]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
migrate: `UnsafeCode` in `builtin.rs`
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     errors::BuiltinEllpisisInclusiveRangePatterns,
25     lints::{
26         BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinConstNoMangle,
27         BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr, BuiltinEllipsisInclusiveRangePatternsLint,
28         BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinIncompleteFeatures,
29         BuiltinIncompleteFeaturesHelp, BuiltinIncompleteFeaturesNote, BuiltinKeywordIdents,
30         BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
31         BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
32         BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinUnexpectedCliConfigName,
33         BuiltinUnexpectedCliConfigValue, BuiltinUnnameableTestItems, BuiltinUnreachablePub,
34         BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
35         BuiltinUnusedDocCommentSub, BuiltinWhileTrue,
36     },
37     types::{transparent_newtype_field, CItemKind},
38     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
39 };
40 use hir::IsAsync;
41 use rustc_ast::attr;
42 use rustc_ast::tokenstream::{TokenStream, TokenTree};
43 use rustc_ast::visit::{FnCtxt, FnKind};
44 use rustc_ast::{self as ast, *};
45 use rustc_ast_pretty::pprust::{self, expr_to_string};
46 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
47 use rustc_data_structures::stack::ensure_sufficient_stack;
48 use rustc_errors::{
49     fluent, Applicability, DecorateLint, DelayDm, Diagnostic, DiagnosticStyledString, MultiSpan,
50 };
51 use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
52 use rustc_hir as hir;
53 use rustc_hir::def::{DefKind, Res};
54 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
55 use rustc_hir::intravisit::FnKind as HirFnKind;
56 use rustc_hir::{
57     Body, FnDecl, ForeignItemKind, GenericParamKind, HirId, Node, PatKind, PredicateOrigin,
58 };
59 use rustc_index::vec::Idx;
60 use rustc_middle::lint::in_external_macro;
61 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
62 use rustc_middle::ty::print::with_no_trimmed_paths;
63 use rustc_middle::ty::subst::GenericArgKind;
64 use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef};
65 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
66 use rustc_span::edition::Edition;
67 use rustc_span::source_map::Spanned;
68 use rustc_span::symbol::{kw, sym, Ident, Symbol};
69 use rustc_span::{BytePos, InnerSpan, Span};
70 use rustc_target::abi::{Abi, VariantIdx};
71 use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
72 use rustc_trait_selection::traits::{self, misc::can_type_implement_copy, EvaluationResult};
73
74 use crate::nonstandard_style::{method_context, MethodLateContext};
75
76 use std::fmt::Write;
77
78 // hardwired lints from librustc_middle
79 pub use rustc_session::lint::builtin::*;
80
81 declare_lint! {
82     /// The `while_true` lint detects `while true { }`.
83     ///
84     /// ### Example
85     ///
86     /// ```rust,no_run
87     /// while true {
88     ///
89     /// }
90     /// ```
91     ///
92     /// {{produces}}
93     ///
94     /// ### Explanation
95     ///
96     /// `while true` should be replaced with `loop`. A `loop` expression is
97     /// the preferred way to write an infinite loop because it more directly
98     /// expresses the intent of the loop.
99     WHILE_TRUE,
100     Warn,
101     "suggest using `loop { }` instead of `while true { }`"
102 }
103
104 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
105
106 /// Traverse through any amount of parenthesis and return the first non-parens expression.
107 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
108     while let ast::ExprKind::Paren(sub) = &expr.kind {
109         expr = sub;
110     }
111     expr
112 }
113
114 impl EarlyLintPass for WhileTrue {
115     #[inline]
116     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
117         if let ast::ExprKind::While(cond, _, label) = &e.kind
118             && let cond = pierce_parens(cond)
119             && let ast::ExprKind::Lit(token_lit) = cond.kind
120             && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
121             && !cond.span.from_expansion()
122         {
123             let condition_span = e.span.with_hi(cond.span.hi());
124             let replace = format!(
125                             "{}loop",
126                             label.map_or_else(String::new, |label| format!(
127                                 "{}: ",
128                                 label.ident,
129                             ))
130                         );
131             cx.emit_spanned_lint(WHILE_TRUE, condition_span, BuiltinWhileTrue {
132                 suggestion: condition_span,
133                 replace,
134             });
135         }
136     }
137 }
138
139 declare_lint! {
140     /// The `box_pointers` lints use of the Box type.
141     ///
142     /// ### Example
143     ///
144     /// ```rust,compile_fail
145     /// #![deny(box_pointers)]
146     /// struct Foo {
147     ///     x: Box<isize>,
148     /// }
149     /// ```
150     ///
151     /// {{produces}}
152     ///
153     /// ### Explanation
154     ///
155     /// This lint is mostly historical, and not particularly useful. `Box<T>`
156     /// used to be built into the language, and the only way to do heap
157     /// allocation. Today's Rust can call into other allocators, etc.
158     BOX_POINTERS,
159     Allow,
160     "use of owned (Box type) heap memory"
161 }
162
163 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
164
165 impl BoxPointers {
166     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
167         for leaf in ty.walk() {
168             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
169                 if leaf_ty.is_box() {
170                     cx.emit_spanned_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty });
171                 }
172             }
173         }
174     }
175 }
176
177 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
178     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
179         match it.kind {
180             hir::ItemKind::Fn(..)
181             | hir::ItemKind::TyAlias(..)
182             | hir::ItemKind::Enum(..)
183             | hir::ItemKind::Struct(..)
184             | hir::ItemKind::Union(..) => {
185                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.owner_id))
186             }
187             _ => (),
188         }
189
190         // If it's a struct, we also have to check the fields' types
191         match it.kind {
192             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
193                 for field in struct_def.fields() {
194                     self.check_heap_type(cx, field.span, cx.tcx.type_of(field.def_id));
195                 }
196             }
197             _ => (),
198         }
199     }
200
201     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
202         let ty = cx.typeck_results().node_type(e.hir_id);
203         self.check_heap_type(cx, e.span, ty);
204     }
205 }
206
207 declare_lint! {
208     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
209     /// instead of `Struct { x }` in a pattern.
