]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
Auto merge of #95548 - rcvalle:rust-cfi-2, r=nagisa
[rust.git] / compiler / rustc_lint / src / types.rs
1 use crate::{LateContext, LateLintPass, LintContext};
2 use rustc_ast as ast;
3 use rustc_attr as attr;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::{fluent, Applicability, DiagnosticMessage};
6 use rustc_hir as hir;
7 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
8 use rustc_macros::LintDiagnostic;
9 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
10 use rustc_middle::ty::subst::SubstsRef;
11 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
12 use rustc_span::source_map;
13 use rustc_span::symbol::sym;
14 use rustc_span::{Span, Symbol, DUMMY_SP};
15 use rustc_target::abi::{Abi, WrappingRange};
16 use rustc_target::abi::{Integer, TagEncoding, Variants};
17 use rustc_target::spec::abi::Abi as SpecAbi;
18
19 use std::cmp;
20 use std::iter;
21 use std::ops::ControlFlow;
22 use tracing::debug;
23
24 declare_lint! {
25     /// The `unused_comparisons` lint detects comparisons made useless by
26     /// limits of the types involved.
27     ///
28     /// ### Example
29     ///
30     /// ```rust
31     /// fn foo(x: u8) {
32     ///     x >= 0;
33     /// }
34     /// ```
35     ///
36     /// {{produces}}
37     ///
38     /// ### Explanation
39     ///
40     /// A useless comparison may indicate a mistake, and should be fixed or
41     /// removed.
42     UNUSED_COMPARISONS,
43     Warn,
44     "comparisons made useless by limits of the types involved"
45 }
46
47 declare_lint! {
48     /// The `overflowing_literals` lint detects literal out of range for its
49     /// type.
50     ///
51     /// ### Example
52     ///
53     /// ```rust,compile_fail
54     /// let x: u8 = 1000;
55     /// ```
56     ///
57     /// {{produces}}
58     ///
59     /// ### Explanation
60     ///
61     /// It is usually a mistake to use a literal that overflows the type where
62     /// it is used. Either use a literal that is within range, or change the
63     /// type to be within the range of the literal.
64     OVERFLOWING_LITERALS,
65     Deny,
66     "literal out of range for its type"
67 }
68
69 declare_lint! {
70     /// The `variant_size_differences` lint detects enums with widely varying
71     /// variant sizes.
72     ///
73     /// ### Example
74     ///
75     /// ```rust,compile_fail
76     /// #![deny(variant_size_differences)]
77     /// enum En {
78     ///     V0(u8),
79     ///     VBig([u8; 1024]),
80     /// }
81     /// ```
82     ///
83     /// {{produces}}
84     ///
85     /// ### Explanation
86     ///
87     /// It can be a mistake to add a variant to an enum that is much larger
88     /// than the other variants, bloating the overall size required for all
89     /// variants. This can impact performance and memory usage. This is
90     /// triggered if one variant is more than 3 times larger than the
91     /// second-largest variant.
92     ///
93     /// Consider placing the large variant's contents on the heap (for example
94     /// via [`Box`]) to keep the overall size of the enum itself down.
95     ///
96     /// This lint is "allow" by default because it can be noisy, and may not be
97     /// an actual problem. Decisions about this should be guided with
98     /// profiling and benchmarking.
99     ///
100     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
101     VARIANT_SIZE_DIFFERENCES,
102     Allow,
103     "detects enums with widely varying variant sizes"
104 }
105
106 #[derive(Copy, Clone)]
107 pub struct TypeLimits {
108     /// Id of the last visited negated expression
109     negated_expr_id: Option<hir::HirId>,
110 }
111
112 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
113
114 impl TypeLimits {
115     pub fn new() -> TypeLimits {
116         TypeLimits { negated_expr_id: None }
117     }
118 }
119
120 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
121 /// Returns `true` iff the lint was overridden.
122 fn lint_overflowing_range_endpoint<'tcx>(
123     cx: &LateContext<'tcx>,
124     lit: &hir::Lit,
125     lit_val: u128,
126     max: u128,
127     expr: &'tcx hir::Expr<'tcx>,
128     parent_expr: &'tcx hir::Expr<'tcx>,
129     ty: &str,
130 ) -> bool {
131     // We only want to handle exclusive (`..`) ranges,
132     // which are represented as `ExprKind::Struct`.
133     let mut overwritten = false;
134     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
135         if eps.len() != 2 {
136             return false;
137         }
138         // We can suggest using an inclusive range
139         // (`..=`) instead only if it is the `end` that is
140         // overflowing and only by 1.
141         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
142             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
143                 let mut err = lint.build(fluent::lint::range_endpoint_out_of_range);
144                 err.set_arg("ty", ty);
145                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
146                     use ast::{LitIntType, LitKind};
147                     // We need to preserve the literal's suffix,
148                     // as it may determine typing information.
149                     let suffix = match lit.node {
150                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
151                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
152                         LitKind::Int(_, LitIntType::Unsuffixed) => "",
153                         _ => bug!(),
154                     };
155                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
156                     err.span_suggestion(
157                         parent_expr.span,
158                         fluent::lint::suggestion,
159                         suggestion,
160                         Applicability::MachineApplicable,
161                     );
162                     err.emit();
163                     overwritten = true;
164                 }
165             });
166         }
167     }
168     overwritten
169 }
170
171 // For `isize` & `usize`, be conservative with the warnings, so that the
172 // warnings are consistent between 32- and 64-bit platforms.
