are safe and follow certain rules to ensure proper
613     /// compatibility with the foreign interfaces. This lint is issued when it
614     /// detects a probable mistake in a definition. The lint usually should
615     /// provide a description of the issue, along with possibly a hint on how
616     /// to resolve it.
617     IMPROPER_CTYPES,
618     Warn,
619     "proper use of libc types in foreign modules"
620 }
621
622 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
623
624 declare_lint! {
625     /// The `improper_ctypes_definitions` lint detects incorrect use of
626     /// [`extern` function] definitions.
627     ///
628     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
629     ///
630     /// ### Example
631     ///
632     /// ```rust
633     /// # #![allow(unused)]
634     /// pub extern "C" fn str_type(p: &str) { }
635     /// ```
636     ///
637     /// {{produces}}
638     ///
639     /// ### Explanation
640     ///
641     /// There are many parameter and return types that may be specified in an
642     /// `extern` function that are not compatible with the given ABI. This
643     /// lint is an alert that these types should not be used. The lint usually
644     /// should provide a description of the issue, along with possibly a hint
645     /// on how to resolve it.
646     IMPROPER_CTYPES_DEFINITIONS,
647     Warn,
648     "proper use of libc types in foreign item definitions"
649 }
650
651 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
652
653 #[derive(Clone, Copy)]
654 crate enum CItemKind {
655     Declaration,
656     Definition,
657 }
658
659 struct ImproperCTypesVisitor<'a, 'tcx> {
660     cx: &'a LateContext<'tcx>,
661     mode: CItemKind,
662 }
663
664 enum FfiResult<'tcx> {
665     FfiSafe,
666     FfiPhantom(Ty<'tcx>),
667     FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
668 }
669
670 crate fn nonnull_optimization_guaranteed<'tcx>(tcx: TyCtxt<'tcx>, def: &ty::AdtDef) -> bool {
671     tcx.get_attrs(def.did).iter().any(|a| a.has_name(sym::rustc_nonnull_optimization_guaranteed))
672 }
673
674 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
675 /// field.
676 pub fn transparent_newtype_field<'a, 'tcx>(
677     tcx: TyCtxt<'tcx>,
678     variant: &'a ty::VariantDef,
679 ) -> Option<&'a ty::FieldDef> {
680     let param_env = tcx.param_env(variant.def_id);
681     variant.fields.iter().find(|field| {
682         let field_ty = tcx.type_of(field.did);
683         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
684         !is_zst
685     })
686 }
687
688 /// Is type known to be non-null?
689 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
690     let tcx = cx.tcx;
691     match ty.kind() {
692         ty::FnPtr(_) => true,
693         ty::Ref(..) => true,
694         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
695         ty::Adt(def, substs) if def.repr.transparent() && !def.is_union() => {
696             let marked_non_null = nonnull_optimization_guaranteed(tcx, &def);
697
698             if marked_non_null {
699                 return true;
700             }
701
702             // Types with a `#[repr(no_niche)]` attribute have their niche hidden.
703             // The attribute is used by the UnsafeCell for example (the only use so far).
704             if def.repr.hide_niche() {
705                 return false;
706             }
707
708             def.variants
709                 .iter()
710                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
711                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
712         }
713         _ => false,
714     }
715 }
716
717 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
718 /// If the type passed in was not scalar, returns None.
719 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
720     let tcx = cx.tcx;
721     Some(match *ty.kind() {
722         ty::Adt(field_def, field_substs) => {
723             let inner_field_ty = {
724                 let first_non_zst_ty =
725                     field_def.variants.iter().filter_map(|v| transparent_newtype_field(cx.tcx, v));
726                 debug_assert_eq!(
727                     first_non_zst_ty.clone().count(),
728                     1,
729                     "Wrong number of fields for transparent type"
730                 );
731                 first_non_zst_ty
732                     .last()
733                     .expect("No non-zst fields in transparent type.")
