]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/types.rs
update: `lints.rs` for renamed traits
[rust.git] / compiler / rustc_lint / src / types.rs
1 #![deny(rustc::untranslatable_diagnostic)]
2 #![deny(rustc::diagnostic_outside_of_impl)]
3 use crate::lints::{
4     AtomicOrderingFence, AtomicOrderingLoad, AtomicOrderingStore, InvalidAtomicOrderingDiag,
5     OnlyCastu8ToChar, OverflowingBinHex, OverflowingBinHexSign, OverflowingBinHexSub,
6     OverflowingInt, OverflowingLiteral, OverflowingUInt, RangeEndpointOutOfRange,
7     UnusedComparisons, VariantSizeDifferencesDiag,
8 };
9 use crate::{LateContext, LateLintPass, LintContext};
10 use rustc_ast as ast;
11 use rustc_attr as attr;
12 use rustc_data_structures::fx::FxHashSet;
13 use rustc_errors::{fluent, DiagnosticMessage};
14 use rustc_hir as hir;
15 use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
16 use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
17 use rustc_middle::ty::subst::SubstsRef;
18 use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
19 use rustc_span::source_map;
20 use rustc_span::symbol::sym;
21 use rustc_span::{Span, Symbol};
22 use rustc_target::abi::{Abi, Size, WrappingRange};
23 use rustc_target::abi::{Integer, TagEncoding, Variants};
24 use rustc_target::spec::abi::Abi as SpecAbi;
25
26 use std::iter;
27 use std::ops::ControlFlow;
28
29 declare_lint! {
30     /// The `unused_comparisons` lint detects comparisons made useless by
31     /// limits of the types involved.
32     ///
33     /// ### Example
34     ///
35     /// ```rust
36     /// fn foo(x: u8) {
37     ///     x >= 0;
38     /// }
39     /// ```
40     ///
41     /// {{produces}}
42     ///
43     /// ### Explanation
44     ///
45     /// A useless comparison may indicate a mistake, and should be fixed or
46     /// removed.
47     UNUSED_COMPARISONS,
48     Warn,
49     "comparisons made useless by limits of the types involved"
50 }
51
52 declare_lint! {
53     /// The `overflowing_literals` lint detects literal out of range for its
54     /// type.
55     ///
56     /// ### Example
57     ///
58     /// ```rust,compile_fail
59     /// let x: u8 = 1000;
60     /// ```
61     ///
62     /// {{produces}}
63     ///
64     /// ### Explanation
65     ///
66     /// It is usually a mistake to use a literal that overflows the type where
67     /// it is used. Either use a literal that is within range, or change the
68     /// type to be within the range of the literal.
69     OVERFLOWING_LITERALS,
70     Deny,
71     "literal out of range for its type"
72 }
73
74 declare_lint! {
75     /// The `variant_size_differences` lint detects enums with widely varying
76     /// variant sizes.
77     ///
78     /// ### Example
79     ///
80     /// ```rust,compile_fail
81     /// #![deny(variant_size_differences)]
82     /// enum En {
83     ///     V0(u8),
84     ///     VBig([u8; 1024]),
85     /// }
86     /// ```
87     ///
88     /// {{produces}}
89     ///
90     /// ### Explanation
91     ///
92     /// It can be a mistake to add a variant to an enum that is much larger
93     /// than the other variants, bloating the overall size required for all
94     /// variants. This can impact performance and memory usage. This is
95     /// triggered if one variant is more than 3 times larger than the
96     /// second-largest variant.
97     ///
98     /// Consider placing the large variant's contents on the heap (for example
99     /// via [`Box`]) to keep the overall size of the enum itself down.
100     ///
101     /// This lint is "allow" by default because it can be noisy, and may not be
102     /// an actual problem. Decisions about this should be guided with
103     /// profiling and benchmarking.
104     ///
105     /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
106     VARIANT_SIZE_DIFFERENCES,
107     Allow,
108     "detects enums with widely varying variant sizes"
109 }
110
111 #[derive(Copy, Clone)]
112 pub struct TypeLimits {
113     /// Id of the last visited negated expression
114     negated_expr_id: Option<hir::HirId>,
115 }
116
117 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
118
119 impl TypeLimits {
120     pub fn new() -> TypeLimits {
121         TypeLimits { negated_expr_id: None }
122     }
123 }
124
125 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint (`expr..MAX+1`).
126 /// Returns `true` iff the lint was emitted.
127 fn lint_overflowing_range_endpoint<'tcx>(
128     cx: &LateContext<'tcx>,
129     lit: &hir::Lit,
130     lit_val: u128,
131     max: u128,
132     expr: &'tcx hir::Expr<'tcx>,
133     ty: &str,
134 ) -> bool {
135     // We only want to handle exclusive (`..`) ranges,
136     // which are represented as `ExprKind::Struct`.
137     let par_id = cx.tcx.hir().parent_id(expr.hir_id);
138     let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
139     let Node::Expr(struct_expr) = cx.tcx.hir().get_parent(field.hir_id) else { return false };
140     if !is_range_literal(struct_expr) {
141         return false;
142     };
143     let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
144     if eps.len() != 2 {
145         return false;
146     }
147
148     // We can suggest using an inclusive range
149     // (`..=`) instead only if it is the `end` that is
150     // overflowing and only by 1.
151     if !(eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max) {
152         return false;
153     };
154     let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) else { return false };
155
156     use rustc_ast::{LitIntType, LitKind};
157     let suffix = match lit.node {
158         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
159         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
160         LitKind::Int(_, LitIntType::Unsuffixed) => "",
161         _ => bug!(),
162     };
163     cx.emit_spanned_lint(
164         OVERFLOWING_LITERALS,
165         struct_expr.span,
166         RangeEndpointOutOfRange {
167             ty,
168             suggestion: struct_expr.span,
169             start,
170             literal: lit_val - 1,
171             suffix,
172         },
173     );
174
175     // We've just emitted a lint, special cased for `(...)..MAX+1` ranges,
176     // return `true` so the callers don't also emit a lint
177     true
178 }
179
180 // For `isize` & `usize`, be conservative with the warnings, so that the
181 // warnings are consistent between 32- and 64-bit platforms.
