]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
Auto merge of #102318 - Amanieu:default_alloc_error_handler, r=oli-obk
[rust.git] / compiler / rustc_lint / src / types.rs
1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::{fluent, Applicability, DiagnosticMessage};
6 use rustc_hir as hir;
7 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
8 use rustc_macros::LintDiagnostic;
9 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
10 use rustc_middle::ty::subst::SubstsRef;
11 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
12 use rustc_span::source_map;
13 use rustc_span::symbol::sym;
14 use rustc_span::{Span, Symbol};
15 use rustc_target::abi::{Abi, Size, WrappingRange};
16 use rustc_target::abi::{Integer, TagEncoding, Variants};
17 use rustc_target::spec::abi::Abi as SpecAbi;
18
19 use std::iter;
20 use std::ops::ControlFlow;
21
22 declare_lint! {
23     /// The `unused_comparisons` lint detects comparisons made useless by
24     /// limits of the types involved.
25     ///
26     /// ### Example
27     ///
28     /// ```rust
29     /// fn foo(x: u8) {
30     ///     x >= 0;
31     /// }
32     /// ```
33     ///
34     /// {{produces}}
35     ///
36     /// ### Explanation
37     ///
38     /// A useless comparison may indicate a mistake, and should be fixed or
39     /// removed.
40     UNUSED_COMPARISONS,
41     Warn,
42     "comparisons made useless by limits of the types involved"
43 }
44
45 declare_lint! {
46     /// The `overflowing_literals` lint detects literal out of range for its
47     /// type.
48     ///
49     /// ### Example
50     ///
51     /// ```rust,compile_fail
52     /// let x: u8 = 1000;
53     /// ```
54     ///
55     /// {{produces}}
56     ///
57     /// ### Explanation
58     ///
59     /// It is usually a mistake to use a literal that overflows the type where
60     /// it is used. Either use a literal that is within range, or change the
61     /// type to be within the range of the literal.
62     OVERFLOWING_LITERALS,
63     Deny,
64     "literal out of range for its type"
65 }
66
67 declare_lint! {
68     /// The `variant_size_differences` lint detects enums with widely varying
69     /// variant sizes.
70     ///
71     /// ### Example
72     ///
73     /// ```rust,compile_fail
74     /// #![deny(variant_size_differences)]
75     /// enum En {
76     ///     V0(u8),
77     ///     VBig([u8; 1024]),
78     /// }
79     /// ```
80     ///
81     /// {{produces}}
82     ///
83     /// ### Explanation
84     ///
85     /// It can be a mistake to add a variant to an enum that is much larger
86     /// than the other variants, bloating the overall size required for all
87     /// variants. This can impact performance and memory usage. This is
88     /// triggered if one variant is more than 3 times larger than the
89     /// second-largest variant.
90     ///
91     /// Consider placing the large variant's contents on the heap (for example
92     /// via [`Box`]) to keep the overall size of the enum itself down.
93     ///
94     /// This lint is "allow" by default because it can be noisy, and may not be
95     /// an actual problem. Decisions about this should be guided with
96     /// profiling and benchmarking.
97     ///
98     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
99     VARIANT_SIZE_DIFFERENCES,
100     Allow,
101     "detects enums with widely varying variant sizes"
102 }
103
104 #[derive(Copy, Clone)]
105 pub struct TypeLimits {
106     /// Id of the last visited negated expression
107     negated_expr_id: Option<hir::HirId>,
108 }
109
110 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
111
112 impl TypeLimits {
113     pub fn new() -> TypeLimits {
114         TypeLimits { negated_expr_id: None }
115     }
116 }
117
118 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint (`expr..MAX+1`).
119 /// Returns `true` iff the lint was emitted.
120 fn lint_overflowing_range_endpoint<'tcx>(
121     cx: &LateContext<'tcx>,
122     lit: &hir::Lit,
123     lit_val: u128,
124     max: u128,
125     expr: &'tcx hir::Expr<'tcx>,
126     ty: &str,
127 ) -> bool {
128     // We only want to handle exclusive (`..`) ranges,
129     // which are represented as `ExprKind::Struct`.
130     let par_id = cx.tcx.hir().get_parent_node(expr.hir_id);
131     let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
132     let field_par_id = cx.tcx.hir().get_parent_node(field.hir_id);
133     let Node::Expr(struct_expr) = cx.tcx.hir().get(field_par_id) else { return false };
134     if !is_range_literal(struct_expr) {
135         return false;
136     };
137     let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
138     if eps.len() != 2 {
139         return false;
140     }
141
142     // We can suggest using an inclusive range
143     // (`..=`) instead only if it is the `end` that is
144     // overflowing and only by 1.
145     if !(eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max) {
146         return false;
147     };
148     let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) else { return false };
149
150     cx.struct_span_lint(
151         OVERFLOWING_LITERALS,
152         struct_expr.span,
153         fluent::lint_range_endpoint_out_of_range,
154         |lint| {
155             use ast::{LitIntType, LitKind};
156
157             lint.set_arg("ty", ty);
158
159             // We need to preserve the literal's suffix,
160             // as it may determine typing information.
161             let suffix = match lit.node {
162                 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
163                 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
164                 LitKind::Int(_, LitIntType::Unsuffixed) => "",
165                 _ => bug!(),
166             };
167             let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
168             lint.span_suggestion(
169                 struct_expr.span,
170                 fluent::suggestion,
171                 suggestion,
172                 Applicability::MachineApplicable,
173             );
174
175             lint
176         },
177     );
178
179     // We've just emitted a lint, special cased for `(...)..MAX+1` ranges,
180     // return `true` so the callers don't also emit a lint
181     true
182 }
183
184 // For `isize` & `usize`, be conservative with the warnings, so that the
185 // warnings are consistent between 32- and 64-bit platforms.
