]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Rollup merge of #89509 - jhpratt:stabilize-const_unreachable_unchecked, r=oli-obk
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     types::{transparent_newtype_field, CItemKind},
25     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
26 };
27 use rustc_ast::attr;
28 use rustc_ast::tokenstream::{TokenStream, TokenTree};
29 use rustc_ast::visit::{FnCtxt, FnKind};
30 use rustc_ast::{self as ast, *};
31 use rustc_ast_pretty::pprust::{self, expr_to_string};
32 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
33 use rustc_data_structures::stack::ensure_sufficient_stack;
34 use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
35 use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType};
36 use rustc_feature::{GateIssue, Stability};
37 use rustc_hir as hir;
38 use rustc_hir::def::{DefKind, Res};
39 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
40 use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind};
41 use rustc_hir::{HirId, Node};
42 use rustc_index::vec::Idx;
43 use rustc_middle::lint::LintDiagnosticBuilder;
44 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
45 use rustc_middle::ty::print::with_no_trimmed_paths;
46 use rustc_middle::ty::subst::{GenericArgKind, Subst};
47 use rustc_middle::ty::Instance;
48 use rustc_middle::ty::{self, Ty, TyCtxt};
49 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
50 use rustc_span::edition::Edition;
51 use rustc_span::source_map::Spanned;
52 use rustc_span::symbol::{kw, sym, Ident, Symbol};
53 use rustc_span::{BytePos, InnerSpan, MultiSpan, Span};
54 use rustc_target::abi::VariantIdx;
55 use rustc_trait_selection::traits::misc::can_type_implement_copy;
56
57 use crate::nonstandard_style::{method_context, MethodLateContext};
58
59 use std::fmt::Write;
60 use tracing::{debug, trace};
61
62 // hardwired lints from librustc_middle
63 pub use rustc_session::lint::builtin::*;
64
65 declare_lint! {
66     /// The `while_true` lint detects `while true { }`.
67     ///
68     /// ### Example
69     ///
70     /// ```rust,no_run
71     /// while true {
72     ///
73     /// }
74     /// ```
75     ///
76     /// {{produces}}
77     ///
78     /// ### Explanation
79     ///
80     /// `while true` should be replaced with `loop`. A `loop` expression is
81     /// the preferred way to write an infinite loop because it more directly
82     /// expresses the intent of the loop.
83     WHILE_TRUE,
84     Warn,
85     "suggest using `loop { }` instead of `while true { }`"
86 }
87
88 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
89
90 /// Traverse through any amount of parenthesis and return the first non-parens expression.
91 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
92     while let ast::ExprKind::Paren(sub) = &expr.kind {
93         expr = sub;
94     }
95     expr
96 }
97
98 impl EarlyLintPass for WhileTrue {
99     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
100         if let ast::ExprKind::While(cond, _, label) = &e.kind {
101             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
102                 if let ast::LitKind::Bool(true) = lit.kind {
103                     if !lit.span.from_expansion() {
104                         let msg = "denote infinite loops with `loop { ... }`";
105                         let condition_span = e.span.with_hi(cond.span.hi());
106                         cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
107                             lint.build(msg)
108                                 .span_suggestion_short(
109                                     condition_span,
110                                     "use `loop`",
111                                     format!(
112                                         "{}loop",
113                                         label.map_or_else(String::new, |label| format!(
114                                             "{}: ",
115                                             label.ident,
116                                         ))
117                                     ),
118                                     Applicability::MachineApplicable,
119                                 )
120                                 .emit();
121                         })
122                     }
123                 }
124             }
125         }
126     }
127 }
128
129 declare_lint! {
130     /// The `box_pointers` lints use of the Box type.
131     ///
132     /// ### Example
133     ///
134     /// ```rust,compile_fail
135     /// #![deny(box_pointers)]
136     /// struct Foo {
137     ///     x: Box<isize>,
138     /// }
139     /// ```
140     ///
141     /// {{produces}}
142     ///
143     /// ### Explanation
144     ///
145     /// This lint is mostly historical, and not particularly useful. `Box<T>`
146     /// used to be built into the language, and the only way to do heap
147     /// allocation. Today's Rust can call into other allocators, etc.
148     BOX_POINTERS,
149     Allow,
150     "use of owned (Box type) heap memory"
151 }
152
153 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
154
155 impl BoxPointers {
156     fn check_heap_type<'tcx>(&self, cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) {
157         for leaf in ty.walk(cx.tcx) {
158             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
159                 if leaf_ty.is_box() {
160                     cx.struct_span_lint(BOX_POINTERS, span, |lint| {
161                         lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit()
162                     });
163                 }
164             }
165         }
166     }
167 }
168
169 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
170     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
171         match it.kind {
172             hir::ItemKind::Fn(..)
173             | hir::ItemKind::TyAlias(..)
174             | hir::ItemKind::Enum(..)
175             | hir::ItemKind::Struct(..)
176             | hir::ItemKind::Union(..) => {
177                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
178             }
179             _ => (),
180         }
181
182         // If it's a struct, we also have to check the fields' types
183         match it.kind {
184             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
185                 for struct_field in struct_def.fields() {
186                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
187                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
188                 }
189             }
190             _ => (),
191         }
192     }
193
194     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
195         let ty = cx.typeck_results().node_type(e.hir_id);
196         self.check_heap_type(cx, e.span, ty);
197     }
198 }
199
200 declare_lint! {
201     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
202     /// instead of `Struct { x }` in a pattern.
203     ///
204     /// ### Example
205     ///
206     /// ```rust
207     /// struct Point {
208     ///     x: i32,
209     ///     y: i32,
210     /// }
211     ///
212     ///
213     /// fn main() {
214     ///     let p = Point {
215     ///         x: 5,
216     ///         y: 5,
217     ///     };
218     ///
219     ///     match p {
220     ///         Point { x: x, y: y } => (),
221     ///     }
222     /// }
223     /// ```
224     ///
225     /// {{produces}}
226     ///
227     /// ### Explanation
228     ///
229     /// The preferred style is to avoid the repetition of specifying both the
230     /// field name and the binding name if both identifiers are the same.
231     NON_SHORTHAND_FIELD_PATTERNS,
232     Warn,
233     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
234 }
235
236 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
237
238 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
239     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
240         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
241             let variant = cx
242                 .typeck_results()
243                 .pat_ty(pat)
244                 .ty_adt_def()
245                 .expect("struct pattern type is not an ADT")
246                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
247             for fieldpat in field_pats {
248                 if fieldpat.is_shorthand {
249                     continue;
250                 }
251                 if fieldpat.span.from_expansion() {
252                     // Don't lint if this is a macro expansion: macro authors
253                     // shouldn't have to worry about this kind of style issue
254                     // (Issue #49588)
255                     continue;
256                 }
257                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
258                     if cx.tcx.find_field_index(ident, &variant)
259                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
260                     {
261                         cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
262                             let mut err = lint
263                                 .build(&format!("the `{}:` in this pattern is redundant", ident));
264                             let binding = match binding_annot {
265                                 hir::BindingAnnotation::Unannotated => None,
266                                 hir::BindingAnnotation::Mutable => Some("mut"),
267                                 hir::BindingAnnotation::Ref => Some("ref"),
268                                 hir::BindingAnnotation::RefMut => Some("ref mut"),
269                             };
270                             let ident = if let Some(binding) = binding {
271                                 format!("{} {}", binding, ident)
272                             } else {
273                                 ident.to_string()
274                             };
275                             err.span_suggestion(
276                                 fieldpat.span,
277                                 "use shorthand field pattern",
278                                 ident,
279                                 Applicability::MachineApplicable,
280                             );
281                             err.emit();
282                         });
283                     }
284                 }
285             }
286         }
287     }
288 }
289
290 declare_lint! {
291     /// The `unsafe_code` lint catches usage of `unsafe` code.
292     ///
293     /// ### Example
294     ///
295     /// ```rust,compile_fail
296     /// #![deny(unsafe_code)]
297     /// fn main() {
298     ///     unsafe {
299     ///
300     ///     }
301     /// }
302     /// ```
303     ///
304     /// {{produces}}
305     ///
306     /// ### Explanation
307     ///
308     /// This lint is intended to restrict the usage of `unsafe`, which can be
309     /// difficult to use correctly.
310     UNSAFE_CODE,
311     Allow,
312     "usage of `unsafe` code"
313 }
314
315 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
316
317 impl UnsafeCode {
318     fn report_unsafe(
319         &self,
320         cx: &EarlyContext<'_>,
321         span: Span,
322         decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>),
323     ) {
324         // This comes from a macro that has `#[allow_internal_unsafe]`.
325         if span.allows_unsafe() {
326             return;
327         }
328
329         cx.struct_span_lint(UNSAFE_CODE, span, decorate);
330     }
331
332     fn report_overriden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
333         self.report_unsafe(cx, span, |lint| {
334             lint.build(msg)
335                 .note(
336                     "the linker's behavior with multiple libraries exporting duplicate symbol \
337                     names is undefined and Rust cannot provide guarantees when you manually \
338                     override them",
339                 )
340                 .emit();
341         })
342     }
343 }
344
345 impl EarlyLintPass for UnsafeCode {
346     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
347         if attr.has_name(sym::allow_internal_unsafe) {
348             self.report_unsafe(cx, attr.span, |lint| {
349                 lint.build(
350                     "`allow_internal_unsafe` allows defining \
351                                                macros using unsafe without triggering \
352                                                the `unsafe_code` lint at their call site",
353                 )
354                 .emit()
355             });
356         }
357     }
358
359     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
360         if let ast::ExprKind::Block(ref blk, _) = e.kind {
361             // Don't warn about generated blocks; that'll just pollute the output.
362             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
363                 self.report_unsafe(cx, blk.span, |lint| {
364                     lint.build("usage of an `unsafe` block").emit()
365                 });
366             }
367         }
368     }
369
370     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
371         match it.kind {
372             ast::ItemKind::Trait(box ast::TraitKind(_, ast::Unsafe::Yes(_), ..)) => self
373                 .report_unsafe(cx, it.span, |lint| {
374                     lint.build("declaration of an `unsafe` trait").emit()
375                 }),
376
377             ast::ItemKind::Impl(box ast::ImplKind { unsafety: ast::Unsafe::Yes(_), .. }) => self
378                 .report_unsafe(cx, it.span, |lint| {
379                     lint.build("implementation of an `unsafe` trait").emit()
380                 }),
381
382             ast::ItemKind::Fn(..) => {
383                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
384                     self.report_overriden_symbol_name(
385                         cx,
386                         attr.span,
387                         "declaration of a `no_mangle` function",
388                     );
389                 }
390                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
391                     self.report_overriden_symbol_name(
392                         cx,
393                         attr.span,
394                         "declaration of a function with `export_name`",
395                     );
396                 }
397             }
398
399             ast::ItemKind::Static(..) => {
400                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
401                     self.report_overriden_symbol_name(
402                         cx,
403                         attr.span,
404                         "declaration of a `no_mangle` static",
405                     );
406                 }
407                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
408                     self.report_overriden_symbol_name(
409                         cx,
410                         attr.span,
411                         "declaration of a static with `export_name`",
412                     );
413                 }
414             }
415
416             _ => {}
417         }
418     }
419
420     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
421         if let ast::AssocItemKind::Fn(..) = it.kind {
422             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
423                 self.report_overriden_symbol_name(
424                     cx,
425                     attr.span,
426                     "declaration of a `no_mangle` method",
427                 );
428             }
429             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
430                 self.report_overriden_symbol_name(
431                     cx,
432                     attr.span,
433                     "declaration of a method with `export_name`",
434                 );
435             }
436         }
437     }
438
439     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
440         if let FnKind::Fn(
441             ctxt,
442             _,
443             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
444             _,
445             body,
446         ) = fk
447         {
448             let msg = match ctxt {
449                 FnCtxt::Foreign => return,
450                 FnCtxt::Free => "declaration of an `unsafe` function",
451                 FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
452                 FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
453             };
454             self.report_unsafe(cx, span, |lint| lint.build(msg).emit());
455         }
456     }
457 }
458
459 declare_lint! {
460     /// The `missing_docs` lint detects missing documentation for public items.