210     ///
211     /// ### Example
212     ///
213     /// ```rust
214     /// struct Point {
215     ///     x: i32,
216     ///     y: i32,
217     /// }
218     ///
219     ///
220     /// fn main() {
221     ///     let p = Point {
222     ///         x: 5,
223     ///         y: 5,
224     ///     };
225     ///
226     ///     match p {
227     ///         Point { x: x, y: y } => (),
228     ///     }
229     /// }
230     /// ```
231     ///
232     /// {{produces}}
233     ///
234     /// ### Explanation
235     ///
236     /// The preferred style is to avoid the repetition of specifying both the
237     /// field name and the binding name if both identifiers are the same.
238     NON_SHORTHAND_FIELD_PATTERNS,
239     Warn,
240     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
241 }
242
243 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
244
245 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
246     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
247         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
248             let variant = cx
249                 .typeck_results()
250                 .pat_ty(pat)
251                 .ty_adt_def()
252                 .expect("struct pattern type is not an ADT")
253                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
254             for fieldpat in field_pats {
255                 if fieldpat.is_shorthand {
256                     continue;
257                 }
258                 if fieldpat.span.from_expansion() {
259                     // Don't lint if this is a macro expansion: macro authors
260                     // shouldn't have to worry about this kind of style issue
261                     // (Issue #49588)
262                     continue;
263                 }
264                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
265                     if cx.tcx.find_field_index(ident, &variant)
266                         == Some(cx.typeck_results().field_index(fieldpat.hir_id))
267                     {
268                         cx.emit_spanned_lint(
269                             NON_SHORTHAND_FIELD_PATTERNS,
270                             fieldpat.span,
271                             BuiltinNonShorthandFieldPatterns {
272                                 ident,
273                                 suggestion: fieldpat.span,
274                                 prefix: binding_annot.prefix_str(),
275                             },
276                         );
277                     }
278                 }
279             }
280         }
281     }
282 }
283
284 declare_lint! {
285     /// The `unsafe_code` lint catches usage of `unsafe` code.
286     ///
287     /// ### Example
288     ///
289     /// ```rust,compile_fail
290     /// #![deny(unsafe_code)]
291     /// fn main() {
292     ///     unsafe {
293     ///
294     ///     }
295     /// }
296     /// ```
297     ///
298     /// {{produces}}
299     ///
300     /// ### Explanation
301     ///
302     /// This lint is intended to restrict the usage of `unsafe`, which can be
303     /// difficult to use correctly.
304     UNSAFE_CODE,
305     Allow,
306     "usage of `unsafe` code"
307 }
308
309 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
310
311 impl UnsafeCode {
312     fn report_unsafe(
313         &self,
314         cx: &EarlyContext<'_>,
315         span: Span,
316         decorate: impl for<'a> DecorateLint<'a, ()>,
317     ) {
318         // This comes from a macro that has `#[allow_internal_unsafe]`.
319         if span.allows_unsafe() {
320             return;
321         }
322
323         cx.emit_spanned_lint(UNSAFE_CODE, span, decorate);
324     }
325 }
326
327 impl EarlyLintPass for UnsafeCode {
328     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
329         if attr.has_name(sym::allow_internal_unsafe) {
330             self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe);
331         }
332     }
333
334     #[inline]
335     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
336         if let ast::ExprKind::Block(ref blk, _) = e.kind {
337             // Don't warn about generated blocks; that'll just pollute the output.
338             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
339                 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
340             }
341         }
342     }
343
344     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
345         match it.kind {
346             ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => {
347                 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
348             }
349
350             ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => {
351                 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
352             }
353
354             ast::ItemKind::Fn(..) => {
355                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
356                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
357                 }
358
359                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
360                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
361                 }
362
363                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
364                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
365                 }
366             }
367
368             ast::ItemKind::Static(..) => {
369                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
370                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
371                 }
372
373                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
374                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
375                 }
376
377                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
378                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
379                 }
380             }
381
382             _ => {}
383         }
384     }
385
386     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
387         if let ast::AssocItemKind::Fn(..) = it.kind {
388             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
389                 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
390             }
391             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
392                 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
393             }
394         }
395     }
396
397     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
398         if let FnKind::Fn(
399             ctxt,
400             _,
401             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
402             _,
403             _,
404             body,
405         ) = fk
406         {
407             let decorator = match ctxt {
408                 FnCtxt::Foreign => return,
409                 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
410                 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
411                 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
412             };
413             self.report_unsafe(cx, span, decorator);
414         }
415     }
416 }
417
418 declare_lint! {
419     /// The `missing_docs` lint detects missing documentation for public items.
420     ///
421     /// ### Example
422     ///
423     /// ```rust,compile_fail
424     /// #![deny(missing_docs)]
425     /// pub fn foo() {}
426     /// ```
427     ///
428     /// {{produces}}
429     ///
430     /// ### Explanation
431     ///
432     /// This lint is intended to ensure that a library is well-documented.
433     /// Items without documentation can be difficult for users to understand
434     /// how to use properly.
435     ///
436     /// This lint is "allow" by default because it can be noisy, and not all
437     /// projects may want to enforce everything to be documented.
438     pub MISSING_DOCS,
439     Allow,
440     "detects missing documentation for public members",
441     report_in_external_macro
442 }
443
444 pub struct MissingDoc {
445     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
446     doc_hidden_stack: Vec<bool>,
447 }
448
449 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
450
451 fn has_doc(attr: &ast::Attribute) -> bool {
452     if attr.is_doc_comment() {
453         return true;
454     }
455
456     if !attr.has_name(sym::doc) {
457         return false;
458     }
459
460     if attr.value_str().is_some() {
461         return true;
462     }
463
464     if let Some(list) = attr.meta_item_list() {
465         for meta in list {
466             if meta.has_name(sym::hidden) {
467                 return true;
468             }
469         }
470     }
471
472     false
473 }
474
475 impl MissingDoc {
476     pub fn new() -> MissingDoc {
477         MissingDoc { doc_hidden_stack: vec![false] }
478     }
479
480     fn doc_hidden(&self) -> bool {
481         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
482     }
483
484     fn check_missing_docs_attrs(
485         &self,
486         cx: &LateContext<'_>,
487         def_id: LocalDefId,
488         article: &'static str,
489         desc: &'static str,
490     ) {
491         // If we're building a test harness, then warning about
492         // documentation is probably not really relevant right now.