186 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
187     match int_ty {
188         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
189         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
190         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
191         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
192         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
193         ty::IntTy::I128 => (i128::MIN, i128::MAX),
194     }
195 }
196
197 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
198     let max = match uint_ty {
199         ty::UintTy::Usize => u64::MAX.into(),
200         ty::UintTy::U8 => u8::MAX.into(),
201         ty::UintTy::U16 => u16::MAX.into(),
202         ty::UintTy::U32 => u32::MAX.into(),
203         ty::UintTy::U64 => u64::MAX.into(),
204         ty::UintTy::U128 => u128::MAX,
205     };
206     (0, max)
207 }
208
209 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
210     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
211     let firstch = src.chars().next()?;
212
213     if firstch == '0' {
214         match src.chars().nth(1) {
215             Some('x' | 'b') => return Some(src),
216             _ => return None,
217         }
218     }
219
220     None
221 }
222
223 fn report_bin_hex_error(
224     cx: &LateContext<'_>,
225     expr: &hir::Expr<'_>,
226     ty: attr::IntType,
227     size: Size,
228     repr_str: String,
229     val: u128,
230     negative: bool,
231 ) {
232     cx.struct_span_lint(
233         OVERFLOWING_LITERALS,
234         expr.span,
235         fluent::lint_overflowing_bin_hex,
236         |lint| {
237             let (t, actually) = match ty {
238                 attr::IntType::SignedInt(t) => {
239                     let actually = if negative {
240                         -(size.sign_extend(val) as i128)
241                     } else {
242                         size.sign_extend(val) as i128
243                     };
244                     (t.name_str(), actually.to_string())
245                 }
246                 attr::IntType::UnsignedInt(t) => {
247                     let actually = size.truncate(val);
248                     (t.name_str(), actually.to_string())
249                 }
250             };
251
252             if negative {
253                 // If the value is negative,
254                 // emits a note about the value itself, apart from the literal.
255                 lint.note(fluent::negative_note);
256                 lint.note(fluent::negative_becomes_note);
257             } else {
258                 lint.note(fluent::positive_note);
259             }
260             if let Some(sugg_ty) =
261                 get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
262             {
263                 lint.set_arg("suggestion_ty", sugg_ty);
264                 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
265                     let (sans_suffix, _) = repr_str.split_at(pos);
266                     lint.span_suggestion(
267                         expr.span,
268                         fluent::suggestion,
269                         format!("{}{}", sans_suffix, sugg_ty),
270                         Applicability::MachineApplicable,
271                     );
272                 } else {
273                     lint.help(fluent::help);
274                 }
275             }
276             lint.set_arg("ty", t)
277                 .set_arg("lit", repr_str)
278                 .set_arg("dec", val)
279                 .set_arg("actually", actually);
280
281             lint
282         },
283     );
284 }
285
286 // This function finds the next fitting type and generates a suggestion string.
287 // It searches for fitting types in the following way (`X < Y`):
288 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
289 //  - `-iX` => `iY`
290 //  - `uX` => `uY`
291 //
292 // No suggestion for: `isize`, `usize`.
293 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
294     use ty::IntTy::*;
295     use ty::UintTy::*;
296     macro_rules! find_fit {
297         ($ty:expr, $val:expr, $negative:expr,
298          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
299             {
300                 let _neg = if negative { 1 } else { 0 };
301                 match $ty {
302                     $($type => {
303                         $(if !negative && val <= uint_ty_range($utypes).1 {
304                             return Some($utypes.name_str())
305                         })*
306                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
307                             return Some($itypes.name_str())
308                         })*
309                         None
310                     },)+
311                     _ => None
312                 }
313             }
314         }
315     }
316     match t.kind() {
317         ty::Int(i) => find_fit!(i, val, negative,
318                       I8 => [U8] => [I16, I32, I64, I128],
319                       I16 => [U16] => [I32, I64, I128],
320                       I32 => [U32] => [I64, I128],
321                       I64 => [U64] => [I128],
322                       I128 => [U128] => []),
323         ty::Uint(u) => find_fit!(u, val, negative,
324                       U8 => [U8, U16, U32, U64, U128] => [],
325                       U16 => [U16, U32, U64, U128] => [],
326                       U32 => [U32, U64, U128] => [],
327                       U64 => [U64, U128] => [],
328                       U128 => [U128] => []),
329         _ => None,
330     }
331 }
332
333 fn lint_int_literal<'tcx>(
334     cx: &LateContext<'tcx>,
335     type_limits: &TypeLimits,
336     e: &'tcx hir::Expr<'tcx>,
337     lit: &hir::Lit,
338     t: ty::IntTy,
339     v: u128,
340 ) {
341     let int_type = t.normalize(cx.sess().target.pointer_width);
342     let (min, max) = int_ty_range(int_type);
343     let max = max as u128;
344     let negative = type_limits.negated_expr_id == Some(e.hir_id);
345
346     // Detect literal value out of range [min, max] inclusive
347     // avoiding use of -min to prevent overflow/panic
348     if (negative && v > max + 1) || (!negative && v > max) {
349         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
350             report_bin_hex_error(
351                 cx,
352                 e,
353                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
354                 Integer::from_int_ty(cx, t).size(),
355                 repr_str,
356                 v,
357                 negative,
358             );
359             return;
360         }
361
362         if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
363             // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
364             return;
365         }
366
367         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_int, |lint| {
368             lint.set_arg("ty", t.name_str())
369                 .set_arg(
370                     "lit",
371                     cx.sess()
372                         .source_map()
373                         .span_to_snippet(lit.span)
374                         .expect("must get snippet from literal"),
375                 )
376                 .set_arg("min", min)
377                 .set_arg("max", max)
378                 .note(fluent::note);
379
380             if let Some(sugg_ty) =
381                 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
382             {
383                 lint.set_arg("suggestion_ty", sugg_ty);
384                 lint.help(fluent::help);
385             }
386
387             lint
388         });
389     }
390 }
391
392 fn lint_uint_literal<'tcx>(
393     cx: &LateContext<'tcx>,
394     e: &'tcx hir::Expr<'tcx>,
395     lit: &hir::Lit,
396     t: ty::UintTy,
397 ) {
398     let uint_type = t.normalize(cx.sess().target.pointer_width);
399     let (min, max) = uint_ty_range(uint_type);
400     let lit_val: u128 = match lit.node {
401         // _v is u8, within range by definition
402         ast::LitKind::Byte(_v) => return,
403         ast::LitKind::Int(v, _) => v,
404         _ => bug!(),
405     };
406     if lit_val < min || lit_val > max {
407         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
408         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
409             match par_e.kind {
410                 hir::ExprKind::Cast(..) => {
411                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