461     ///
462     /// ### Example
463     ///
464     /// ```rust,compile_fail
465     /// #![deny(missing_docs)]
466     /// pub fn foo() {}
467     /// ```
468     ///
469     /// {{produces}}
470     ///
471     /// ### Explanation
472     ///
473     /// This lint is intended to ensure that a library is well-documented.
474     /// Items without documentation can be difficult for users to understand
475     /// how to use properly.
476     ///
477     /// This lint is "allow" by default because it can be noisy, and not all
478     /// projects may want to enforce everything to be documented.
479     pub MISSING_DOCS,
480     Allow,
481     "detects missing documentation for public members",
482     report_in_external_macro
483 }
484
485 pub struct MissingDoc {
486     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
487     doc_hidden_stack: Vec<bool>,
488
489     /// Private traits or trait items that leaked through. Don't check their methods.
490     private_traits: FxHashSet<hir::HirId>,
491 }
492
493 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
494
495 fn has_doc(attr: &ast::Attribute) -> bool {
496     if attr.is_doc_comment() {
497         return true;
498     }
499
500     if !attr.has_name(sym::doc) {
501         return false;
502     }
503
504     if attr.value_str().is_some() {
505         return true;
506     }
507
508     if let Some(list) = attr.meta_item_list() {
509         for meta in list {
510             if meta.has_name(sym::hidden) {
511                 return true;
512             }
513         }
514     }
515
516     false
517 }
518
519 impl MissingDoc {
520     pub fn new() -> MissingDoc {
521         MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
522     }
523
524     fn doc_hidden(&self) -> bool {
525         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
526     }
527
528     fn check_missing_docs_attrs(
529         &self,
530         cx: &LateContext<'_>,
531         def_id: LocalDefId,
532         sp: Span,
533         article: &'static str,
534         desc: &'static str,
535     ) {
536         // If we're building a test harness, then warning about
537         // documentation is probably not really relevant right now.
538         if cx.sess().opts.test {
539             return;
540         }
541
542         // `#[doc(hidden)]` disables missing_docs check.
543         if self.doc_hidden() {
544             return;
545         }
546
547         // Only check publicly-visible items, using the result from the privacy pass.
548         // It's an option so the crate root can also use this function (it doesn't
549         // have a `NodeId`).
550         if def_id != CRATE_DEF_ID {
551             if !cx.access_levels.is_exported(def_id) {
552                 return;
553             }
554         }
555
556         let attrs = cx.tcx.get_attrs(def_id.to_def_id());
557         let has_doc = attrs.iter().any(has_doc);
558         if !has_doc {
559             cx.struct_span_lint(
560                 MISSING_DOCS,
561                 cx.tcx.sess.source_map().guess_head_span(sp),
562                 |lint| {
563                     lint.build(&format!("missing documentation for {} {}", article, desc)).emit()
564                 },
565             );
566         }
567     }
568 }
569
570 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
571     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
572         let doc_hidden = self.doc_hidden()
573             || attrs.iter().any(|attr| {
574                 attr.has_name(sym::doc)
575                     && match attr.meta_item_list() {
576                         None => false,
577                         Some(l) => attr::list_contains_name(&l, sym::hidden),
578                     }
579             });
580         self.doc_hidden_stack.push(doc_hidden);
581     }
582
583     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
584         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
585     }
586
587     fn check_crate(&mut self, cx: &LateContext<'_>) {
588         self.check_missing_docs_attrs(
589             cx,
590             CRATE_DEF_ID,
591             cx.tcx.def_span(CRATE_DEF_ID),
592             "the",
593             "crate",
594         );
595     }
596
597     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
598         match it.kind {
599             hir::ItemKind::Trait(.., trait_item_refs) => {
600                 // Issue #11592: traits are always considered exported, even when private.
601                 if let hir::VisibilityKind::Inherited = it.vis.node {
602                     self.private_traits.insert(it.hir_id());
603                     for trait_item_ref in trait_item_refs {
604                         self.private_traits.insert(trait_item_ref.id.hir_id());
605                     }
606                     return;
607                 }
608             }
609             hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => {
610                 // If the trait is private, add the impl items to `private_traits` so they don't get
611                 // reported for missing docs.
612                 let real_trait = trait_ref.path.res.def_id();
613                 if let Some(def_id) = real_trait.as_local() {
614                     let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id);
615                     if let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) {
616                         if let hir::VisibilityKind::Inherited = item.vis.node {
617                             for impl_item_ref in items {
618                                 self.private_traits.insert(impl_item_ref.id.hir_id());
619                             }
620                         }
621                     }
622                 }
623                 return;
624             }
625
626             hir::ItemKind::TyAlias(..)
627             | hir::ItemKind::Fn(..)
628             | hir::ItemKind::Macro(..)
629             | hir::ItemKind::Mod(..)
630             | hir::ItemKind::Enum(..)
631             | hir::ItemKind::Struct(..)
632             | hir::ItemKind::Union(..)
633             | hir::ItemKind::Const(..)
634             | hir::ItemKind::Static(..) => {}
635
636             _ => return,
637         };
638
639         let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
640
641         self.check_missing_docs_attrs(cx, it.def_id, it.span, article, desc);
642     }
643
644     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
645         if self.private_traits.contains(&trait_item.hir_id()) {
646             return;
647         }
648
649         let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
650
651         self.check_missing_docs_attrs(cx, trait_item.def_id, trait_item.span, article, desc);
652     }
653
654     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
655         // If the method is an impl for a trait, don't doc.
656         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
657             return;
658         }
659
660         let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
661         self.check_missing_docs_attrs(cx, impl_item.def_id, impl_item.span, article, desc);
662     }
663
664     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
665         let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
666         self.check_missing_docs_attrs(cx, foreign_item.def_id, foreign_item.span, article, desc);
667     }
668
669     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
670         if !sf.is_positional() {
671             let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
672             self.check_missing_docs_attrs(cx, def_id, sf.span, "a", "struct field")
673         }
674     }
675
676     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
677         self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), v.span, "a", "variant");
678     }
679 }
680
681 declare_lint! {
682     /// The `missing_copy_implementations` lint detects potentially-forgotten
683     /// implementations of [`Copy`].
684     ///
685     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
686     ///
687     /// ### Example
688     ///
689     /// ```rust,compile_fail
690     /// #![deny(missing_copy_implementations)]
691     /// pub struct Foo {
692     ///     pub field: i32
693     /// }
694     /// # fn main() {}
695     /// ```
696     ///
697     /// {{produces}}
698     ///
699     /// ### Explanation
700     ///
701     /// Historically (before 1.0), types were automatically marked as `Copy`
702     /// if possible. This was changed so that it required an explicit opt-in
703     /// by implementing the `Copy` trait. As part of this change, a lint was
704     /// added to alert if a copyable type was not marked `Copy`.
705     ///
706     /// This lint is "allow" by default because this code isn't bad; it is
707     /// common to write newtypes like this specifically so that a `Copy` type
708     /// is no longer `Copy`. `Copy` types can result in unintended copies of
709     /// large data which can impact performance.
710     pub MISSING_COPY_IMPLEMENTATIONS,
711     Allow,
712     "detects potentially-forgotten implementations of `Copy`"
713 }
714
715 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
716
717 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
718     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
719         if !cx.access_levels.is_reachable(item.def_id) {
720             return;
721         }
722         let (def, ty) = match item.kind {
723             hir::ItemKind::Struct(_, ref ast_generics) => {
724                 if !ast_generics.params.is_empty() {
725                     return;
726                 }
727                 let def = cx.tcx.adt_def(item.def_id);
728                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
729             }
730             hir::ItemKind::Union(_, ref ast_generics) => {
731                 if !ast_generics.params.is_empty() {
732                     return;
733                 }
734                 let def = cx.tcx.adt_def(item.def_id);
735                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
736             }
737             hir::ItemKind::Enum(_, ref ast_generics) => {
738                 if !ast_generics.params.is_empty() {
739                     return;
740                 }
741                 let def = cx.tcx.adt_def(item.def_id);
742                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
743             }
744             _ => return,
745         };
746         if def.has_dtor(cx.tcx) {
747             return;
748         }
749         let param_env = ty::ParamEnv::empty();
750         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
751             return;
752         }
753         if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() {
754             cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
755                 lint.build(
756                     "type could implement `Copy`; consider adding `impl \
757                           Copy`",
758                 )
759                 .emit()
760             })
761         }
762     }
763 }
764
765 declare_lint! {
766     /// The `missing_debug_implementations` lint detects missing
767     /// implementations of [`fmt::Debug`].
768     ///
769     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
770     ///
771     /// ### Example
772     ///
773     /// ```rust,compile_fail
774     /// #![deny(missing_debug_implementations)]
775     /// pub struct Foo;
776     /// # fn main() {}
777     /// ```
778     ///
779     /// {{produces}}
780     ///
781     /// ### Explanation
782     ///
783     /// Having a `Debug` implementation on all types can assist with
784     /// debugging, as it provides a convenient way to format and display a
785     /// value. Using the `#[derive(Debug)]` attribute will automatically
786     /// generate a typical implementation, or a custom implementation can be
787     /// added by manually implementing the `Debug` trait.
788     ///
789     /// This lint is "allow" by default because adding `Debug` to all types can
790     /// have a negative impact on compile time and code size. It also requires
791     /// boilerplate to be added to every type, which can be an impediment.
792     MISSING_DEBUG_IMPLEMENTATIONS,
793     Allow,
794     "detects missing implementations of Debug"
795 }
796
797 #[derive(Default)]
798 pub struct MissingDebugImplementations {
799     impling_types: Option<LocalDefIdSet>,
800 }
801
802 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
803
804 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
805     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
806         if !cx.access_levels.is_reachable(item.def_id) {
807             return;
808         }
809
810         match item.kind {
811             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
812             _ => return,
813         }
814
815         let debug = match cx.tcx.get_diagnostic_item(sym::Debug) {
816             Some(debug) => debug,
817             None => return,
818         };
819
820         if self.impling_types.is_none() {
821             let mut impls = LocalDefIdSet::default();
822             cx.tcx.for_each_impl(debug, |d| {
823                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
824                     if let Some(def_id) = ty_def.did.as_local() {
825                         impls.insert(def_id);
826                     }
827                 }
828             });
829
830             self.impling_types = Some(impls);
831             debug!("{:?}", self.impling_types);
832         }
833
834         if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
835             cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
836                 lint.build(&format!(
837                     "type does not implement `{}`; consider adding `#[derive(Debug)]` \
838                      or a manual implementation",
839                     cx.tcx.def_path_str(debug)
840                 ))
841                 .emit()
842             });
843         }
844     }
845 }
846
847 declare_lint! {
848     /// The `anonymous_parameters` lint detects anonymous parameters in trait
849     /// definitions.
850     ///
851     /// ### Example
852     ///
853     /// ```rust,edition2015,compile_fail
854     /// #![deny(anonymous_parameters)]
855     /// // edition 2015
856     /// pub trait Foo {
857     ///     fn foo(usize);
858     /// }
859     /// fn main() {}
860     /// ```
861     ///
862     /// {{produces}}
863     ///
864     /// ### Explanation
865     ///
866     /// This syntax is mostly a historical accident, and can be worked around
867     /// quite easily by adding an `_` pattern or a descriptive identifier:
868     ///
869     /// ```rust
870     /// trait Foo {
871     ///     fn foo(_: usize);
872     /// }
873     /// ```
874     ///
875     /// This syntax is now a hard error in the 2018 edition. In the 2015
876     /// edition, this lint is "warn" by default. This lint
877     /// enables the [`cargo fix`] tool with the `--edition` flag to
878     /// automatically transition old code from the 2015 edition to 2018. The
879     /// tool will run this lint and automatically apply the
880     /// suggested fix from the compiler (which is to add `_` to each
881     /// parameter). This provides a completely automated way to update old
882     /// code for a new edition. See [issue #41686] for more details.