493         if cx.sess().opts.test {
494             return;
495         }
496
497         // `#[doc(hidden)]` disables missing_docs check.
498         if self.doc_hidden() {
499             return;
500         }
501
502         // Only check publicly-visible items, using the result from the privacy pass.
503         // It's an option so the crate root can also use this function (it doesn't
504         // have a `NodeId`).
505         if def_id != CRATE_DEF_ID {
506             if !cx.effective_visibilities.is_exported(def_id) {
507                 return;
508             }
509         }
510
511         let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
512         let has_doc = attrs.iter().any(has_doc);
513         if !has_doc {
514             cx.emit_spanned_lint(
515                 MISSING_DOCS,
516                 cx.tcx.def_span(def_id),
517                 BuiltinMissingDoc { article, desc },
518             );
519         }
520     }
521 }
522
523 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
524     #[inline]
525     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
526         let doc_hidden = self.doc_hidden()
527             || attrs.iter().any(|attr| {
528                 attr.has_name(sym::doc)
529                     && match attr.meta_item_list() {
530                         None => false,
531                         Some(l) => attr::list_contains_name(&l, sym::hidden),
532                     }
533             });
534         self.doc_hidden_stack.push(doc_hidden);
535     }
536
537     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
538         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
539     }
540
541     fn check_crate(&mut self, cx: &LateContext<'_>) {
542         self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
543     }
544
545     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
546         match it.kind {
547             hir::ItemKind::Trait(..) => {
548                 // Issue #11592: traits are always considered exported, even when private.
549                 if cx.tcx.visibility(it.owner_id)
550                     == ty::Visibility::Restricted(
551                         cx.tcx.parent_module_from_def_id(it.owner_id.def_id).to_def_id(),
552                     )
553                 {
554                     return;
555                 }
556             }
557             hir::ItemKind::TyAlias(..)
558             | hir::ItemKind::Fn(..)
559             | hir::ItemKind::Macro(..)
560             | hir::ItemKind::Mod(..)
561             | hir::ItemKind::Enum(..)
562             | hir::ItemKind::Struct(..)
563             | hir::ItemKind::Union(..)
564             | hir::ItemKind::Const(..)
565             | hir::ItemKind::Static(..) => {}
566
567             _ => return,
568         };
569
570         let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
571
572         self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
573     }
574
575     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
576         let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
577
578         self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
579     }
580
581     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
582         // If the method is an impl for a trait, don't doc.
583         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
584             return;
585         }
586
587         // If the method is an impl for an item with docs_hidden, don't doc.
588         if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
589             let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
590             let impl_ty = cx.tcx.type_of(parent);
591             let outerdef = match impl_ty.kind() {
592                 ty::Adt(def, _) => Some(def.did()),
593                 ty::Foreign(def_id) => Some(*def_id),
594                 _ => None,
595             };
596             let is_hidden = match outerdef {
597                 Some(id) => cx.tcx.is_doc_hidden(id),
598                 None => false,
599             };
600             if is_hidden {
601                 return;
602             }
603         }
604
605         let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
606         self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
607     }
608
609     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
610         let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
611         self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
612     }
613
614     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
615         if !sf.is_positional() {
616             self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
617         }
618     }
619
620     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
621         self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
622     }
623 }
624
625 declare_lint! {
626     /// The `missing_copy_implementations` lint detects potentially-forgotten
627     /// implementations of [`Copy`].
628     ///
629     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
630     ///
631     /// ### Example
632     ///
633     /// ```rust,compile_fail
634     /// #![deny(missing_copy_implementations)]
635     /// pub struct Foo {
636     ///     pub field: i32
637     /// }
638     /// # fn main() {}
639     /// ```
640     ///
641     /// {{produces}}
642     ///
643     /// ### Explanation
644     ///
645     /// Historically (before 1.0), types were automatically marked as `Copy`
646     /// if possible. This was changed so that it required an explicit opt-in
647     /// by implementing the `Copy` trait. As part of this change, a lint was
648     /// added to alert if a copyable type was not marked `Copy`.
649     ///
650     /// This lint is "allow" by default because this code isn't bad; it is
651     /// common to write newtypes like this specifically so that a `Copy` type
652     /// is no longer `Copy`. `Copy` types can result in unintended copies of
653     /// large data which can impact performance.
654     pub MISSING_COPY_IMPLEMENTATIONS,
655     Allow,
656     "detects potentially-forgotten implementations of `Copy`"
657 }
658
659 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
660
661 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
662     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
663         if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
664             return;
665         }
666         let (def, ty) = match item.kind {
667             hir::ItemKind::Struct(_, ref ast_generics) => {
668                 if !ast_generics.params.is_empty() {
669                     return;
670                 }
671                 let def = cx.tcx.adt_def(item.owner_id);
672                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
673             }
674             hir::ItemKind::Union(_, ref ast_generics) => {
675                 if !ast_generics.params.is_empty() {
676                     return;
677                 }
678                 let def = cx.tcx.adt_def(item.owner_id);
679                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
680             }
681             hir::ItemKind::Enum(_, ref ast_generics) => {
682                 if !ast_generics.params.is_empty() {
683                     return;
684                 }
685                 let def = cx.tcx.adt_def(item.owner_id);
686                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
687             }
688             _ => return,
689         };
690         if def.has_dtor(cx.tcx) {
691             return;
692         }
693
694         // If the type contains a raw pointer, it may represent something like a handle,
695         // and recommending Copy might be a bad idea.
696         for field in def.all_fields() {
697             let did = field.did;
698             if cx.tcx.type_of(did).is_unsafe_ptr() {
699                 return;
700             }
701         }
702         let param_env = ty::ParamEnv::empty();
703         if ty.is_copy_modulo_regions(cx.tcx, param_env) {
704             return;
705         }
706
707         // We shouldn't recommend implementing `Copy` on stateful things,
708         // such as iterators.
