]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
Rollup merge of #101423 - mkroening:hermit-warnings, r=sanxiyn
[rust.git] / compiler / rustc_lint / src / types.rs
1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::{fluent, Applicability, DiagnosticMessage};
6 use rustc_hir as hir;
7 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
8 use rustc_macros::LintDiagnostic;
9 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
10 use rustc_middle::ty::subst::SubstsRef;
11 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
12 use rustc_span::source_map;
13 use rustc_span::symbol::sym;
14 use rustc_span::{Span, Symbol, DUMMY_SP};
15 use rustc_target::abi::{Abi, WrappingRange};
16 use rustc_target::abi::{Integer, TagEncoding, Variants};
17 use rustc_target::spec::abi::Abi as SpecAbi;
18
19 use std::cmp;
20 use std::iter;
21 use std::ops::ControlFlow;
22
23 declare_lint! {
24     /// The `unused_comparisons` lint detects comparisons made useless by
25     /// limits of the types involved.
26     ///
27     /// ### Example
28     ///
29     /// ```rust
30     /// fn foo(x: u8) {
31     ///     x >= 0;
32     /// }
33     /// ```
34     ///
35     /// {{produces}}
36     ///
37     /// ### Explanation
38     ///
39     /// A useless comparison may indicate a mistake, and should be fixed or
40     /// removed.
41     UNUSED_COMPARISONS,
42     Warn,
43     "comparisons made useless by limits of the types involved"
44 }
45
46 declare_lint! {
47     /// The `overflowing_literals` lint detects literal out of range for its
48     /// type.
49     ///
50     /// ### Example
51     ///
52     /// ```rust,compile_fail
53     /// let x: u8 = 1000;
54     /// ```
55     ///
56     /// {{produces}}
57     ///
58     /// ### Explanation
59     ///
60     /// It is usually a mistake to use a literal that overflows the type where
61     /// it is used. Either use a literal that is within range, or change the
62     /// type to be within the range of the literal.
63     OVERFLOWING_LITERALS,
64     Deny,
65     "literal out of range for its type"
66 }
67
68 declare_lint! {
69     /// The `variant_size_differences` lint detects enums with widely varying
70     /// variant sizes.
71     ///
72     /// ### Example
73     ///
74     /// ```rust,compile_fail
75     /// #![deny(variant_size_differences)]
76     /// enum En {
77     ///     V0(u8),
78     ///     VBig([u8; 1024]),
79     /// }
80     /// ```
81     ///
82     /// {{produces}}
83     ///
84     /// ### Explanation
85     ///
86     /// It can be a mistake to add a variant to an enum that is much larger
87     /// than the other variants, bloating the overall size required for all
88     /// variants. This can impact performance and memory usage. This is
89     /// triggered if one variant is more than 3 times larger than the
90     /// second-largest variant.
91     ///
92     /// Consider placing the large variant's contents on the heap (for example
93     /// via [`Box`]) to keep the overall size of the enum itself down.
94     ///
95     /// This lint is "allow" by default because it can be noisy, and may not be
96     /// an actual problem. Decisions about this should be guided with
97     /// profiling and benchmarking.
98     ///
99     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
100     VARIANT_SIZE_DIFFERENCES,
101     Allow,
102     "detects enums with widely varying variant sizes"
103 }
104
105 #[derive(Copy, Clone)]
106 pub struct TypeLimits {
107     /// Id of the last visited negated expression
108     negated_expr_id: Option<hir::HirId>,
109 }
110
111 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
112
113 impl TypeLimits {
114     pub fn new() -> TypeLimits {
115         TypeLimits { negated_expr_id: None }
116     }
117 }
118
119 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
120 /// Returns `true` iff the lint was overridden.
121 fn lint_overflowing_range_endpoint<'tcx>(
122     cx: &LateContext<'tcx>,
123     lit: &hir::Lit,
124     lit_val: u128,
125     max: u128,
126     expr: &'tcx hir::Expr<'tcx>,
127     ty: &str,
128 ) -> bool {
129     // We only want to handle exclusive (`..`) ranges,
130     // which are represented as `ExprKind::Struct`.
131     let par_id = cx.tcx.hir().get_parent_node(expr.hir_id);
132     let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
133     let field_par_id = cx.tcx.hir().get_parent_node(field.hir_id);
134     let Node::Expr(struct_expr) = cx.tcx.hir().get(field_par_id) else { return false };
135     if !is_range_literal(struct_expr) {
136         return false;
137     };
138     let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
139     if eps.len() != 2 {
140         return false;
141     }
142
143     let mut overwritten = false;
144     // We can suggest using an inclusive range
145     // (`..=`) instead only if it is the `end` that is
146     // overflowing and only by 1.
147     if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
148         cx.struct_span_lint(OVERFLOWING_LITERALS, struct_expr.span, |lint| {
149             let mut err = lint.build(fluent::lint::range_endpoint_out_of_range);
150             err.set_arg("ty", ty);
151             if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
152                 use ast::{LitIntType, LitKind};
153                 // We need to preserve the literal's suffix,
154                 // as it may determine typing information.
155                 let suffix = match lit.node {
156                     LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
157                     LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
158                     LitKind::Int(_, LitIntType::Unsuffixed) => "",
159                     _ => bug!(),
160                 };
161                 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
162                 err.span_suggestion(
163                     struct_expr.span,
164                     fluent::lint::suggestion,
165                     suggestion,
166                     Applicability::MachineApplicable,
167                 );
168                 err.emit();
169                 overwritten = true;
170             }
171         });
172     }
173     overwritten
174 }
175
176 // For `isize` & `usize`, be conservative with the warnings, so that the
177 // warnings are consistent between 32- and 64-bit platforms.