883     ///
884     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
885     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
886     pub ANONYMOUS_PARAMETERS,
887     Warn,
888     "detects anonymous parameters",
889     @future_incompatible = FutureIncompatibleInfo {
890         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
891         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
892     };
893 }
894
895 declare_lint_pass!(
896     /// Checks for use of anonymous parameters (RFC 1685).
897     AnonymousParameters => [ANONYMOUS_PARAMETERS]
898 );
899
900 impl EarlyLintPass for AnonymousParameters {
901     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
902         if cx.sess.edition() != Edition::Edition2015 {
903             // This is a hard error in future editions; avoid linting and erroring
904             return;
905         }
906         if let ast::AssocItemKind::Fn(box FnKind(_, ref sig, _, _)) = it.kind {
907             for arg in sig.decl.inputs.iter() {
908                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
909                     if ident.name == kw::Empty {
910                         cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
911                             let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span);
912
913                             let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
914                                 (snip.as_str(), Applicability::MachineApplicable)
915                             } else {
916                                 ("<type>", Applicability::HasPlaceholders)
917                             };
918
919                             lint.build(
920                                 "anonymous parameters are deprecated and will be \
921                                      removed in the next edition",
922                             )
923                             .span_suggestion(
924                                 arg.pat.span,
925                                 "try naming the parameter or explicitly \
926                                             ignoring it",
927                                 format!("_: {}", ty_snip),
928                                 appl,
929                             )
930                             .emit();
931                         })
932                     }
933                 }
934             }
935         }
936     }
937 }
938
939 /// Check for use of attributes which have been deprecated.
940 #[derive(Clone)]
941 pub struct DeprecatedAttr {
942     // This is not free to compute, so we want to keep it around, rather than
943     // compute it for every attribute.
944     depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>,
945 }
946
947 impl_lint_pass!(DeprecatedAttr => []);
948
949 impl DeprecatedAttr {
950     pub fn new() -> DeprecatedAttr {
951         DeprecatedAttr { depr_attrs: deprecated_attributes() }
952     }
953 }
954
955 fn lint_deprecated_attr(
956     cx: &EarlyContext<'_>,
957     attr: &ast::Attribute,
958     msg: &str,
959     suggestion: Option<&str>,
960 ) {
961     cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
962         lint.build(msg)
963             .span_suggestion_short(
964                 attr.span,
965                 suggestion.unwrap_or("remove this attribute"),
966                 String::new(),
967                 Applicability::MachineApplicable,
968             )
969             .emit();
970     })
971 }
972
973 impl EarlyLintPass for DeprecatedAttr {
974     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
975         for &&(n, _, _, ref g) in &self.depr_attrs {
976             if attr.ident().map(|ident| ident.name) == Some(n) {
977                 if let &AttributeGate::Gated(
978                     Stability::Deprecated(link, suggestion),
979                     name,
980                     reason,
981                     _,
982                 ) = g
983                 {
984                     let msg =
985                         format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
986                     lint_deprecated_attr(cx, attr, &msg, suggestion);
987                 }
988                 return;
989             }
990         }
991         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
992             let path_str = pprust::path_to_string(&attr.get_normal_item().path);
993             let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
994             lint_deprecated_attr(cx, attr, &msg, None);
995         }
996     }
997 }
998
999 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
1000     use rustc_ast::token::CommentKind;
1001
1002     let mut attrs = attrs.iter().peekable();
1003
1004     // Accumulate a single span for sugared doc comments.
1005     let mut sugared_span: Option<Span> = None;
1006
1007     while let Some(attr) = attrs.next() {
1008         let is_doc_comment = attr.is_doc_comment();
1009         if is_doc_comment {
1010             sugared_span =
1011                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
1012         }
1013
1014         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
1015             continue;
1016         }
1017
1018         let span = sugared_span.take().unwrap_or(attr.span);
1019
1020         if is_doc_comment || attr.has_name(sym::doc) {
1021             cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
1022                 let mut err = lint.build("unused doc comment");
1023                 err.span_label(
1024                     node_span,
1025                     format!("rustdoc does not generate documentation for {}", node_kind),
1026                 );
1027                 match attr.kind {
1028                     AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
1029                         err.help("use `//` for a plain comment");
1030                     }
1031                     AttrKind::DocComment(CommentKind::Block, _) => {
1032                         err.help("use `/* */` for a plain comment");
1033                     }
1034                 }
1035                 err.emit();
1036             });
1037         }
1038     }
1039 }
1040
1041 impl EarlyLintPass for UnusedDocComment {
1042     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1043         let kind = match stmt.kind {
1044             ast::StmtKind::Local(..) => "statements",
1045             // Disabled pending discussion in #78306
1046             ast::StmtKind::Item(..) => return,
1047             // expressions will be reported by `check_expr`.
1048             ast::StmtKind::Empty
1049             | ast::StmtKind::Semi(_)
1050             | ast::StmtKind::Expr(_)
1051             | ast::StmtKind::MacCall(_) => return,
1052         };
1053
1054         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1055     }
1056
1057     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1058         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1059         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1060     }
1061
1062     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1063         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1064     }
1065 }
1066
1067 declare_lint! {
1068     /// The `no_mangle_const_items` lint detects any `const` items with the
1069     /// [`no_mangle` attribute].
1070     ///
1071     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1072     ///
1073     /// ### Example
1074     ///
1075     /// ```rust,compile_fail
1076     /// #[no_mangle]
1077     /// const FOO: i32 = 5;
1078     /// ```
1079     ///
1080     /// {{produces}}
1081     ///
1082     /// ### Explanation
1083     ///
1084     /// Constants do not have their symbols exported, and therefore, this
1085     /// probably means you meant to use a [`static`], not a [`const`].
1086     ///
1087     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1088     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1089     NO_MANGLE_CONST_ITEMS,
1090     Deny,
1091     "const items will not have their symbols exported"
1092 }
1093
1094 declare_lint! {
1095     /// The `no_mangle_generic_items` lint detects generic items that must be
1096     /// mangled.
1097     ///
1098     /// ### Example
1099     ///
1100     /// ```rust
1101     /// #[no_mangle]
1102     /// fn foo<T>(t: T) {
1103     ///
1104     /// }
1105     /// ```
1106     ///
1107     /// {{produces}}
1108     ///
1109     /// ### Explanation
1110     ///
1111     /// A function with generics must have its symbol mangled to accommodate
1112     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1113     /// this situation, and should be removed.
1114     ///
1115     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1116     NO_MANGLE_GENERIC_ITEMS,
1117     Warn,
1118     "generic items must be mangled"
1119 }
1120
1121 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1122
1123 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1124     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1125         let attrs = cx.tcx.hir().attrs(it.hir_id());
1126         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1127                                              impl_generics: Option<&hir::Generics<'_>>,
1128                                              generics: &hir::Generics<'_>,
1129                                              span| {
1130             for param in
1131                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1132             {
1133                 match param.kind {
1134                     GenericParamKind::Lifetime { .. } => {}
1135                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1136                         cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
1137                             lint.build("functions generic over types or consts must be mangled")
1138                                 .span_suggestion_short(
1139                                     no_mangle_attr.span,
1140                                     "remove this attribute",
1141                                     String::new(),
1142                                     // Use of `#[no_mangle]` suggests FFI intent; correct
1143                                     // fix may be to monomorphize source by hand
1144                                     Applicability::MaybeIncorrect,
1145                                 )
1146                                 .emit();
1147                         });
1148                         break;
1149                     }
1150                 }
1151             }
1152         };
1153         match it.kind {
1154             hir::ItemKind::Fn(.., ref generics, _) => {
1155                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1156                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1157                 }
1158             }
1159             hir::ItemKind::Const(..) => {
1160                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1161                     // Const items do not refer to a particular location in memory, and therefore
1162                     // don't have anything to attach a symbol to
1163                     cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
1164                         let msg = "const items should never be `#[no_mangle]`";
1165                         let mut err = lint.build(msg);
1166
1167                         // account for "pub const" (#45562)
1168                         let start = cx
1169                             .tcx
1170                             .sess
1171                             .source_map()
1172                             .span_to_snippet(it.span)
1173                             .map(|snippet| snippet.find("const").unwrap_or(0))
1174                             .unwrap_or(0) as u32;
1175                         // `const` is 5 chars
1176                         let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1177                         err.span_suggestion(
1178                             const_span,
1179                             "try a static value",
1180                             "pub static".to_owned(),
1181                             Applicability::MachineApplicable,
1182                         );
1183                         err.emit();
1184                     });
1185                 }
1186             }
1187             hir::ItemKind::Impl(hir::Impl { ref generics, items, .. }) => {
1188                 for it in items {
1189                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1190                         if let Some(no_mangle_attr) = cx
1191                             .sess()
1192                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1193                         {
1194                             check_no_mangle_on_generic_fn(
1195                                 no_mangle_attr,
1196                                 Some(generics),
1197                                 cx.tcx.hir().get_generics(it.id.def_id.to_def_id()).unwrap(),
1198                                 it.span,
1199                             );
1200                         }
1201                     }
1202                 }
1203             }
1204             _ => {}
1205         }
1206     }
1207 }
1208
1209 declare_lint! {
1210     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1211     /// T` because it is [undefined behavior].
1212     ///
1213     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1214     ///
1215     /// ### Example
1216     ///
1217     /// ```rust,compile_fail
1218     /// unsafe {
1219     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1220     /// }
1221     /// ```
1222     ///
1223     /// {{produces}}
1224     ///
1225     /// ### Explanation
1226     ///
1227     /// Certain assumptions are made about aliasing of data, and this transmute
1228     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1229     ///
1230     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1231     MUTABLE_TRANSMUTES,
1232     Deny,
1233     "mutating transmuted &mut T from &T may cause undefined behavior"
1234 }
1235
1236 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1237
1238 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1239     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1240         use rustc_target::spec::abi::Abi::RustIntrinsic;
1241         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1242             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1243         {
1244             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1245                 let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
1246                                consider instead using an UnsafeCell";
1247                 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit());
1248             }
1249         }
1250
1251         fn get_transmute_from_to<'tcx>(
1252             cx: &LateContext<'tcx>,
1253             expr: &hir::Expr<'_>,
1254         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1255             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1256                 cx.qpath_res(qpath, expr.hir_id)
1257             } else {
1258                 return None;
1259             };
1260             if let Res::Def(DefKind::Fn, did) = def {
1261                 if !def_id_is_transmute(cx, did) {
1262                     return None;
1263                 }
1264                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1265                 let from = sig.inputs().skip_binder()[0];
1266                 let to = sig.output().skip_binder();
1267                 return Some((from, to));
1268             }
1269             None
1270         }
1271
1272         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1273             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
1274                 && cx.tcx.item_name(def_id) == sym::transmute
1275         }
1276     }
1277 }
1278
1279 declare_lint! {
1280     /// The `unstable_features` is deprecated and should no longer be used.
1281     UNSTABLE_FEATURES,
1282     Allow,
1283     "enabling unstable features (deprecated. do not use)"
1284 }
1285
1286 declare_lint_pass!(
1287     /// Forbids using the `#[feature(...)]` attribute
1288     UnstableFeatures => [UNSTABLE_FEATURES]
1289 );
1290
1291 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1292     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1293         if attr.has_name(sym::feature) {
1294             if let Some(items) = attr.meta_item_list() {
1295                 for item in items {
1296                     cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
1297                         lint.build("unstable feature").emit()
1298                     });
1299                 }
1300             }
1301         }
1302     }
1303 }
1304
1305 declare_lint! {
1306     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1307     /// the crate root.