412                         cx.struct_span_lint(
413                             OVERFLOWING_LITERALS,
414                             par_e.span,
415                             fluent::lint_only_cast_u8_to_char,
416                             |lint| {
417                                 lint.span_suggestion(
418                                     par_e.span,
419                                     fluent::suggestion,
420                                     format!("'\\u{{{:X}}}'", lit_val),
421                                     Applicability::MachineApplicable,
422                                 )
423                             },
424                         );
425                         return;
426                     }
427                 }
428                 _ => {}
429             }
430         }
431         if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
432             // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
433             return;
434         }
435         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
436             report_bin_hex_error(
437                 cx,
438                 e,
439                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
440                 Integer::from_uint_ty(cx, t).size(),
441                 repr_str,
442                 lit_val,
443                 false,
444             );
445             return;
446         }
447         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, fluent::lint_overflowing_uint, |lint| {
448             lint.set_arg("ty", t.name_str())
449                 .set_arg(
450                     "lit",
451                     cx.sess()
452                         .source_map()
453                         .span_to_snippet(lit.span)
454                         .expect("must get snippet from literal"),
455                 )
456                 .set_arg("min", min)
457                 .set_arg("max", max)
458                 .note(fluent::note)
459         });
460     }
461 }
462
463 fn lint_literal<'tcx>(
464     cx: &LateContext<'tcx>,
465     type_limits: &TypeLimits,
466     e: &'tcx hir::Expr<'tcx>,
467     lit: &hir::Lit,
468 ) {
469     match *cx.typeck_results().node_type(e.hir_id).kind() {
470         ty::Int(t) => {
471             match lit.node {
472                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
473                     lint_int_literal(cx, type_limits, e, lit, t, v)
474                 }
475                 _ => bug!(),
476             };
477         }
478         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
479         ty::Float(t) => {
480             let is_infinite = match lit.node {
481                 ast::LitKind::Float(v, _) => match t {
482                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
483                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
484                 },
485                 _ => bug!(),
486             };
487             if is_infinite == Ok(true) {
488                 cx.struct_span_lint(
489                     OVERFLOWING_LITERALS,
490                     e.span,
491                     fluent::lint_overflowing_literal,
492                     |lint| {
493                         lint.set_arg("ty", t.name_str())
494                             .set_arg(
495                                 "lit",
496                                 cx.sess()
497                                     .source_map()
498                                     .span_to_snippet(lit.span)
499                                     .expect("must get snippet from literal"),
500                             )
501                             .note(fluent::note)
502                     },
503                 );
504             }
505         }
506         _ => {}
507     }
508 }
509
510 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
511     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
512         match e.kind {
513             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
514                 // propagate negation, if the negation itself isn't negated
515                 if self.negated_expr_id != Some(e.hir_id) {
516                     self.negated_expr_id = Some(expr.hir_id);
517                 }
518             }
519             hir::ExprKind::Binary(binop, ref l, ref r) => {
520                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
521                     cx.struct_span_lint(
522                         UNUSED_COMPARISONS,
523                         e.span,
524                         fluent::lint_unused_comparisons,
525                         |lint| lint,
526                     );
527                 }
528             }
529             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
530             _ => {}
531         };
532
533         fn is_valid<T: PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
534             match binop.node {
535                 hir::BinOpKind::Lt => v > min && v <= max,
536                 hir::BinOpKind::Le => v >= min && v < max,
537                 hir::BinOpKind::Gt => v >= min && v < max,
538                 hir::BinOpKind::Ge => v > min && v <= max,
539                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
540                 _ => bug!(),
541             }
542         }
543
544         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
545             source_map::respan(
546                 binop.span,
547                 match binop.node {
548                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
549                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
550                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
551                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
552                     _ => return binop,
553                 },
554             )
555         }
556
557         fn check_limits(
558             cx: &LateContext<'_>,
559             binop: hir::BinOp,
560             l: &hir::Expr<'_>,
561             r: &hir::Expr<'_>,
562         ) -> bool {
563             let (lit, expr, swap) = match (&l.kind, &r.kind) {
564                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
565                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
566                 _ => return true,
567             };
568             // Normalize the binop so that the literal is always on the RHS in
569             // the comparison
570             let norm_binop = if swap { rev_binop(binop) } else { binop };
571             match *cx.typeck_results().node_type(expr.hir_id).kind() {
572                 ty::Int(int_ty) => {
573                     let (min, max) = int_ty_range(int_ty);
574                     let lit_val: i128 = match lit.kind {
575                         hir::ExprKind::Lit(ref li) => match li.node {
576                             ast::LitKind::Int(
577                                 v,
578                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
579                             ) => v as i128,
580                             _ => return true,
581                         },
582                         _ => bug!(),
583                     };
584                     is_valid(norm_binop, lit_val, min, max)
585                 }
586                 ty::Uint(uint_ty) => {
587                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
588                     let lit_val: u128 = match lit.kind {
589                         hir::ExprKind::Lit(ref li) => match li.node {
590                             ast::LitKind::Int(v, _) => v,
591                             _ => return true,
592                         },
593                         _ => bug!(),
594                     };
595                     is_valid(norm_binop, lit_val, min, max)
596                 }
597                 _ => true,
598             }
599         }
600
601         fn is_comparison(binop: hir::BinOp) -> bool {
602             matches!(
603                 binop.node,
604                 hir::BinOpKind::Eq
605                     | hir::BinOpKind::Lt
606                     | hir::BinOpKind::Le
607                     | hir::BinOpKind::Ne
608                     | hir::BinOpKind::Ge
609                     | hir::BinOpKind::Gt
610             )
611         }
612     }
613 }
614
615 declare_lint! {
616     /// The `improper_ctypes` lint detects incorrect use of types in foreign
617     /// modules.