178 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
179     match int_ty {
180         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
181         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
182         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
183         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
184         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
185         ty::IntTy::I128 => (i128::MIN, i128::MAX),
186     }
187 }
188
189 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
190     let max = match uint_ty {
191         ty::UintTy::Usize => u64::MAX.into(),
192         ty::UintTy::U8 => u8::MAX.into(),
193         ty::UintTy::U16 => u16::MAX.into(),
194         ty::UintTy::U32 => u32::MAX.into(),
195         ty::UintTy::U64 => u64::MAX.into(),
196         ty::UintTy::U128 => u128::MAX,
197     };
198     (0, max)
199 }
200
201 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
202     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
203     let firstch = src.chars().next()?;
204
205     if firstch == '0' {
206         match src.chars().nth(1) {
207             Some('x' | 'b') => return Some(src),
208             _ => return None,
209         }
210     }
211
212     None
213 }
214
215 fn report_bin_hex_error(
216     cx: &LateContext<'_>,
217     expr: &hir::Expr<'_>,
218     ty: attr::IntType,
219     repr_str: String,
220     val: u128,
221     negative: bool,
222 ) {
223     let size = Integer::from_attr(&cx.tcx, ty).size();
224     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
225         let (t, actually) = match ty {
226             attr::IntType::SignedInt(t) => {
227                 let actually = if negative {
228                     -(size.sign_extend(val) as i128)
229                 } else {
230                     size.sign_extend(val) as i128
231                 };
232                 (t.name_str(), actually.to_string())
233             }
234             attr::IntType::UnsignedInt(t) => {
235                 let actually = size.truncate(val);
236                 (t.name_str(), actually.to_string())
237             }
238         };
239         let mut err = lint.build(fluent::lint::overflowing_bin_hex);
240         if negative {
241             // If the value is negative,
242             // emits a note about the value itself, apart from the literal.
243             err.note(fluent::lint::negative_note);
244             err.note(fluent::lint::negative_becomes_note);
245         } else {
246             err.note(fluent::lint::positive_note);
247         }
248         if let Some(sugg_ty) =
249             get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
250         {
251             err.set_arg("suggestion_ty", sugg_ty);
252             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
253                 let (sans_suffix, _) = repr_str.split_at(pos);
254                 err.span_suggestion(
255                     expr.span,
256                     fluent::lint::suggestion,
257                     format!("{}{}", sans_suffix, sugg_ty),
258                     Applicability::MachineApplicable,
259                 );
260             } else {
261                 err.help(fluent::lint::help);
262             }
263         }
264         err.set_arg("ty", t);
265         err.set_arg("lit", repr_str);
266         err.set_arg("dec", val);
267         err.set_arg("actually", actually);
268         err.emit();
269     });
270 }
271
272 // This function finds the next fitting type and generates a suggestion string.
273 // It searches for fitting types in the following way (`X < Y`):
274 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
275 //  - `-iX` => `iY`
276 //  - `uX` => `uY`
277 //
278 // No suggestion for: `isize`, `usize`.
279 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
280     use ty::IntTy::*;
281     use ty::UintTy::*;
282     macro_rules! find_fit {
283         ($ty:expr, $val:expr, $negative:expr,
284          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
285             {
286                 let _neg = if negative { 1 } else { 0 };
287                 match $ty {
288                     $($type => {
289                         $(if !negative && val <= uint_ty_range($utypes).1 {
290                             return Some($utypes.name_str())
291                         })*
292                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
293                             return Some($itypes.name_str())
294                         })*
295                         None
296                     },)+
297                     _ => None
298                 }
299             }
300         }
301     }
302     match t.kind() {
303         ty::Int(i) => find_fit!(i, val, negative,
304                       I8 => [U8] => [I16, I32, I64, I128],
305                       I16 => [U16] => [I32, I64, I128],
306                       I32 => [U32] => [I64, I128],
307                       I64 => [U64] => [I128],
308                       I128 => [U128] => []),
309         ty::Uint(u) => find_fit!(u, val, negative,
310                       U8 => [U8, U16, U32, U64, U128] => [],
311                       U16 => [U16, U32, U64, U128] => [],
312                       U32 => [U32, U64, U128] => [],
313                       U64 => [U64, U128] => [],
314                       U128 => [U128] => []),
315         _ => None,
316     }
317 }
318
319 fn lint_int_literal<'tcx>(
320     cx: &LateContext<'tcx>,
321     type_limits: &TypeLimits,
322     e: &'tcx hir::Expr<'tcx>,
323     lit: &hir::Lit,
324     t: ty::IntTy,
325     v: u128,
326 ) {
327     let int_type = t.normalize(cx.sess().target.pointer_width);
328     let (min, max) = int_ty_range(int_type);
329     let max = max as u128;
330     let negative = type_limits.negated_expr_id == Some(e.hir_id);
331
332     // Detect literal value out of range [min, max] inclusive
333     // avoiding use of -min to prevent overflow/panic
334     if (negative && v > max + 1) || (!negative && v > max) {
335         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
336             report_bin_hex_error(
337                 cx,
338                 e,
339                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
340                 repr_str,
341                 v,
342                 negative,
343             );
344             return;
345         }
346
347         if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
348             // The overflowing literal lint was overridden.