173 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
174     match int_ty {
175         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
176         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
177         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
178         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
179         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
180         ty::IntTy::I128 => (i128::MIN, i128::MAX),
181     }
182 }
183
184 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
185     let max = match uint_ty {
186         ty::UintTy::Usize => u64::MAX.into(),
187         ty::UintTy::U8 => u8::MAX.into(),
188         ty::UintTy::U16 => u16::MAX.into(),
189         ty::UintTy::U32 => u32::MAX.into(),
190         ty::UintTy::U64 => u64::MAX.into(),
191         ty::UintTy::U128 => u128::MAX,
192     };
193     (0, max)
194 }
195
196 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
197     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
198     let firstch = src.chars().next()?;
199
200     if firstch == '0' {
201         match src.chars().nth(1) {
202             Some('x' | 'b') => return Some(src),
203             _ => return None,
204         }
205     }
206
207     None
208 }
209
210 fn report_bin_hex_error(
211     cx: &LateContext<'_>,
212     expr: &hir::Expr<'_>,
213     ty: attr::IntType,
214     repr_str: String,
215     val: u128,
216     negative: bool,
217 ) {
218     let size = Integer::from_attr(&cx.tcx, ty).size();
219     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
220         let (t, actually) = match ty {
221             attr::IntType::SignedInt(t) => {
222                 let actually = if negative {
223                     -(size.sign_extend(val) as i128)
224                 } else {
225                     size.sign_extend(val) as i128
226                 };
227                 (t.name_str(), actually.to_string())
228             }
229             attr::IntType::UnsignedInt(t) => {
230                 let actually = size.truncate(val);
231                 (t.name_str(), actually.to_string())
232             }
233         };
234         let mut err = lint.build(fluent::lint::overflowing_bin_hex);
235         if negative {
236             // If the value is negative,
237             // emits a note about the value itself, apart from the literal.
238             err.note(fluent::lint::negative_note);
239             err.note(fluent::lint::negative_becomes_note);
240         } else {
241             err.note(fluent::lint::positive_note);
242         }
243         if let Some(sugg_ty) =
244             get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
245         {
246             err.set_arg("suggestion_ty", sugg_ty);
247             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
248                 let (sans_suffix, _) = repr_str.split_at(pos);
249                 err.span_suggestion(
250                     expr.span,
251                     fluent::lint::suggestion,
252                     format!("{}{}", sans_suffix, sugg_ty),
253                     Applicability::MachineApplicable,
254                 );
255             } else {
256                 err.help(fluent::lint::help);
257             }
258         }
259         err.set_arg("ty", t);
260         err.set_arg("lit", repr_str);
261         err.set_arg("dec", val);
262         err.set_arg("actually", actually);
263         err.emit();
264     });
265 }
266
267 // This function finds the next fitting type and generates a suggestion string.
268 // It searches for fitting types in the following way (`X < Y`):
269 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
270 //  - `-iX` => `iY`
271 //  - `uX` => `uY`
272 //
273 // No suggestion for: `isize`, `usize`.
274 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
275     use ty::IntTy::*;
276     use ty::UintTy::*;
277     macro_rules! find_fit {
278         ($ty:expr, $val:expr, $negative:expr,
279          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
280             {
281                 let _neg = if negative { 1 } else { 0 };
282                 match $ty {
283                     $($type => {
284                         $(if !negative && val <= uint_ty_range($utypes).1 {
285                             return Some($utypes.name_str())
286                         })*
287                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
288                             return Some($itypes.name_str())
289                         })*
290                         None
291                     },)+
292                     _ => None
293                 }
294             }
295         }
296     }
297     match t.kind() {
298         ty::Int(i) => find_fit!(i, val, negative,
299                       I8 => [U8] => [I16, I32, I64, I128],
300                       I16 => [U16] => [I32, I64, I128],
301                       I32 => [U32] => [I64, I128],
302                       I64 => [U64] => [I128],
303                       I128 => [U128] => []),
304         ty::Uint(u) => find_fit!(u, val, negative,
305                       U8 => [U8, U16, U32, U64, U128] => [],
306                       U16 => [U16, U32, U64, U128] => [],
307                       U32 => [U32, U64, U128] => [],
308                       U64 => [U64, U128] => [],
309                       U128 => [U128] => []),
310         _ => None,
311     }
312 }
313
314 fn lint_int_literal<'tcx>(
315     cx: &LateContext<'tcx>,
316     type_limits: &TypeLimits,
317     e: &'tcx hir::Expr<'tcx>,
318     lit: &hir::Lit,
319     t: ty::IntTy,
320     v: u128,
321 ) {
322     let int_type = t.normalize(cx.sess().target.pointer_width);
323     let (min, max) = int_ty_range(int_type);
324     let max = max as u128;
325     let negative = type_limits.negated_expr_id == Some(e.hir_id);
326
327     // Detect literal value out of range [min, max] inclusive
328     // avoiding use of -min to prevent overflow/panic
329     if (negative && v > max + 1) || (!negative && v > max) {
330         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
331             report_bin_hex_error(
332                 cx,
333                 e,
334                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
335                 repr_str,
336                 v,
337                 negative,
338             );
339             return;
340         }
341
342         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
343         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
344             if let hir::ExprKind::Struct(..) = par_e.kind {
345                 if is_range_literal(par_e)
346                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
347                 {
348                     // The overflowing literal lint was overridden.