1308     ///
1309     /// ### Example
1310     ///
1311     /// ```rust,compile_fail
1312     /// #![deny(unreachable_pub)]
1313     /// mod foo {
1314     ///     pub mod bar {
1315     ///
1316     ///     }
1317     /// }
1318     /// ```
1319     ///
1320     /// {{produces}}
1321     ///
1322     /// ### Explanation
1323     ///
1324     /// A bare `pub` visibility may be misleading if the item is not actually
1325     /// publicly exported from the crate. The `pub(crate)` visibility is
1326     /// recommended to be used instead, which more clearly expresses the intent
1327     /// that the item is only visible within its own crate.
1328     ///
1329     /// This lint is "allow" by default because it will trigger for a large
1330     /// amount existing Rust code, and has some false-positives. Eventually it
1331     /// is desired for this to become warn-by-default.
1332     pub UNREACHABLE_PUB,
1333     Allow,
1334     "`pub` items not reachable from crate root"
1335 }
1336
1337 declare_lint_pass!(
1338     /// Lint for items marked `pub` that aren't reachable from other crates.
1339     UnreachablePub => [UNREACHABLE_PUB]
1340 );
1341
1342 impl UnreachablePub {
1343     fn perform_lint(
1344         &self,
1345         cx: &LateContext<'_>,
1346         what: &str,
1347         def_id: LocalDefId,
1348         vis: &hir::Visibility<'_>,
1349         span: Span,
1350         exportable: bool,
1351     ) {
1352         let mut applicability = Applicability::MachineApplicable;
1353         match vis.node {
1354             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(def_id) => {
1355                 if span.from_expansion() {
1356                     applicability = Applicability::MaybeIncorrect;
1357                 }
1358                 let def_span = cx.tcx.sess.source_map().guess_head_span(span);
1359                 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
1360                     let mut err = lint.build(&format!("unreachable `pub` {}", what));
1361                     let replacement = if cx.tcx.features().crate_visibility_modifier {
1362                         "crate"
1363                     } else {
1364                         "pub(crate)"
1365                     }
1366                     .to_owned();
1367
1368                     err.span_suggestion(
1369                         vis.span,
1370                         "consider restricting its visibility",
1371                         replacement,
1372                         applicability,
1373                     );
1374                     if exportable {
1375                         err.help("or consider exporting it for use by other crates");
1376                     }
1377                     err.emit();
1378                 });
1379             }
1380             _ => {}
1381         }
1382     }
1383 }
1384
1385 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1386     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1387         self.perform_lint(cx, "item", item.def_id, &item.vis, item.span, true);
1388     }
1389
1390     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1391         self.perform_lint(
1392             cx,
1393             "item",
1394             foreign_item.def_id,
1395             &foreign_item.vis,
1396             foreign_item.span,
1397             true,
1398         );
1399     }
1400
1401     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1402         let def_id = cx.tcx.hir().local_def_id(field.hir_id);
1403         self.perform_lint(cx, "field", def_id, &field.vis, field.span, false);
1404     }
1405
1406     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1407         self.perform_lint(cx, "item", impl_item.def_id, &impl_item.vis, impl_item.span, false);
1408     }
1409 }
1410
1411 declare_lint! {
1412     /// The `type_alias_bounds` lint detects bounds in type aliases.
1413     ///
1414     /// ### Example
1415     ///
1416     /// ```rust
1417     /// type SendVec<T: Send> = Vec<T>;
1418     /// ```
1419     ///
1420     /// {{produces}}
1421     ///
1422     /// ### Explanation
1423     ///
1424     /// The trait bounds in a type alias are currently ignored, and should not
1425     /// be included to avoid confusion. This was previously allowed
1426     /// unintentionally; this may become a hard error in the future.
1427     TYPE_ALIAS_BOUNDS,
1428     Warn,
1429     "bounds in type aliases are not enforced"
1430 }
1431
1432 declare_lint_pass!(
1433     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1434     /// They are relevant when using associated types, but otherwise neither checked
1435     /// at definition site nor enforced at use site.
1436     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1437 );
1438
1439 impl TypeAliasBounds {
1440     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1441         match *qpath {
1442             hir::QPath::TypeRelative(ref ty, _) => {
1443                 // If this is a type variable, we found a `T::Assoc`.
1444                 match ty.kind {
1445                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1446                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1447                     }
1448                     _ => false,
1449                 }
1450             }
1451             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1452         }
1453     }
1454
1455     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) {
1456         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1457         // bound.  Let's see if this type does that.
1458
1459         // We use a HIR visitor to walk the type.
1460         use rustc_hir::intravisit::{self, Visitor};
1461         struct WalkAssocTypes<'a, 'db> {
1462             err: &'a mut DiagnosticBuilder<'db>,
1463         }
1464         impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
1465             type Map = intravisit::ErasedMap<'v>;
1466
1467             fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
1468                 intravisit::NestedVisitorMap::None
1469             }
1470
1471             fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) {
1472                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1473                     self.err.span_help(
1474                         span,
1475                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1476                          associated types in type aliases",
1477                     );
1478                 }
1479                 intravisit::walk_qpath(self, qpath, id, span)
1480             }
1481         }
1482
1483         // Let's go for a walk!
1484         let mut visitor = WalkAssocTypes { err };
1485         visitor.visit_ty(ty);
1486     }
1487 }
1488
1489 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1490     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1491         let (ty, type_alias_generics) = match item.kind {
1492             hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics),
1493             _ => return,
1494         };
1495         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1496             // Bounds are respected for `type X = impl Trait`
1497             return;
1498         }
1499         let mut suggested_changing_assoc_types = false;
1500         // There must not be a where clause
1501         if !type_alias_generics.where_clause.predicates.is_empty() {
1502             cx.lint(
1503                 TYPE_ALIAS_BOUNDS,
1504                 |lint| {
1505                     let mut err = lint.build("where clauses are not enforced in type aliases");
1506                     let spans: Vec<_> = type_alias_generics
1507                         .where_clause
1508                         .predicates
1509                         .iter()
1510                         .map(|pred| pred.span())
1511                         .collect();
1512                     err.set_span(spans);
1513                     err.span_suggestion(
1514                         type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1515                         "the clause will not be checked when the type alias is used, and should be removed",
1516                         String::new(),
1517                         Applicability::MachineApplicable,
1518                     );
1519                     if !suggested_changing_assoc_types {
1520                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1521                         suggested_changing_assoc_types = true;
1522                     }
1523                     err.emit();
1524                 },
1525             );
1526         }
1527         // The parameters must not have bounds
1528         for param in type_alias_generics.params.iter() {
1529             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1530             let suggestion = spans
1531                 .iter()
1532                 .map(|sp| {
1533                     let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1534                     (start.to(*sp), String::new())
1535                 })
1536                 .collect();
1537             if !spans.is_empty() {
1538                 cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| {
1539                     let mut err =
1540                         lint.build("bounds on generic parameters are not enforced in type aliases");
1541                     let msg = "the bound will not be checked when the type alias is used, \
1542                                    and should be removed";
1543                     err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1544                     if !suggested_changing_assoc_types {
1545                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1546                         suggested_changing_assoc_types = true;
1547                     }
1548                     err.emit();
1549                 });
1550             }
1551         }
1552     }
1553 }
1554
1555 declare_lint_pass!(
1556     /// Lint constants that are erroneous.
1557     /// Without this lint, we might not get any diagnostic if the constant is
1558     /// unused within this crate, even though downstream crates can't use it
1559     /// without producing an error.
1560     UnusedBrokenConst => []
1561 );
1562
1563 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1564     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1565         match it.kind {
1566             hir::ItemKind::Const(_, body_id) => {
1567                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1568                 // trigger the query once for all constants since that will already report the errors
1569                 // FIXME: Use ensure here
1570                 let _ = cx.tcx.const_eval_poly(def_id);
1571             }
1572             hir::ItemKind::Static(_, _, body_id) => {
1573                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1574                 // FIXME: Use ensure here
1575                 let _ = cx.tcx.eval_static_initializer(def_id);
1576             }
1577             _ => {}
1578         }
1579     }
1580 }
1581
1582 declare_lint! {
1583     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1584     /// any type parameters.
1585     ///
1586     /// ### Example
1587     ///
1588     /// ```rust
1589     /// #![feature(trivial_bounds)]
1590     /// pub struct A where i32: Copy;
1591     /// ```
1592     ///
1593     /// {{produces}}
1594     ///
1595     /// ### Explanation
1596     ///
1597     /// Usually you would not write a trait bound that you know is always
1598     /// true, or never true. However, when using macros, the macro may not
1599     /// know whether or not the constraint would hold or not at the time when
1600     /// generating the code. Currently, the compiler does not alert you if the
1601     /// constraint is always true, and generates an error if it is never true.
1602     /// The `trivial_bounds` feature changes this to be a warning in both
1603     /// cases, giving macros more freedom and flexibility to generate code,
1604     /// while still providing a signal when writing non-macro code that
1605     /// something is amiss.
1606     ///
1607     /// See [RFC 2056] for more details. This feature is currently only
1608     /// available on the nightly channel, see [tracking issue #48214].
1609     ///
1610     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1611     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1612     TRIVIAL_BOUNDS,
1613     Warn,
1614     "these bounds don't depend on an type parameters"
1615 }
1616
1617 declare_lint_pass!(
1618     /// Lint for trait and lifetime bounds that don't depend on type parameters
1619     /// which either do nothing, or stop the item from being used.
1620     TrivialConstraints => [TRIVIAL_BOUNDS]
1621 );
1622
1623 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1624     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1625         use rustc_middle::ty::fold::TypeFoldable;
1626         use rustc_middle::ty::PredicateKind::*;
1627
1628         if cx.tcx.features().trivial_bounds {
1629             let predicates = cx.tcx.predicates_of(item.def_id);
1630             for &(predicate, span) in predicates.predicates {
1631                 let predicate_kind_name = match predicate.kind().skip_binder() {
1632                     Trait(..) => "trait",
1633                     TypeOutlives(..) |
1634                     RegionOutlives(..) => "lifetime",
1635
1636                     // Ignore projections, as they can only be global
1637                     // if the trait bound is global
1638                     Projection(..) |
1639                     // Ignore bounds that a user can't type
1640                     WellFormed(..) |
1641                     ObjectSafe(..) |
1642                     ClosureKind(..) |
1643                     Subtype(..) |
1644                     Coerce(..) |
1645                     ConstEvaluatable(..) |
1646                     ConstEquate(..) |
1647                     TypeWellFormedFromEnv(..) => continue,
1648                 };
1649                 if predicate.is_global(cx.tcx) {
1650                     cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1651                         lint.build(&format!(
1652                             "{} bound {} does not depend on any type \
1653                                 or lifetime parameters",
1654                             predicate_kind_name, predicate
1655                         ))
1656                         .emit()
1657                     });
1658                 }
1659             }
1660         }
1661     }
1662 }
1663
1664 declare_lint_pass!(
1665     /// Does nothing as a lint pass, but registers some `Lint`s
1666     /// which are used by other parts of the compiler.
1667     SoftLints => [
1668         WHILE_TRUE,
1669         BOX_POINTERS,
1670         NON_SHORTHAND_FIELD_PATTERNS,
1671         UNSAFE_CODE,
1672         MISSING_DOCS,
1673         MISSING_COPY_IMPLEMENTATIONS,
1674         MISSING_DEBUG_IMPLEMENTATIONS,
1675         ANONYMOUS_PARAMETERS,
1676         UNUSED_DOC_COMMENTS,
1677         NO_MANGLE_CONST_ITEMS,
1678         NO_MANGLE_GENERIC_ITEMS,
1679         MUTABLE_TRANSMUTES,
1680         UNSTABLE_FEATURES,
1681         UNREACHABLE_PUB,
1682         TYPE_ALIAS_BOUNDS,
1683         TRIVIAL_BOUNDS
1684     ]
1685 );
1686
1687 declare_lint! {
1688     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1689     /// pattern], which is deprecated.