182 fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
183     match int_ty {
184         ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
185         ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
186         ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
187         ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
188         ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
189         ty::IntTy::I128 => (i128::MIN, i128::MAX),
190     }
191 }
192
193 fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
194     let max = match uint_ty {
195         ty::UintTy::Usize => u64::MAX.into(),
196         ty::UintTy::U8 => u8::MAX.into(),
197         ty::UintTy::U16 => u16::MAX.into(),
198         ty::UintTy::U32 => u32::MAX.into(),
199         ty::UintTy::U64 => u64::MAX.into(),
200         ty::UintTy::U128 => u128::MAX,
201     };
202     (0, max)
203 }
204
205 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
206     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
207     let firstch = src.chars().next()?;
208
209     if firstch == '0' {
210         match src.chars().nth(1) {
211             Some('x' | 'b') => return Some(src),
212             _ => return None,
213         }
214     }
215
216     None
217 }
218
219 fn report_bin_hex_error(
220     cx: &LateContext<'_>,
221     expr: &hir::Expr<'_>,
222     ty: attr::IntType,
223     size: Size,
224     repr_str: String,
225     val: u128,
226     negative: bool,
227 ) {
228     let (t, actually) = match ty {
229         attr::IntType::SignedInt(t) => {
230             let actually = if negative {
231                 -(size.sign_extend(val) as i128)
232             } else {
233                 size.sign_extend(val) as i128
234             };
235             (t.name_str(), actually.to_string())
236         }
237         attr::IntType::UnsignedInt(t) => {
238             let actually = size.truncate(val);
239             (t.name_str(), actually.to_string())
240         }
241     };
242     let sign =
243         if negative { OverflowingBinHexSign::Negative } else { OverflowingBinHexSign::Positive };
244     let sub = get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative).map(
245         |suggestion_ty| {
246             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
247                 let (sans_suffix, _) = repr_str.split_at(pos);
248                 OverflowingBinHexSub::Suggestion { span: expr.span, suggestion_ty, sans_suffix }
249             } else {
250                 OverflowingBinHexSub::Help { suggestion_ty }
251             }
252         },
253     );
254     cx.emit_spanned_lint(
255         OVERFLOWING_LITERALS,
256         expr.span,
257         OverflowingBinHex { ty: t, lit: repr_str.clone(), dec: val, actually, sign, sub },
258     )
259 }
260
261 // This function finds the next fitting type and generates a suggestion string.
262 // It searches for fitting types in the following way (`X < Y`):
263 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
264 //  - `-iX` => `iY`
265 //  - `uX` => `uY`
266 //
267 // No suggestion for: `isize`, `usize`.
268 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
269     use ty::IntTy::*;
270     use ty::UintTy::*;
271     macro_rules! find_fit {
272         ($ty:expr, $val:expr, $negative:expr,
273          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
274             {
275                 let _neg = if negative { 1 } else { 0 };
276                 match $ty {
277                     $($type => {
278                         $(if !negative && val <= uint_ty_range($utypes).1 {
279                             return Some($utypes.name_str())
280                         })*
281                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
282                             return Some($itypes.name_str())
283                         })*
284                         None
285                     },)+
286                     _ => None
287                 }
288             }
289         }
290     }
291     match t.kind() {
292         ty::Int(i) => find_fit!(i, val, negative,
293                       I8 => [U8] => [I16, I32, I64, I128],
294                       I16 => [U16] => [I32, I64, I128],
295                       I32 => [U32] => [I64, I128],
296                       I64 => [U64] => [I128],
297                       I128 => [U128] => []),
298         ty::Uint(u) => find_fit!(u, val, negative,
299                       U8 => [U8, U16, U32, U64, U128] => [],
300                       U16 => [U16, U32, U64, U128] => [],
301                       U32 => [U32, U64, U128] => [],
302                       U64 => [U64, U128] => [],
303                       U128 => [U128] => []),
304         _ => None,
305     }
306 }
307
308 fn lint_int_literal<'tcx>(
309     cx: &LateContext<'tcx>,
310     type_limits: &TypeLimits,
311     e: &'tcx hir::Expr<'tcx>,
312     lit: &hir::Lit,
313     t: ty::IntTy,
314     v: u128,
315 ) {
316     let int_type = t.normalize(cx.sess().target.pointer_width);
317     let (min, max) = int_ty_range(int_type);
318     let max = max as u128;
319     let negative = type_limits.negated_expr_id == Some(e.hir_id);
320
321     // Detect literal value out of range [min, max] inclusive
322     // avoiding use of -min to prevent overflow/panic
323     if (negative && v > max + 1) || (!negative && v > max) {
324         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
325             report_bin_hex_error(
326                 cx,
327                 e,
328                 attr::IntType::SignedInt(ty::ast_int_ty(t)),
329                 Integer::from_int_ty(cx, t).size(),
330                 repr_str,
331                 v,
332                 negative,
333             );
334             return;
335         }
336
337         if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
338             // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
339             return;
340         }
341
342         cx.emit_spanned_lint(
343             OVERFLOWING_LITERALS,
344             e.span,
345             OverflowingInt {
346                 ty: t.name_str(),
347                 lit: cx
348                     .sess()
349                     .source_map()
350                     .span_to_snippet(lit.span)
351                     .expect("must get snippet from literal"),
352                 min,
353                 max,
354                 suggestion_ty: get_type_suggestion(
355                     cx.typeck_results().node_type(e.hir_id),
356                     v,
357                     negative,
358                 ),
359             },
360         );
361     }
362 }
363
364 fn lint_uint_literal<'tcx>(
365     cx: &LateContext<'tcx>,
366     e: &'tcx hir::Expr<'tcx>,
367     lit: &hir::Lit,
368     t: ty::UintTy,
369 ) {
370     let uint_type = t.normalize(cx.sess().target.pointer_width);
371     let (min, max) = uint_ty_range(uint_type);
372     let lit_val: u128 = match lit.node {
373         // _v is u8, within range by definition
374         ast::LitKind::Byte(_v) => return,
375         ast::LitKind::Int(v, _) => v,
376         _ => bug!(),
377     };
378     if lit_val < min || lit_val > max {
379         let parent_id = cx.tcx.hir().parent_id(e.hir_id);
380         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
381             match par_e.kind {
382                 hir::ExprKind::Cast(..) => {
383                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
384                         cx.emit_spanned_lint(
385                             OVERFLOWING_LITERALS,
386                             par_e.span,
387                             OnlyCastu8ToChar { span: par_e.span, literal: lit_val },
388                         );
389                         return;
390                     }
391                 }
392                 _ => {}
393             }
394         }
395         if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
396             // The overflowing literal lint was emitted by `lint_overflowing_range_endpoint`.