349             return;
350         }
351
352         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
353             let mut err = lint.build(fluent::lint::overflowing_int);
354             err.set_arg("ty", t.name_str());
355             err.set_arg(
356                 "lit",
357                 cx.sess()
358                     .source_map()
359                     .span_to_snippet(lit.span)
360                     .expect("must get snippet from literal"),
361             );
362             err.set_arg("min", min);
363             err.set_arg("max", max);
364             err.note(fluent::lint::note);
365             if let Some(sugg_ty) =
366                 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
367             {
368                 err.set_arg("suggestion_ty", sugg_ty);
369                 err.help(fluent::lint::help);
370             }
371             err.emit();
372         });
373     }
374 }
375
376 fn lint_uint_literal<'tcx>(
377     cx: &LateContext<'tcx>,
378     e: &'tcx hir::Expr<'tcx>,
379     lit: &hir::Lit,
380     t: ty::UintTy,
381 ) {
382     let uint_type = t.normalize(cx.sess().target.pointer_width);
383     let (min, max) = uint_ty_range(uint_type);
384     let lit_val: u128 = match lit.node {
385         // _v is u8, within range by definition
386         ast::LitKind::Byte(_v) => return,
387         ast::LitKind::Int(v, _) => v,
388         _ => bug!(),
389     };
390     if lit_val < min || lit_val > max {
391         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
392         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
393             match par_e.kind {
394                 hir::ExprKind::Cast(..) => {
395                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
396                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
397                             lint.build(fluent::lint::only_cast_u8_to_char)
398                                 .span_suggestion(
399                                     par_e.span,
400                                     fluent::lint::suggestion,
401                                     format!("'\\u{{{:X}}}'", lit_val),
402                                     Applicability::MachineApplicable,
403                                 )
404                                 .emit();
405                         });
406                         return;
407                     }
408                 }
409                 _ => {}
410             }
411         }
412         if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
413             // The overflowing literal lint was overridden.
414             return;
415         }
416         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
417             report_bin_hex_error(
418                 cx,
419                 e,
420                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
421                 repr_str,
422                 lit_val,
423                 false,
424             );
425             return;
426         }
427         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
428             lint.build(fluent::lint::overflowing_uint)
429                 .set_arg("ty", t.name_str())
430                 .set_arg(
431                     "lit",
432                     cx.sess()
433                         .source_map()
434                         .span_to_snippet(lit.span)
435                         .expect("must get snippet from literal"),
436                 )
437                 .set_arg("min", min)
438                 .set_arg("max", max)
439                 .note(fluent::lint::note)
440                 .emit();
441         });
442     }
443 }
444
445 fn lint_literal<'tcx>(
446     cx: &LateContext<'tcx>,
447     type_limits: &TypeLimits,
448     e: &'tcx hir::Expr<'tcx>,
449     lit: &hir::Lit,
450 ) {
451     match *cx.typeck_results().node_type(e.hir_id).kind() {
452         ty::Int(t) => {
453             match lit.node {
454                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
455                     lint_int_literal(cx, type_limits, e, lit, t, v)
456                 }
457                 _ => bug!(),
458             };
459         }
460         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
461         ty::Float(t) => {
462             let is_infinite = match lit.node {
463                 ast::LitKind::Float(v, _) => match t {
464                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
465                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
466                 },
467                 _ => bug!(),
468             };
469             if is_infinite == Ok(true) {
470                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
471                     lint.build(fluent::lint::overflowing_literal)
472                         .set_arg("ty", t.name_str())
473                         .set_arg(
474                             "lit",
475                             cx.sess()
476                                 .source_map()
477                                 .span_to_snippet(lit.span)
478                                 .expect("must get snippet from literal"),
479                         )
480                         .note(fluent::lint::note)
481                         .emit();
482                 });
483             }
484         }
485         _ => {}
486     }
487 }
488
489 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
490     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
491         match e.kind {
492             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
493                 // propagate negation, if the negation itself isn't negated
494                 if self.negated_expr_id != Some(e.hir_id) {
495                     self.negated_expr_id = Some(expr.hir_id);
496                 }
497             }
498             hir::ExprKind::Binary(binop, ref l, ref r) => {
499                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
500                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
501                         lint.build(fluent::lint::unused_comparisons).emit();
502                     });
503                 }
504             }
505             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
506             _ => {}
507         };
508
509         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
510             match binop.node {
511                 hir::BinOpKind::Lt => v > min && v <= max,
512                 hir::BinOpKind::Le => v >= min && v < max,
513                 hir::BinOpKind::Gt => v >= min && v < max,
514                 hir::BinOpKind::Ge => v > min && v <= max,
515                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
516                 _ => bug!(),
517             }
518         }
519
520         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
521             source_map::respan(
522                 binop.span,
523                 match binop.node {
524                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
525                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
526                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
527                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
528                     _ => return binop,
529                 },
530             )
531         }
532
533         fn check_limits(
534             cx: &LateContext<'_>,
535             binop: hir::BinOp,
536             l: &hir::Expr<'_>,
537             r: &hir::Expr<'_>,
538         ) -> bool {
539             let (lit, expr, swap) = match (&l.kind, &r.kind) {
540                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
541                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
542                 _ => return true,
543             };
544             // Normalize the binop so that the literal is always on the RHS in
545             // the comparison
546             let norm_binop = if swap { rev_binop(binop) } else { binop };
547             match *cx.typeck_results().node_type(expr.hir_id).kind() {
548                 ty::Int(int_ty) => {
549                     let (min, max) = int_ty_range(int_ty);
550                     let lit_val: i128 = match lit.kind {
551                         hir::ExprKind::Lit(ref li) => match li.node {
552                             ast::LitKind::Int(
553                                 v,
554                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
555                             ) => v as i128,
556                             _ => return true,
557                         },
558                         _ => bug!(),
559                     };
560                     is_valid(norm_binop, lit_val, min, max)
561                 }
562                 ty::Uint(uint_ty) => {
563                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
564                     let lit_val: u128 = match lit.kind {
565                         hir::ExprKind::Lit(ref li) => match li.node {
566                             ast::LitKind::Int(v, _) => v,
567                             _ => return true,
568                         },
569                         _ => bug!(),
570                     };
571                     is_valid(norm_binop, lit_val, min, max)
572                 }
573                 _ => true,
574             }
575         }
576
577         fn is_comparison(binop: hir::BinOp) -> bool {
578             matches!(
579                 binop.node,
580                 hir::BinOpKind::Eq
581                     | hir::BinOpKind::Lt
582                     | hir::BinOpKind::Le
583                     | hir::BinOpKind::Ne
584                     | hir::BinOpKind::Ge
585                     | hir::BinOpKind::Gt
586             )
587         }
588     }
589 }
590
591 declare_lint! {
592     /// The `improper_ctypes` lint detects incorrect use of types in foreign
593     /// modules.