1690     ///
1691     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1692     ///
1693     /// ### Example
1694     ///
1695     /// ```rust,edition2018
1696     /// let x = 123;
1697     /// match x {
1698     ///     0...100 => {}
1699     ///     _ => {}
1700     /// }
1701     /// ```
1702     ///
1703     /// {{produces}}
1704     ///
1705     /// ### Explanation
1706     ///
1707     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1708     /// confusion with the [`..` range expression]. Use the new form instead.
1709     ///
1710     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1711     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1712     Warn,
1713     "`...` range patterns are deprecated",
1714     @future_incompatible = FutureIncompatibleInfo {
1715         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1716         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1717     };
1718 }
1719
1720 #[derive(Default)]
1721 pub struct EllipsisInclusiveRangePatterns {
1722     /// If `Some(_)`, suppress all subsequent pattern
1723     /// warnings for better diagnostics.
1724     node_id: Option<ast::NodeId>,
1725 }
1726
1727 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1728
1729 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1730     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1731         if self.node_id.is_some() {
1732             // Don't recursively warn about patterns inside range endpoints.
1733             return;
1734         }
1735
1736         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1737
1738         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1739         /// corresponding to the ellipsis.
1740         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1741             match &pat.kind {
1742                 PatKind::Range(
1743                     a,
1744                     Some(b),
1745                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1746                 ) => Some((a.as_deref(), b, *span)),
1747                 _ => None,
1748             }
1749         }
1750
1751         let (parenthesise, endpoints) = match &pat.kind {
1752             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1753             _ => (false, matches_ellipsis_pat(pat)),
1754         };
1755
1756         if let Some((start, end, join)) = endpoints {
1757             let msg = "`...` range patterns are deprecated";
1758             let suggestion = "use `..=` for an inclusive range";
1759             if parenthesise {
1760                 self.node_id = Some(pat.id);
1761                 let end = expr_to_string(&end);
1762                 let replace = match start {
1763                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1764                     None => format!("&(..={})", end),
1765                 };
1766                 if join.edition() >= Edition::Edition2021 {
1767                     let mut err =
1768                         rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,);
1769                     err.span_suggestion(
1770                         pat.span,
1771                         suggestion,
1772                         replace,
1773                         Applicability::MachineApplicable,
1774                     )
1775                     .emit();
1776                 } else {
1777                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1778                         lint.build(msg)
1779                             .span_suggestion(
1780                                 pat.span,
1781                                 suggestion,
1782                                 replace,
1783                                 Applicability::MachineApplicable,
1784                             )
1785                             .emit();
1786                     });
1787                 }
1788             } else {
1789                 let replace = "..=".to_owned();
1790                 if join.edition() >= Edition::Edition2021 {
1791                     let mut err =
1792                         rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,);
1793                     err.span_suggestion_short(
1794                         join,
1795                         suggestion,
1796                         replace,
1797                         Applicability::MachineApplicable,
1798                     )
1799                     .emit();
1800                 } else {
1801                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1802                         lint.build(msg)
1803                             .span_suggestion_short(
1804                                 join,
1805                                 suggestion,
1806                                 replace,
1807                                 Applicability::MachineApplicable,
1808                             )
1809                             .emit();
1810                     });
1811                 }
1812             };
1813         }
1814     }
1815
1816     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1817         if let Some(node_id) = self.node_id {
1818             if pat.id == node_id {
1819                 self.node_id = None
1820             }
1821         }
1822     }
1823 }
1824
1825 declare_lint! {
1826     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1827     /// that are not able to be run by the test harness because they are in a
1828     /// position where they are not nameable.
1829     ///
1830     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1831     ///
1832     /// ### Example
1833     ///
1834     /// ```rust,test
1835     /// fn main() {
1836     ///     #[test]
1837     ///     fn foo() {
1838     ///         // This test will not fail because it does not run.
1839     ///         assert_eq!(1, 2);
1840     ///     }
1841     /// }
1842     /// ```
1843     ///
1844     /// {{produces}}
1845     ///
1846     /// ### Explanation
1847     ///
1848     /// In order for the test harness to run a test, the test function must be
1849     /// located in a position where it can be accessed from the crate root.
1850     /// This generally means it must be defined in a module, and not anywhere
1851     /// else such as inside another function. The compiler previously allowed
1852     /// this without an error, so a lint was added as an alert that a test is
1853     /// not being used. Whether or not this should be allowed has not yet been
1854     /// decided, see [RFC 2471] and [issue #36629].
1855     ///
1856     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1857     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1858     UNNAMEABLE_TEST_ITEMS,
1859     Warn,
1860     "detects an item that cannot be named being marked as `#[test_case]`",
1861     report_in_external_macro
1862 }
1863
1864 pub struct UnnameableTestItems {
1865     boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
1866     items_nameable: bool,
1867 }
1868
1869 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1870
1871 impl UnnameableTestItems {
1872     pub fn new() -> Self {
1873         Self { boundary: None, items_nameable: true }
1874     }
1875 }
1876
1877 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1878     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1879         if self.items_nameable {
1880             if let hir::ItemKind::Mod(..) = it.kind {
1881             } else {
1882                 self.items_nameable = false;
1883                 self.boundary = Some(it.def_id);
1884             }
1885             return;
1886         }
1887
1888         let attrs = cx.tcx.hir().attrs(it.hir_id());
1889         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1890             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1891                 lint.build("cannot test inner items").emit()
1892             });
1893         }
1894     }
1895
1896     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1897         if !self.items_nameable && self.boundary == Some(it.def_id) {
1898             self.items_nameable = true;
1899         }
1900     }
1901 }
1902
1903 declare_lint! {
1904     /// The `keyword_idents` lint detects edition keywords being used as an
1905     /// identifier.
1906     ///
1907     /// ### Example
1908     ///
1909     /// ```rust,edition2015,compile_fail
1910     /// #![deny(keyword_idents)]
1911     /// // edition 2015
1912     /// fn dyn() {}
1913     /// ```
1914     ///
1915     /// {{produces}}
1916     ///
1917     /// ### Explanation
1918     ///
1919     /// Rust [editions] allow the language to evolve without breaking
1920     /// backwards compatibility. This lint catches code that uses new keywords
1921     /// that are added to the language that are used as identifiers (such as a
1922     /// variable name, function name, etc.). If you switch the compiler to a
1923     /// new edition without updating the code, then it will fail to compile if
1924     /// you are using a new keyword as an identifier.
1925     ///
1926     /// You can manually change the identifiers to a non-keyword, or use a
1927     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1928     ///
1929     /// This lint solves the problem automatically. It is "allow" by default
1930     /// because the code is perfectly valid in older editions. The [`cargo
1931     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1932     /// and automatically apply the suggested fix from the compiler (which is
1933     /// to use a raw identifier). This provides a completely automated way to
1934     /// update old code for a new edition.
1935     ///
1936     /// [editions]: https://doc.rust-lang.org/edition-guide/
1937     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1938     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1939     pub KEYWORD_IDENTS,
1940     Allow,
1941     "detects edition keywords being used as an identifier",
1942     @future_incompatible = FutureIncompatibleInfo {
1943         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1944         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1945     };
1946 }
1947
1948 declare_lint_pass!(
1949     /// Check for uses of edition keywords used as an identifier.
1950     KeywordIdents => [KEYWORD_IDENTS]
1951 );
1952
1953 struct UnderMacro(bool);
1954
1955 impl KeywordIdents {
1956     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1957         for tt in tokens.into_trees() {
1958             match tt {
1959                 // Only report non-raw idents.
1960                 TokenTree::Token(token) => {
1961                     if let Some((ident, false)) = token.ident() {
1962                         self.check_ident_token(cx, UnderMacro(true), ident);
1963                     }
1964                 }
1965                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1966             }
1967         }
1968     }
1969
1970     fn check_ident_token(
1971         &mut self,
1972         cx: &EarlyContext<'_>,
1973         UnderMacro(under_macro): UnderMacro,
1974         ident: Ident,
1975     ) {
1976         let next_edition = match cx.sess.edition() {
1977             Edition::Edition2015 => {
1978                 match ident.name {
1979                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1980
1981                     // rust-lang/rust#56327: Conservatively do not
1982                     // attempt to report occurrences of `dyn` within
1983                     // macro definitions or invocations, because `dyn`
1984                     // can legitimately occur as a contextual keyword
1985                     // in 2015 code denoting its 2018 meaning, and we
1986                     // do not want rustfix to inject bugs into working
1987                     // code by rewriting such occurrences.
1988                     //
1989                     // But if we see `dyn` outside of a macro, we know
1990                     // its precise role in the parsed AST and thus are
1991                     // assured this is truly an attempt to use it as
1992                     // an identifier.
1993                     kw::Dyn if !under_macro => Edition::Edition2018,
1994
1995                     _ => return,
1996                 }
1997             }
1998
1999             // There are no new keywords yet for the 2018 edition and beyond.
2000             _ => return,
2001         };
2002
2003         // Don't lint `r#foo`.
2004         if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
2005             return;
2006         }
2007
2008         cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
2009             lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
2010                 .span_suggestion(
2011                     ident.span,
2012                     "you can use a raw identifier to stay compatible",
2013                     format!("r#{}", ident),
2014                     Applicability::MachineApplicable,
2015                 )
2016                 .emit()
2017         });
2018     }
2019 }
2020
2021 impl EarlyLintPass for KeywordIdents {
2022     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
2023         self.check_tokens(cx, mac_def.body.inner_tokens());
2024     }
2025     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
2026         self.check_tokens(cx, mac.args.inner_tokens());
2027     }
2028     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
2029         self.check_ident_token(cx, UnderMacro(false), ident);
2030     }
2031 }
2032
2033 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2034
2035 impl ExplicitOutlivesRequirements {
2036     fn lifetimes_outliving_lifetime<'tcx>(
2037         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2038         index: u32,
2039     ) -> Vec<ty::Region<'tcx>> {
2040         inferred_outlives
2041             .iter()
2042             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2043                 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a {
2044                     ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
2045                     _ => None,
2046                 },
2047                 _ => None,
2048             })
2049             .collect()
2050     }
2051
2052     fn lifetimes_outliving_type<'tcx>(
2053         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2054         index: u32,
2055     ) -> Vec<ty::Region<'tcx>> {
2056         inferred_outlives
2057             .iter()
2058             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2059                 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2060                     a.is_param(index).then_some(b)
2061                 }
2062                 _ => None,
2063             })
2064             .collect()
2065     }
2066
2067     fn collect_outlived_lifetimes<'tcx>(
2068         &self,
2069         param: &'tcx hir::GenericParam<'tcx>,
2070         tcx: TyCtxt<'tcx>,
2071         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2072         ty_generics: &'tcx ty::Generics,
2073     ) -> Vec<ty::Region<'tcx>> {
2074         let index =
2075             ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()];
2076
2077         match param.kind {
2078             hir::GenericParamKind::Lifetime { .. } => {
2079                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
2080             }
2081             hir::GenericParamKind::Type { .. } => {
2082                 Self::lifetimes_outliving_type(inferred_outlives, index)
2083             }
2084             hir::GenericParamKind::Const { .. } => Vec::new(),
2085         }
2086     }
2087
2088     fn collect_outlives_bound_spans<'tcx>(
2089         &self,
2090         tcx: TyCtxt<'tcx>,
2091         bounds: &hir::GenericBounds<'_>,
2092         inferred_outlives: &[ty::Region<'tcx>],
2093         infer_static: bool,
2094     ) -> Vec<(usize, Span)> {
2095         use rustc_middle::middle::resolve_lifetime::Region;
2096
2097         bounds
2098             .iter()
2099             .enumerate()
2100             .filter_map(|(i, bound)| {
2101                 if let hir::GenericBound::Outlives(lifetime) = bound {
2102                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
2103                         Some(Region::Static) if infer_static => {
2104                             inferred_outlives.iter().any(|r| matches!(r, ty::ReStatic))
2105                         }
2106                         Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
2107                             if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false }
2108                         }),
2109                         _ => false,
2110                     };
2111                     is_inferred.then_some((i, bound.span()))
2112                 } else {
2113                     None
2114                 }
2115             })
2116             .collect()
2117     }
2118
2119     fn consolidate_outlives_bound_spans(
2120         &self,
2121         lo: Span,
2122         bounds: &hir::GenericBounds<'_>,
2123         bound_spans: Vec<(usize, Span)>,
2124     ) -> Vec<Span> {
2125         if bounds.is_empty() {
2126             return Vec::new();
2127         }
2128         if bound_spans.len() == bounds.len() {
2129             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2130             // If all bounds are inferable, we want to delete the colon, so
2131             // start from just after the parameter (span passed as argument)
2132             vec![lo.to(last_bound_span)]
2133         } else {
2134             let mut merged = Vec::new();
2135             let mut last_merged_i = None;
2136
2137             let mut from_start = true;
2138             for (i, bound_span) in bound_spans {
2139                 match last_merged_i {
2140                     // If the first bound is inferable, our span should also eat the leading `+`.