397             return;
398         }
399         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
400             report_bin_hex_error(
401                 cx,
402                 e,
403                 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
404                 Integer::from_uint_ty(cx, t).size(),
405                 repr_str,
406                 lit_val,
407                 false,
408             );
409             return;
410         }
411         cx.emit_spanned_lint(
412             OVERFLOWING_LITERALS,
413             e.span,
414             OverflowingUInt {
415                 ty: t.name_str(),
416                 lit: cx
417                     .sess()
418                     .source_map()
419                     .span_to_snippet(lit.span)
420                     .expect("must get snippet from literal"),
421                 min,
422                 max,
423             },
424         );
425     }
426 }
427
428 fn lint_literal<'tcx>(
429     cx: &LateContext<'tcx>,
430     type_limits: &TypeLimits,
431     e: &'tcx hir::Expr<'tcx>,
432     lit: &hir::Lit,
433 ) {
434     match *cx.typeck_results().node_type(e.hir_id).kind() {
435         ty::Int(t) => {
436             match lit.node {
437                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
438                     lint_int_literal(cx, type_limits, e, lit, t, v)
439                 }
440                 _ => bug!(),
441             };
442         }
443         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
444         ty::Float(t) => {
445             let is_infinite = match lit.node {
446                 ast::LitKind::Float(v, _) => match t {
447                     ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
448                     ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
449                 },
450                 _ => bug!(),
451             };
452             if is_infinite == Ok(true) {
453                 cx.emit_spanned_lint(
454                     OVERFLOWING_LITERALS,
455                     e.span,
456                     OverflowingLiteral {
457                         ty: t.name_str(),
458                         lit: cx
459                             .sess()
460                             .source_map()
461                             .span_to_snippet(lit.span)
462                             .expect("must get snippet from literal"),
463                     },
464                 );
465             }
466         }
467         _ => {}
468     }
469 }
470
471 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
472     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
473         match e.kind {
474             hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
475                 // propagate negation, if the negation itself isn't negated
476                 if self.negated_expr_id != Some(e.hir_id) {
477                     self.negated_expr_id = Some(expr.hir_id);
478                 }
479             }
480             hir::ExprKind::Binary(binop, ref l, ref r) => {
481                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
482                     cx.emit_spanned_lint(UNUSED_COMPARISONS, e.span, UnusedComparisons);
483                 }
484             }
485             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
486             _ => {}
487         };
488
489         fn is_valid<T: PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
490             match binop.node {
491                 hir::BinOpKind::Lt => v > min && v <= max,
492                 hir::BinOpKind::Le => v >= min && v < max,
493                 hir::BinOpKind::Gt => v >= min && v < max,
494                 hir::BinOpKind::Ge => v > min && v <= max,
495                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
496                 _ => bug!(),
497             }
498         }
499
500         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
501             source_map::respan(
502                 binop.span,
503                 match binop.node {
504                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
505                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
506                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
507                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
508                     _ => return binop,
509                 },
510             )
511         }
512
513         fn check_limits(
514             cx: &LateContext<'_>,
515             binop: hir::BinOp,
516             l: &hir::Expr<'_>,
517             r: &hir::Expr<'_>,
518         ) -> bool {
519             let (lit, expr, swap) = match (&l.kind, &r.kind) {
520                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
521                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
522                 _ => return true,
523             };
524             // Normalize the binop so that the literal is always on the RHS in
525             // the comparison
526             let norm_binop = if swap { rev_binop(binop) } else { binop };
527             match *cx.typeck_results().node_type(expr.hir_id).kind() {
528                 ty::Int(int_ty) => {
529                     let (min, max) = int_ty_range(int_ty);
530                     let lit_val: i128 = match lit.kind {
531                         hir::ExprKind::Lit(ref li) => match li.node {
532                             ast::LitKind::Int(
533                                 v,
534                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
535                             ) => v as i128,
536                             _ => return true,
537                         },
538                         _ => bug!(),
539                     };
540                     is_valid(norm_binop, lit_val, min, max)
541                 }
542                 ty::Uint(uint_ty) => {
543                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
544                     let lit_val: u128 = match lit.kind {
545                         hir::ExprKind::Lit(ref li) => match li.node {
546                             ast::LitKind::Int(v, _) => v,
547                             _ => return true,
548                         },
549                         _ => bug!(),
550                     };
551                     is_valid(norm_binop, lit_val, min, max)
552                 }
553                 _ => true,
554             }
555         }
556
557         fn is_comparison(binop: hir::BinOp) -> bool {
558             matches!(
559                 binop.node,
560                 hir::BinOpKind::Eq
561                     | hir::BinOpKind::Lt
562                     | hir::BinOpKind::Le
563                     | hir::BinOpKind::Ne
564                     | hir::BinOpKind::Ge
565                     | hir::BinOpKind::Gt
566             )
567         }
568     }
569 }
570
571 declare_lint! {
572     /// The `improper_ctypes` lint detects incorrect use of types in foreign
573     /// modules.