618     ///
619     /// ### Example
620     ///
621     /// ```rust
622     /// extern "C" {
623     ///     static STATIC: String;
624     /// }
625     /// ```
626     ///
627     /// {{produces}}
628     ///
629     /// ### Explanation
630     ///
631     /// The compiler has several checks to verify that types used in `extern`
632     /// blocks are safe and follow certain rules to ensure proper
633     /// compatibility with the foreign interfaces. This lint is issued when it
634     /// detects a probable mistake in a definition. The lint usually should
635     /// provide a description of the issue, along with possibly a hint on how
636     /// to resolve it.
637     IMPROPER_CTYPES,
638     Warn,
639     "proper use of libc types in foreign modules"
640 }
641
642 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
643
644 declare_lint! {
645     /// The `improper_ctypes_definitions` lint detects incorrect use of
646     /// [`extern` function] definitions.
647     ///
648     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
649     ///
650     /// ### Example
651     ///
652     /// ```rust
653     /// # #![allow(unused)]
654     /// pub extern "C" fn str_type(p: &str) { }
655     /// ```
656     ///
657     /// {{produces}}
658     ///
659     /// ### Explanation
660     ///
661     /// There are many parameter and return types that may be specified in an
662     /// `extern` function that are not compatible with the given ABI. This
663     /// lint is an alert that these types should not be used. The lint usually
664     /// should provide a description of the issue, along with possibly a hint
665     /// on how to resolve it.
666     IMPROPER_CTYPES_DEFINITIONS,
667     Warn,
668     "proper use of libc types in foreign item definitions"
669 }
670
671 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
672
673 #[derive(Clone, Copy)]
674 pub(crate) enum CItemKind {
675     Declaration,
676     Definition,
677 }
678
679 struct ImproperCTypesVisitor<'a, 'tcx> {
680     cx: &'a LateContext<'tcx>,
681     mode: CItemKind,
682 }
683
684 enum FfiResult<'tcx> {
685     FfiSafe,
686     FfiPhantom(Ty<'tcx>),
687     FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
688 }
689
690 pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
691     tcx: TyCtxt<'tcx>,
692     def: ty::AdtDef<'tcx>,
693 ) -> bool {
694     tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
695 }
696
697 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
698 /// field.
699 pub fn transparent_newtype_field<'a, 'tcx>(
700     tcx: TyCtxt<'tcx>,
701     variant: &'a ty::VariantDef,
702 ) -> Option<&'a ty::FieldDef> {
703     let param_env = tcx.param_env(variant.def_id);
704     variant.fields.iter().find(|field| {
705         let field_ty = tcx.type_of(field.did);
706         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
707         !is_zst
708     })
709 }
710
711 /// Is type known to be non-null?
712 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
713     let tcx = cx.tcx;
714     match ty.kind() {
715         ty::FnPtr(_) => true,
716         ty::Ref(..) => true,
717         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
718         ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
719             let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
720
721             if marked_non_null {
722                 return true;
723             }
724
725             // `UnsafeCell` has its niche hidden.
726             if def.is_unsafe_cell() {
727                 return false;
728             }
729
730             def.variants()
731                 .iter()
732                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
733                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
734         }
735         _ => false,
736     }
737 }
738
739 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
740 /// If the type passed in was not scalar, returns None.
741 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
742     let tcx = cx.tcx;
743     Some(match *ty.kind() {
744         ty::Adt(field_def, field_substs) => {
745             let inner_field_ty = {
746                 let mut first_non_zst_ty = field_def
747                     .variants()
748                     .iter()
749                     .filter_map(|v| transparent_newtype_field(cx.tcx, v));
750                 debug_assert_eq!(
751                     first_non_zst_ty.clone().count(),
752                     1,
753                     "Wrong number of fields for transparent type"
754                 );
755                 first_non_zst_ty
756                     .next_back()
757                     .expect("No non-zst fields in transparent type.")
758                     .ty(tcx, field_substs)
759             };
760             return get_nullable_type(cx, inner_field_ty);
761         }
762         ty::Int(ty) => tcx.mk_mach_int(ty),
763         ty::Uint(ty) => tcx.mk_mach_uint(ty),
764         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
765         // As these types are always non-null, the nullable equivalent of
766         // Option<T> of these types are their raw pointer counterparts.
767         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
768         ty::FnPtr(..) => {
769             // There is no nullable equivalent for Rust's function pointers -- you
770             // must use an Option<fn(..) -> _> to represent it.
771             ty
772         }
773
774         // We should only ever reach this case if ty_is_known_nonnull is extended
775         // to other types.
776         ref unhandled => {
777             debug!(
778                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
779                 unhandled, ty
780             );
781             return None;
782         }
783     })
784 }
785
786 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
787 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
788 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
789 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
790 /// FIXME: This duplicates code in codegen.