709         if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator) {
710             if cx.tcx.infer_ctxt().build().type_implements_trait(iter_trait, [ty], param_env)
711                 == EvaluationResult::EvaluatedToOk
712             {
713                 return;
714             }
715         }
716
717         // Default value of clippy::trivially_copy_pass_by_ref
718         const MAX_SIZE: u64 = 256;
719
720         if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
721             if size > MAX_SIZE {
722                 return;
723             }
724         }
725
726         if can_type_implement_copy(
727             cx.tcx,
728             param_env,
729             ty,
730             traits::ObligationCause::misc(item.span, item.hir_id()),
731         )
732         .is_ok()
733         {
734             cx.emit_spanned_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
735         }
736     }
737 }
738
739 declare_lint! {
740     /// The `missing_debug_implementations` lint detects missing
741     /// implementations of [`fmt::Debug`].
742     ///
743     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
744     ///
745     /// ### Example
746     ///
747     /// ```rust,compile_fail
748     /// #![deny(missing_debug_implementations)]
749     /// pub struct Foo;
750     /// # fn main() {}
751     /// ```
752     ///
753     /// {{produces}}
754     ///
755     /// ### Explanation
756     ///
757     /// Having a `Debug` implementation on all types can assist with
758     /// debugging, as it provides a convenient way to format and display a
759     /// value. Using the `#[derive(Debug)]` attribute will automatically
760     /// generate a typical implementation, or a custom implementation can be
761     /// added by manually implementing the `Debug` trait.
762     ///
763     /// This lint is "allow" by default because adding `Debug` to all types can
764     /// have a negative impact on compile time and code size. It also requires
765     /// boilerplate to be added to every type, which can be an impediment.
766     MISSING_DEBUG_IMPLEMENTATIONS,
767     Allow,
768     "detects missing implementations of Debug"
769 }
770
771 #[derive(Default)]
772 pub struct MissingDebugImplementations {
773     impling_types: Option<LocalDefIdSet>,
774 }
775
776 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
777
778 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
779     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
780         if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
781             return;
782         }
783
784         match item.kind {
785             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
786             _ => return,
787         }
788
789         let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
790             return
791         };
792
793         if self.impling_types.is_none() {
794             let mut impls = LocalDefIdSet::default();
795             cx.tcx.for_each_impl(debug, |d| {
796                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
797                     if let Some(def_id) = ty_def.did().as_local() {
798                         impls.insert(def_id);
799                     }
800                 }
801             });
802
803             self.impling_types = Some(impls);
804             debug!("{:?}", self.impling_types);
805         }
806
807         if !self.impling_types.as_ref().unwrap().contains(&item.owner_id.def_id) {
808             cx.emit_spanned_lint(
809                 MISSING_DEBUG_IMPLEMENTATIONS,
810                 item.span,
811                 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
812             );
813         }
814     }
815 }
816
817 declare_lint! {
818     /// The `anonymous_parameters` lint detects anonymous parameters in trait
819     /// definitions.
820     ///
821     /// ### Example
822     ///
823     /// ```rust,edition2015,compile_fail
824     /// #![deny(anonymous_parameters)]
825     /// // edition 2015
826     /// pub trait Foo {
827     ///     fn foo(usize);
828     /// }
829     /// fn main() {}
830     /// ```
831     ///
832     /// {{produces}}
833     ///
834     /// ### Explanation
835     ///
836     /// This syntax is mostly a historical accident, and can be worked around
837     /// quite easily by adding an `_` pattern or a descriptive identifier:
838     ///
839     /// ```rust
840     /// trait Foo {
841     ///     fn foo(_: usize);
842     /// }
843     /// ```
844     ///
845     /// This syntax is now a hard error in the 2018 edition. In the 2015
846     /// edition, this lint is "warn" by default. This lint
847     /// enables the [`cargo fix`] tool with the `--edition` flag to
848     /// automatically transition old code from the 2015 edition to 2018. The
849     /// tool will run this lint and automatically apply the
850     /// suggested fix from the compiler (which is to add `_` to each
851     /// parameter). This provides a completely automated way to update old
852     /// code for a new edition. See [issue #41686] for more details.
853     ///
854     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
855     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
856     pub ANONYMOUS_PARAMETERS,
857     Warn,
858     "detects anonymous parameters",
859     @future_incompatible = FutureIncompatibleInfo {
860         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
861         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
862     };
863 }
864
865 declare_lint_pass!(
866     /// Checks for use of anonymous parameters (RFC 1685).
867     AnonymousParameters => [ANONYMOUS_PARAMETERS]
868 );
869
870 impl EarlyLintPass for AnonymousParameters {
871     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
872         if cx.sess().edition() != Edition::Edition2015 {
873             // This is a hard error in future editions; avoid linting and erroring
874             return;
875         }
876         if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
877             for arg in sig.decl.inputs.iter() {
878                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
879                     if ident.name == kw::Empty {
880                         let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
881
882                         let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
883                             (snip.as_str(), Applicability::MachineApplicable)
884                         } else {
885                             ("<type>", Applicability::HasPlaceholders)
886                         };
887                         cx.emit_spanned_lint(
888                             ANONYMOUS_PARAMETERS,
889                             arg.pat.span,
890                             BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
891                         );
892                     }
893                 }
894             }
895         }
896     }
897 }
898
899 /// Check for use of attributes which have been deprecated.
900 #[derive(Clone)]
901 pub struct DeprecatedAttr {
902     // This is not free to compute, so we want to keep it around, rather than
903     // compute it for every attribute.