594     ///
595     /// ### Example
596     ///
597     /// ```rust
598     /// extern "C" {
599     ///     static STATIC: String;
600     /// }
601     /// ```
602     ///
603     /// {{produces}}
604     ///
605     /// ### Explanation
606     ///
607     /// The compiler has several checks to verify that types used in `extern`
608     /// blocks are safe and follow certain rules to ensure proper
609     /// compatibility with the foreign interfaces. This lint is issued when it
610     /// detects a probable mistake in a definition. The lint usually should
611     /// provide a description of the issue, along with possibly a hint on how
612     /// to resolve it.
613     IMPROPER_CTYPES,
614     Warn,
615     "proper use of libc types in foreign modules"
616 }
617
618 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
619
620 declare_lint! {
621     /// The `improper_ctypes_definitions` lint detects incorrect use of
622     /// [`extern` function] definitions.
623     ///
624     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
625     ///
626     /// ### Example
627     ///
628     /// ```rust
629     /// # #![allow(unused)]
630     /// pub extern "C" fn str_type(p: &str) { }
631     /// ```
632     ///
633     /// {{produces}}
634     ///
635     /// ### Explanation
636     ///
637     /// There are many parameter and return types that may be specified in an
638     /// `extern` function that are not compatible with the given ABI. This
639     /// lint is an alert that these types should not be used. The lint usually
640     /// should provide a description of the issue, along with possibly a hint
641     /// on how to resolve it.
642     IMPROPER_CTYPES_DEFINITIONS,
643     Warn,
644     "proper use of libc types in foreign item definitions"
645 }
646
647 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
648
649 #[derive(Clone, Copy)]
650 pub(crate) enum CItemKind {
651     Declaration,
652     Definition,
653 }
654
655 struct ImproperCTypesVisitor<'a, 'tcx> {
656     cx: &'a LateContext<'tcx>,
657     mode: CItemKind,
658 }
659
660 enum FfiResult<'tcx> {
661     FfiSafe,
662     FfiPhantom(Ty<'tcx>),
663     FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
664 }
665
666 pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
667     tcx: TyCtxt<'tcx>,
668     def: ty::AdtDef<'tcx>,
669 ) -> bool {
670     tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
671 }
672
673 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
674 /// field.
675 pub fn transparent_newtype_field<'a, 'tcx>(
676     tcx: TyCtxt<'tcx>,
677     variant: &'a ty::VariantDef,
678 ) -> Option<&'a ty::FieldDef> {
679     let param_env = tcx.param_env(variant.def_id);
680     variant.fields.iter().find(|field| {
681         let field_ty = tcx.type_of(field.did);
682         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
683         !is_zst
684     })
685 }
686
687 /// Is type known to be non-null?
688 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
689     let tcx = cx.tcx;
690     match ty.kind() {
691         ty::FnPtr(_) => true,
692         ty::Ref(..) => true,
693         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
694         ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
695             let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
696
697             if marked_non_null {
698                 return true;
699             }
700
701             // `UnsafeCell` has its niche hidden.
702             if def.is_unsafe_cell() {
703                 return false;
704             }
705
706             def.variants()
707                 .iter()
708                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
709                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
710         }
711         _ => false,
712     }
713 }
714
715 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
716 /// If the type passed in was not scalar, returns None.
717 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
718     let tcx = cx.tcx;
719     Some(match *ty.kind() {
720         ty::Adt(field_def, field_substs) => {
721             let inner_field_ty = {
722                 let first_non_zst_ty = field_def
723                     .variants()
724                     .iter()
725                     .filter_map(|v| transparent_newtype_field(cx.tcx, v));
726                 debug_assert_eq!(
727                     first_non_zst_ty.clone().count(),
728                     1,
729                     "Wrong number of fields for transparent type"
730                 );
731                 first_non_zst_ty
732                     .last()
733                     .expect("No non-zst fields in transparent type.")
734                     .ty(tcx, field_substs)
735             };
736             return get_nullable_type(cx, inner_field_ty);
737         }
738         ty::Int(ty) => tcx.mk_mach_int(ty),
739         ty::Uint(ty) => tcx.mk_mach_uint(ty),
740         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
741         // As these types are always non-null, the nullable equivalent of
742         // Option<T> of these types are their raw pointer counterparts.
743         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
744         ty::FnPtr(..) => {
745             // There is no nullable equivalent for Rust's function pointers -- you
746             // must use an Option<fn(..) -> _> to represent it.
747             ty
748         }
749
750         // We should only ever reach this case if ty_is_known_nonnull is extended
751         // to other types.
752         ref unhandled => {
753             debug!(
754                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
755                 unhandled, ty
756             );
757             return None;
758         }
759     })
760 }
761
762 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
763 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
764 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
765 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
766 /// FIXME: This duplicates code in codegen.
767 pub(crate) fn repr_nullable_ptr<'tcx>(
768     cx: &LateContext<'tcx>,
769     ty: Ty<'tcx>,
770     ckind: CItemKind,
771 ) -> Option<Ty<'tcx>> {
772     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
773     if let ty::Adt(ty_def, substs) = ty.kind() {
774         let field_ty = match &ty_def.variants().raw[..] {
775             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
776                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
777                 _ => return None,
778             },
779             _ => return None,
780         };
781
782         if !ty_is_known_nonnull(cx, field_ty, ckind) {
783             return None;
784         }
785
786         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
787         // If the computed size for the field and the enum are different, the nonnull optimization isn't
788         // being applied (and we've got a problem somewhere).