2141                     None if i == 0 => {
2142                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2143                         last_merged_i = Some(0);
2144                     }
2145                     // If consecutive bounds are inferable, merge their spans
2146                     Some(h) if i == h + 1 => {
2147                         if let Some(tail) = merged.last_mut() {
2148                             // Also eat the trailing `+` if the first
2149                             // more-than-one bound is inferable
2150                             let to_span = if from_start && i < bounds.len() {
2151                                 bounds[i + 1].span().shrink_to_lo()
2152                             } else {
2153                                 bound_span
2154                             };
2155                             *tail = tail.to(to_span);
2156                             last_merged_i = Some(i);
2157                         } else {
2158                             bug!("another bound-span visited earlier");
2159                         }
2160                     }
2161                     _ => {
2162                         // When we find a non-inferable bound, subsequent inferable bounds
2163                         // won't be consecutive from the start (and we'll eat the leading
2164                         // `+` rather than the trailing one)
2165                         from_start = false;
2166                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2167                         last_merged_i = Some(i);
2168                     }
2169                 }
2170             }
2171             merged
2172         }
2173     }
2174 }
2175
2176 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2177     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2178         use rustc_middle::middle::resolve_lifetime::Region;
2179
2180         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
2181         let def_id = item.def_id;
2182         if let hir::ItemKind::Struct(_, ref hir_generics)
2183         | hir::ItemKind::Enum(_, ref hir_generics)
2184         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
2185         {
2186             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2187             if inferred_outlives.is_empty() {
2188                 return;
2189             }
2190
2191             let ty_generics = cx.tcx.generics_of(def_id);
2192
2193             let mut bound_count = 0;
2194             let mut lint_spans = Vec::new();
2195
2196             for param in hir_generics.params {
2197                 let has_lifetime_bounds = param
2198                     .bounds
2199                     .iter()
2200                     .any(|bound| matches!(bound, hir::GenericBound::Outlives(_)));
2201                 if !has_lifetime_bounds {
2202                     continue;
2203                 }
2204
2205                 let relevant_lifetimes =
2206                     self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
2207                 if relevant_lifetimes.is_empty() {
2208                     continue;
2209                 }
2210
2211                 let bound_spans = self.collect_outlives_bound_spans(
2212                     cx.tcx,
2213                     &param.bounds,
2214                     &relevant_lifetimes,
2215                     infer_static,
2216                 );
2217                 bound_count += bound_spans.len();
2218                 lint_spans.extend(self.consolidate_outlives_bound_spans(
2219                     param.span.shrink_to_hi(),
2220                     &param.bounds,
2221                     bound_spans,
2222                 ));
2223             }
2224
2225             let mut where_lint_spans = Vec::new();
2226             let mut dropped_predicate_count = 0;
2227             let num_predicates = hir_generics.where_clause.predicates.len();
2228             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
2229                 let (relevant_lifetimes, bounds, span) = match where_predicate {
2230                     hir::WherePredicate::RegionPredicate(predicate) => {
2231                         if let Some(Region::EarlyBound(index, ..)) =
2232                             cx.tcx.named_region(predicate.lifetime.hir_id)
2233                         {
2234                             (
2235                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
2236                                 &predicate.bounds,
2237                                 predicate.span,
2238                             )
2239                         } else {
2240                             continue;
2241                         }
2242                     }
2243                     hir::WherePredicate::BoundPredicate(predicate) => {
2244                         // FIXME we can also infer bounds on associated types,
2245                         // and should check for them here.
2246                         match predicate.bounded_ty.kind {
2247                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
2248                                 if let Res::Def(DefKind::TyParam, def_id) = path.res {
2249                                     let index = ty_generics.param_def_id_to_index[&def_id];
2250                                     (
2251                                         Self::lifetimes_outliving_type(inferred_outlives, index),
2252                                         &predicate.bounds,
2253                                         predicate.span,
2254                                     )
2255                                 } else {
2256                                     continue;
2257                                 }
2258                             }
2259                             _ => {
2260                                 continue;
2261                             }
2262                         }
2263                     }
2264                     _ => continue,
2265                 };
2266                 if relevant_lifetimes.is_empty() {
2267                     continue;
2268                 }
2269
2270                 let bound_spans = self.collect_outlives_bound_spans(
2271                     cx.tcx,
2272                     bounds,
2273                     &relevant_lifetimes,
2274                     infer_static,
2275                 );
2276                 bound_count += bound_spans.len();
2277
2278                 let drop_predicate = bound_spans.len() == bounds.len();
2279                 if drop_predicate {
2280                     dropped_predicate_count += 1;
2281                 }
2282
2283                 // If all the bounds on a predicate were inferable and there are
2284                 // further predicates, we want to eat the trailing comma.
2285                 if drop_predicate && i + 1 < num_predicates {
2286                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
2287                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
2288                 } else {
2289                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2290                         span.shrink_to_lo(),
2291                         bounds,
2292                         bound_spans,
2293                     ));
2294                 }
2295             }
2296
2297             // If all predicates are inferable, drop the entire clause
2298             // (including the `where`)
2299             if num_predicates > 0 && dropped_predicate_count == num_predicates {
2300                 let where_span = hir_generics
2301                     .where_clause
2302                     .span()
2303                     .expect("span of (nonempty) where clause should exist");
2304                 // Extend the where clause back to the closing `>` of the
2305                 // generics, except for tuple struct, which have the `where`
2306                 // after the fields of the struct.
2307                 let full_where_span =
2308                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2309                         where_span
2310                     } else {
2311                         hir_generics.span.shrink_to_hi().to(where_span)
2312                     };
2313                 lint_spans.push(full_where_span);
2314             } else {
2315                 lint_spans.extend(where_lint_spans);
2316             }
2317
2318             if !lint_spans.is_empty() {
2319                 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
2320                     lint.build("outlives requirements can be inferred")
2321                         .multipart_suggestion(
2322                             if bound_count == 1 {
2323                                 "remove this bound"
2324                             } else {
2325                                 "remove these bounds"
2326                             },
2327                             lint_spans
2328                                 .into_iter()
2329                                 .map(|span| (span, "".to_owned()))
2330                                 .collect::<Vec<_>>(),
2331                             Applicability::MachineApplicable,
2332                         )
2333                         .emit();
2334                 });
2335             }
2336         }
2337     }
2338 }
2339
2340 declare_lint! {
2341     /// The `incomplete_features` lint detects unstable features enabled with
2342     /// the [`feature` attribute] that may function improperly in some or all
2343     /// cases.
2344     ///
2345     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2346     ///
2347     /// ### Example
2348     ///
2349     /// ```rust
2350     /// #![feature(generic_const_exprs)]
2351     /// ```
2352     ///
2353     /// {{produces}}
2354     ///
2355     /// ### Explanation
2356     ///
2357     /// Although it is encouraged for people to experiment with unstable
2358     /// features, some of them are known to be incomplete or faulty. This lint
2359     /// is a signal that the feature has not yet been finished, and you may
2360     /// experience problems with it.
2361     pub INCOMPLETE_FEATURES,
2362     Warn,
2363     "incomplete features that may function improperly in some or all cases"
2364 }
2365
2366 declare_lint_pass!(
2367     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2368     IncompleteFeatures => [INCOMPLETE_FEATURES]
2369 );
2370
2371 impl EarlyLintPass for IncompleteFeatures {
2372     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2373         let features = cx.sess.features_untracked();
2374         features
2375             .declared_lang_features
2376             .iter()
2377             .map(|(name, span, _)| (name, span))
2378             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2379             .filter(|(&name, _)| features.incomplete(name))
2380             .for_each(|(&name, &span)| {
2381                 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
2382                     let mut builder = lint.build(&format!(
2383                         "the feature `{}` is incomplete and may not be safe to use \
2384                          and/or cause compiler crashes",
2385                         name,
2386                     ));
2387                     if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
2388                         builder.note(&format!(
2389                             "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
2390                              for more information",
2391                             n, n,
2392                         ));
2393                     }
2394                     if HAS_MIN_FEATURES.contains(&name) {
2395                         builder.help(&format!(
2396                             "consider using `min_{}` instead, which is more stable and complete",
2397                             name,
2398                         ));
2399                     }
2400                     builder.emit();
2401                 })
2402             });
2403     }
2404 }
2405
2406 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2407
2408 declare_lint! {
2409     /// The `invalid_value` lint detects creating a value that is not valid,
2410     /// such as a null reference.
2411     ///
2412     /// ### Example
2413     ///
2414     /// ```rust,no_run
2415     /// # #![allow(unused)]
2416     /// unsafe {
2417     ///     let x: &'static i32 = std::mem::zeroed();
2418     /// }
2419     /// ```
2420     ///
2421     /// {{produces}}
2422     ///
2423     /// ### Explanation
2424     ///
2425     /// In some situations the compiler can detect that the code is creating
2426     /// an invalid value, which should be avoided.
2427     ///
2428     /// In particular, this lint will check for improper use of
2429     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2430     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2431     /// lint should provide extra information to indicate what the problem is
2432     /// and a possible solution.
2433     ///
2434     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2435     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2436     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2437     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2438     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2439     pub INVALID_VALUE,
2440     Warn,
2441     "an invalid value is being created (such as a null reference)"
2442 }
2443
2444 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2445
2446 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2447     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2448         #[derive(Debug, Copy, Clone, PartialEq)]
2449         enum InitKind {
2450             Zeroed,
2451             Uninit,
2452         }
2453
2454         /// Information about why a type cannot be initialized this way.
2455         /// Contains an error message and optionally a span to point at.
2456         type InitError = (String, Option<Span>);
2457
2458         /// Test if this constant is all-0.
2459         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2460             use hir::ExprKind::*;
2461             use rustc_ast::LitKind::*;
2462             match &expr.kind {
2463                 Lit(lit) => {
2464                     if let Int(i, _) = lit.node {
2465                         i == 0
2466                     } else {
2467                         false
2468                     }
2469                 }
2470                 Tup(tup) => tup.iter().all(is_zero),
2471                 _ => false,
2472             }
2473         }
2474
2475         /// Determine if this expression is a "dangerous initialization".
2476         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2477             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2478                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2479                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2480                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2481                     match cx.tcx.get_diagnostic_name(def_id) {
2482                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2483                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2484                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2485                         _ => {}
2486                     }
2487                 }
2488             } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind {
2489                 // Find problematic calls to `MaybeUninit::assume_init`.
2490                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2491                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2492                     // This is a call to *some* method named `assume_init`.
2493                     // See if the `self` parameter is one of the dangerous constructors.
2494                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2495                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2496                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2497                             match cx.tcx.get_diagnostic_name(def_id) {
2498                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2499                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2500                                 _ => {}
2501                             }
2502                         }
2503                     }
2504                 }
2505             }
2506
2507             None
2508         }
2509
2510         /// Test if this enum has several actually "existing" variants.