349                     return;
350                 }
351             }
352         }
353
354         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
355             let mut err = lint.build(fluent::lint::overflowing_int);
356             err.set_arg("ty", t.name_str());
357             err.set_arg(
358                 "lit",
359                 cx.sess()
360                     .source_map()
361                     .span_to_snippet(lit.span)
362                     .expect("must get snippet from literal"),
363             );
364             err.set_arg("min", min);
365             err.set_arg("max", max);
366             err.note(fluent::lint::note);
367             if let Some(sugg_ty) =
368                 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
369             {
370                 err.set_arg("suggestion_ty", sugg_ty);
371                 err.help(fluent::lint::help);
372             }
373             err.emit();
374         });
375     }
376 }
377
378 fn lint_uint_literal<'tcx>(
379     cx: &LateContext<'tcx>,
380     e: &'tcx hir::Expr<'tcx>,
381     lit: &hir::Lit,
382     t: ty::UintTy,
383 ) {
384     let uint_type = t.normalize(cx.sess().target.pointer_width);
385     let (min, max) = uint_ty_range(uint_type);
386     let lit_val: u128 = match lit.node {
387         // _v is u8, within range by definition
388         ast::LitKind::Byte(_v) => return,
389         ast::LitKind::Int(v, _) => v,
390         _ => bug!(),
391     };
392     if lit_val < min || lit_val > max {
393         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
394         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
395             match par_e.kind {
396                 hir::ExprKind::Cast(..) => {
397                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
398                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
399                             lint.build(fluent::lint::only_cast_u8_to_char)
400                                 .span_suggestion(
401                                     par_e.span,
402                                     fluent::lint::suggestion,
403                                     format!("'\\u{{{:X}}}'", lit_val),
404                                     Applicability::MachineApplicable,
405                                 )
406                                 .emit();
407                         });
408                         return;
409                     }
410                 }
411                 hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
412                     let t = t.name_str();
413                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
414                         // The overflowing literal lint was overridden.
415                         return;
416                     }
417                 }
418                 _ => {}
419             }
420         }
421         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
422             report_bin_hex_error(
423                 cx,
424                 e,
425                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
426                 repr_str,
427                 lit_val,
428                 false,
429             );
430             return;
431         }
432         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
433             lint.build(fluent::lint::overflowing_uint)
434                 .set_arg("ty", t.name_str())
435                 .set_arg(
436                     "lit",
437                     cx.sess()
438                         .source_map()
439                         .span_to_snippet(lit.span)
440                         .expect("must get snippet from literal"),
441                 )
442                 .set_arg("min", min)
443                 .set_arg("max", max)
444                 .note(fluent::lint::note)
445                 .emit();
446         });
447     }
448 }
449
450 fn lint_literal<'tcx>(
451     cx: &LateContext<'tcx>,
452     type_limits: &TypeLimits,
453     e: &'tcx hir::Expr<'tcx>,
454     lit: &hir::Lit,
455 ) {
456     match *cx.typeck_results().node_type(e.hir_id).kind() {
457         ty::Int(t) => {
458             match lit.node {
459                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
460                     lint_int_literal(cx, type_limits, e, lit, t, v)
461                 }
462                 _ => bug!(),
463             };
464         }
465         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
466         ty::Float(t) => {
467             let is_infinite = match lit.node {
468                 ast::LitKind::Float(v, _) => match t {
469                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
470                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
471                 },
472                 _ => bug!(),
473             };
474             if is_infinite == Ok(true) {
475                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
476                     lint.build(fluent::lint::overflowing_literal)
477                         .set_arg("ty", t.name_str())
478                         .set_arg(
479                             "lit",
480                             cx.sess()
481                                 .source_map()
482                                 .span_to_snippet(lit.span)
483                                 .expect("must get snippet from literal"),
484                         )
485                         .note(fluent::lint::note)
486                         .emit();
487                 });
488             }
489         }
490         _ => {}
491     }
492 }
493
494 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
495     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
496         match e.kind {
497             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
498                 // propagate negation, if the negation itself isn't negated
499                 if self.negated_expr_id != Some(e.hir_id) {
500                     self.negated_expr_id = Some(expr.hir_id);
501                 }
502             }
503             hir::ExprKind::Binary(binop, ref l, ref r) => {
504                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
505                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
506                         lint.build(fluent::lint::unused_comparisons).emit();
507                     });
508                 }
509             }
510             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
511             _ => {}
512         };
513
514         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
515             match binop.node {
516                 hir::BinOpKind::Lt => v > min && v <= max,
517                 hir::BinOpKind::Le => v >= min && v < max,
518                 hir::BinOpKind::Gt => v >= min && v < max,
519                 hir::BinOpKind::Ge => v > min && v <= max,
520                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
521                 _ => bug!(),
522             }
523         }
524
525         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
526             source_map::respan(
527                 binop.span,
528                 match binop.node {
529                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
530                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
531                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
532                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
533                     _ => return binop,
534                 },
535             )
536         }
537
538         fn check_limits(
539             cx: &LateContext<'_>,
540             binop: hir::BinOp,
541             l: &hir::Expr<'_>,
542             r: &hir::Expr<'_>,
543         ) -> bool {
544             let (lit, expr, swap) = match (&l.kind, &r.kind) {
545                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
546                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
547                 _ => return true,
548             };
549             // Normalize the binop so that the literal is always on the RHS in
550             // the comparison
551             let norm_binop = if swap { rev_binop(binop) } else { binop };
552             match *cx.typeck_results().node_type(expr.hir_id).kind() {
553                 ty::Int(int_ty) => {
554                     let (min, max) = int_ty_range(int_ty);
555                     let lit_val: i128 = match lit.kind {
556                         hir::ExprKind::Lit(ref li) => match li.node {
557                             ast::LitKind::Int(
558                                 v,
559                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
560                             ) => v as i128,
561                             _ => return true,
562                         },
563                         _ => bug!(),
564                     };
565                     is_valid(norm_binop, lit_val, min, max)
566                 }
567                 ty::Uint(uint_ty) => {
568                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
569                     let lit_val: u128 = match lit.kind {
570                         hir::ExprKind::Lit(ref li) => match li.node {
571                             ast::LitKind::Int(v, _) => v,
572                             _ => return true,
573                         },
574                         _ => bug!(),
575                     };
576                     is_valid(norm_binop, lit_val, min, max)
577                 }
578                 _ => true,
579             }
580         }
581
582         fn is_comparison(binop: hir::BinOp) -> bool {
583             matches!(
584                 binop.node,
585                 hir::BinOpKind::Eq
586                     | hir::BinOpKind::Lt
587                     | hir::BinOpKind::Le
588                     | hir::BinOpKind::Ne
589                     | hir::BinOpKind::Ge
590                     | hir::BinOpKind::Gt
591             )
592         }
593     }
594 }
595
596 declare_lint! {
597     /// The `improper_ctypes` lint detects incorrect use of types in foreign
598     /// modules.