904     depr_attrs: Vec<&'static BuiltinAttribute>,
905 }
906
907 impl_lint_pass!(DeprecatedAttr => []);
908
909 impl DeprecatedAttr {
910     pub fn new() -> DeprecatedAttr {
911         DeprecatedAttr { depr_attrs: deprecated_attributes() }
912     }
913 }
914
915 impl EarlyLintPass for DeprecatedAttr {
916     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
917         for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
918             if attr.ident().map(|ident| ident.name) == Some(*name) {
919                 if let &AttributeGate::Gated(
920                     Stability::Deprecated(link, suggestion),
921                     name,
922                     reason,
923                     _,
924                 ) = gate
925                 {
926                     // FIXME(davidtwco) translatable deprecated attr
927                     cx.struct_span_lint(
928                         DEPRECATED,
929                         attr.span,
930                         fluent::lint_builtin_deprecated_attr_link,
931                         |lint| {
932                             lint.set_arg("name", name)
933                                 .set_arg("reason", reason)
934                                 .set_arg("link", link)
935                                 .span_suggestion_short(
936                                     attr.span,
937                                     suggestion.map(|s| s.into()).unwrap_or(
938                                         fluent::lint_builtin_deprecated_attr_default_suggestion,
939                                     ),
940                                     "",
941                                     Applicability::MachineApplicable,
942                                 )
943                         },
944                     );
945                 }
946                 return;
947             }
948         }
949         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
950             cx.emit_spanned_lint(
951                 DEPRECATED,
952                 attr.span,
953                 BuiltinDeprecatedAttrUsed {
954                     name: pprust::path_to_string(&attr.get_normal_item().path),
955                     suggestion: attr.span,
956                 },
957             );
958         }
959     }
960 }
961
962 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
963     use rustc_ast::token::CommentKind;
964
965     let mut attrs = attrs.iter().peekable();
966
967     // Accumulate a single span for sugared doc comments.
968     let mut sugared_span: Option<Span> = None;
969
970     while let Some(attr) = attrs.next() {
971         let is_doc_comment = attr.is_doc_comment();
972         if is_doc_comment {
973             sugared_span =
974                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
975         }
976
977         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
978             continue;
979         }
980
981         let span = sugared_span.take().unwrap_or(attr.span);
982
983         if is_doc_comment || attr.has_name(sym::doc) {
984             let sub = match attr.kind {
985                 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
986                     BuiltinUnusedDocCommentSub::PlainHelp
987                 }
988                 AttrKind::DocComment(CommentKind::Block, _) => {
989                     BuiltinUnusedDocCommentSub::BlockHelp
990                 }
991             };
992             cx.emit_spanned_lint(
993                 UNUSED_DOC_COMMENTS,
994                 span,
995                 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
996             );
997         }
998     }
999 }
1000
1001 impl EarlyLintPass for UnusedDocComment {
1002     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1003         let kind = match stmt.kind {
1004             ast::StmtKind::Local(..) => "statements",
1005             // Disabled pending discussion in #78306
1006             ast::StmtKind::Item(..) => return,
1007             // expressions will be reported by `check_expr`.
1008             ast::StmtKind::Empty
1009             | ast::StmtKind::Semi(_)
1010             | ast::StmtKind::Expr(_)
1011             | ast::StmtKind::MacCall(_) => return,
1012         };
1013
1014         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1015     }
1016
1017     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1018         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1019         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1020     }
1021
1022     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1023         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1024     }
1025
1026     fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1027         warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1028     }
1029
1030     fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
1031         warn_if_doc(cx, block.span, "blocks", &block.attrs());
1032     }
1033
1034     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1035         if let ast::ItemKind::ForeignMod(_) = item.kind {
1036             warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
1037         }
1038     }
1039 }
1040
1041 declare_lint! {
1042     /// The `no_mangle_const_items` lint detects any `const` items with the
1043     /// [`no_mangle` attribute].
1044     ///
1045     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1046     ///
1047     /// ### Example
1048     ///
1049     /// ```rust,compile_fail
1050     /// #[no_mangle]
1051     /// const FOO: i32 = 5;
1052     /// ```
1053     ///
1054     /// {{produces}}
1055     ///
1056     /// ### Explanation
1057     ///
1058     /// Constants do not have their symbols exported, and therefore, this
1059     /// probably means you meant to use a [`static`], not a [`const`].
1060     ///
1061     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1062     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1063     NO_MANGLE_CONST_ITEMS,
1064     Deny,
1065     "const items will not have their symbols exported"
1066 }
1067
1068 declare_lint! {
1069     /// The `no_mangle_generic_items` lint detects generic items that must be
1070     /// mangled.
1071     ///
1072     /// ### Example
1073     ///
1074     /// ```rust
1075     /// #[no_mangle]
1076     /// fn foo<T>(t: T) {
1077     ///
1078     /// }
1079     /// ```
1080     ///
1081     /// {{produces}}
1082     ///
1083     /// ### Explanation
1084     ///
1085     /// A function with generics must have its symbol mangled to accommodate
1086     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1087     /// this situation, and should be removed.
1088     ///
1089     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1090     NO_MANGLE_GENERIC_ITEMS,
1091     Warn,
1092     "generic items must be mangled"
1093 }
1094
1095 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1096
1097 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1098     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1099         let attrs = cx.tcx.hir().attrs(it.hir_id());
1100         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1101                                              impl_generics: Option<&hir::Generics<'_>>,
1102                                              generics: &hir::Generics<'_>,
1103                                              span| {
1104             for param in
1105                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1106             {
1107                 match param.kind {
1108                     GenericParamKind::Lifetime { .. } => {}
1109                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1110                         cx.emit_spanned_lint(
1111                             NO_MANGLE_GENERIC_ITEMS,
1112                             span,
1113                             BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span },
1114                         );
1115                         break;
1116                     }
1117                 }
1118             }
1119         };
1120         match it.kind {
1121             hir::ItemKind::Fn(.., ref generics, _) => {
1122                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1123                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1124                 }
1125             }
1126             hir::ItemKind::Const(..) => {
1127                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1128                     // account for "pub const" (#45562)
1129                     let start = cx
1130                         .tcx
1131                         .sess
1132                         .source_map()
1133                         .span_to_snippet(it.span)
1134                         .map(|snippet| snippet.find("const").unwrap_or(0))
1135                         .unwrap_or(0) as u32;
1136                     // `const` is 5 chars
1137                     let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1138
1139                     // Const items do not refer to a particular location in memory, and therefore
1140                     // don't have anything to attach a symbol to
1141                     cx.emit_spanned_lint(
1142                         NO_MANGLE_CONST_ITEMS,
1143                         it.span,
1144                         BuiltinConstNoMangle { suggestion },
1145                     );
1146                 }
1147             }
1148             hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1149                 for it in *items {
1150                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1151                         if let Some(no_mangle_attr) = cx
1152                             .sess()
1153                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1154                         {
1155                             check_no_mangle_on_generic_fn(
1156                                 no_mangle_attr,
1157                                 Some(generics),
1158                                 cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(),
1159                                 it.span,
1160                             );
1161                         }
1162                     }
1163                 }
1164             }
1165             _ => {}
1166         }
1167     }
1168 }
1169
1170 declare_lint! {
1171     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1172     /// T` because it is [undefined behavior].