791 pub(crate) fn repr_nullable_ptr<'tcx>(
792     cx: &LateContext<'tcx>,
793     ty: Ty<'tcx>,
794     ckind: CItemKind,
795 ) -> Option<Ty<'tcx>> {
796     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
797     if let ty::Adt(ty_def, substs) = ty.kind() {
798         let field_ty = match &ty_def.variants().raw[..] {
799             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
800                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
801                 _ => return None,
802             },
803             _ => return None,
804         };
805
806         if !ty_is_known_nonnull(cx, field_ty, ckind) {
807             return None;
808         }
809
810         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
811         // If the computed size for the field and the enum are different, the nonnull optimization isn't
812         // being applied (and we've got a problem somewhere).
813         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
814         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
815             bug!("improper_ctypes: Option nonnull optimization not applied?");
816         }
817
818         // Return the nullable type this Option-like enum can be safely represented with.
819         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
820         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
821             match field_ty_scalar.valid_range(cx) {
822                 WrappingRange { start: 0, end }
823                     if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
824                 {
825                     return Some(get_nullable_type(cx, field_ty).unwrap());
826                 }
827                 WrappingRange { start: 1, .. } => {
828                     return Some(get_nullable_type(cx, field_ty).unwrap());
829                 }
830                 WrappingRange { start, end } => {
831                     unreachable!("Unhandled start and end range: ({}, {})", start, end)
832                 }
833             };
834         }
835     }
836     None
837 }
838
839 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
840     /// Check if the type is array and emit an unsafe type lint.
841     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
842         if let ty::Array(..) = ty.kind() {
843             self.emit_ffi_unsafe_type_lint(
844                 ty,
845                 sp,
846                 fluent::lint_improper_ctypes_array_reason,
847                 Some(fluent::lint_improper_ctypes_array_help),
848             );
849             true
850         } else {
851             false
852         }
853     }
854
855     /// Checks if the given field's type is "ffi-safe".
856     fn check_field_type_for_ffi(
857         &self,
858         cache: &mut FxHashSet<Ty<'tcx>>,
859         field: &ty::FieldDef,
860         substs: SubstsRef<'tcx>,
861     ) -> FfiResult<'tcx> {
862         let field_ty = field.ty(self.cx.tcx, substs);
863         if field_ty.has_opaque_types() {
864             self.check_type_for_ffi(cache, field_ty)
865         } else {
866             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
867             self.check_type_for_ffi(cache, field_ty)
868         }
869     }
870
871     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
872     fn check_variant_for_ffi(
873         &self,
874         cache: &mut FxHashSet<Ty<'tcx>>,
875         ty: Ty<'tcx>,
876         def: ty::AdtDef<'tcx>,
877         variant: &ty::VariantDef,
878         substs: SubstsRef<'tcx>,
879     ) -> FfiResult<'tcx> {
880         use FfiResult::*;
881
882         if def.repr().transparent() {
883             // Can assume that at most one field is not a ZST, so only check
884             // that field's type for FFI-safety.
885             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
886                 self.check_field_type_for_ffi(cache, field, substs)
887             } else {
888                 // All fields are ZSTs; this means that the type should behave
889                 // like (), which is FFI-unsafe
890                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_struct_zst, help: None }
891             }
892         } else {
893             // We can't completely trust repr(C) markings; make sure the fields are
894             // actually safe.
895             let mut all_phantom = !variant.fields.is_empty();
896             for field in &variant.fields {
897                 match self.check_field_type_for_ffi(cache, &field, substs) {
898                     FfiSafe => {
899                         all_phantom = false;
900                     }
901                     FfiPhantom(..) if def.is_enum() => {
902                         return FfiUnsafe {
903                             ty,
904                             reason: fluent::lint_improper_ctypes_enum_phantomdata,
905                             help: None,
906                         };
907                     }
908                     FfiPhantom(..) => {}
909                     r => return r,
910                 }
911             }
912
913             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
914         }
915     }
916
917     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
918     /// representation which can be exported to C code).
919     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
920         use FfiResult::*;
921
922         let tcx = self.cx.tcx;
923
924         // Protect against infinite recursion, for example
925         // `struct S(*mut S);`.
926         // FIXME: A recursion limit is necessary as well, for irregular
927         // recursive types.
928         if !cache.insert(ty) {
929             return FfiSafe;
930         }
931
932         match *ty.kind() {
933             ty::Adt(def, substs) => {
934                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
935                     if ty.boxed_ty().is_sized(tcx, self.cx.param_env) {
936                         return FfiSafe;
937                     } else {
938                         return FfiUnsafe {
939                             ty,
940                             reason: fluent::lint_improper_ctypes_box,
941                             help: None,
942                         };
943                     }
944                 }
945                 if def.is_phantom_data() {
946                     return FfiPhantom(ty);
947                 }
948                 match def.adt_kind() {
949                     AdtKind::Struct | AdtKind::Union => {
950                         if !def.repr().c() && !def.repr().transparent() {
951                             return FfiUnsafe {
952                                 ty,
953                                 reason: if def.is_struct() {
954                                     fluent::lint_improper_ctypes_struct_layout_reason
955                                 } else {
956                                     fluent::lint_improper_ctypes_union_layout_reason
957                                 },
958                                 help: if def.is_struct() {
959                                     Some(fluent::lint_improper_ctypes_struct_layout_help)
960                                 } else {
961                                     Some(fluent::lint_improper_ctypes_union_layout_help)
962                                 },
963                             };
964                         }
965
966                         let is_non_exhaustive =
967                             def.non_enum_variant().is_field_list_non_exhaustive();
968                         if is_non_exhaustive && !def.did().is_local() {
969                             return FfiUnsafe {
970                                 ty,
971                                 reason: if def.is_struct() {
972                                     fluent::lint_improper_ctypes_struct_non_exhaustive
973                                 } else {
974                                     fluent::lint_improper_ctypes_union_non_exhaustive
975                                 },
976                                 help: None,
977                             };
978                         }
979
980                         if def.non_enum_variant().fields.is_empty() {
981                             return FfiUnsafe {
982                                 ty,
983                                 reason: if def.is_struct() {
984                                     fluent::lint_improper_ctypes_struct_fieldless_reason
985                                 } else {
986                                     fluent::lint_improper_ctypes_union_fieldless_reason
987                                 },
988                                 help: if def.is_struct() {
989                                     Some(fluent::lint_improper_ctypes_struct_fieldless_help)
990                                 } else {
991                                     Some(fluent::lint_improper_ctypes_union_fieldless_help)
992                                 },
993                             };
994                         }
995
996                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
997                     }
998                     AdtKind::Enum => {
999                         if def.variants().is_empty() {
1000                             // Empty enums are okay... although sort of useless.