599     ///
600     /// ### Example
601     ///
602     /// ```rust
603     /// extern "C" {
604     ///     static STATIC: String;
605     /// }
606     /// ```
607     ///
608     /// {{produces}}
609     ///
610     /// ### Explanation
611     ///
612     /// The compiler has several checks to verify that types used in `extern`
613     /// blocks are safe and follow certain rules to ensure proper
614     /// compatibility with the foreign interfaces. This lint is issued when it
615     /// detects a probable mistake in a definition. The lint usually should
616     /// provide a description of the issue, along with possibly a hint on how
617     /// to resolve it.
618     IMPROPER_CTYPES,
619     Warn,
620     "proper use of libc types in foreign modules"
621 }
622
623 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
624
625 declare_lint! {
626     /// The `improper_ctypes_definitions` lint detects incorrect use of
627     /// [`extern` function] definitions.
628     ///
629     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
630     ///
631     /// ### Example
632     ///
633     /// ```rust
634     /// # #![allow(unused)]
635     /// pub extern "C" fn str_type(p: &str) { }
636     /// ```
637     ///
638     /// {{produces}}
639     ///
640     /// ### Explanation
641     ///
642     /// There are many parameter and return types that may be specified in an
643     /// `extern` function that are not compatible with the given ABI. This
644     /// lint is an alert that these types should not be used. The lint usually
645     /// should provide a description of the issue, along with possibly a hint
646     /// on how to resolve it.
647     IMPROPER_CTYPES_DEFINITIONS,
648     Warn,
649     "proper use of libc types in foreign item definitions"
650 }
651
652 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
653
654 #[derive(Clone, Copy)]
655 pub(crate) enum CItemKind {
656     Declaration,
657     Definition,
658 }
659
660 struct ImproperCTypesVisitor<'a, 'tcx> {
661     cx: &'a LateContext<'tcx>,
662     mode: CItemKind,
663 }
664
665 enum FfiResult<'tcx> {
666     FfiSafe,
667     FfiPhantom(Ty<'tcx>),
668     FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
669 }
670
671 pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
672     tcx: TyCtxt<'tcx>,
673     def: ty::AdtDef<'tcx>,
674 ) -> bool {
675     tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
676 }
677
678 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
679 /// field.
680 pub fn transparent_newtype_field<'a, 'tcx>(
681     tcx: TyCtxt<'tcx>,
682     variant: &'a ty::VariantDef,
683 ) -> Option<&'a ty::FieldDef> {
684     let param_env = tcx.param_env(variant.def_id);
685     variant.fields.iter().find(|field| {
686         let field_ty = tcx.type_of(field.did);
687         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
688         !is_zst
689     })
690 }
691
692 /// Is type known to be non-null?
693 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
694     let tcx = cx.tcx;
695     match ty.kind() {
696         ty::FnPtr(_) => true,
697         ty::Ref(..) => true,
698         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
699         ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
700             let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
701
702             if marked_non_null {
703                 return true;
704             }
705
706             // `UnsafeCell` has its niche hidden.
707             if def.is_unsafe_cell() {
708                 return false;
709             }
710
711             def.variants()
712                 .iter()
713                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
714                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
715         }
716         _ => false,
717     }
718 }
719
720 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
721 /// If the type passed in was not scalar, returns None.
722 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
723     let tcx = cx.tcx;
724     Some(match *ty.kind() {
725         ty::Adt(field_def, field_substs) => {
726             let inner_field_ty = {
727                 let first_non_zst_ty = field_def
728                     .variants()
729                     .iter()
730                     .filter_map(|v| transparent_newtype_field(cx.tcx, v));
731                 debug_assert_eq!(
732                     first_non_zst_ty.clone().count(),
733                     1,
734                     "Wrong number of fields for transparent type"
735                 );
736                 first_non_zst_ty
737                     .last()
738                     .expect("No non-zst fields in transparent type.")
739                     .ty(tcx, field_substs)
740             };
741             return get_nullable_type(cx, inner_field_ty);
742         }
743         ty::Int(ty) => tcx.mk_mach_int(ty),
744         ty::Uint(ty) => tcx.mk_mach_uint(ty),
745         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
746         // As these types are always non-null, the nullable equivalent of
747         // Option<T> of these types are their raw pointer counterparts.
748         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
749         ty::FnPtr(..) => {
750             // There is no nullable equivalent for Rust's function pointers -- you
751             // must use an Option<fn(..) -> _> to represent it.
752             ty
753         }
754
755         // We should only ever reach this case if ty_is_known_nonnull is extended
756         // to other types.
757         ref unhandled => {
758             debug!(
759                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
760                 unhandled, ty
761             );
762             return None;
763         }
764     })
765 }
766
767 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
768 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
769 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
770 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
771 /// FIXME: This duplicates code in codegen.
772 pub(crate) fn repr_nullable_ptr<'tcx>(
773     cx: &LateContext<'tcx>,
774     ty: Ty<'tcx>,
775     ckind: CItemKind,
776 ) -> Option<Ty<'tcx>> {
777     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
778     if let ty::Adt(ty_def, substs) = ty.kind() {
779         let field_ty = match &ty_def.variants().raw[..] {
780             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
781                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
782                 _ => return None,
783             },
784             _ => return None,
785         };
786
787         if !ty_is_known_nonnull(cx, field_ty, ckind) {
788             return None;
789         }
790
791         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
792         // If the computed size for the field and the enum are different, the nonnull optimization isn't
793         // being applied (and we've got a problem somewhere).