734                     .ty(tcx, field_substs)
735             };
736             return get_nullable_type(cx, inner_field_ty);
737         }
738         ty::Int(ty) => tcx.mk_mach_int(ty),
739         ty::Uint(ty) => tcx.mk_mach_uint(ty),
740         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
741         // As these types are always non-null, the nullable equivalent of
742         // Option<T> of these types are their raw pointer counterparts.
743         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
744         ty::FnPtr(..) => {
745             // There is no nullable equivalent for Rust's function pointers -- you
746             // must use an Option<fn(..) -> _> to represent it.
747             ty
748         }
749
750         // We should only ever reach this case if ty_is_known_nonnull is extended
751         // to other types.
752         ref unhandled => {
753             debug!(
754                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
755                 unhandled, ty
756             );
757             return None;
758         }
759     })
760 }
761
762 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
763 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
764 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
765 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
766 /// FIXME: This duplicates code in codegen.
767 crate fn repr_nullable_ptr<'tcx>(
768     cx: &LateContext<'tcx>,
769     ty: Ty<'tcx>,
770     ckind: CItemKind,
771 ) -> Option<Ty<'tcx>> {
772     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
773     if let ty::Adt(ty_def, substs) = ty.kind() {
774         let field_ty = match &ty_def.variants.raw[..] {
775             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
776                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
777                 _ => return None,
778             },
779             _ => return None,
780         };
781
782         if !ty_is_known_nonnull(cx, field_ty, ckind) {
783             return None;
784         }
785
786         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
787         // If the computed size for the field and the enum are different, the nonnull optimization isn't
788         // being applied (and we've got a problem somewhere).
789         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
790         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
791             bug!("improper_ctypes: Option nonnull optimization not applied?");
792         }
793
794         // Return the nullable type this Option-like enum can be safely represented with.
795         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
796         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
797             match (field_ty_scalar.valid_range.start, field_ty_scalar.valid_range.end) {
798                 (0, _) => unreachable!("Non-null optimisation extended to a non-zero value."),
799                 (1, _) => {
800                     return Some(get_nullable_type(cx, field_ty).unwrap());
801                 }
802                 (start, end) => unreachable!("Unhandled start and end range: ({}, {})", start, end),
803             };
804         }
805     }
806     None
807 }
808
809 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
810     /// Check if the type is array and emit an unsafe type lint.
811     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
812         if let ty::Array(..) = ty.kind() {
813             self.emit_ffi_unsafe_type_lint(
814                 ty,
815                 sp,
816                 "passing raw arrays by value is not FFI-safe",
817                 Some("consider passing a pointer to the array"),
818             );
819             true
820         } else {
821             false
822         }
823     }
824
825     /// Checks if the given field's type is "ffi-safe".
826     fn check_field_type_for_ffi(
827         &self,
828         cache: &mut FxHashSet<Ty<'tcx>>,
829         field: &ty::FieldDef,
830         substs: SubstsRef<'tcx>,
831     ) -> FfiResult<'tcx> {
832         let field_ty = field.ty(self.cx.tcx, substs);
833         if field_ty.has_opaque_types() {
834             self.check_type_for_ffi(cache, field_ty)
835         } else {
836             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
837             self.check_type_for_ffi(cache, field_ty)
838         }
839     }
840
841     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
842     fn check_variant_for_ffi(
843         &self,
844         cache: &mut FxHashSet<Ty<'tcx>>,
845         ty: Ty<'tcx>,
846         def: &ty::AdtDef,
847         variant: &ty::VariantDef,
848         substs: SubstsRef<'tcx>,
849     ) -> FfiResult<'tcx> {
850         use FfiResult::*;
851
852         if def.repr.transparent() {
853             // Can assume that at most one field is not a ZST, so only check
854             // that field's type for FFI-safety.
855             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
856                 self.check_field_type_for_ffi(cache, field, substs)
857             } else {
858                 // All fields are ZSTs; this means that the type should behave
859                 // like (), which is FFI-unsafe
860                 FfiUnsafe {
861                     ty,
862                     reason: "this struct contains only zero-sized fields".into(),
863                     help: None,
864                 }
865             }
866         } else {
867             // We can't completely trust repr(C) markings; make sure the fields are
868             // actually safe.