1173     ///
1174     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1175     ///
1176     /// ### Example
1177     ///
1178     /// ```rust,compile_fail
1179     /// unsafe {
1180     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1181     /// }
1182     /// ```
1183     ///
1184     /// {{produces}}
1185     ///
1186     /// ### Explanation
1187     ///
1188     /// Certain assumptions are made about aliasing of data, and this transmute
1189     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1190     ///
1191     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1192     MUTABLE_TRANSMUTES,
1193     Deny,
1194     "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1195 }
1196
1197 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1198
1199 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1200     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1201         if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1202             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1203         {
1204             if from_mutbl < to_mutbl {
1205                 cx.emit_spanned_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1206             }
1207         }
1208
1209         fn get_transmute_from_to<'tcx>(
1210             cx: &LateContext<'tcx>,
1211             expr: &hir::Expr<'_>,
1212         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1213             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1214                 cx.qpath_res(qpath, expr.hir_id)
1215             } else {
1216                 return None;
1217             };
1218             if let Res::Def(DefKind::Fn, did) = def {
1219                 if !def_id_is_transmute(cx, did) {
1220                     return None;
1221                 }
1222                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1223                 let from = sig.inputs().skip_binder()[0];
1224                 let to = sig.output().skip_binder();
1225                 return Some((from, to));
1226             }
1227             None
1228         }
1229
1230         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1231             cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
1232         }
1233     }
1234 }
1235
1236 declare_lint! {
1237     /// The `unstable_features` is deprecated and should no longer be used.
1238     UNSTABLE_FEATURES,
1239     Allow,
1240     "enabling unstable features (deprecated. do not use)"
1241 }
1242
1243 declare_lint_pass!(
1244     /// Forbids using the `#[feature(...)]` attribute
1245     UnstableFeatures => [UNSTABLE_FEATURES]
1246 );
1247
1248 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1249     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1250         if attr.has_name(sym::feature) {
1251             if let Some(items) = attr.meta_item_list() {
1252                 for item in items {
1253                     cx.emit_spanned_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1254                 }
1255             }
1256         }
1257     }
1258 }
1259
1260 declare_lint! {
1261     /// The `ungated_async_fn_track_caller` lint warns when the
1262     /// `#[track_caller]` attribute is used on an async function, method, or
1263     /// closure, without enabling the corresponding unstable feature flag.
1264     ///
1265     /// ### Example
1266     ///
1267     /// ```rust
1268     /// #[track_caller]
1269     /// async fn foo() {}
1270     /// ```
1271     ///
1272     /// {{produces}}
1273     ///
1274     /// ### Explanation
1275     ///
1276     /// The attribute must be used in conjunction with the
1277     /// [`closure_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1278     /// annotation will function as a no-op.
1279     ///
1280     /// [`closure_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/closure-track-caller.html
1281     UNGATED_ASYNC_FN_TRACK_CALLER,
1282     Warn,
1283     "enabling track_caller on an async fn is a no-op unless the closure_track_caller feature is enabled"
1284 }
1285
1286 declare_lint_pass!(
1287     /// Explains corresponding feature flag must be enabled for the `#[track_caller] attribute to
1288     /// do anything
1289     UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1290 );
1291
1292 impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1293     fn check_fn(
1294         &mut self,
1295         cx: &LateContext<'_>,
1296         fn_kind: HirFnKind<'_>,
1297         _: &'tcx FnDecl<'_>,
1298         _: &'tcx Body<'_>,
1299         span: Span,
1300         hir_id: HirId,
1301     ) {
1302         if fn_kind.asyncness() == IsAsync::Async
1303             && !cx.tcx.features().closure_track_caller
1304             && let attrs = cx.tcx.hir().attrs(hir_id)
1305             // Now, check if the function has the `#[track_caller]` attribute
1306             && let Some(attr) = attrs.iter().find(|attr| attr.has_name(sym::track_caller))
1307             {
1308                 cx.struct_span_lint(
1309                     UNGATED_ASYNC_FN_TRACK_CALLER,
1310                     attr.span,
1311                     fluent::lint_ungated_async_fn_track_caller,
1312                     |lint| {
1313                         lint.span_label(span, fluent::label);
1314                         rustc_session::parse::add_feature_diagnostics(
1315                             lint,
1316                             &cx.tcx.sess.parse_sess,
1317                             sym::closure_track_caller,
1318                         );
1319                         lint
1320                     },
1321                 );
1322             }
1323     }
1324 }
1325
1326 declare_lint! {
1327     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1328     /// the crate root.
1329     ///
1330     /// ### Example
1331     ///
1332     /// ```rust,compile_fail
1333     /// #![deny(unreachable_pub)]
1334     /// mod foo {
1335     ///     pub mod bar {
1336     ///
1337     ///     }
1338     /// }
1339     /// ```
1340     ///
1341     /// {{produces}}
1342     ///
1343     /// ### Explanation
1344     ///
1345     /// A bare `pub` visibility may be misleading if the item is not actually
1346     /// publicly exported from the crate. The `pub(crate)` visibility is
1347     /// recommended to be used instead, which more clearly expresses the intent
1348     /// that the item is only visible within its own crate.