1001                             return FfiSafe;
1002                         }
1003
1004                         // Check for a repr() attribute to specify the size of the
1005                         // discriminant.
1006                         if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
1007                         {
1008                             // Special-case types like `Option<extern fn()>`.
1009                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
1010                                 return FfiUnsafe {
1011                                     ty,
1012                                     reason: fluent::lint_improper_ctypes_enum_repr_reason,
1013                                     help: Some(fluent::lint_improper_ctypes_enum_repr_help),
1014                                 };
1015                             }
1016                         }
1017
1018                         if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
1019                             return FfiUnsafe {
1020                                 ty,
1021                                 reason: fluent::lint_improper_ctypes_non_exhaustive,
1022                                 help: None,
1023                             };
1024                         }
1025
1026                         // Check the contained variants.
1027                         for variant in def.variants() {
1028                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1029                             if is_non_exhaustive && !variant.def_id.is_local() {
1030                                 return FfiUnsafe {
1031                                     ty,
1032                                     reason: fluent::lint_improper_ctypes_non_exhaustive_variant,
1033                                     help: None,
1034                                 };
1035                             }
1036
1037                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1038                                 FfiSafe => (),
1039                                 r => return r,
1040                             }
1041                         }
1042
1043                         FfiSafe
1044                     }
1045                 }
1046             }
1047
1048             ty::Char => FfiUnsafe {
1049                 ty,
1050                 reason: fluent::lint_improper_ctypes_char_reason,
1051                 help: Some(fluent::lint_improper_ctypes_char_help),
1052             },
1053
1054             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
1055                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_128bit, help: None }
1056             }
1057
1058             // Primitive types with a stable representation.
1059             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1060
1061             ty::Slice(_) => FfiUnsafe {
1062                 ty,
1063                 reason: fluent::lint_improper_ctypes_slice_reason,
1064                 help: Some(fluent::lint_improper_ctypes_slice_help),
1065             },
1066
1067             ty::Dynamic(..) => {
1068                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_dyn, help: None }
1069             }
1070
1071             ty::Str => FfiUnsafe {
1072                 ty,
1073                 reason: fluent::lint_improper_ctypes_str_reason,
1074                 help: Some(fluent::lint_improper_ctypes_str_help),
1075             },
1076
1077             ty::Tuple(..) => FfiUnsafe {
1078                 ty,
1079                 reason: fluent::lint_improper_ctypes_tuple_reason,
1080                 help: Some(fluent::lint_improper_ctypes_tuple_help),
1081             },
1082
1083             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1084                 if {
1085                     matches!(self.mode, CItemKind::Definition)
1086                         && ty.is_sized(self.cx.tcx, self.cx.param_env)
1087                 } =>
1088             {
1089                 FfiSafe
1090             }
1091
1092             ty::RawPtr(ty::TypeAndMut { ty, .. })
1093                 if match ty.kind() {
1094                     ty::Tuple(tuple) => tuple.is_empty(),
1095                     _ => false,
1096                 } =>
1097             {
1098                 FfiSafe
1099             }
1100
1101             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1102                 self.check_type_for_ffi(cache, ty)
1103             }
1104
1105             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1106
1107             ty::FnPtr(sig) => {
1108                 if self.is_internal_abi(sig.abi()) {
1109                     return FfiUnsafe {
1110                         ty,
1111                         reason: fluent::lint_improper_ctypes_fnptr_reason,
1112                         help: Some(fluent::lint_improper_ctypes_fnptr_help),
1113                     };
1114                 }
1115
1116                 let sig = tcx.erase_late_bound_regions(sig);
1117                 if !sig.output().is_unit() {
1118                     let r = self.check_type_for_ffi(cache, sig.output());
1119                     match r {
1120                         FfiSafe => {}
1121                         _ => {
1122                             return r;
1123                         }
1124                     }
1125                 }
1126                 for arg in sig.inputs() {
1127                     let r = self.check_type_for_ffi(cache, *arg);
1128                     match r {
1129                         FfiSafe => {}
1130                         _ => {
1131                             return r;
1132                         }
1133                     }
1134                 }
1135                 FfiSafe
1136             }
1137
1138             ty::Foreign(..) => FfiSafe,
1139
1140             // While opaque types are checked for earlier, if a projection in a struct field
1141             // normalizes to an opaque type, then it will reach this branch.
1142             ty::Alias(ty::Opaque, ..) => {
1143                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_opaque, help: None }
1144             }
1145
1146             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1147             //  so they are currently ignored for the purposes of this lint.
1148             ty::Param(..) | ty::Alias(ty::Projection, ..)
1149                 if matches!(self.mode, CItemKind::Definition) =>
1150             {
1151                 FfiSafe
1152             }
1153
1154             ty::Param(..)
1155             | ty::Alias(ty::Projection, ..)
1156             | ty::Infer(..)
1157             | ty::Bound(..)
1158             | ty::Error(_)
1159             | ty::Closure(..)
1160             | ty::Generator(..)
1161             | ty::GeneratorWitness(..)
1162             | ty::Placeholder(..)