869             let mut all_phantom = !variant.fields.is_empty();
870             for field in &variant.fields {
871                 match self.check_field_type_for_ffi(cache, &field, substs) {
872                     FfiSafe => {
873                         all_phantom = false;
874                     }
875                     FfiPhantom(..) if def.is_enum() => {
876                         return FfiUnsafe {
877                             ty,
878                             reason: "this enum contains a PhantomData field".into(),
879                             help: None,
880                         };
881                     }
882                     FfiPhantom(..) => {}
883                     r => return r,
884                 }
885             }
886
887             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
888         }
889     }
890
891     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
892     /// representation which can be exported to C code).
893     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
894         use FfiResult::*;
895
896         let tcx = self.cx.tcx;
897
898         // Protect against infinite recursion, for example
899         // `struct S(*mut S);`.
900         // FIXME: A recursion limit is necessary as well, for irregular
901         // recursive types.
902         if !cache.insert(ty) {
903             return FfiSafe;
904         }
905
906         match *ty.kind() {
907             ty::Adt(def, substs) => {
908                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
909                     if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
910                         return FfiSafe;
911                     } else {
912                         return FfiUnsafe {
913                             ty,
914                             reason: "box cannot be represented as a single pointer".to_string(),
915                             help: None,
916                         };
917                     }
918                 }
919                 if def.is_phantom_data() {
920                     return FfiPhantom(ty);
921                 }
922                 match def.adt_kind() {
923                     AdtKind::Struct | AdtKind::Union => {
924                         let kind = if def.is_struct() { "struct" } else { "union" };
925
926                         if !def.repr.c() && !def.repr.transparent() {
927                             return FfiUnsafe {
928                                 ty,
929                                 reason: format!("this {} has unspecified layout", kind),
930                                 help: Some(format!(
931                                     "consider adding a `#[repr(C)]` or \
932                                              `#[repr(transparent)]` attribute to this {}",
933                                     kind
934                                 )),
935                             };
936                         }
937
938                         let is_non_exhaustive =
939                             def.non_enum_variant().is_field_list_non_exhaustive();
940                         if is_non_exhaustive && !def.did.is_local() {
941                             return FfiUnsafe {
942                                 ty,
943                                 reason: format!("this {} is non-exhaustive", kind),
944                                 help: None,
945                             };
946                         }
947
948                         if def.non_enum_variant().fields.is_empty() {
949                             return FfiUnsafe {
950                                 ty,
951                                 reason: format!("this {} has no fields", kind),
952                                 help: Some(format!("consider adding a member to this {}", kind)),
953                             };
954                         }
955
956                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
957                     }
958                     AdtKind::Enum => {
959                         if def.variants.is_empty() {
960                             // Empty enums are okay... although sort of useless.
961                             return FfiSafe;
962                         }
963
964                         // Check for a repr() attribute to specify the size of the
965                         // discriminant.
966                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
967                             // Special-case types like `Option<extern fn()>`.
968                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
969                                 return FfiUnsafe {
970                                     ty,
971                                     reason: "enum has no representation hint".into(),
972                                     help: Some(
973                                         "consider adding a `#[repr(C)]`, \
974                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
975                                                 attribute to this enum"
976                                             .into(),
977                                     ),
978                                 };
979                             }
980                         }
981
982                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
983                             return FfiUnsafe {
984                                 ty,
985                                 reason: "this enum is non-exhaustive".into(),
986                                 help: None,
987                             };
988                         }
989
990                         // Check the contained variants.