1349     ///
1350     /// This lint is "allow" by default because it will trigger for a large
1351     /// amount existing Rust code, and has some false-positives. Eventually it
1352     /// is desired for this to become warn-by-default.
1353     pub UNREACHABLE_PUB,
1354     Allow,
1355     "`pub` items not reachable from crate root"
1356 }
1357
1358 declare_lint_pass!(
1359     /// Lint for items marked `pub` that aren't reachable from other crates.
1360     UnreachablePub => [UNREACHABLE_PUB]
1361 );
1362
1363 impl UnreachablePub {
1364     fn perform_lint(
1365         &self,
1366         cx: &LateContext<'_>,
1367         what: &str,
1368         def_id: LocalDefId,
1369         vis_span: Span,
1370         exportable: bool,
1371     ) {
1372         let mut applicability = Applicability::MachineApplicable;
1373         if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1374         {
1375             if vis_span.from_expansion() {
1376                 applicability = Applicability::MaybeIncorrect;
1377             }
1378             let def_span = cx.tcx.def_span(def_id);
1379             cx.emit_spanned_lint(
1380                 UNREACHABLE_PUB,
1381                 def_span,
1382                 BuiltinUnreachablePub {
1383                     what,
1384                     suggestion: (vis_span, applicability),
1385                     help: exportable.then_some(()),
1386                 },
1387             );
1388         }
1389     }
1390 }
1391
1392 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1393     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1394         // Do not warn for fake `use` statements.
1395         if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1396             return;
1397         }
1398         self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1399     }
1400
1401     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1402         self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1403     }
1404
1405     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1406         let map = cx.tcx.hir();
1407         if matches!(map.get_parent(field.hir_id), Node::Variant(_)) {
1408             return;
1409         }
1410         self.perform_lint(cx, "field", field.def_id, field.vis_span, false);
1411     }
1412
1413     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1414         // Only lint inherent impl items.
1415         if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1416             self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
1417         }
1418     }
1419 }
1420
1421 declare_lint! {
1422     /// The `type_alias_bounds` lint detects bounds in type aliases.
1423     ///
1424     /// ### Example
1425     ///
1426     /// ```rust
1427     /// type SendVec<T: Send> = Vec<T>;
1428     /// ```
1429     ///
1430     /// {{produces}}
1431     ///
1432     /// ### Explanation
1433     ///
1434     /// The trait bounds in a type alias are currently ignored, and should not
1435     /// be included to avoid confusion. This was previously allowed
1436     /// unintentionally; this may become a hard error in the future.
1437     TYPE_ALIAS_BOUNDS,
1438     Warn,
1439     "bounds in type aliases are not enforced"
1440 }
1441
1442 declare_lint_pass!(
1443     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1444     /// They are relevant when using associated types, but otherwise neither checked
1445     /// at definition site nor enforced at use site.
1446     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1447 );
1448
1449 impl TypeAliasBounds {
1450     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1451         match *qpath {
1452             hir::QPath::TypeRelative(ref ty, _) => {
1453                 // If this is a type variable, we found a `T::Assoc`.
1454                 match ty.kind {
1455                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1456                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1457                     }
1458                     _ => false,
1459                 }
1460             }
1461             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1462         }
1463     }
1464
1465     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
1466         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1467         // bound.  Let's see if this type does that.
1468
1469         // We use a HIR visitor to walk the type.
1470         use rustc_hir::intravisit::{self, Visitor};
1471         struct WalkAssocTypes<'a> {
1472             err: &'a mut Diagnostic,
1473         }
1474         impl Visitor<'_> for WalkAssocTypes<'_> {
1475             fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
1476                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1477                     self.err.span_help(span, fluent::lint_builtin_type_alias_bounds_help);
1478                 }
1479                 intravisit::walk_qpath(self, qpath, id)
1480             }
1481         }
1482
1483         // Let's go for a walk!
1484         let mut visitor = WalkAssocTypes { err };
1485         visitor.visit_ty(ty);
1486     }
1487 }
1488
1489 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1490     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1491         let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1492             return
1493         };
1494         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1495             // Bounds are respected for `type X = impl Trait`
1496             return;
1497         }
1498         // There must not be a where clause
1499         if type_alias_generics.predicates.is_empty() {
1500             return;
1501         }
1502
1503         let mut where_spans = Vec::new();
1504         let mut inline_spans = Vec::new();
1505         let mut inline_sugg = Vec::new();
1506         for p in type_alias_generics.predicates {
1507             let span = p.span();
1508             if p.in_where_clause() {
1509                 where_spans.push(span);
1510             } else {
1511                 for b in p.bounds() {
1512                     inline_spans.push(b.span());
1513                 }
1514                 inline_sugg.push((span, String::new()));
1515             }
1516         }
1517
1518         let mut suggested_changing_assoc_types = false;
1519         if !where_spans.is_empty() {
1520             cx.lint(TYPE_ALIAS_BOUNDS, fluent::lint_builtin_type_alias_where_clause, |lint| {
1521                 lint.set_span(where_spans);
1522                 lint.span_suggestion(
1523                     type_alias_generics.where_clause_span,
1524                     fluent::suggestion,
1525                     "",
1526                     Applicability::MachineApplicable,
1527                 );
1528                 if !suggested_changing_assoc_types {
1529                     TypeAliasBounds::suggest_changing_assoc_types(ty, lint);
1530                     suggested_changing_assoc_types = true;
1531                 }
1532                 lint
1533             });
1534         }
1535
1536         if !inline_spans.is_empty() {
1537             cx.lint(TYPE_ALIAS_BOUNDS, fluent::lint_builtin_type_alias_generic_bounds, |lint| {
1538                 lint.set_span(inline_spans);
1539                 lint.multipart_suggestion(
1540                     fluent::suggestion,
1541                     inline_sugg,
1542                     Applicability::MachineApplicable,
1543                 );
1544                 if !suggested_changing_assoc_types {
1545                     TypeAliasBounds::suggest_changing_assoc_types(ty, lint);
1546                 }
1547                 lint
1548             });
1549         }
1550     }
1551 }
1552
1553 declare_lint_pass!(
1554     /// Lint constants that are erroneous.