1163             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1164         }
1165     }
1166
1167     fn emit_ffi_unsafe_type_lint(
1168         &mut self,
1169         ty: Ty<'tcx>,
1170         sp: Span,
1171         note: DiagnosticMessage,
1172         help: Option<DiagnosticMessage>,
1173     ) {
1174         let lint = match self.mode {
1175             CItemKind::Declaration => IMPROPER_CTYPES,
1176             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1177         };
1178
1179         self.cx.struct_span_lint(lint, sp, fluent::lint_improper_ctypes, |lint| {
1180             let item_description = match self.mode {
1181                 CItemKind::Declaration => "block",
1182                 CItemKind::Definition => "fn",
1183             };
1184             lint.set_arg("ty", ty);
1185             lint.set_arg("desc", item_description);
1186             lint.span_label(sp, fluent::label);
1187             if let Some(help) = help {
1188                 lint.help(help);
1189             }
1190             lint.note(note);
1191             if let ty::Adt(def, _) = ty.kind() {
1192                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
1193                     lint.span_note(sp, fluent::note);
1194                 }
1195             }
1196             lint
1197         });
1198     }
1199
1200     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1201         struct ProhibitOpaqueTypes;
1202         impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes {
1203             type BreakTy = Ty<'tcx>;
1204
1205             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1206                 if !ty.has_opaque_types() {
1207                     return ControlFlow::CONTINUE;
1208                 }
1209
1210                 if let ty::Alias(ty::Opaque, ..) = ty.kind() {
1211                     ControlFlow::Break(ty)
1212                 } else {
1213                     ty.super_visit_with(self)
1214                 }
1215             }
1216         }
1217
1218         if let Some(ty) = self
1219             .cx
1220             .tcx
1221             .normalize_erasing_regions(self.cx.param_env, ty)
1222             .visit_with(&mut ProhibitOpaqueTypes)
1223             .break_value()
1224         {
1225             self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint_improper_ctypes_opaque, None);
1226             true
1227         } else {
1228             false
1229         }
1230     }
1231
1232     fn check_type_for_ffi_and_report_errors(
1233         &mut self,
1234         sp: Span,
1235         ty: Ty<'tcx>,
1236         is_static: bool,
1237         is_return_type: bool,
1238     ) {
1239         // We have to check for opaque types before `normalize_erasing_regions`,
1240         // which will replace opaque types with their underlying concrete type.
1241         if self.check_for_opaque_ty(sp, ty) {
1242             // We've already emitted an error due to an opaque type.
1243             return;
1244         }
1245
1246         // it is only OK to use this function because extern fns cannot have
1247         // any generic types right now:
1248         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1249
1250         // C doesn't really support passing arrays by value - the only way to pass an array by value
1251         // is through a struct. So, first test that the top level isn't an array, and then
1252         // recursively check the types inside.
1253         if !is_static && self.check_for_array_ty(sp, ty) {
1254             return;
1255         }
1256
1257         // Don't report FFI errors for unit return types. This check exists here, and not in
1258         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1259         // happened.
1260         if is_return_type && ty.is_unit() {
1261             return;
1262         }
1263
1264         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1265             FfiResult::FfiSafe => {}
1266             FfiResult::FfiPhantom(ty) => {
1267                 self.emit_ffi_unsafe_type_lint(
1268                     ty,
1269                     sp,
1270                     fluent::lint_improper_ctypes_only_phantomdata,
1271                     None,
1272                 );
1273             }
1274             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1275             // argument, which after substitution, is `()`, then this branch can be hit.
1276             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1277             FfiResult::FfiUnsafe { ty, reason, help } => {
1278                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
1279             }
1280         }
1281     }
1282
1283     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1284         let def_id = self.cx.tcx.hir().local_def_id(id);
1285         let sig = self.cx.tcx.fn_sig(def_id);
1286         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1287
1288         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1289             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1290         }
1291
1292         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1293             let ret_ty = sig.output();
1294             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1295         }
1296     }
1297
1298     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1299         let def_id = self.cx.tcx.hir().local_def_id(id);
1300         let ty = self.cx.tcx.type_of(def_id);
1301         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1302     }
1303
1304     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1305         matches!(
1306             abi,
1307             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1308         )
1309     }
1310 }
1311
1312 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1313     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1314         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1315         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1316
1317         if !vis.is_internal_abi(abi) {
1318             match it.kind {
1319                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1320                     vis.check_foreign_fn(it.hir_id(), decl);
1321                 }
1322                 hir::ForeignItemKind::Static(ref ty, _) => {
1323                     vis.check_foreign_static(it.hir_id(), ty.span);
1324                 }
1325                 hir::ForeignItemKind::Type => (),
1326             }
1327         }
1328     }
1329 }
1330
1331 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1332     fn check_fn(
1333         &mut self,
1334         cx: &LateContext<'tcx>,
1335         kind: hir::intravisit::FnKind<'tcx>,
1336         decl: &'tcx hir::FnDecl<'_>,
1337         _: &'tcx hir::Body<'_>,
1338         _: Span,
1339         hir_id: hir::HirId,
1340     ) {
1341         use hir::intravisit::FnKind;
1342
1343         let abi = match kind {
1344             FnKind::ItemFn(_, _, header, ..) => header.abi,
1345             FnKind::Method(_, sig, ..) => sig.header.abi,
1346             _ => return,
1347         };
1348
1349         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1350         if !vis.is_internal_abi(abi) {
1351             vis.check_foreign_fn(hir_id, decl);
1352         }
1353     }
1354 }
1355
1356 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1357
1358 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1359     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1360         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1361             let t = cx.tcx.type_of(it.owner_id);
1362             let ty = cx.tcx.erase_regions(t);
1363             let Ok(layout) = cx.layout_of(ty) else { return };
1364             let Variants::Multiple {
1365                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1366                 } = &layout.variants else {
1367                 return
1368             };
1369
1370             let tag_size = tag.size(&cx.tcx).bytes();
1371
1372             debug!(
1373                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1374                 t,
1375                 layout.size.bytes(),
1376                 layout
1377             );
1378
1379             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1380                 .map(|(variant, variant_layout)| {
1381                     // Subtract the size of the enum tag.