991                         for variant in &def.variants {
992                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
993                             if is_non_exhaustive && !variant.def_id.is_local() {
994                                 return FfiUnsafe {
995                                     ty,
996                                     reason: "this enum has non-exhaustive variants".into(),
997                                     help: None,
998                                 };
999                             }
1000
1001                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1002                                 FfiSafe => (),
1003                                 r => return r,
1004                             }
1005                         }
1006
1007                         FfiSafe
1008                     }
1009                 }
1010             }
1011
1012             ty::Char => FfiUnsafe {
1013                 ty,
1014                 reason: "the `char` type has no C equivalent".into(),
1015                 help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
1016             },
1017
1018             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => FfiUnsafe {
1019                 ty,
1020                 reason: "128-bit integers don't currently have a known stable ABI".into(),
1021                 help: None,
1022             },
1023
1024             // Primitive types with a stable representation.
1025             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1026
1027             ty::Slice(_) => FfiUnsafe {
1028                 ty,
1029                 reason: "slices have no C equivalent".into(),
1030                 help: Some("consider using a raw pointer instead".into()),
1031             },
1032
1033             ty::Dynamic(..) => {
1034                 FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
1035             }
1036
1037             ty::Str => FfiUnsafe {
1038                 ty,
1039                 reason: "string slices have no C equivalent".into(),
1040                 help: Some("consider using `*const u8` and a length instead".into()),
1041             },
1042
1043             ty::Tuple(..) => FfiUnsafe {
1044                 ty,
1045                 reason: "tuples have unspecified layout".into(),
1046                 help: Some("consider using a struct instead".into()),
1047             },
1048
1049             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1050                 if {
1051                     matches!(self.mode, CItemKind::Definition)
1052                         && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1053                 } =>
1054             {
1055                 FfiSafe
1056             }
1057
1058             ty::RawPtr(ty::TypeAndMut { ty, .. })
1059                 if match ty.kind() {
1060                     ty::Tuple(tuple) => tuple.is_empty(),
1061                     _ => false,
1062                 } =>
1063             {
1064                 FfiSafe
1065             }
1066
1067             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1068                 self.check_type_for_ffi(cache, ty)
1069             }
1070
1071             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1072
1073             ty::FnPtr(sig) => {
1074                 if self.is_internal_abi(sig.abi()) {
1075                     return FfiUnsafe {
1076                         ty,
1077                         reason: "this function pointer has Rust-specific calling convention".into(),
1078                         help: Some(
1079                             "consider using an `extern fn(...) -> ...` \
1080                                     function pointer instead"
1081                                 .into(),
1082                         ),
1083                     };
1084                 }
1085
1086                 let sig = tcx.erase_late_bound_regions(sig);
1087                 if !sig.output().is_unit() {
1088                     let r = self.check_type_for_ffi(cache, sig.output());
1089                     match r {
1090                         FfiSafe => {}
1091                         _ => {
1092                             return r;
1093                         }
1094                     }
1095                 }
1096                 for arg in sig.inputs() {
1097                     let r = self.check_type_for_ffi(cache, *arg);
1098                     match r {
1099                         FfiSafe => {}
1100                         _ => {
1101                             return r;
1102                         }
1103                     }
1104                 }
1105                 FfiSafe
1106             }
1107
1108             ty::Foreign(..) => FfiSafe,
1109
1110             // While opaque types are checked for earlier, if a projection in a struct field
1111             // normalizes to an opaque type, then it will reach this branch.
1112             ty::Opaque(..) => {
1113                 FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
1114             }
1115
1116             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1117             //  so they are currently ignored for the purposes of this lint.
1118             ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
1119                 FfiSafe
1120             }
1121
1122             ty::Param(..)
1123             | ty::Projection(..)
1124             | ty::Infer(..)
1125             | ty::Bound(..)
1126             | ty::Error(_)
1127             | ty::Closure(..)
1128             | ty::Generator(..)
1129             | ty::GeneratorWitness(..)
1130             | ty::Placeholder(..)