794         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
795         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
796             bug!("improper_ctypes: Option nonnull optimization not applied?");
797         }
798
799         // Return the nullable type this Option-like enum can be safely represented with.
800         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
801         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
802             match field_ty_scalar.valid_range(cx) {
803                 WrappingRange { start: 0, end }
804                     if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
805                 {
806                     return Some(get_nullable_type(cx, field_ty).unwrap());
807                 }
808                 WrappingRange { start: 1, .. } => {
809                     return Some(get_nullable_type(cx, field_ty).unwrap());
810                 }
811                 WrappingRange { start, end } => {
812                     unreachable!("Unhandled start and end range: ({}, {})", start, end)
813                 }
814             };
815         }
816     }
817     None
818 }
819
820 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
821     /// Check if the type is array and emit an unsafe type lint.
822     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
823         if let ty::Array(..) = ty.kind() {
824             self.emit_ffi_unsafe_type_lint(
825                 ty,
826                 sp,
827                 fluent::lint::improper_ctypes_array_reason,
828                 Some(fluent::lint::improper_ctypes_array_help),
829             );
830             true
831         } else {
832             false
833         }
834     }
835
836     /// Checks if the given field's type is "ffi-safe".
837     fn check_field_type_for_ffi(
838         &self,
839         cache: &mut FxHashSet<Ty<'tcx>>,
840         field: &ty::FieldDef,
841         substs: SubstsRef<'tcx>,
842     ) -> FfiResult<'tcx> {
843         let field_ty = field.ty(self.cx.tcx, substs);
844         if field_ty.has_opaque_types() {
845             self.check_type_for_ffi(cache, field_ty)
846         } else {
847             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
848             self.check_type_for_ffi(cache, field_ty)
849         }
850     }
851
852     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
853     fn check_variant_for_ffi(
854         &self,
855         cache: &mut FxHashSet<Ty<'tcx>>,
856         ty: Ty<'tcx>,
857         def: ty::AdtDef<'tcx>,
858         variant: &ty::VariantDef,
859         substs: SubstsRef<'tcx>,
860     ) -> FfiResult<'tcx> {
861         use FfiResult::*;
862
863         if def.repr().transparent() {
864             // Can assume that at most one field is not a ZST, so only check
865             // that field's type for FFI-safety.
866             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
867                 self.check_field_type_for_ffi(cache, field, substs)
868             } else {
869                 // All fields are ZSTs; this means that the type should behave
870                 // like (), which is FFI-unsafe
871                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_struct_zst, help: None }
872             }
873         } else {
874             // We can't completely trust repr(C) markings; make sure the fields are
875             // actually safe.
876             let mut all_phantom = !variant.fields.is_empty();
877             for field in &variant.fields {
878                 match self.check_field_type_for_ffi(cache, &field, substs) {
879                     FfiSafe => {
880                         all_phantom = false;
881                     }
882                     FfiPhantom(..) if def.is_enum() => {
883                         return FfiUnsafe {
884                             ty,
885                             reason: fluent::lint::improper_ctypes_enum_phantomdata,
886                             help: None,
887                         };
888                     }
889                     FfiPhantom(..) => {}
890                     r => return r,
891                 }
892             }
893
894             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
895         }
896     }
897
898     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
899     /// representation which can be exported to C code).
900     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
901         use FfiResult::*;
902
903         let tcx = self.cx.tcx;
904
905         // Protect against infinite recursion, for example
906         // `struct S(*mut S);`.
907         // FIXME: A recursion limit is necessary as well, for irregular
908         // recursive types.
909         if !cache.insert(ty) {
910             return FfiSafe;
911         }
912
913         match *ty.kind() {
914             ty::Adt(def, substs) => {
915                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
916                     if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
917                         return FfiSafe;
918                     } else {
919                         return FfiUnsafe {
920                             ty,
921                             reason: fluent::lint::improper_ctypes_box,
922                             help: None,
923                         };
924                     }
925                 }
926                 if def.is_phantom_data() {
927                     return FfiPhantom(ty);
928                 }
929                 match def.adt_kind() {
930                     AdtKind::Struct | AdtKind::Union => {
931                         if !def.repr().c() && !def.repr().transparent() {
932                             return FfiUnsafe {
933                                 ty,
934                                 reason: if def.is_struct() {
935                                     fluent::lint::improper_ctypes_struct_layout_reason
936                                 } else {
937                                     fluent::lint::improper_ctypes_union_layout_reason
938                                 },
939                                 help: if def.is_struct() {
940                                     Some(fluent::lint::improper_ctypes_struct_layout_help)
941                                 } else {
942                                     Some(fluent::lint::improper_ctypes_union_layout_help)
943                                 },
944                             };
945                         }
946
947                         let is_non_exhaustive =
948                             def.non_enum_variant().is_field_list_non_exhaustive();
949                         if is_non_exhaustive && !def.did().is_local() {
950                             return FfiUnsafe {
951                                 ty,
952                                 reason: if def.is_struct() {
953                                     fluent::lint::improper_ctypes_struct_non_exhaustive
954                                 } else {
955                                     fluent::lint::improper_ctypes_union_non_exhaustive
956                                 },
957                                 help: None,
958                             };
959                         }
960
961                         if def.non_enum_variant().fields.is_empty() {
962                             return FfiUnsafe {
963                                 ty,
964                                 reason: if def.is_struct() {
965                                     fluent::lint::improper_ctypes_struct_fieldless_reason
966                                 } else {
967                                     fluent::lint::improper_ctypes_union_fieldless_reason
968                                 },
969                                 help: if def.is_struct() {
970                                     Some(fluent::lint::improper_ctypes_struct_fieldless_help)
971                                 } else {
972                                     Some(fluent::lint::improper_ctypes_union_fieldless_help)
973                                 },
974                             };
975                         }
976
977                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
978                     }
979                     AdtKind::Enum => {
980                         if def.variants().is_empty() {
981                             // Empty enums are okay... although sort of useless.