789         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
790         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
791             bug!("improper_ctypes: Option nonnull optimization not applied?");
792         }
793
794         // Return the nullable type this Option-like enum can be safely represented with.
795         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
796         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
797             match field_ty_scalar.valid_range(cx) {
798                 WrappingRange { start: 0, end }
799                     if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
800                 {
801                     return Some(get_nullable_type(cx, field_ty).unwrap());
802                 }
803                 WrappingRange { start: 1, .. } => {
804                     return Some(get_nullable_type(cx, field_ty).unwrap());
805                 }
806                 WrappingRange { start, end } => {
807                     unreachable!("Unhandled start and end range: ({}, {})", start, end)
808                 }
809             };
810         }
811     }
812     None
813 }
814
815 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
816     /// Check if the type is array and emit an unsafe type lint.
817     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
818         if let ty::Array(..) = ty.kind() {
819             self.emit_ffi_unsafe_type_lint(
820                 ty,
821                 sp,
822                 fluent::lint::improper_ctypes_array_reason,
823                 Some(fluent::lint::improper_ctypes_array_help),
824             );
825             true
826         } else {
827             false
828         }
829     }
830
831     /// Checks if the given field's type is "ffi-safe".
832     fn check_field_type_for_ffi(
833         &self,
834         cache: &mut FxHashSet<Ty<'tcx>>,
835         field: &ty::FieldDef,
836         substs: SubstsRef<'tcx>,
837     ) -> FfiResult<'tcx> {
838         let field_ty = field.ty(self.cx.tcx, substs);
839         if field_ty.has_opaque_types() {
840             self.check_type_for_ffi(cache, field_ty)
841         } else {
842             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
843             self.check_type_for_ffi(cache, field_ty)
844         }
845     }
846
847     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
848     fn check_variant_for_ffi(
849         &self,
850         cache: &mut FxHashSet<Ty<'tcx>>,
851         ty: Ty<'tcx>,
852         def: ty::AdtDef<'tcx>,
853         variant: &ty::VariantDef,
854         substs: SubstsRef<'tcx>,
855     ) -> FfiResult<'tcx> {
856         use FfiResult::*;
857
858         if def.repr().transparent() {
859             // Can assume that at most one field is not a ZST, so only check
860             // that field's type for FFI-safety.
861             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
862                 self.check_field_type_for_ffi(cache, field, substs)
863             } else {
864                 // All fields are ZSTs; this means that the type should behave
865                 // like (), which is FFI-unsafe
866                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_struct_zst, help: None }
867             }
868         } else {
869             // We can't completely trust repr(C) markings; make sure the fields are
870             // actually safe.
871             let mut all_phantom = !variant.fields.is_empty();
872             for field in &variant.fields {
873                 match self.check_field_type_for_ffi(cache, &field, substs) {
874                     FfiSafe => {
875                         all_phantom = false;
876                     }
877                     FfiPhantom(..) if def.is_enum() => {
878                         return FfiUnsafe {
879                             ty,
880                             reason: fluent::lint::improper_ctypes_enum_phantomdata,
881                             help: None,
882                         };
883                     }
884                     FfiPhantom(..) => {}
885                     r => return r,
886                 }
887             }
888
889             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
890         }
891     }
892
893     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
894     /// representation which can be exported to C code).
895     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
896         use FfiResult::*;
897
898         let tcx = self.cx.tcx;
899
900         // Protect against infinite recursion, for example
901         // `struct S(*mut S);`.
902         // FIXME: A recursion limit is necessary as well, for irregular
903         // recursive types.
904         if !cache.insert(ty) {
905             return FfiSafe;
906         }
907
908         match *ty.kind() {
909             ty::Adt(def, substs) => {
910                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
911                     if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
912                         return FfiSafe;
913                     } else {
914                         return FfiUnsafe {
915                             ty,
916                             reason: fluent::lint::improper_ctypes_box,
917                             help: None,
918                         };
919                     }
920                 }
921                 if def.is_phantom_data() {
922                     return FfiPhantom(ty);
923                 }
924                 match def.adt_kind() {
925                     AdtKind::Struct | AdtKind::Union => {
926                         if !def.repr().c() && !def.repr().transparent() {
927                             return FfiUnsafe {
928                                 ty,
929                                 reason: if def.is_struct() {
930                                     fluent::lint::improper_ctypes_struct_layout_reason
931                                 } else {
932                                     fluent::lint::improper_ctypes_union_layout_reason
933                                 },
934                                 help: if def.is_struct() {
935                                     Some(fluent::lint::improper_ctypes_struct_layout_help)
936                                 } else {
937                                     Some(fluent::lint::improper_ctypes_union_layout_help)
938                                 },
939                             };
940                         }
941
942                         let is_non_exhaustive =
943                             def.non_enum_variant().is_field_list_non_exhaustive();
944                         if is_non_exhaustive && !def.did().is_local() {
945                             return FfiUnsafe {
946                                 ty,
947                                 reason: if def.is_struct() {
948                                     fluent::lint::improper_ctypes_struct_non_exhaustive
949                                 } else {
950                                     fluent::lint::improper_ctypes_union_non_exhaustive
951                                 },
952                                 help: None,
953                             };
954                         }
955
956                         if def.non_enum_variant().fields.is_empty() {
957                             return FfiUnsafe {
958                                 ty,
959                                 reason: if def.is_struct() {
960                                     fluent::lint::improper_ctypes_struct_fieldless_reason
961                                 } else {
962                                     fluent::lint::improper_ctypes_union_fieldless_reason
963                                 },
964                                 help: if def.is_struct() {
965                                     Some(fluent::lint::improper_ctypes_struct_fieldless_help)
966                                 } else {
967                                     Some(fluent::lint::improper_ctypes_union_fieldless_help)
968                                 },
969                             };
970                         }
971
972                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
973                     }
974                     AdtKind::Enum => {
975                         if def.variants().is_empty() {
976                             // Empty enums are okay... although sort of useless.