2511         /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
2512         fn is_multi_variant(adt: &ty::AdtDef) -> bool {
2513             // As an approximation, we only count dataless variants. Those are definitely inhabited.
2514             let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count();
2515             existing_variants > 1
2516         }
2517
2518         /// Return `Some` only if we are sure this type does *not*
2519         /// allow zero initialization.
2520         fn ty_find_init_error<'tcx>(
2521             tcx: TyCtxt<'tcx>,
2522             ty: Ty<'tcx>,
2523             init: InitKind,
2524         ) -> Option<InitError> {
2525             use rustc_middle::ty::TyKind::*;
2526             match ty.kind() {
2527                 // Primitive types that don't like 0 as a value.
2528                 Ref(..) => Some(("references must be non-null".to_string(), None)),
2529                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2530                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2531                 Never => Some(("the `!` type has no valid value".to_string(), None)),
2532                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2533                 // raw ptr to dyn Trait
2534                 {
2535                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
2536                 }
2537                 // Primitive types with other constraints.
2538                 Bool if init == InitKind::Uninit => {
2539                     Some(("booleans must be either `true` or `false`".to_string(), None))
2540                 }
2541                 Char if init == InitKind::Uninit => {
2542                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
2543                 }
2544                 // Recurse and checks for some compound types.
2545                 Adt(adt_def, substs) if !adt_def.is_union() => {
2546                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
2547                     use std::ops::Bound;
2548                     match tcx.layout_scalar_valid_range(adt_def.did) {
2549                         // We exploit here that `layout_scalar_valid_range` will never
2550                         // return `Bound::Excluded`.  (And we have tests checking that we
2551                         // handle the attribute correctly.)
2552                         (Bound::Included(lo), _) if lo > 0 => {
2553                             return Some((format!("`{}` must be non-null", ty), None));
2554                         }
2555                         (Bound::Included(_), _) | (_, Bound::Included(_))
2556                             if init == InitKind::Uninit =>
2557                         {
2558                             return Some((
2559                                 format!(
2560                                     "`{}` must be initialized inside its custom valid range",
2561                                     ty,
2562                                 ),
2563                                 None,
2564                             ));
2565                         }
2566                         _ => {}
2567                     }
2568                     // Now, recurse.
2569                     match adt_def.variants.len() {
2570                         0 => Some(("enums with no variants have no valid value".to_string(), None)),
2571                         1 => {
2572                             // Struct, or enum with exactly one variant.
2573                             // Proceed recursively, check all fields.
2574                             let variant = &adt_def.variants[VariantIdx::from_u32(0)];
2575                             variant.fields.iter().find_map(|field| {
2576                                 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
2577                                     |(mut msg, span)| {
2578                                         if span.is_none() {
2579                                             // Point to this field, should be helpful for figuring
2580                                             // out where the source of the error is.
2581                                             let span = tcx.def_span(field.did);
2582                                             write!(
2583                                                 &mut msg,
2584                                                 " (in this {} field)",
2585                                                 adt_def.descr()
2586                                             )
2587                                             .unwrap();
2588                                             (msg, Some(span))
2589                                         } else {
2590                                             // Just forward.
2591                                             (msg, span)
2592                                         }
2593                                     },
2594                                 )
2595                             })
2596                         }
2597                         // Multi-variant enum.
2598                         _ => {
2599                             if init == InitKind::Uninit && is_multi_variant(adt_def) {
2600                                 let span = tcx.def_span(adt_def.did);
2601                                 Some((
2602                                     "enums have to be initialized to a variant".to_string(),
2603                                     Some(span),
2604                                 ))
2605                             } else {
2606                                 // In principle, for zero-initialization we could figure out which variant corresponds
2607                                 // to tag 0, and check that... but for now we just accept all zero-initializations.
2608                                 None
2609                             }
2610                         }
2611                     }
2612                 }
2613                 Tuple(..) => {
2614                     // Proceed recursively, check all fields.
2615                     ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
2616                 }
2617                 // Conservative fallback.
2618                 _ => None,
2619             }
2620         }
2621
2622         if let Some(init) = is_dangerous_init(cx, expr) {
2623             // This conjures an instance of a type out of nothing,
2624             // using zeroed or uninitialized memory.
2625             // We are extremely conservative with what we warn about.
2626             let conjured_ty = cx.typeck_results().expr_ty(expr);
2627             if let Some((msg, span)) =
2628                 with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init))
2629             {
2630                 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2631                     let mut err = lint.build(&format!(
2632                         "the type `{}` does not permit {}",
2633                         conjured_ty,
2634                         match init {
2635                             InitKind::Zeroed => "zero-initialization",
2636                             InitKind::Uninit => "being left uninitialized",
2637                         },
2638                     ));
2639                     err.span_label(expr.span, "this code causes undefined behavior when executed");
2640                     err.span_label(
2641                         expr.span,
2642                         "help: use `MaybeUninit<T>` instead, \
2643                             and only call `assume_init` after initialization is done",
2644                     );
2645                     if let Some(span) = span {
2646                         err.span_note(span, &msg);
2647                     } else {
2648                         err.note(&msg);
2649                     }
2650                     err.emit();
2651                 });
2652             }
2653         }
2654     }
2655 }
2656
2657 declare_lint! {
2658     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2659     /// has been declared with the same name but different types.
2660     ///
2661     /// ### Example
2662     ///
2663     /// ```rust
2664     /// mod m {
2665     ///     extern "C" {
2666     ///         fn foo();
2667     ///     }
2668     /// }
2669     ///
2670     /// extern "C" {
2671     ///     fn foo(_: u32);
2672     /// }
2673     /// ```
2674     ///
2675     /// {{produces}}
2676     ///
2677     /// ### Explanation
2678     ///
2679     /// Because two symbols of the same name cannot be resolved to two
2680     /// different functions at link time, and one function cannot possibly
2681     /// have two types, a clashing extern declaration is almost certainly a
2682     /// mistake. Check to make sure that the `extern` definitions are correct
2683     /// and equivalent, and possibly consider unifying them in one location.
2684     ///
2685     /// This lint does not run between crates because a project may have
2686     /// dependencies which both rely on the same extern function, but declare
2687     /// it in a different (but valid) way. For example, they may both declare
2688     /// an opaque type for one or more of the arguments (which would end up
2689     /// distinct types), or use types that are valid conversions in the
2690     /// language the `extern fn` is defined in. In these cases, the compiler
2691     /// can't say that the clashing declaration is incorrect.
2692     pub CLASHING_EXTERN_DECLARATIONS,
2693     Warn,
2694     "detects when an extern fn has been declared with the same name but different types"
2695 }
2696
2697 pub struct ClashingExternDeclarations {
2698     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2699     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2700     /// the symbol should be reported as a clashing declaration.
2701     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2702     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2703     seen_decls: FxHashMap<Symbol, HirId>,
2704 }
2705
2706 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2707 /// just from declaration itself. This is important because we don't want to report clashes on
2708 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2709 /// different name.
2710 enum SymbolName {
2711     /// The name of the symbol + the span of the annotation which introduced the link name.
2712     Link(Symbol, Span),
2713     /// No link name, so just the name of the symbol.
2714     Normal(Symbol),
2715 }
2716
2717 impl SymbolName {
2718     fn get_name(&self) -> Symbol {
2719         match self {
2720             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2721         }
2722     }
2723 }
2724
2725 impl ClashingExternDeclarations {
2726     crate fn new() -> Self {
2727         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2728     }
2729     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2730     /// for the item, return its HirId without updating the set.
2731     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2732         let did = fi.def_id.to_def_id();
2733         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2734         let name = Symbol::intern(tcx.symbol_name(instance).name);
2735         if let Some(&hir_id) = self.seen_decls.get(&name) {
2736             // Avoid updating the map with the new entry when we do find a collision. We want to
2737             // make sure we're always pointing to the first definition as the previous declaration.
2738             // This lets us avoid emitting "knock-on" diagnostics.
2739             Some(hir_id)
2740         } else {
2741             self.seen_decls.insert(name, fi.hir_id())
2742         }
2743     }
2744
2745     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2746     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2747     /// symbol's name.
2748     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2749         if let Some((overridden_link_name, overridden_link_name_span)) =
2750             tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
2751                 // FIXME: Instead of searching through the attributes again to get span
2752                 // information, we could have codegen_fn_attrs also give span information back for
2753                 // where the attribute was defined. However, until this is found to be a
2754                 // bottleneck, this does just fine.
2755                 (
2756                     overridden_link_name,
2757                     tcx.get_attrs(fi.def_id.to_def_id())
2758                         .iter()
2759                         .find(|at| at.has_name(sym::link_name))
2760                         .unwrap()
2761                         .span,
2762                 )
2763             })
2764         {
2765             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2766         } else {
2767             SymbolName::Normal(fi.ident.name)
2768         }
2769     }
2770
2771     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2772     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2773     /// with the same members (as the declarations shouldn't clash).
2774     fn structurally_same_type<'tcx>(
2775         cx: &LateContext<'tcx>,
2776         a: Ty<'tcx>,
2777         b: Ty<'tcx>,
2778         ckind: CItemKind,
2779     ) -> bool {
2780         fn structurally_same_type_impl<'tcx>(
2781             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2782             cx: &LateContext<'tcx>,
2783             a: Ty<'tcx>,
2784             b: Ty<'tcx>,
2785             ckind: CItemKind,
2786         ) -> bool {
2787             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2788             let tcx = cx.tcx;
2789
2790             // Given a transparent newtype, reach through and grab the inner
2791             // type unless the newtype makes the type non-null.
2792             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2793                 let mut ty = ty;
2794                 loop {
2795                     if let ty::Adt(def, substs) = *ty.kind() {
2796                         let is_transparent = def.subst(tcx, substs).repr.transparent();
2797                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def);
2798                         debug!(
2799                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2800                             ty, is_transparent, is_non_null
2801                         );
2802                         if is_transparent && !is_non_null {
2803                             debug_assert!(def.variants.len() == 1);
2804                             let v = &def.variants[VariantIdx::new(0)];
2805                             ty = transparent_newtype_field(tcx, v)
2806                                 .expect(
2807                                     "single-variant transparent structure with zero-sized field",
2808                                 )
2809                                 .ty(tcx, substs);
2810                             continue;
2811                         }
2812                     }
2813                     debug!("non_transparent_ty -> {:?}", ty);
2814                     return ty;
2815                 }
2816             };
2817
2818             let a = non_transparent_ty(a);
2819             let b = non_transparent_ty(b);
2820
2821             if !seen_types.insert((a, b)) {
2822                 // We've encountered a cycle. There's no point going any further -- the types are
2823                 // structurally the same.
2824                 return true;
2825             }
2826             let tcx = cx.tcx;
2827             if a == b || rustc_middle::ty::TyS::same_type(a, b) {
2828                 // All nominally-same types are structurally same, too.
2829                 true
2830             } else {
2831                 // Do a full, depth-first comparison between the two.
2832                 use rustc_middle::ty::TyKind::*;
2833                 let a_kind = a.kind();
2834                 let b_kind = b.kind();
2835
2836                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2837                     debug!("compare_layouts({:?}, {:?})", a, b);
2838                     let a_layout = &cx.layout_of(a)?.layout.abi;
2839                     let b_layout = &cx.layout_of(b)?.layout.abi;
2840                     debug!(
2841                         "comparing layouts: {:?} == {:?} = {}",
2842                         a_layout,
2843                         b_layout,
2844                         a_layout == b_layout
2845                     );
2846                     Ok(a_layout == b_layout)
2847                 };
2848
2849                 #[allow(rustc::usage_of_ty_tykind)]
2850                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2851                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2852                 };
2853
2854                 ensure_sufficient_stack(|| {
2855                     match (a_kind, b_kind) {
2856                         (Adt(a_def, a_substs), Adt(b_def, b_substs)) => {
2857                             let a = a.subst(cx.tcx, a_substs);
2858                             let b = b.subst(cx.tcx, b_substs);
2859                             debug!("Comparing {:?} and {:?}", a, b);
2860
2861                             // We can immediately rule out these types as structurally same if
2862                             // their layouts differ.