1131             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1132         }
1133     }
1134
1135     fn emit_ffi_unsafe_type_lint(
1136         &mut self,
1137         ty: Ty<'tcx>,
1138         sp: Span,
1139         note: &str,
1140         help: Option<&str>,
1141     ) {
1142         let lint = match self.mode {
1143             CItemKind::Declaration => IMPROPER_CTYPES,
1144             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1145         };
1146
1147         self.cx.struct_span_lint(lint, sp, |lint| {
1148             let item_description = match self.mode {
1149                 CItemKind::Declaration => "block",
1150                 CItemKind::Definition => "fn",
1151             };
1152             let mut diag = lint.build(&format!(
1153                 "`extern` {} uses type `{}`, which is not FFI-safe",
1154                 item_description, ty
1155             ));
1156             diag.span_label(sp, "not FFI-safe");
1157             if let Some(help) = help {
1158                 diag.help(help);
1159             }
1160             diag.note(note);
1161             if let ty::Adt(def, _) = ty.kind() {
1162                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
1163                     diag.span_note(sp, "the type is defined here");
1164                 }
1165             }
1166             diag.emit();
1167         });
1168     }
1169
1170     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1171         struct ProhibitOpaqueTypes<'a, 'tcx> {
1172             cx: &'a LateContext<'tcx>,
1173         }
1174
1175         impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
1176             type BreakTy = Ty<'tcx>;
1177
1178             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1179                 match ty.kind() {
1180                     ty::Opaque(..) => ControlFlow::Break(ty),
1181                     // Consider opaque types within projections FFI-safe if they do not normalize
1182                     // to more opaque types.
1183                     ty::Projection(..) => {
1184                         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1185
1186                         // If `ty` is an opaque type directly then `super_visit_with` won't invoke
1187                         // this function again.
1188                         if ty.has_opaque_types() {
1189                             self.visit_ty(ty)
1190                         } else {
1191                             ControlFlow::CONTINUE
1192                         }
1193                     }
1194                     _ => ty.super_visit_with(self),
1195                 }
1196             }
1197         }
1198
1199         if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
1200             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
1201             true
1202         } else {
1203             false
1204         }
1205     }
1206
1207     fn check_type_for_ffi_and_report_errors(
1208         &mut self,
1209         sp: Span,
1210         ty: Ty<'tcx>,
1211         is_static: bool,
1212         is_return_type: bool,
1213     ) {
1214         // We have to check for opaque types before `normalize_erasing_regions`,
1215         // which will replace opaque types with their underlying concrete type.
1216         if self.check_for_opaque_ty(sp, ty) {
1217             // We've already emitted an error due to an opaque type.
1218             return;
1219         }
1220
1221         // it is only OK to use this function because extern fns cannot have
1222         // any generic types right now:
1223         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1224
1225         // C doesn't really support passing arrays by value - the only way to pass an array by value
1226         // is through a struct. So, first test that the top level isn't an array, and then
1227         // recursively check the types inside.
1228         if !is_static && self.check_for_array_ty(sp, ty) {
1229             return;
1230         }
1231
1232         // Don't report FFI errors for unit return types. This check exists here, and not in
1233         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1234         // happened.
1235         if is_return_type && ty.is_unit() {
1236             return;
1237         }
1238
1239         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1240             FfiResult::FfiSafe => {}
1241             FfiResult::FfiPhantom(ty) => {
1242                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
1243             }
1244             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1245             // argument, which after substitution, is `()`, then this branch can be hit.