977                             return FfiSafe;
978                         }
979
980                         // Check for a repr() attribute to specify the size of the
981                         // discriminant.
982                         if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
983                         {
984                             // Special-case types like `Option<extern fn()>`.
985                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
986                                 return FfiUnsafe {
987                                     ty,
988                                     reason: fluent::lint::improper_ctypes_enum_repr_reason,
989                                     help: Some(fluent::lint::improper_ctypes_enum_repr_help),
990                                 };
991                             }
992                         }
993
994                         if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
995                             return FfiUnsafe {
996                                 ty,
997                                 reason: fluent::lint::improper_ctypes_non_exhaustive,
998                                 help: None,
999                             };
1000                         }
1001
1002                         // Check the contained variants.
1003                         for variant in def.variants() {
1004                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1005                             if is_non_exhaustive && !variant.def_id.is_local() {
1006                                 return FfiUnsafe {
1007                                     ty,
1008                                     reason: fluent::lint::improper_ctypes_non_exhaustive_variant,
1009                                     help: None,
1010                                 };
1011                             }
1012
1013                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1014                                 FfiSafe => (),
1015                                 r => return r,
1016                             }
1017                         }
1018
1019                         FfiSafe
1020                     }
1021                 }
1022             }
1023
1024             ty::Char => FfiUnsafe {
1025                 ty,
1026                 reason: fluent::lint::improper_ctypes_char_reason,
1027                 help: Some(fluent::lint::improper_ctypes_char_help),
1028             },
1029
1030             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
1031                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_128bit, help: None }
1032             }
1033
1034             // Primitive types with a stable representation.
1035             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1036
1037             ty::Slice(_) => FfiUnsafe {
1038                 ty,
1039                 reason: fluent::lint::improper_ctypes_slice_reason,
1040                 help: Some(fluent::lint::improper_ctypes_slice_help),
1041             },
1042
1043             ty::Dynamic(..) => {
1044                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_dyn, help: None }
1045             }
1046
1047             ty::Str => FfiUnsafe {
1048                 ty,
1049                 reason: fluent::lint::improper_ctypes_str_reason,
1050                 help: Some(fluent::lint::improper_ctypes_str_help),
1051             },
1052
1053             ty::Tuple(..) => FfiUnsafe {
1054                 ty,
1055                 reason: fluent::lint::improper_ctypes_tuple_reason,
1056                 help: Some(fluent::lint::improper_ctypes_tuple_help),
1057             },
1058
1059             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1060                 if {
1061                     matches!(self.mode, CItemKind::Definition)
1062                         && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1063                 } =>
1064             {
1065                 FfiSafe
1066             }
1067
1068             ty::RawPtr(ty::TypeAndMut { ty, .. })
1069                 if match ty.kind() {
1070                     ty::Tuple(tuple) => tuple.is_empty(),
1071                     _ => false,
1072                 } =>
1073             {
1074                 FfiSafe
1075             }
1076
1077             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1078                 self.check_type_for_ffi(cache, ty)
1079             }
1080
1081             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1082
1083             ty::FnPtr(sig) => {
1084                 if self.is_internal_abi(sig.abi()) {
1085                     return FfiUnsafe {
1086                         ty,
1087                         reason: fluent::lint::improper_ctypes_fnptr_reason,
1088                         help: Some(fluent::lint::improper_ctypes_fnptr_help),
1089                     };
1090                 }
1091
1092                 let sig = tcx.erase_late_bound_regions(sig);
1093                 if !sig.output().is_unit() {
1094                     let r = self.check_type_for_ffi(cache, sig.output());
1095                     match r {
1096                         FfiSafe => {}
1097                         _ => {
1098                             return r;
1099                         }
1100                     }
1101                 }
1102                 for arg in sig.inputs() {
1103                     let r = self.check_type_for_ffi(cache, *arg);
1104                     match r {
1105                         FfiSafe => {}
1106                         _ => {
1107                             return r;
1108                         }
1109                     }
1110                 }
1111                 FfiSafe
1112             }
1113
1114             ty::Foreign(..) => FfiSafe,
1115
1116             // While opaque types are checked for earlier, if a projection in a struct field
1117             // normalizes to an opaque type, then it will reach this branch.
1118             ty::Opaque(..) => {
1119                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_opaque, help: None }
1120             }
1121
1122             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1123             //  so they are currently ignored for the purposes of this lint.
1124             ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
1125                 FfiSafe
1126             }
1127
1128             ty::Param(..)
1129             | ty::Projection(..)
1130             | ty::Infer(..)
1131             | ty::Bound(..)
1132             | ty::Error(_)
1133             | ty::Closure(..)
1134             | ty::Generator(..)
1135             | ty::GeneratorWitness(..)
1136             | ty::Placeholder(..)
1137             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1138         }
1139     }
1140
1141     fn emit_ffi_unsafe_type_lint(
1142         &mut self,
1143         ty: Ty<'tcx>,
1144         sp: Span,
1145         note: DiagnosticMessage,
1146         help: Option<DiagnosticMessage>,
1147     ) {
1148         let lint = match self.mode {
1149             CItemKind::Declaration => IMPROPER_CTYPES,
1150             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1151         };
1152
1153         self.cx.struct_span_lint(lint, sp, |lint| {
1154             let item_description = match self.mode {
1155                 CItemKind::Declaration => "block",
1156                 CItemKind::Definition => "fn",
1157             };
1158             let mut diag = lint.build(fluent::lint::improper_ctypes);
1159             diag.set_arg("ty", ty);
1160             diag.set_arg("desc", item_description);
1161             diag.span_label(sp, fluent::lint::label);
1162             if let Some(help) = help {
1163                 diag.help(help);
1164             }
1165             diag.note(note);
1166             if let ty::Adt(def, _) = ty.kind() {
1167                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
1168                     diag.span_note(sp, fluent::lint::note);
1169                 }
1170             }
1171             diag.emit();
1172         });
1173     }
1174
1175     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1176         struct ProhibitOpaqueTypes<'a, 'tcx> {
1177             cx: &'a LateContext<'tcx>,
1178         }
1179
1180         impl<'a, 'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
1181             type BreakTy = Ty<'tcx>;
1182
1183             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1184                 match ty.kind() {
1185                     ty::Opaque(..) => ControlFlow::Break(ty),
1186                     // Consider opaque types within projections FFI-safe if they do not normalize
1187                     // to more opaque types.