574     ///
575     /// ### Example
576     ///
577     /// ```rust
578     /// extern "C" {
579     ///     static STATIC: String;
580     /// }
581     /// ```
582     ///
583     /// {{produces}}
584     ///
585     /// ### Explanation
586     ///
587     /// The compiler has several checks to verify that types used in `extern`
588     /// blocks are safe and follow certain rules to ensure proper
589     /// compatibility with the foreign interfaces. This lint is issued when it
590     /// detects a probable mistake in a definition. The lint usually should
591     /// provide a description of the issue, along with possibly a hint on how
592     /// to resolve it.
593     IMPROPER_CTYPES,
594     Warn,
595     "proper use of libc types in foreign modules"
596 }
597
598 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
599
600 declare_lint! {
601     /// The `improper_ctypes_definitions` lint detects incorrect use of
602     /// [`extern` function] definitions.
603     ///
604     /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
605     ///
606     /// ### Example
607     ///
608     /// ```rust
609     /// # #![allow(unused)]
610     /// pub extern "C" fn str_type(p: &str) { }
611     /// ```
612     ///
613     /// {{produces}}
614     ///
615     /// ### Explanation
616     ///
617     /// There are many parameter and return types that may be specified in an
618     /// `extern` function that are not compatible with the given ABI. This
619     /// lint is an alert that these types should not be used. The lint usually
620     /// should provide a description of the issue, along with possibly a hint
621     /// on how to resolve it.
622     IMPROPER_CTYPES_DEFINITIONS,
623     Warn,
624     "proper use of libc types in foreign item definitions"
625 }
626
627 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
628
629 #[derive(Clone, Copy)]
630 pub(crate) enum CItemKind {
631     Declaration,
632     Definition,
633 }
634
635 struct ImproperCTypesVisitor<'a, 'tcx> {
636     cx: &'a LateContext<'tcx>,
637     mode: CItemKind,
638 }
639
640 enum FfiResult<'tcx> {
641     FfiSafe,
642     FfiPhantom(Ty<'tcx>),
643     FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
644 }
645
646 pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
647     tcx: TyCtxt<'tcx>,
648     def: ty::AdtDef<'tcx>,
649 ) -> bool {
650     tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
651 }
652
653 /// `repr(transparent)` structs can have a single non-ZST field, this function returns that
654 /// field.
655 pub fn transparent_newtype_field<'a, 'tcx>(
656     tcx: TyCtxt<'tcx>,
657     variant: &'a ty::VariantDef,
658 ) -> Option<&'a ty::FieldDef> {
659     let param_env = tcx.param_env(variant.def_id);
660     variant.fields.iter().find(|field| {
661         let field_ty = tcx.type_of(field.did);
662         let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
663         !is_zst
664     })
665 }
666
667 /// Is type known to be non-null?
668 fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
669     let tcx = cx.tcx;
670     match ty.kind() {
671         ty::FnPtr(_) => true,
672         ty::Ref(..) => true,
673         ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
674         ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
675             let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
676
677             if marked_non_null {
678                 return true;
679             }
680
681             // `UnsafeCell` has its niche hidden.
682             if def.is_unsafe_cell() {
683                 return false;
684             }
685
686             def.variants()
687                 .iter()
688                 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
689                 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
690         }
691         _ => false,
692     }
693 }
694
695 /// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
696 /// If the type passed in was not scalar, returns None.
697 fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
698     let tcx = cx.tcx;
699     Some(match *ty.kind() {
700         ty::Adt(field_def, field_substs) => {
701             let inner_field_ty = {
702                 let mut first_non_zst_ty = field_def
703                     .variants()
704                     .iter()
705                     .filter_map(|v| transparent_newtype_field(cx.tcx, v));
706                 debug_assert_eq!(
707                     first_non_zst_ty.clone().count(),
708                     1,
709                     "Wrong number of fields for transparent type"
710                 );
711                 first_non_zst_ty
712                     .next_back()
713                     .expect("No non-zst fields in transparent type.")
714                     .ty(tcx, field_substs)
715             };
716             return get_nullable_type(cx, inner_field_ty);
717         }
718         ty::Int(ty) => tcx.mk_mach_int(ty),
719         ty::Uint(ty) => tcx.mk_mach_uint(ty),
720         ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
721         // As these types are always non-null, the nullable equivalent of
722         // Option<T> of these types are their raw pointer counterparts.
723         ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
724         ty::FnPtr(..) => {
725             // There is no nullable equivalent for Rust's function pointers -- you
726             // must use an Option<fn(..) -> _> to represent it.
727             ty
728         }
729
730         // We should only ever reach this case if ty_is_known_nonnull is extended
731         // to other types.
732         ref unhandled => {
733             debug!(
734                 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
735                 unhandled, ty
736             );
737             return None;
738         }
739     })
740 }
741
742 /// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
743 /// can, return the type that `ty` can be safely converted to, otherwise return `None`.
744 /// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
745 /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
746 /// FIXME: This duplicates code in codegen.
747 pub(crate) fn repr_nullable_ptr<'tcx>(
748     cx: &LateContext<'tcx>,
749     ty: Ty<'tcx>,
750     ckind: CItemKind,
751 ) -> Option<Ty<'tcx>> {
752     debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
753     if let ty::Adt(ty_def, substs) = ty.kind() {
754         let field_ty = match &ty_def.variants().raw[..] {
755             [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
756                 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
757                 _ => return None,
758             },
759             _ => return None,
760         };
761
762         if !ty_is_known_nonnull(cx, field_ty, ckind) {
763             return None;
764         }
765
766         // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
767         // If the computed size for the field and the enum are different, the nonnull optimization isn't
768         // being applied (and we've got a problem somewhere).