982                             return FfiSafe;
983                         }
984
985                         // Check for a repr() attribute to specify the size of the
986                         // discriminant.
987                         if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
988                         {
989                             // Special-case types like `Option<extern fn()>`.
990                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
991                                 return FfiUnsafe {
992                                     ty,
993                                     reason: fluent::lint::improper_ctypes_enum_repr_reason,
994                                     help: Some(fluent::lint::improper_ctypes_enum_repr_help),
995                                 };
996                             }
997                         }
998
999                         if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
1000                             return FfiUnsafe {
1001                                 ty,
1002                                 reason: fluent::lint::improper_ctypes_non_exhaustive,
1003                                 help: None,
1004                             };
1005                         }
1006
1007                         // Check the contained variants.
1008                         for variant in def.variants() {
1009                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1010                             if is_non_exhaustive && !variant.def_id.is_local() {
1011                                 return FfiUnsafe {
1012                                     ty,
1013                                     reason: fluent::lint::improper_ctypes_non_exhaustive_variant,
1014                                     help: None,
1015                                 };
1016                             }
1017
1018                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1019                                 FfiSafe => (),
1020                                 r => return r,
1021                             }
1022                         }
1023
1024                         FfiSafe
1025                     }
1026                 }
1027             }
1028
1029             ty::Char => FfiUnsafe {
1030                 ty,
1031                 reason: fluent::lint::improper_ctypes_char_reason,
1032                 help: Some(fluent::lint::improper_ctypes_char_help),
1033             },
1034
1035             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
1036                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_128bit, help: None }
1037             }
1038
1039             // Primitive types with a stable representation.
1040             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1041
1042             ty::Slice(_) => FfiUnsafe {
1043                 ty,
1044                 reason: fluent::lint::improper_ctypes_slice_reason,
1045                 help: Some(fluent::lint::improper_ctypes_slice_help),
1046             },
1047
1048             ty::Dynamic(..) => {
1049                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_dyn, help: None }
1050             }
1051
1052             ty::Str => FfiUnsafe {
1053                 ty,
1054                 reason: fluent::lint::improper_ctypes_str_reason,
1055                 help: Some(fluent::lint::improper_ctypes_str_help),
1056             },
1057
1058             ty::Tuple(..) => FfiUnsafe {
1059                 ty,
1060                 reason: fluent::lint::improper_ctypes_tuple_reason,
1061                 help: Some(fluent::lint::improper_ctypes_tuple_help),
1062             },
1063
1064             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1065                 if {
1066                     matches!(self.mode, CItemKind::Definition)
1067                         && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1068                 } =>
1069             {
1070                 FfiSafe
1071             }
1072
1073             ty::RawPtr(ty::TypeAndMut { ty, .. })
1074                 if match ty.kind() {
1075                     ty::Tuple(tuple) => tuple.is_empty(),
1076                     _ => false,
1077                 } =>
1078             {
1079                 FfiSafe
1080             }
1081
1082             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1083                 self.check_type_for_ffi(cache, ty)
1084             }
1085
1086             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1087
1088             ty::FnPtr(sig) => {
1089                 if self.is_internal_abi(sig.abi()) {
1090                     return FfiUnsafe {
1091                         ty,
1092                         reason: fluent::lint::improper_ctypes_fnptr_reason,
1093                         help: Some(fluent::lint::improper_ctypes_fnptr_help),
1094                     };
1095                 }
1096
1097                 let sig = tcx.erase_late_bound_regions(sig);
1098                 if !sig.output().is_unit() {
1099                     let r = self.check_type_for_ffi(cache, sig.output());
1100                     match r {
1101                         FfiSafe => {}
1102                         _ => {
1103                             return r;
1104                         }
1105                     }
1106                 }
1107                 for arg in sig.inputs() {
1108                     let r = self.check_type_for_ffi(cache, *arg);
1109                     match r {
1110                         FfiSafe => {}
1111                         _ => {
1112                             return r;
1113                         }
1114                     }
1115                 }
1116                 FfiSafe
1117             }
1118
1119             ty::Foreign(..) => FfiSafe,
1120
1121             // While opaque types are checked for earlier, if a projection in a struct field
1122             // normalizes to an opaque type, then it will reach this branch.
1123             ty::Opaque(..) => {
1124                 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_opaque, help: None }
1125             }
1126
1127             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1128             //  so they are currently ignored for the purposes of this lint.
1129             ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
1130                 FfiSafe
1131             }
1132
1133             ty::Param(..)
1134             | ty::Projection(..)
1135             | ty::Infer(..)
1136             | ty::Bound(..)
1137             | ty::Error(_)
1138             | ty::Closure(..)
1139             | ty::Generator(..)
1140             | ty::GeneratorWitness(..)
1141             | ty::Placeholder(..)
1142             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1143         }
1144     }
1145
1146     fn emit_ffi_unsafe_type_lint(
1147         &mut self,
1148         ty: Ty<'tcx>,
1149         sp: Span,
1150         note: DiagnosticMessage,
1151         help: Option<DiagnosticMessage>,
1152     ) {
1153         let lint = match self.mode {
1154             CItemKind::Declaration => IMPROPER_CTYPES,
1155             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1156         };
1157
1158         self.cx.struct_span_lint(lint, sp, |lint| {
1159             let item_description = match self.mode {
1160                 CItemKind::Declaration => "block",
1161                 CItemKind::Definition => "fn",
1162             };
1163             let mut diag = lint.build(fluent::lint::improper_ctypes);
1164             diag.set_arg("ty", ty);
1165             diag.set_arg("desc", item_description);
1166             diag.span_label(sp, fluent::lint::label);
1167             if let Some(help) = help {
1168                 diag.help(help);
1169             }
1170             diag.note(note);
1171             if let ty::Adt(def, _) = ty.kind() {
1172                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
1173                     diag.span_note(sp, fluent::lint::note);
1174                 }
1175             }
1176             diag.emit();
1177         });
1178     }
1179
1180     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1181         struct ProhibitOpaqueTypes<'a, 'tcx> {
1182             cx: &'a LateContext<'tcx>,
1183         }
1184
1185         impl<'a, 'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
1186             type BreakTy = Ty<'tcx>;
1187
1188             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1189                 match ty.kind() {
1190                     ty::Opaque(..) => ControlFlow::Break(ty),
1191                     // Consider opaque types within projections FFI-safe if they do not normalize
1192                     // to more opaque types.