1188                     ty::Projection(..) => {
1189                         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1190
1191                         // If `ty` is an opaque type directly then `super_visit_with` won't invoke
1192                         // this function again.
1193                         if ty.has_opaque_types() {
1194                             self.visit_ty(ty)
1195                         } else {
1196                             ControlFlow::CONTINUE
1197                         }
1198                     }
1199                     _ => ty.super_visit_with(self),
1200                 }
1201             }
1202         }
1203
1204         if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
1205             self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint::improper_ctypes_opaque, None);
1206             true
1207         } else {
1208             false
1209         }
1210     }
1211
1212     fn check_type_for_ffi_and_report_errors(
1213         &mut self,
1214         sp: Span,
1215         ty: Ty<'tcx>,
1216         is_static: bool,
1217         is_return_type: bool,
1218     ) {
1219         // We have to check for opaque types before `normalize_erasing_regions`,
1220         // which will replace opaque types with their underlying concrete type.
1221         if self.check_for_opaque_ty(sp, ty) {
1222             // We've already emitted an error due to an opaque type.
1223             return;
1224         }
1225
1226         // it is only OK to use this function because extern fns cannot have
1227         // any generic types right now:
1228         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1229
1230         // C doesn't really support passing arrays by value - the only way to pass an array by value
1231         // is through a struct. So, first test that the top level isn't an array, and then
1232         // recursively check the types inside.
1233         if !is_static && self.check_for_array_ty(sp, ty) {
1234             return;
1235         }
1236
1237         // Don't report FFI errors for unit return types. This check exists here, and not in
1238         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1239         // happened.
1240         if is_return_type && ty.is_unit() {
1241             return;
1242         }
1243
1244         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1245             FfiResult::FfiSafe => {}
1246             FfiResult::FfiPhantom(ty) => {
1247                 self.emit_ffi_unsafe_type_lint(
1248                     ty,
1249                     sp,
1250                     fluent::lint::improper_ctypes_only_phantomdata,
1251                     None,
1252                 );
1253             }
1254             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1255             // argument, which after substitution, is `()`, then this branch can be hit.
1256             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1257             FfiResult::FfiUnsafe { ty, reason, help } => {
1258                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
1259             }
1260         }
1261     }
1262
1263     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1264         let def_id = self.cx.tcx.hir().local_def_id(id);
1265         let sig = self.cx.tcx.fn_sig(def_id);
1266         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1267
1268         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1269             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1270         }
1271
1272         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1273             let ret_ty = sig.output();
1274             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1275         }
1276     }
1277
1278     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1279         let def_id = self.cx.tcx.hir().local_def_id(id);
1280         let ty = self.cx.tcx.type_of(def_id);
1281         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1282     }
1283
1284     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1285         matches!(
1286             abi,
1287             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1288         )
1289     }
1290 }
1291
1292 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1293     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1294         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1295         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1296
1297         if !vis.is_internal_abi(abi) {
1298             match it.kind {
1299                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1300                     vis.check_foreign_fn(it.hir_id(), decl);
1301                 }
1302                 hir::ForeignItemKind::Static(ref ty, _) => {
1303                     vis.check_foreign_static(it.hir_id(), ty.span);
1304                 }
1305                 hir::ForeignItemKind::Type => (),
1306             }
1307         }
1308     }
1309 }
1310
1311 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1312     fn check_fn(
1313         &mut self,
1314         cx: &LateContext<'tcx>,
1315         kind: hir::intravisit::FnKind<'tcx>,
1316         decl: &'tcx hir::FnDecl<'_>,
1317         _: &'tcx hir::Body<'_>,
1318         _: Span,
1319         hir_id: hir::HirId,
1320     ) {
1321         use hir::intravisit::FnKind;
1322
1323         let abi = match kind {
1324             FnKind::ItemFn(_, _, header, ..) => header.abi,
1325             FnKind::Method(_, sig, ..) => sig.header.abi,
1326             _ => return,
1327         };
1328
1329         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1330         if !vis.is_internal_abi(abi) {
1331             vis.check_foreign_fn(hir_id, decl);
1332         }
1333     }
1334 }
1335
1336 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1337
1338 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1339     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1340         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1341             let t = cx.tcx.type_of(it.def_id);
1342             let ty = cx.tcx.erase_regions(t);
1343             let Ok(layout) = cx.layout_of(ty) else { return };
1344             let Variants::Multiple {
1345                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1346                 } = &layout.variants else {
1347                 return
1348             };
1349
1350             let tag_size = tag.size(&cx.tcx).bytes();
1351
1352             debug!(
1353                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1354                 t,
1355                 layout.size.bytes(),
1356                 layout
1357             );
1358
1359             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1360                 .map(|(variant, variant_layout)| {
1361                     // Subtract the size of the enum tag.
1362                     let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
1363
1364                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1365                     bytes
1366                 })
1367                 .enumerate()
1368                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1369                     if size > l {
1370                         (size, l, idx)
1371                     } else if size > s {
1372                         (l, size, li)
1373                     } else {
1374                         (l, s, li)
1375                     }
1376                 });
1377
1378             // We only warn if the largest variant is at least thrice as large as
1379             // the second-largest.