769         let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
770         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
771             bug!("improper_ctypes: Option nonnull optimization not applied?");
772         }
773
774         // Return the nullable type this Option-like enum can be safely represented with.
775         let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
776         if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
777             match field_ty_scalar.valid_range(cx) {
778                 WrappingRange { start: 0, end }
779                     if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
780                 {
781                     return Some(get_nullable_type(cx, field_ty).unwrap());
782                 }
783                 WrappingRange { start: 1, .. } => {
784                     return Some(get_nullable_type(cx, field_ty).unwrap());
785                 }
786                 WrappingRange { start, end } => {
787                     unreachable!("Unhandled start and end range: ({}, {})", start, end)
788                 }
789             };
790         }
791     }
792     None
793 }
794
795 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
796     /// Check if the type is array and emit an unsafe type lint.
797     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
798         if let ty::Array(..) = ty.kind() {
799             self.emit_ffi_unsafe_type_lint(
800                 ty,
801                 sp,
802                 fluent::lint_improper_ctypes_array_reason,
803                 Some(fluent::lint_improper_ctypes_array_help),
804             );
805             true
806         } else {
807             false
808         }
809     }
810
811     /// Checks if the given field's type is "ffi-safe".
812     fn check_field_type_for_ffi(
813         &self,
814         cache: &mut FxHashSet<Ty<'tcx>>,
815         field: &ty::FieldDef,
816         substs: SubstsRef<'tcx>,
817     ) -> FfiResult<'tcx> {
818         let field_ty = field.ty(self.cx.tcx, substs);
819         if field_ty.has_opaque_types() {
820             self.check_type_for_ffi(cache, field_ty)
821         } else {
822             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
823             self.check_type_for_ffi(cache, field_ty)
824         }
825     }
826
827     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
828     fn check_variant_for_ffi(
829         &self,
830         cache: &mut FxHashSet<Ty<'tcx>>,
831         ty: Ty<'tcx>,
832         def: ty::AdtDef<'tcx>,
833         variant: &ty::VariantDef,
834         substs: SubstsRef<'tcx>,
835     ) -> FfiResult<'tcx> {
836         use FfiResult::*;
837
838         if def.repr().transparent() {
839             // Can assume that at most one field is not a ZST, so only check
840             // that field's type for FFI-safety.
841             if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
842                 self.check_field_type_for_ffi(cache, field, substs)
843             } else {
844                 // All fields are ZSTs; this means that the type should behave
845                 // like (), which is FFI-unsafe
846                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_struct_zst, help: None }
847             }
848         } else {
849             // We can't completely trust repr(C) markings; make sure the fields are
850             // actually safe.
851             let mut all_phantom = !variant.fields.is_empty();
852             for field in &variant.fields {
853                 match self.check_field_type_for_ffi(cache, &field, substs) {
854                     FfiSafe => {
855                         all_phantom = false;
856                     }
857                     FfiPhantom(..) if def.is_enum() => {
858                         return FfiUnsafe {
859                             ty,
860                             reason: fluent::lint_improper_ctypes_enum_phantomdata,
861                             help: None,
862                         };
863                     }
864                     FfiPhantom(..) => {}
865                     r => return r,
866                 }
867             }
868
869             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
870         }
871     }
872
873     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
874     /// representation which can be exported to C code).
875     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
876         use FfiResult::*;
877
878         let tcx = self.cx.tcx;
879
880         // Protect against infinite recursion, for example
881         // `struct S(*mut S);`.
882         // FIXME: A recursion limit is necessary as well, for irregular
883         // recursive types.
884         if !cache.insert(ty) {
885             return FfiSafe;
886         }
887
888         match *ty.kind() {
889             ty::Adt(def, substs) => {
890                 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
891                     if ty.boxed_ty().is_sized(tcx, self.cx.param_env) {
892                         return FfiSafe;
893                     } else {
894                         return FfiUnsafe {
895                             ty,
896                             reason: fluent::lint_improper_ctypes_box,
897                             help: None,
898                         };
899                     }
900                 }
901                 if def.is_phantom_data() {
902                     return FfiPhantom(ty);
903                 }
904                 match def.adt_kind() {
905                     AdtKind::Struct | AdtKind::Union => {
906                         if !def.repr().c() && !def.repr().transparent() {
907                             return FfiUnsafe {
908                                 ty,
909                                 reason: if def.is_struct() {
910                                     fluent::lint_improper_ctypes_struct_layout_reason
911                                 } else {
912                                     fluent::lint_improper_ctypes_union_layout_reason
913                                 },
914                                 help: if def.is_struct() {
915                                     Some(fluent::lint_improper_ctypes_struct_layout_help)
916                                 } else {
917                                     Some(fluent::lint_improper_ctypes_union_layout_help)
918                                 },
919                             };
920                         }
921
922                         let is_non_exhaustive =
923                             def.non_enum_variant().is_field_list_non_exhaustive();
924                         if is_non_exhaustive && !def.did().is_local() {
925                             return FfiUnsafe {
926                                 ty,
927                                 reason: if def.is_struct() {
928                                     fluent::lint_improper_ctypes_struct_non_exhaustive
929                                 } else {
930                                     fluent::lint_improper_ctypes_union_non_exhaustive
931                                 },
932                                 help: None,
933                             };
934                         }
935
936                         if def.non_enum_variant().fields.is_empty() {
937                             return FfiUnsafe {
938                                 ty,
939                                 reason: if def.is_struct() {
940                                     fluent::lint_improper_ctypes_struct_fieldless_reason
941                                 } else {
942                                     fluent::lint_improper_ctypes_union_fieldless_reason
943                                 },
944                                 help: if def.is_struct() {
945                                     Some(fluent::lint_improper_ctypes_struct_fieldless_help)
946                                 } else {
947                                     Some(fluent::lint_improper_ctypes_union_fieldless_help)
948                                 },
949                             };
950                         }
951
952                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
953                     }
954                     AdtKind::Enum => {
955                         if def.variants().is_empty() {
956                             // Empty enums are okay... although sort of useless.