1193                     ty::Projection(..) => {
1194                         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1195
1196                         // If `ty` is an opaque type directly then `super_visit_with` won't invoke
1197                         // this function again.
1198                         if ty.has_opaque_types() {
1199                             self.visit_ty(ty)
1200                         } else {
1201                             ControlFlow::CONTINUE
1202                         }
1203                     }
1204                     _ => ty.super_visit_with(self),
1205                 }
1206             }
1207         }
1208
1209         if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
1210             self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint::improper_ctypes_opaque, None);
1211             true
1212         } else {
1213             false
1214         }
1215     }
1216
1217     fn check_type_for_ffi_and_report_errors(
1218         &mut self,
1219         sp: Span,
1220         ty: Ty<'tcx>,
1221         is_static: bool,
1222         is_return_type: bool,
1223     ) {
1224         // We have to check for opaque types before `normalize_erasing_regions`,
1225         // which will replace opaque types with their underlying concrete type.
1226         if self.check_for_opaque_ty(sp, ty) {
1227             // We've already emitted an error due to an opaque type.
1228             return;
1229         }
1230
1231         // it is only OK to use this function because extern fns cannot have
1232         // any generic types right now:
1233         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1234
1235         // C doesn't really support passing arrays by value - the only way to pass an array by value
1236         // is through a struct. So, first test that the top level isn't an array, and then
1237         // recursively check the types inside.
1238         if !is_static && self.check_for_array_ty(sp, ty) {
1239             return;
1240         }
1241
1242         // Don't report FFI errors for unit return types. This check exists here, and not in
1243         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1244         // happened.
1245         if is_return_type && ty.is_unit() {
1246             return;
1247         }
1248
1249         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1250             FfiResult::FfiSafe => {}
1251             FfiResult::FfiPhantom(ty) => {
1252                 self.emit_ffi_unsafe_type_lint(
1253                     ty,
1254                     sp,
1255                     fluent::lint::improper_ctypes_only_phantomdata,
1256                     None,
1257                 );
1258             }
1259             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1260             // argument, which after substitution, is `()`, then this branch can be hit.
1261             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1262             FfiResult::FfiUnsafe { ty, reason, help } => {
1263                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
1264             }
1265         }
1266     }
1267
1268     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1269         let def_id = self.cx.tcx.hir().local_def_id(id);
1270         let sig = self.cx.tcx.fn_sig(def_id);
1271         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1272
1273         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1274             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1275         }
1276
1277         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1278             let ret_ty = sig.output();
1279             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1280         }
1281     }
1282
1283     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1284         let def_id = self.cx.tcx.hir().local_def_id(id);
1285         let ty = self.cx.tcx.type_of(def_id);
1286         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1287     }
1288
1289     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1290         matches!(
1291             abi,
1292             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1293         )
1294     }
1295 }
1296
1297 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1298     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1299         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1300         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1301
1302         if !vis.is_internal_abi(abi) {
1303             match it.kind {
1304                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1305                     vis.check_foreign_fn(it.hir_id(), decl);
1306                 }
1307                 hir::ForeignItemKind::Static(ref ty, _) => {
1308                     vis.check_foreign_static(it.hir_id(), ty.span);
1309                 }
1310                 hir::ForeignItemKind::Type => (),
1311             }
1312         }
1313     }
1314 }
1315
1316 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1317     fn check_fn(
1318         &mut self,
1319         cx: &LateContext<'tcx>,
1320         kind: hir::intravisit::FnKind<'tcx>,
1321         decl: &'tcx hir::FnDecl<'_>,
1322         _: &'tcx hir::Body<'_>,
1323         _: Span,
1324         hir_id: hir::HirId,
1325     ) {
1326         use hir::intravisit::FnKind;
1327
1328         let abi = match kind {
1329             FnKind::ItemFn(_, _, header, ..) => header.abi,
1330             FnKind::Method(_, sig, ..) => sig.header.abi,
1331             _ => return,
1332         };
1333
1334         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1335         if !vis.is_internal_abi(abi) {
1336             vis.check_foreign_fn(hir_id, decl);
1337         }
1338     }
1339 }
1340
1341 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1342
1343 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1344     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1345         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1346             let t = cx.tcx.type_of(it.def_id);
1347             let ty = cx.tcx.erase_regions(t);
1348             let Ok(layout) = cx.layout_of(ty) else { return };
1349             let Variants::Multiple {
1350                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1351                 } = &layout.variants else {
1352                 return
1353             };
1354
1355             let tag_size = tag.size(&cx.tcx).bytes();
1356
1357             debug!(
1358                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1359                 t,
1360                 layout.size.bytes(),
1361                 layout
1362             );
1363
1364             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1365                 .map(|(variant, variant_layout)| {
1366                     // Subtract the size of the enum tag.
1367                     let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
1368
1369                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1370                     bytes
1371                 })
1372                 .enumerate()
1373                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1374                     if size > l {
1375                         (size, l, idx)
1376                     } else if size > s {
1377                         (l, size, li)
1378                     } else {
1379                         (l, s, li)
1380                     }
1381                 });
1382
1383             // We only warn if the largest variant is at least thrice as large as
1384             // the second-largest.