1380             if largest > slargest * 3 && slargest > 0 {
1381                 cx.struct_span_lint(
1382                     VARIANT_SIZE_DIFFERENCES,
1383                     enum_definition.variants[largest_index].span,
1384                     |lint| {
1385                         lint.build(fluent::lint::variant_size_differences)
1386                             .set_arg("largest", largest)
1387                             .emit();
1388                     },
1389                 );
1390             }
1391         }
1392     }
1393 }
1394
1395 declare_lint! {
1396     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1397     /// to an atomic operation that does not support that ordering.
1398     ///
1399     /// ### Example
1400     ///
1401     /// ```rust,compile_fail
1402     /// # use core::sync::atomic::{AtomicU8, Ordering};
1403     /// let atom = AtomicU8::new(0);
1404     /// let value = atom.load(Ordering::Release);
1405     /// # let _ = value;
1406     /// ```
1407     ///
1408     /// {{produces}}
1409     ///
1410     /// ### Explanation
1411     ///
1412     /// Some atomic operations are only supported for a subset of the
1413     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1414     /// an unconditional panic at runtime, which is detected by this lint.
1415     ///
1416     /// This lint will trigger in the following cases: (where `AtomicType` is an
1417     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1418     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1419     ///
1420     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1421     ///   `AtomicType::store`.
1422     ///
1423     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1424     ///   `AtomicType::load`.
1425     ///
1426     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1427     ///   `core::sync::atomic::compiler_fence`.
1428     ///
1429     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1430     ///   ordering for any of `AtomicType::compare_exchange`,
1431     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1432     INVALID_ATOMIC_ORDERING,
1433     Deny,
1434     "usage of invalid atomic ordering in atomic operations and memory fences"
1435 }
1436
1437 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1438
1439 impl InvalidAtomicOrdering {
1440     fn inherent_atomic_method_call<'hir>(
1441         cx: &LateContext<'_>,
1442         expr: &Expr<'hir>,
1443         recognized_names: &[Symbol], // used for fast path calculation
1444     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1445         const ATOMIC_TYPES: &[Symbol] = &[
1446             sym::AtomicBool,
1447             sym::AtomicPtr,
1448             sym::AtomicUsize,
1449             sym::AtomicU8,
1450             sym::AtomicU16,
1451             sym::AtomicU32,
1452             sym::AtomicU64,
1453             sym::AtomicU128,
1454             sym::AtomicIsize,
1455             sym::AtomicI8,
1456             sym::AtomicI16,
1457             sym::AtomicI32,
1458             sym::AtomicI64,
1459             sym::AtomicI128,
1460         ];
1461         if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
1462             && recognized_names.contains(&method_path.ident.name)
1463             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1464             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1465             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1466             // skip extension traits, only lint functions from the standard library
1467             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1468             && let parent = cx.tcx.parent(adt.did())
1469             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1470             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1471         {
1472             return Some((method_path.ident.name, args));
1473         }
1474         None
1475     }
1476
1477     fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1478         let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1479         let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
1480         let tcx = cx.tcx;
1481         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1482         let name = tcx.item_name(did);
1483         let parent = tcx.parent(did);
1484         [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1485             |&ordering| {
1486                 name == ordering
1487                     && (Some(parent) == atomic_ordering
1488                             // needed in case this is a ctor, not a variant
1489                             || tcx.opt_parent(parent) == atomic_ordering)
1490             },
1491         )
1492     }
1493
1494     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1495         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1496             && let Some((ordering_arg, invalid_ordering)) = match method {
1497                 sym::load => Some((&args[0], sym::Release)),
1498                 sym::store => Some((&args[1], sym::Acquire)),
1499                 _ => None,
1500             }
1501             && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1502             && (ordering == invalid_ordering || ordering == sym::AcqRel)
1503         {
1504             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1505                 if method == sym::load {
1506                     diag.build(fluent::lint::atomic_ordering_load)
1507                         .help(fluent::lint::help)
1508                         .emit()
1509                 } else {
1510                     debug_assert_eq!(method, sym::store);
1511                     diag.build(fluent::lint::atomic_ordering_store)
1512                         .help(fluent::lint::help)
1513                         .emit();
1514                 }
1515             });
1516         }
1517     }
1518
1519     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1520         if let ExprKind::Call(ref func, ref args) = expr.kind
1521             && let ExprKind::Path(ref func_qpath) = func.kind
1522             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1523             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1524             && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
1525         {
1526             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
1527                 diag.build(fluent::lint::atomic_ordering_fence)
1528                     .help(fluent::lint::help)
1529                     .emit();
1530             });
1531         }
1532     }
1533
1534     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1535         let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1536             else {return };
1537
1538         let fail_order_arg = match method {
1539             sym::fetch_update => &args[1],
1540             sym::compare_exchange | sym::compare_exchange_weak => &args[3],
1541             _ => return,
1542         };
1543
1544         let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1545
1546         if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1547             #[derive(LintDiagnostic)]
1548             #[diag(lint::atomic_ordering_invalid)]
1549             #[help]
1550             struct InvalidAtomicOrderingDiag {
1551                 method: Symbol,
1552                 #[label]
1553                 fail_order_arg_span: Span,
1554             }
1555
1556             cx.emit_spanned_lint(
1557                 INVALID_ATOMIC_ORDERING,
1558                 fail_order_arg.span,
1559                 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1560             );
1561         }
1562     }
1563 }
1564
1565 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1566     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1567         Self::check_atomic_load_store(cx, expr);
1568         Self::check_memory_fence(cx, expr);
1569         Self::check_atomic_compare_exchange(cx, expr);
1570     }
1571 }