957                             return FfiSafe;
958                         }
959
960                         // Check for a repr() attribute to specify the size of the
961                         // discriminant.
962                         if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
963                         {
964                             // Special-case types like `Option<extern fn()>`.
965                             if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
966                                 return FfiUnsafe {
967                                     ty,
968                                     reason: fluent::lint_improper_ctypes_enum_repr_reason,
969                                     help: Some(fluent::lint_improper_ctypes_enum_repr_help),
970                                 };
971                             }
972                         }
973
974                         if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
975                             return FfiUnsafe {
976                                 ty,
977                                 reason: fluent::lint_improper_ctypes_non_exhaustive,
978                                 help: None,
979                             };
980                         }
981
982                         // Check the contained variants.
983                         for variant in def.variants() {
984                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
985                             if is_non_exhaustive && !variant.def_id.is_local() {
986                                 return FfiUnsafe {
987                                     ty,
988                                     reason: fluent::lint_improper_ctypes_non_exhaustive_variant,
989                                     help: None,
990                                 };
991                             }
992
993                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
994                                 FfiSafe => (),
995                                 r => return r,
996                             }
997                         }
998
999                         FfiSafe
1000                     }
1001                 }
1002             }
1003
1004             ty::Char => FfiUnsafe {
1005                 ty,
1006                 reason: fluent::lint_improper_ctypes_char_reason,
1007                 help: Some(fluent::lint_improper_ctypes_char_help),
1008             },
1009
1010             ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
1011                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_128bit, help: None }
1012             }
1013
1014             // Primitive types with a stable representation.
1015             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
1016
1017             ty::Slice(_) => FfiUnsafe {
1018                 ty,
1019                 reason: fluent::lint_improper_ctypes_slice_reason,
1020                 help: Some(fluent::lint_improper_ctypes_slice_help),
1021             },
1022
1023             ty::Dynamic(..) => {
1024                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_dyn, help: None }
1025             }
1026
1027             ty::Str => FfiUnsafe {
1028                 ty,
1029                 reason: fluent::lint_improper_ctypes_str_reason,
1030                 help: Some(fluent::lint_improper_ctypes_str_help),
1031             },
1032
1033             ty::Tuple(..) => FfiUnsafe {
1034                 ty,
1035                 reason: fluent::lint_improper_ctypes_tuple_reason,
1036                 help: Some(fluent::lint_improper_ctypes_tuple_help),
1037             },
1038
1039             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1040                 if {
1041                     matches!(self.mode, CItemKind::Definition)
1042                         && ty.is_sized(self.cx.tcx, self.cx.param_env)
1043                 } =>
1044             {
1045                 FfiSafe
1046             }
1047
1048             ty::RawPtr(ty::TypeAndMut { ty, .. })
1049                 if match ty.kind() {
1050                     ty::Tuple(tuple) => tuple.is_empty(),
1051                     _ => false,
1052                 } =>
1053             {
1054                 FfiSafe
1055             }
1056
1057             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1058                 self.check_type_for_ffi(cache, ty)
1059             }
1060
1061             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
1062
1063             ty::FnPtr(sig) => {
1064                 if self.is_internal_abi(sig.abi()) {
1065                     return FfiUnsafe {
1066                         ty,
1067                         reason: fluent::lint_improper_ctypes_fnptr_reason,
1068                         help: Some(fluent::lint_improper_ctypes_fnptr_help),
1069                     };
1070                 }
1071
1072                 let sig = tcx.erase_late_bound_regions(sig);
1073                 if !sig.output().is_unit() {
1074                     let r = self.check_type_for_ffi(cache, sig.output());
1075                     match r {
1076                         FfiSafe => {}
1077                         _ => {
1078                             return r;
1079                         }
1080                     }
1081                 }
1082                 for arg in sig.inputs() {
1083                     let r = self.check_type_for_ffi(cache, *arg);
1084                     match r {
1085                         FfiSafe => {}
1086                         _ => {
1087                             return r;
1088                         }
1089                     }
1090                 }
1091                 FfiSafe
1092             }
1093
1094             ty::Foreign(..) => FfiSafe,
1095
1096             // While opaque types are checked for earlier, if a projection in a struct field
1097             // normalizes to an opaque type, then it will reach this branch.
1098             ty::Alias(ty::Opaque, ..) => {
1099                 FfiUnsafe { ty, reason: fluent::lint_improper_ctypes_opaque, help: None }
1100             }
1101
1102             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1103             //  so they are currently ignored for the purposes of this lint.
1104             ty::Param(..) | ty::Alias(ty::Projection, ..)
1105                 if matches!(self.mode, CItemKind::Definition) =>
1106             {
1107                 FfiSafe
1108             }
1109
1110             ty::Param(..)
1111             | ty::Alias(ty::Projection, ..)
1112             | ty::Infer(..)
1113             | ty::Bound(..)
1114             | ty::Error(_)
1115             | ty::Closure(..)
1116             | ty::Generator(..)
1117             | ty::GeneratorWitness(..)
1118             | ty::Placeholder(..)