1246             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1247             FfiResult::FfiUnsafe { ty, reason, help } => {
1248                 self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
1249             }
1250         }
1251     }
1252
1253     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1254         let def_id = self.cx.tcx.hir().local_def_id(id);
1255         let sig = self.cx.tcx.fn_sig(def_id);
1256         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1257
1258         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1259             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1260         }
1261
1262         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1263             let ret_ty = sig.output();
1264             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1265         }
1266     }
1267
1268     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1269         let def_id = self.cx.tcx.hir().local_def_id(id);
1270         let ty = self.cx.tcx.type_of(def_id);
1271         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1272     }
1273
1274     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1275         matches!(
1276             abi,
1277             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1278         )
1279     }
1280 }
1281
1282 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1283     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1284         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1285         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1286
1287         if !vis.is_internal_abi(abi) {
1288             match it.kind {
1289                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1290                     vis.check_foreign_fn(it.hir_id(), decl);
1291                 }
1292                 hir::ForeignItemKind::Static(ref ty, _) => {
1293                     vis.check_foreign_static(it.hir_id(), ty.span);
1294                 }
1295                 hir::ForeignItemKind::Type => (),
1296             }
1297         }
1298     }
1299 }
1300
1301 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1302     fn check_fn(
1303         &mut self,
1304         cx: &LateContext<'tcx>,
1305         kind: hir::intravisit::FnKind<'tcx>,
1306         decl: &'tcx hir::FnDecl<'_>,
1307         _: &'tcx hir::Body<'_>,
1308         _: Span,
1309         hir_id: hir::HirId,
1310     ) {
1311         use hir::intravisit::FnKind;
1312
1313         let abi = match kind {
1314             FnKind::ItemFn(_, _, header, ..) => header.abi,
1315             FnKind::Method(_, sig, ..) => sig.header.abi,
1316             _ => return,
1317         };
1318
1319         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1320         if !vis.is_internal_abi(abi) {
1321             vis.check_foreign_fn(hir_id, decl);
1322         }
1323     }
1324 }
1325
1326 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1327
1328 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1329     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1330         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1331             let t = cx.tcx.type_of(it.def_id);
1332             let ty = cx.tcx.erase_regions(t);
1333             let Ok(layout) = cx.layout_of(ty) else { return };
1334             let Variants::Multiple {
1335                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1336                 } = &layout.variants else {
1337                 return
1338             };
1339
1340             let tag_size = tag.value.size(&cx.tcx).bytes();
1341
1342             debug!(
1343                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1344                 t,
1345                 layout.size.bytes(),
1346                 layout
1347             );
1348
1349             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1350                 .map(|(variant, variant_layout)| {
1351                     // Subtract the size of the enum tag.
1352                     let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
1353
1354                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1355                     bytes
1356                 })
1357                 .enumerate()
1358                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1359                     if size > l {
1360                         (size, l, idx)
1361                     } else if size > s {
1362                         (l, size, li)
1363                     } else {
1364                         (l, s, li)
1365                     }
1366                 });
1367
1368             // We only warn if the largest variant is at least thrice as large as
1369             // the second-largest.
1370             if largest > slargest * 3 && slargest > 0 {
1371                 cx.struct_span_lint(
1372                     VARIANT_SIZE_DIFFERENCES,
1373                     enum_definition.variants[largest_index].span,
1374                     |lint| {
1375                         lint.build(&format!(
1376                             "enum variant is more than three times \
1377                                           larger ({} bytes) than the next largest",
1378                             largest
1379                         ))
1380                         .emit()
1381                     },
1382                 );
1383             }
1384         }
1385     }
1386 }
1387
1388 declare_lint! {
1389     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1390     /// to an atomic operation that does not support that ordering.
1391     ///
1392     /// ### Example
1393     ///
1394     /// ```rust,compile_fail
1395     /// # use core::sync::atomic::{AtomicU8, Ordering};
1396     /// let atom = AtomicU8::new(0);
1397     /// let value = atom.load(Ordering::Release);
1398     /// # let _ = value;
1399     /// ```
1400     ///
1401     /// {{produces}}
1402     ///
1403     /// ### Explanation
1404     ///
1405     /// Some atomic operations are only supported for a subset of the
1406     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1407     /// an unconditional panic at runtime, which is detected by this lint.
1408     ///
1409     /// This lint will trigger in the following cases: (where `AtomicType` is an
1410     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1411     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1412     ///
1413     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1414     ///   `AtomicType::store`.
1415     ///
1416     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1417     ///   `AtomicType::load`.
1418     ///
1419     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1420     ///   `core::sync::atomic::compiler_fence`.