2863                             match compare_layouts(a, b) {
2864                                 Ok(false) => return false,
2865                                 _ => (), // otherwise, continue onto the full, fields comparison
2866                             }
2867
2868                             // Grab a flattened representation of all fields.
2869                             let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter());
2870                             let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter());
2871
2872                             // Perform a structural comparison for each field.
2873                             a_fields.eq_by(
2874                                 b_fields,
2875                                 |&ty::FieldDef { did: a_did, .. },
2876                                  &ty::FieldDef { did: b_did, .. }| {
2877                                     structurally_same_type_impl(
2878                                         seen_types,
2879                                         cx,
2880                                         tcx.type_of(a_did),
2881                                         tcx.type_of(b_did),
2882                                         ckind,
2883                                     )
2884                                 },
2885                             )
2886                         }
2887                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2888                             // For arrays, we also check the constness of the type.
2889                             a_const.val == b_const.val
2890                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2891                         }
2892                         (Slice(a_ty), Slice(b_ty)) => {
2893                             structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2894                         }
2895                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2896                             a_tymut.mutbl == b_tymut.mutbl
2897                                 && structurally_same_type_impl(
2898                                     seen_types,
2899                                     cx,
2900                                     &a_tymut.ty,
2901                                     &b_tymut.ty,
2902                                     ckind,
2903                                 )
2904                         }
2905                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2906                             // For structural sameness, we don't need the region to be same.
2907                             a_mut == b_mut
2908                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2909                         }
2910                         (FnDef(..), FnDef(..)) => {
2911                             let a_poly_sig = a.fn_sig(tcx);
2912                             let b_poly_sig = b.fn_sig(tcx);
2913
2914                             // As we don't compare regions, skip_binder is fine.
2915                             let a_sig = a_poly_sig.skip_binder();
2916                             let b_sig = b_poly_sig.skip_binder();
2917
2918                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2919                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2920                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2921                                     structurally_same_type_impl(seen_types, cx, a, b, ckind)
2922                                 })
2923                                 && structurally_same_type_impl(
2924                                     seen_types,
2925                                     cx,
2926                                     a_sig.output(),
2927                                     b_sig.output(),
2928                                     ckind,
2929                                 )
2930                         }
2931                         (Tuple(a_substs), Tuple(b_substs)) => {
2932                             a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| {
2933                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2934                             })
2935                         }
2936                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2937                         // For the purposes of this lint, take the conservative approach and mark them as
2938                         // not structurally same.
2939                         (Dynamic(..), Dynamic(..))
2940                         | (Error(..), Error(..))
2941                         | (Closure(..), Closure(..))
2942                         | (Generator(..), Generator(..))
2943                         | (GeneratorWitness(..), GeneratorWitness(..))
2944                         | (Projection(..), Projection(..))
2945                         | (Opaque(..), Opaque(..)) => false,
2946
2947                         // These definitely should have been caught above.
2948                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2949
2950                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2951                         // enum layout optimisation is being applied.
2952                         (Adt(..), other_kind) | (other_kind, Adt(..))
2953                             if is_primitive_or_pointer(other_kind) =>
2954                         {
2955                             let (primitive, adt) =
2956                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2957                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2958                                 ty == primitive
2959                             } else {
2960                                 compare_layouts(a, b).unwrap_or(false)
2961                             }
2962                         }
2963                         // Otherwise, just compare the layouts. This may fail to lint for some
2964                         // incompatible types, but at the very least, will stop reads into
2965                         // uninitialised memory.
2966                         _ => compare_layouts(a, b).unwrap_or(false),
2967                     }
2968                 })
2969             }
2970         }
2971         let mut seen_types = FxHashSet::default();
2972         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2973     }
2974 }
2975
2976 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2977
2978 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2979     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2980         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2981         if let ForeignItemKind::Fn(..) = this_fi.kind {
2982             let tcx = cx.tcx;
2983             if let Some(existing_hid) = self.insert(tcx, this_fi) {
2984                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
2985                 let this_decl_ty = tcx.type_of(this_fi.def_id);
2986                 debug!(
2987                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2988                     existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
2989                 );
2990                 // Check that the declarations match.
2991                 if !Self::structurally_same_type(
2992                     cx,
2993                     existing_decl_ty,
2994                     this_decl_ty,
2995                     CItemKind::Declaration,
2996                 ) {
2997                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid);
2998                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2999
3000                     // We want to ensure that we use spans for both decls that include where the
3001                     // name was defined, whether that was from the link_name attribute or not.
3002                     let get_relevant_span =
3003                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
3004                             SymbolName::Normal(_) => fi.span,
3005                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
3006                         };
3007                     // Finally, emit the diagnostic.
3008                     tcx.struct_span_lint_hir(
3009                         CLASHING_EXTERN_DECLARATIONS,
3010                         this_fi.hir_id(),
3011                         get_relevant_span(this_fi),
3012                         |lint| {
3013                             let mut expected_str = DiagnosticStyledString::new();
3014                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
3015                             let mut found_str = DiagnosticStyledString::new();
3016                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
3017
3018                             lint.build(&format!(
3019                                 "`{}` redeclare{} with a different signature",
3020                                 this_fi.ident.name,
3021                                 if orig.get_name() == this_fi.ident.name {
3022                                     "d".to_string()
3023                                 } else {
3024                                     format!("s `{}`", orig.get_name())
3025                                 }
3026                             ))
3027                             .span_label(
3028                                 get_relevant_span(orig_fi),
3029                                 &format!("`{}` previously declared here", orig.get_name()),
3030                             )
3031                             .span_label(
3032                                 get_relevant_span(this_fi),
3033                                 "this signature doesn't match the previous declaration",
3034                             )
3035                             .note_expected_found(&"", expected_str, &"", found_str)
3036                             .emit()
3037                         },
3038                     );
3039                 }
3040             }
3041         }
3042     }
3043 }
3044
3045 declare_lint! {
3046     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3047     /// which causes [undefined behavior].
3048     ///
3049     /// ### Example
3050     ///
3051     /// ```rust,no_run
3052     /// # #![allow(unused)]
3053     /// use std::ptr;
3054     /// unsafe {
3055     ///     let x = &*ptr::null::<i32>();
3056     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3057     ///     let x = *(0 as *const i32);
3058     /// }
3059     /// ```
3060     ///
3061     /// {{produces}}
3062     ///
3063     /// ### Explanation
3064     ///
3065     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3066     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3067     ///
3068     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3069     pub DEREF_NULLPTR,
3070     Warn,
3071     "detects when an null pointer is dereferenced"
3072 }
3073
3074 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3075
3076 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3077     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3078         /// test if expression is a null ptr
3079         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3080             match &expr.kind {
3081                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3082                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3083                         return is_zero(expr) || is_null_ptr(cx, expr);
3084                     }
3085                 }
3086                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3087                 rustc_hir::ExprKind::Call(ref path, _) => {
3088                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3089                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3090                             return matches!(
3091                                 cx.tcx.get_diagnostic_name(def_id),
3092                                 Some(sym::ptr_null | sym::ptr_null_mut)
3093                             );
3094                         }
3095                     }
3096                 }
3097                 _ => {}
3098             }
3099             false
3100         }
3101
3102         /// test if expression is the literal `0`
3103         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3104             match &expr.kind {
3105                 rustc_hir::ExprKind::Lit(ref lit) => {
3106                     if let LitKind::Int(a, _) = lit.node {
3107                         return a == 0;
3108                     }
3109                 }
3110                 _ => {}
3111             }
3112             false
3113         }
3114
3115         if let rustc_hir::ExprKind::Unary(ref un_op, ref expr_deref) = expr.kind {
3116             if let rustc_hir::UnOp::Deref = un_op {
3117                 if is_null_ptr(cx, expr_deref) {
3118                     cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
3119                         let mut err = lint.build("dereferencing a null pointer");
3120                         err.span_label(
3121                             expr.span,
3122                             "this code causes undefined behavior when executed",
3123                         );
3124                         err.emit();
3125                     });
3126                 }
3127             }
3128         }
3129     }
3130 }
3131
3132 declare_lint! {
3133     /// The `named_asm_labels` lint detects the use of named labels in the
3134     /// inline `asm!` macro.
3135     ///
3136     /// ### Example
3137     ///
3138     /// ```rust,compile_fail
3139     /// #![feature(asm)]
3140     /// fn main() {
3141     ///     unsafe {
3142     ///         asm!("foo: bar");
3143     ///     }
3144     /// }
3145     /// ```
3146     ///
3147     /// {{produces}}
3148     ///
3149     /// ### Explanation
3150     ///
3151     /// LLVM is allowed to duplicate inline assembly blocks for any
3152     /// reason, for example when it is in a function that gets inlined. Because
3153     /// of this, GNU assembler [local labels] *must* be used instead of labels
3154     /// with a name. Using named labels might cause assembler or linker errors.
3155     ///
3156     /// See the [unstable book] for more details.
3157     ///
3158     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3159     /// [unstable book]: https://doc.rust-lang.org/nightly/unstable-book/library-features/asm.html#labels
3160     pub NAMED_ASM_LABELS,
3161     Deny,
3162     "named labels in inline assembly",
3163 }
3164
3165 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3166
3167 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3168     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3169         if let hir::Expr {
3170             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3171             ..
3172         } = expr
3173         {
3174             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3175                 let template_str = &template_sym.as_str();
3176                 let find_label_span = |needle: &str| -> Option<Span> {
3177                     if let Some(template_snippet) = template_snippet {
3178                         let snippet = template_snippet.as_str();
3179                         if let Some(pos) = snippet.find(needle) {
3180                             let end = pos
3181                                 + &snippet[pos..]
3182                                     .find(|c| c == ':')
3183                                     .unwrap_or(snippet[pos..].len() - 1);
3184                             let inner = InnerSpan::new(pos, end);
3185                             return Some(template_span.from_inner(inner));
3186                         }
3187                     }
3188
3189                     None
3190                 };
3191
3192                 let mut found_labels = Vec::new();
3193
3194                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3195                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3196                 for statement in statements {
3197                     // If there's a comment, trim it from the statement
3198                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3199                     let mut start_idx = 0;
3200                     for (idx, _) in statement.match_indices(':') {
3201                         let possible_label = statement[start_idx..idx].trim();
3202                         let mut chars = possible_label.chars();
3203                         if let Some(c) = chars.next() {
3204                             // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3205                             if (c.is_alphabetic() || matches!(c, '.' | '_'))
3206                                 && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3207                             {
3208                                 found_labels.push(possible_label);
3209                             } else {
3210                                 // If we encounter a non-label, there cannot be any further labels, so stop checking
3211                                 break;
3212                             }
3213                         } else {
3214                             // Empty string means a leading ':' in this section, which is not a label
3215                             break;
3216                         }
3217
3218                         start_idx = idx + 1;
3219                     }
3220                 }
3221
3222                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3223
3224                 if found_labels.len() > 0 {
3225                     let spans = found_labels
3226                         .into_iter()
3227                         .filter_map(|label| find_label_span(label))
3228                         .collect::<Vec<Span>>();
3229                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3230                     let target_spans: MultiSpan =
3231                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3232
3233                     cx.lookup_with_diagnostics(
3234                             NAMED_ASM_LABELS,
3235                             Some(target_spans),
3236                             |diag| {
3237                                 let mut err =
3238                                     diag.build("avoid using named labels in inline assembly");
3239                                 err.emit();
3240                             },
3241                             BuiltinLintDiagnostics::NamedAsmLabel(
3242                                 "only local labels of the form `<number>:` should be used in inline asm"
3243                                     .to_string(),
3244                             ),
3245                         );
3246                 }
3247             }
3248         }
3249     }
3250 }