1119             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
1120         }
1121     }
1122
1123     fn emit_ffi_unsafe_type_lint(
1124         &mut self,
1125         ty: Ty<'tcx>,
1126         sp: Span,
1127         note: DiagnosticMessage,
1128         help: Option<DiagnosticMessage>,
1129     ) {
1130         let lint = match self.mode {
1131             CItemKind::Declaration => IMPROPER_CTYPES,
1132             CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
1133         };
1134
1135         self.cx.struct_span_lint(lint, sp, fluent::lint_improper_ctypes, |lint| {
1136             let item_description = match self.mode {
1137                 CItemKind::Declaration => "block",
1138                 CItemKind::Definition => "fn",
1139             };
1140             #[allow(rustc::diagnostic_outside_of_impl)]
1141             let mut diag = lint.build(fluent::lint_improper_ctypes);
1142             diag.set_arg("ty", ty);
1143             diag.set_arg("desc", item_description);
1144             diag.span_label(sp, fluent::label);
1145             if let Some(help) = help {
1146                 lint.help(help);
1147             }
1148             lint.note(note);
1149             if let ty::Adt(def, _) = ty.kind() {
1150                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
1151                     lint.span_note(sp, fluent::note);
1152                 }
1153             }
1154             lint
1155         });
1156     }
1157
1158     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1159         struct ProhibitOpaqueTypes;
1160         impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes {
1161             type BreakTy = Ty<'tcx>;
1162
1163             fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1164                 if !ty.has_opaque_types() {
1165                     return ControlFlow::CONTINUE;
1166                 }
1167
1168                 if let ty::Alias(ty::Opaque, ..) = ty.kind() {
1169                     ControlFlow::Break(ty)
1170                 } else {
1171                     ty.super_visit_with(self)
1172                 }
1173             }
1174         }
1175
1176         if let Some(ty) = self
1177             .cx
1178             .tcx
1179             .normalize_erasing_regions(self.cx.param_env, ty)
1180             .visit_with(&mut ProhibitOpaqueTypes)
1181             .break_value()
1182         {
1183             self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint_improper_ctypes_opaque, None);
1184             true
1185         } else {
1186             false
1187         }
1188     }
1189
1190     fn check_type_for_ffi_and_report_errors(
1191         &mut self,
1192         sp: Span,
1193         ty: Ty<'tcx>,
1194         is_static: bool,
1195         is_return_type: bool,
1196     ) {
1197         // We have to check for opaque types before `normalize_erasing_regions`,
1198         // which will replace opaque types with their underlying concrete type.
1199         if self.check_for_opaque_ty(sp, ty) {
1200             // We've already emitted an error due to an opaque type.
1201             return;
1202         }
1203
1204         // it is only OK to use this function because extern fns cannot have
1205         // any generic types right now:
1206         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1207
1208         // C doesn't really support passing arrays by value - the only way to pass an array by value
1209         // is through a struct. So, first test that the top level isn't an array, and then
1210         // recursively check the types inside.
1211         if !is_static && self.check_for_array_ty(sp, ty) {
1212             return;
1213         }
1214
1215         // Don't report FFI errors for unit return types. This check exists here, and not in
1216         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1217         // happened.
1218         if is_return_type && ty.is_unit() {
1219             return;
1220         }
1221
1222         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1223             FfiResult::FfiSafe => {}
1224             FfiResult::FfiPhantom(ty) => {
1225                 self.emit_ffi_unsafe_type_lint(
1226                     ty,
1227                     sp,
1228                     fluent::lint_improper_ctypes_only_phantomdata,
1229                     None,
1230                 );
1231             }
1232             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1233             // argument, which after substitution, is `()`, then this branch can be hit.
1234             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
1235             FfiResult::FfiUnsafe { ty, reason, help } => {
1236                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
1237             }
1238         }
1239     }
1240
1241     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1242         let def_id = self.cx.tcx.hir().local_def_id(id);
1243         let sig = self.cx.tcx.fn_sig(def_id);
1244         let sig = self.cx.tcx.erase_late_bound_regions(sig);
1245
1246         for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
1247             self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
1248         }
1249
1250         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1251             let ret_ty = sig.output();
1252             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1253         }
1254     }
1255
1256     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1257         let def_id = self.cx.tcx.hir().local_def_id(id);
1258         let ty = self.cx.tcx.type_of(def_id);
1259         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1260     }
1261
1262     fn is_internal_abi(&self, abi: SpecAbi) -> bool {
1263         matches!(
1264             abi,
1265             SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1266         )
1267     }
1268 }
1269
1270 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1271     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1272         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
1273         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
1274
1275         if !vis.is_internal_abi(abi) {
1276             match it.kind {
1277                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1278                     vis.check_foreign_fn(it.hir_id(), decl);
1279                 }
1280                 hir::ForeignItemKind::Static(ref ty, _) => {
1281                     vis.check_foreign_static(it.hir_id(), ty.span);
1282                 }
1283                 hir::ForeignItemKind::Type => (),
1284             }
1285         }
1286     }
1287 }
1288
1289 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1290     fn check_fn(
1291         &mut self,
1292         cx: &LateContext<'tcx>,
1293         kind: hir::intravisit::FnKind<'tcx>,
1294         decl: &'tcx hir::FnDecl<'_>,
1295         _: &'tcx hir::Body<'_>,
1296         _: Span,
1297         hir_id: hir::HirId,
1298     ) {
1299         use hir::intravisit::FnKind;
1300
1301         let abi = match kind {
1302             FnKind::ItemFn(_, _, header, ..) => header.abi,
1303             FnKind::Method(_, sig, ..) => sig.header.abi,
1304             _ => return,
1305         };
1306
1307         let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
1308         if !vis.is_internal_abi(abi) {
1309             vis.check_foreign_fn(hir_id, decl);
1310         }
1311     }
1312 }
1313
1314 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1315
1316 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1317     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1318         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1319             let t = cx.tcx.type_of(it.owner_id);
1320             let ty = cx.tcx.erase_regions(t);
1321             let Ok(layout) = cx.layout_of(ty) else { return };
1322             let Variants::Multiple {
1323                     tag_encoding: TagEncoding::Direct, tag, ref variants, ..