1421     ///
1422     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1423     ///   ordering for any of `AtomicType::compare_exchange`,
1424     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1425     ///
1426     /// - Passing in a pair of orderings to `AtomicType::compare_exchange`,
1427     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`
1428     ///   where the failure ordering is stronger than the success ordering.
1429     INVALID_ATOMIC_ORDERING,
1430     Deny,
1431     "usage of invalid atomic ordering in atomic operations and memory fences"
1432 }
1433
1434 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1435
1436 impl InvalidAtomicOrdering {
1437     fn inherent_atomic_method_call<'hir>(
1438         cx: &LateContext<'_>,
1439         expr: &Expr<'hir>,
1440         recognized_names: &[Symbol], // used for fast path calculation
1441     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1442         const ATOMIC_TYPES: &[Symbol] = &[
1443             sym::AtomicBool,
1444             sym::AtomicPtr,
1445             sym::AtomicUsize,
1446             sym::AtomicU8,
1447             sym::AtomicU16,
1448             sym::AtomicU32,
1449             sym::AtomicU64,
1450             sym::AtomicU128,
1451             sym::AtomicIsize,
1452             sym::AtomicI8,
1453             sym::AtomicI16,
1454             sym::AtomicI32,
1455             sym::AtomicI64,
1456             sym::AtomicI128,
1457         ];
1458         if let ExprKind::MethodCall(ref method_path, args, _) = &expr.kind
1459             && recognized_names.contains(&method_path.ident.name)
1460             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1461             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1462             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1463             // skip extension traits, only lint functions from the standard library
1464             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1465             && let Some(parent) = cx.tcx.parent(adt.did)
1466             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1467             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did))
1468         {
1469             return Some((method_path.ident.name, args));
1470         }
1471         None
1472     }
1473
1474     fn matches_ordering(cx: &LateContext<'_>, did: DefId, orderings: &[Symbol]) -> bool {
1475         let tcx = cx.tcx;
1476         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1477         orderings.iter().any(|ordering| {
1478             tcx.item_name(did) == *ordering && {
1479                 let parent = tcx.parent(did);
1480                 parent == atomic_ordering
1481                     // needed in case this is a ctor, not a variant
1482                     || parent.map_or(false, |parent| tcx.parent(parent) == atomic_ordering)
1483             }
1484         })
1485     }
1486
1487     fn opt_ordering_defid(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<DefId> {
1488         if let ExprKind::Path(ref ord_qpath) = ord_arg.kind {
1489             cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()
1490         } else {
1491             None
1492         }
1493     }
1494
1495     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1496         use rustc_hir::def::{DefKind, Res};
1497         use rustc_hir::QPath;
1498         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1499             && let Some((ordering_arg, invalid_ordering)) = match method {
1500                 sym::load => Some((&args[1], sym::Release)),
1501                 sym::store => Some((&args[2], sym::Acquire)),
1502                 _ => None,
1503             }
1504             && let ExprKind::Path(QPath::Resolved(_, path)) = ordering_arg.kind
1505             && let Res::Def(DefKind::Ctor(..), ctor_id) = path.res
1506             && Self::matches_ordering(cx, ctor_id, &[invalid_ordering, sym::AcqRel])
1507         {
1508             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1509                 if method == sym::load {
1510                     diag.build("atomic loads cannot have `Release` or `AcqRel` ordering")
1511                         .help("consider using ordering modes `Acquire`, `SeqCst` or `Relaxed`")
1512                         .emit()
1513                 } else {
1514                     debug_assert_eq!(method, sym::store);
1515                     diag.build("atomic stores cannot have `Acquire` or `AcqRel` ordering")
1516                         .help("consider using ordering modes `Release`, `SeqCst` or `Relaxed`")
1517                         .emit();
1518                 }
1519             });
1520         }
1521     }
1522
1523     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1524         if let ExprKind::Call(ref func, ref args) = expr.kind