1382                     let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
1383
1384                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1385                     bytes
1386                 })
1387                 .enumerate()
1388                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1389                     if size > l {
1390                         (size, l, idx)
1391                     } else if size > s {
1392                         (l, size, li)
1393                     } else {
1394                         (l, s, li)
1395                     }
1396                 });
1397
1398             // We only warn if the largest variant is at least thrice as large as
1399             // the second-largest.
1400             if largest > slargest * 3 && slargest > 0 {
1401                 cx.struct_span_lint(
1402                     VARIANT_SIZE_DIFFERENCES,
1403                     enum_definition.variants[largest_index].span,
1404                     fluent::lint_variant_size_differences,
1405                     |lint| lint.set_arg("largest", largest),
1406                 );
1407             }
1408         }
1409     }
1410 }
1411
1412 declare_lint! {
1413     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1414     /// to an atomic operation that does not support that ordering.
1415     ///
1416     /// ### Example
1417     ///
1418     /// ```rust,compile_fail
1419     /// # use core::sync::atomic::{AtomicU8, Ordering};
1420     /// let atom = AtomicU8::new(0);
1421     /// let value = atom.load(Ordering::Release);
1422     /// # let _ = value;
1423     /// ```
1424     ///
1425     /// {{produces}}
1426     ///
1427     /// ### Explanation
1428     ///
1429     /// Some atomic operations are only supported for a subset of the
1430     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1431     /// an unconditional panic at runtime, which is detected by this lint.
1432     ///
1433     /// This lint will trigger in the following cases: (where `AtomicType` is an
1434     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1435     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1436     ///
1437     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1438     ///   `AtomicType::store`.
1439     ///
1440     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1441     ///   `AtomicType::load`.
1442     ///
1443     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1444     ///   `core::sync::atomic::compiler_fence`.
1445     ///
1446     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1447     ///   ordering for any of `AtomicType::compare_exchange`,
1448     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1449     INVALID_ATOMIC_ORDERING,
1450     Deny,
1451     "usage of invalid atomic ordering in atomic operations and memory fences"
1452 }
1453
1454 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1455
1456 impl InvalidAtomicOrdering {
1457     fn inherent_atomic_method_call<'hir>(
1458         cx: &LateContext<'_>,
1459         expr: &Expr<'hir>,
1460         recognized_names: &[Symbol], // used for fast path calculation
1461     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1462         const ATOMIC_TYPES: &[Symbol] = &[
1463             sym::AtomicBool,
1464             sym::AtomicPtr,
1465             sym::AtomicUsize,
1466             sym::AtomicU8,
1467             sym::AtomicU16,
1468             sym::AtomicU32,
1469             sym::AtomicU64,
1470             sym::AtomicU128,
1471             sym::AtomicIsize,
1472             sym::AtomicI8,
1473             sym::AtomicI16,
1474             sym::AtomicI32,
1475             sym::AtomicI64,
1476             sym::AtomicI128,
1477         ];
1478         if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
1479             && recognized_names.contains(&method_path.ident.name)
1480             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1481             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1482             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1483             // skip extension traits, only lint functions from the standard library
1484             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1485             && let parent = cx.tcx.parent(adt.did())
1486             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1487             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1488         {
1489             return Some((method_path.ident.name, args));
1490         }
1491         None
1492     }
1493
1494     fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1495         let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1496         let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
1497         let tcx = cx.tcx;
1498         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1499         let name = tcx.item_name(did);
1500         let parent = tcx.parent(did);
1501         [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1502             |&ordering| {
1503                 name == ordering
1504                     && (Some(parent) == atomic_ordering
1505                             // needed in case this is a ctor, not a variant
1506                             || tcx.opt_parent(parent) == atomic_ordering)
1507             },
1508         )
1509     }
1510
1511     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1512         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1513             && let Some((ordering_arg, invalid_ordering, msg)) = match method {
1514                 sym::load => Some((&args[0], sym::Release, fluent::lint_atomic_ordering_load)),
1515                 sym::store => Some((&args[1], sym::Acquire, fluent::lint_atomic_ordering_store)),
1516                 _ => None,
1517             }
1518             && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1519             && (ordering == invalid_ordering || ordering == sym::AcqRel)
1520         {
1521             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, msg, |lint| {
1522                 lint.help(fluent::help)
1523             });
1524         }
1525     }
1526
1527     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1528         if let ExprKind::Call(ref func, ref args) = expr.kind
1529             && let ExprKind::Path(ref func_qpath) = func.kind
1530             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1531             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1532             && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
1533         {
1534             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, fluent::lint_atomic_ordering_fence, |lint| {
1535                 lint
1536                     .help(fluent::help)
1537             });
1538         }
1539     }
1540
1541     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1542         let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1543             else {return };
1544
1545         let fail_order_arg = match method {
1546             sym::fetch_update => &args[1],
1547             sym::compare_exchange | sym::compare_exchange_weak => &args[3],
1548             _ => return,
1549         };
1550
1551         let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1552
1553         if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1554             #[derive(LintDiagnostic)]
1555             #[diag(lint_atomic_ordering_invalid)]
1556             #[help]
1557             struct InvalidAtomicOrderingDiag {
1558                 method: Symbol,
1559                 #[label]
1560                 fail_order_arg_span: Span,
1561             }
1562
1563             cx.emit_spanned_lint(
1564                 INVALID_ATOMIC_ORDERING,
1565                 fail_order_arg.span,
1566                 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1567             );
1568         }
1569     }
1570 }
1571
1572 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1573     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1574         Self::check_atomic_load_store(cx, expr);
1575         Self::check_memory_fence(cx, expr);
1576         Self::check_atomic_compare_exchange(cx, expr);
1577     }
1578 }