1324                 } = &layout.variants else {
1325                 return
1326             };
1327
1328             let tag_size = tag.size(&cx.tcx).bytes();
1329
1330             debug!(
1331                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1332                 t,
1333                 layout.size.bytes(),
1334                 layout
1335             );
1336
1337             let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
1338                 .map(|(variant, variant_layout)| {
1339                     // Subtract the size of the enum tag.
1340                     let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
1341
1342                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1343                     bytes
1344                 })
1345                 .enumerate()
1346                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1347                     if size > l {
1348                         (size, l, idx)
1349                     } else if size > s {
1350                         (l, size, li)
1351                     } else {
1352                         (l, s, li)
1353                     }
1354                 });
1355
1356             // We only warn if the largest variant is at least thrice as large as
1357             // the second-largest.
1358             if largest > slargest * 3 && slargest > 0 {
1359                 cx.emit_spanned_lint(
1360                     VARIANT_SIZE_DIFFERENCES,
1361                     enum_definition.variants[largest_index].span,
1362                     VariantSizeDifferencesDiag { largest },
1363                 );
1364             }
1365         }
1366     }
1367 }
1368
1369 declare_lint! {
1370     /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1371     /// to an atomic operation that does not support that ordering.
1372     ///
1373     /// ### Example
1374     ///
1375     /// ```rust,compile_fail
1376     /// # use core::sync::atomic::{AtomicU8, Ordering};
1377     /// let atom = AtomicU8::new(0);
1378     /// let value = atom.load(Ordering::Release);
1379     /// # let _ = value;
1380     /// ```
1381     ///
1382     /// {{produces}}
1383     ///
1384     /// ### Explanation
1385     ///
1386     /// Some atomic operations are only supported for a subset of the
1387     /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1388     /// an unconditional panic at runtime, which is detected by this lint.
1389     ///
1390     /// This lint will trigger in the following cases: (where `AtomicType` is an
1391     /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1392     /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1393     ///
1394     /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1395     ///   `AtomicType::store`.
1396     ///
1397     /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1398     ///   `AtomicType::load`.
1399     ///
1400     /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1401     ///   `core::sync::atomic::compiler_fence`.
1402     ///
1403     /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1404     ///   ordering for any of `AtomicType::compare_exchange`,
1405     ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
1406     INVALID_ATOMIC_ORDERING,
1407     Deny,
1408     "usage of invalid atomic ordering in atomic operations and memory fences"
1409 }
1410
1411 declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1412
1413 impl InvalidAtomicOrdering {
1414     fn inherent_atomic_method_call<'hir>(
1415         cx: &LateContext<'_>,
1416         expr: &Expr<'hir>,
1417         recognized_names: &[Symbol], // used for fast path calculation
1418     ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1419         const ATOMIC_TYPES: &[Symbol] = &[
1420             sym::AtomicBool,
1421             sym::AtomicPtr,
1422             sym::AtomicUsize,
1423             sym::AtomicU8,
1424             sym::AtomicU16,
1425             sym::AtomicU32,
1426             sym::AtomicU64,
1427             sym::AtomicU128,
1428             sym::AtomicIsize,
1429             sym::AtomicI8,
1430             sym::AtomicI16,
1431             sym::AtomicI32,
1432             sym::AtomicI64,
1433             sym::AtomicI128,
1434         ];
1435         if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
1436             && recognized_names.contains(&method_path.ident.name)
1437             && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1438             && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1439             && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
1440             // skip extension traits, only lint functions from the standard library
1441             && cx.tcx.trait_id_of_impl(impl_did).is_none()
1442             && let parent = cx.tcx.parent(adt.did())
1443             && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1444             && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1445         {
1446             return Some((method_path.ident.name, args));
1447         }
1448         None
1449     }
1450
1451     fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1452         let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1453         let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
1454         let tcx = cx.tcx;
1455         let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
1456         let name = tcx.item_name(did);
1457         let parent = tcx.parent(did);
1458         [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1459             |&ordering| {
1460                 name == ordering
1461                     && (Some(parent) == atomic_ordering
1462                             // needed in case this is a ctor, not a variant
1463                             || tcx.opt_parent(parent) == atomic_ordering)
1464             },
1465         )
1466     }
1467
1468     fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
1469         if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1470             && let Some((ordering_arg, invalid_ordering)) = match method {
1471                 sym::load => Some((&args[0], sym::Release)),
1472                 sym::store => Some((&args[1], sym::Acquire)),
1473                 _ => None,
1474             }
1475             && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1476             && (ordering == invalid_ordering || ordering == sym::AcqRel)
1477         {
1478             if method == sym::load {
1479                 cx.emit_spanned_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, AtomicOrderingLoad);
1480             } else {
1481                 cx.emit_spanned_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, AtomicOrderingStore);
1482             };
1483         }
1484     }
1485
1486     fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
1487         if let ExprKind::Call(ref func, ref args) = expr.kind
1488             && let ExprKind::Path(ref func_qpath) = func.kind
1489             && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1490             && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
1491             && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
1492         {
1493             cx.emit_spanned_lint(INVALID_ATOMIC_ORDERING, args[0].span, AtomicOrderingFence);
1494         }
1495     }
1496
1497     fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
1498         let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1499             else {return };
1500
1501         let fail_order_arg = match method {
1502             sym::fetch_update => &args[1],
1503             sym::compare_exchange | sym::compare_exchange_weak => &args[3],
1504             _ => return,
1505         };
1506
1507         let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1508
1509         if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1510             cx.emit_spanned_lint(
1511                 INVALID_ATOMIC_ORDERING,
1512                 fail_order_arg.span,
1513                 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1514             );
1515         }
1516     }
1517 }
1518
1519 impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1520     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1521         Self::check_atomic_load_store(cx, expr);
1522         Self::check_memory_fence(cx, expr);
1523         Self::check_atomic_compare_exchange(cx, expr);
1524     }
1525 }