1525             && let ExprKind::Path(ref func_qpath) = func.kind
1526             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1527             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1528             && let ExprKind::Path(ref ordering_qpath) = &args[0].kind
1529             && let Some(ordering_def_id) = cx.qpath_res(ordering_qpath, args[0].hir_id).opt_def_id()
1530             && Self::matches_ordering(cx, ordering_def_id, &[sym::Relaxed])
1531         {
1532             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
1533                 diag.build("memory fences cannot have `Relaxed` ordering")
1534                     .help("consider using ordering modes `Acquire`, `Release`, `AcqRel` or `SeqCst`")
1535                     .emit();
1536             });
1537         }
1538     }
1539
1540     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1541         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1542             && let Some((success_order_arg, failure_order_arg)) = match method {
1543                 sym::fetch_update => Some((&args[1], &args[2])),
1544                 sym::compare_exchange | sym::compare_exchange_weak => Some((&args[3], &args[4])),
1545                 _ => None,
1546             }
1547             && let Some(fail_ordering_def_id) = Self::opt_ordering_defid(cx, failure_order_arg)
1548         {
1549             // Helper type holding on to some checking and error reporting data. Has
1550             // - (success ordering,
1551             // - list of failure orderings forbidden by the success order,
1552             // - suggestion message)
1553             type OrdLintInfo = (Symbol, &'static [Symbol], &'static str);
1554             const RELAXED: OrdLintInfo = (sym::Relaxed, &[sym::SeqCst, sym::Acquire], "ordering mode `Relaxed`");
1555             const ACQUIRE: OrdLintInfo = (sym::Acquire, &[sym::SeqCst], "ordering modes `Acquire` or `Relaxed`");
1556             const SEQ_CST: OrdLintInfo = (sym::SeqCst, &[], "ordering modes `Acquire`, `SeqCst` or `Relaxed`");
1557             const RELEASE: OrdLintInfo = (sym::Release, RELAXED.1, RELAXED.2);
1558             const ACQREL: OrdLintInfo = (sym::AcqRel, ACQUIRE.1, ACQUIRE.2);
1559             const SEARCH: [OrdLintInfo; 5] = [RELAXED, ACQUIRE, SEQ_CST, RELEASE, ACQREL];
1560
1561             let success_lint_info = Self::opt_ordering_defid(cx, success_order_arg)
1562                 .and_then(|success_ord_def_id| -> Option<OrdLintInfo> {
1563                     SEARCH
1564                         .iter()
1565                         .copied()
1566                         .find(|(ordering, ..)| {
1567                             Self::matches_ordering(cx, success_ord_def_id, &[*ordering])
1568                         })
1569                 });
1570             if Self::matches_ordering(cx, fail_ordering_def_id, &[sym::Release, sym::AcqRel]) {
1571                 // If we don't know the success order is, use what we'd suggest
1572                 // if it were maximally permissive.
1573                 let suggested = success_lint_info.unwrap_or(SEQ_CST).2;
1574                 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
1575                     let msg = format!(
1576                         "{}'s failure ordering may not be `Release` or `AcqRel`",
1577                         method,
1578                     );
1579                     diag.build(&msg)
1580                         .help(&format!("consider using {} instead", suggested))
1581                         .emit();
1582                 });
1583             } else if let Some((success_ord, bad_ords_given_success, suggested)) = success_lint_info {
1584                 if Self::matches_ordering(cx, fail_ordering_def_id, bad_ords_given_success) {
1585                     cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
1586                         let msg = format!(
1587                             "{}'s failure ordering may not be stronger than the success ordering of `{}`",
1588                             method,
1589                             success_ord,
1590                         );
1591                         diag.build(&msg)
1592                             .help(&format!("consider using {} instead", suggested))
1593                             .emit();
1594                     });
1595                 }
1596             }
1597         }
1598     }
1599 }
1600
1601 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1602     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1603         Self::check_atomic_load_store(cx, expr);
1604         Self::check_memory_fence(cx, expr);
1605         Self::check_atomic_compare_exchange(cx, expr);
1606     }
1607 }