1385             if largest > slargest * 3 && slargest > 0 {
1386                 cx.struct_span_lint(
1387                     VARIANT_SIZE_DIFFERENCES,
1388                     enum_definition.variants[largest_index].span,
1389                     |lint| {
1390                         lint.build(fluent::lint::variant_size_differences)
1391                             .set_arg("largest", largest)
1392                             .emit();
1393                     },
1394                 );
1395             }
1396         }
1397     }
1398 }
1399
1400 declare_lint! {
1401     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1402     /// to an atomic operation that does not support that ordering.
1403     ///
1404     /// ### Example
1405     ///
1406     /// ```rust,compile_fail
1407     /// # use core::sync::atomic::{AtomicU8, Ordering};
1408     /// let atom = AtomicU8::new(0);
1409     /// let value = atom.load(Ordering::Release);
1410     /// # let _ = value;
1411     /// ```
1412     ///
1413     /// {{produces}}
1414     ///
1415     /// ### Explanation
1416     ///
1417     /// Some atomic operations are only supported for a subset of the
1418     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1419     /// an unconditional panic at runtime, which is detected by this lint.
1420     ///
1421     /// This lint will trigger in the following cases: (where `AtomicType` is an
1422     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1423     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1424     ///
1425     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1426     ///   `AtomicType::store`.
1427     ///
1428     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1429     ///   `AtomicType::load`.
1430     ///
1431     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1432     ///   `core::sync::atomic::compiler_fence`.
1433     ///
1434     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1435     ///   ordering for any of `AtomicType::compare_exchange`,
1436     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1437     INVALID_ATOMIC_ORDERING,
1438     Deny,
1439     "usage of invalid atomic ordering in atomic operations and memory fences"
1440 }
1441
1442 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1443
1444 impl InvalidAtomicOrdering {
1445     fn inherent_atomic_method_call<'hir>(
1446         cx: &LateContext<'_>,
1447         expr: &Expr<'hir>,
1448         recognized_names: &[Symbol], // used for fast path calculation
1449     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1450         const ATOMIC_TYPES: &[Symbol] = &[
1451             sym::AtomicBool,
1452             sym::AtomicPtr,
1453             sym::AtomicUsize,
1454             sym::AtomicU8,
1455             sym::AtomicU16,
1456             sym::AtomicU32,
1457             sym::AtomicU64,
1458             sym::AtomicU128,
1459             sym::AtomicIsize,
1460             sym::AtomicI8,
1461             sym::AtomicI16,
1462             sym::AtomicI32,
1463             sym::AtomicI64,
1464             sym::AtomicI128,
1465         ];
1466         if let ExprKind::MethodCall(ref method_path, args, _) = &expr.kind
1467             && recognized_names.contains(&method_path.ident.name)
1468             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1469             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1470             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1471             // skip extension traits, only lint functions from the standard library
1472             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1473             && let parent = cx.tcx.parent(adt.did())
1474             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1475             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1476         {
1477             return Some((method_path.ident.name, args));
1478         }
1479         None
1480     }
1481
1482     fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1483         let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1484         let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
1485         let tcx = cx.tcx;
1486         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1487         let name = tcx.item_name(did);
1488         let parent = tcx.parent(did);
1489         [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1490             |&ordering| {
1491                 name == ordering
1492                     && (Some(parent) == atomic_ordering
1493                             // needed in case this is a ctor, not a variant
1494                             || tcx.opt_parent(parent) == atomic_ordering)
1495             },
1496         )
1497     }
1498
1499     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1500         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1501             && let Some((ordering_arg, invalid_ordering)) = match method {
1502                 sym::load => Some((&args[1], sym::Release)),
1503                 sym::store => Some((&args[2], sym::Acquire)),
1504                 _ => None,
1505             }
1506             && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1507             && (ordering == invalid_ordering || ordering == sym::AcqRel)
1508         {
1509             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1510                 if method == sym::load {
1511                     diag.build(fluent::lint::atomic_ordering_load)
1512                         .help(fluent::lint::help)
1513                         .emit()
1514                 } else {
1515                     debug_assert_eq!(method, sym::store);
1516                     diag.build(fluent::lint::atomic_ordering_store)
1517                         .help(fluent::lint::help)
1518                         .emit();
1519                 }
1520             });
1521         }
1522     }
1523
1524     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1525         if let ExprKind::Call(ref func, ref args) = expr.kind
1526             && let ExprKind::Path(ref func_qpath) = func.kind
1527             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1528             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1529             && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
1530         {
1531             cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
1532                 diag.build(fluent::lint::atomic_ordering_fence)
1533                     .help(fluent::lint::help)
1534                     .emit();
1535             });
1536         }
1537     }
1538
1539     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1540         let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1541             else {return };
1542
1543         let fail_order_arg = match method {
1544             sym::fetch_update => &args[2],
1545             sym::compare_exchange | sym::compare_exchange_weak => &args[4],
1546             _ => return,
1547         };
1548
1549         let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1550
1551         if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1552             #[derive(LintDiagnostic)]
1553             #[lint(lint::atomic_ordering_invalid)]
1554             #[help]
1555             struct InvalidAtomicOrderingDiag {
1556                 method: Symbol,
1557                 #[label]
1558                 fail_order_arg_span: Span,
1559             }
1560
1561             cx.emit_spanned_lint(
1562                 INVALID_ATOMIC_ORDERING,
1563                 fail_order_arg.span,
1564                 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1565             );
1566         }
1567     }
1568 }
1569
1570 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1571     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1572         Self::check_atomic_load_store(cx, expr);
1573         Self::check_memory_fence(cx, expr);
1574         Self::check_atomic_compare_exchange(cx, expr);
1575     }
1576 }