1555     /// Without this lint, we might not get any diagnostic if the constant is
1556     /// unused within this crate, even though downstream crates can't use it
1557     /// without producing an error.
1558     UnusedBrokenConst => []
1559 );
1560
1561 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1562     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1563         match it.kind {
1564             hir::ItemKind::Const(_, body_id) => {
1565                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1566                 // trigger the query once for all constants since that will already report the errors
1567                 cx.tcx.ensure().const_eval_poly(def_id);
1568             }
1569             hir::ItemKind::Static(_, _, body_id) => {
1570                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1571                 cx.tcx.ensure().eval_static_initializer(def_id);
1572             }
1573             _ => {}
1574         }
1575     }
1576 }
1577
1578 declare_lint! {
1579     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1580     /// any type parameters.
1581     ///
1582     /// ### Example
1583     ///
1584     /// ```rust
1585     /// #![feature(trivial_bounds)]
1586     /// pub struct A where i32: Copy;
1587     /// ```
1588     ///
1589     /// {{produces}}
1590     ///
1591     /// ### Explanation
1592     ///
1593     /// Usually you would not write a trait bound that you know is always
1594     /// true, or never true. However, when using macros, the macro may not
1595     /// know whether or not the constraint would hold or not at the time when
1596     /// generating the code. Currently, the compiler does not alert you if the
1597     /// constraint is always true, and generates an error if it is never true.
1598     /// The `trivial_bounds` feature changes this to be a warning in both
1599     /// cases, giving macros more freedom and flexibility to generate code,
1600     /// while still providing a signal when writing non-macro code that
1601     /// something is amiss.
1602     ///
1603     /// See [RFC 2056] for more details. This feature is currently only
1604     /// available on the nightly channel, see [tracking issue #48214].
1605     ///
1606     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1607     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1608     TRIVIAL_BOUNDS,
1609     Warn,
1610     "these bounds don't depend on an type parameters"
1611 }
1612
1613 declare_lint_pass!(
1614     /// Lint for trait and lifetime bounds that don't depend on type parameters
1615     /// which either do nothing, or stop the item from being used.
1616     TrivialConstraints => [TRIVIAL_BOUNDS]
1617 );
1618
1619 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1620     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1621         use rustc_middle::ty::visit::TypeVisitable;
1622         use rustc_middle::ty::Clause;
1623         use rustc_middle::ty::PredicateKind::*;
1624
1625         if cx.tcx.features().trivial_bounds {
1626             let predicates = cx.tcx.predicates_of(item.owner_id);
1627             for &(predicate, span) in predicates.predicates {
1628                 let predicate_kind_name = match predicate.kind().skip_binder() {
1629                     Clause(Clause::Trait(..)) => "trait",
1630                     Clause(Clause::TypeOutlives(..)) |
1631                     Clause(Clause::RegionOutlives(..)) => "lifetime",
1632
1633                     // Ignore projections, as they can only be global
1634                     // if the trait bound is global
1635                     Clause(Clause::Projection(..)) |
1636                     // Ignore bounds that a user can't type
1637                     WellFormed(..) |
1638                     ObjectSafe(..) |
1639                     ClosureKind(..) |
1640                     Subtype(..) |
1641                     Coerce(..) |
1642                     ConstEvaluatable(..) |
1643                     ConstEquate(..) |
1644                     Ambiguous |
1645                     TypeWellFormedFromEnv(..) => continue,
1646                 };
1647                 if predicate.is_global() {
1648                     cx.emit_spanned_lint(
1649                         TRIVIAL_BOUNDS,
1650                         span,
1651                         BuiltinTrivialBounds { predicate_kind_name, predicate },
1652                     );
1653                 }
1654             }
1655         }
1656     }
1657 }
1658
1659 declare_lint_pass!(
1660     /// Does nothing as a lint pass, but registers some `Lint`s
1661     /// which are used by other parts of the compiler.
1662     SoftLints => [
1663         WHILE_TRUE,
1664         BOX_POINTERS,
1665         NON_SHORTHAND_FIELD_PATTERNS,
1666         UNSAFE_CODE,
1667         MISSING_DOCS,
1668         MISSING_COPY_IMPLEMENTATIONS,
1669         MISSING_DEBUG_IMPLEMENTATIONS,
1670         ANONYMOUS_PARAMETERS,
1671         UNUSED_DOC_COMMENTS,
1672         NO_MANGLE_CONST_ITEMS,
1673         NO_MANGLE_GENERIC_ITEMS,
1674         MUTABLE_TRANSMUTES,
1675         UNSTABLE_FEATURES,
1676         UNREACHABLE_PUB,
1677         TYPE_ALIAS_BOUNDS,
1678         TRIVIAL_BOUNDS
1679     ]
1680 );
1681
1682 declare_lint! {
1683     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1684     /// pattern], which is deprecated.
1685     ///
1686     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1687     ///
1688     /// ### Example
1689     ///
1690     /// ```rust,edition2018
1691     /// let x = 123;
1692     /// match x {
1693     ///     0...100 => {}
1694     ///     _ => {}
1695     /// }
1696     /// ```
1697     ///
1698     /// {{produces}}
1699     ///
1700     /// ### Explanation
1701     ///
1702     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1703     /// confusion with the [`..` range expression]. Use the new form instead.
1704     ///
1705     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1706     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1707     Warn,
1708     "`...` range patterns are deprecated",
1709     @future_incompatible = FutureIncompatibleInfo {
1710         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1711         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1712     };
1713 }
1714
1715 #[derive(Default)]
1716 pub struct EllipsisInclusiveRangePatterns {
1717     /// If `Some(_)`, suppress all subsequent pattern
1718     /// warnings for better diagnostics.
1719     node_id: Option<ast::NodeId>,
1720 }
1721
1722 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1723
1724 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1725     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1726         if self.node_id.is_some() {
1727             // Don't recursively warn about patterns inside range endpoints.
1728             return;
1729         }
1730
1731         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1732
1733         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1734         /// corresponding to the ellipsis.
1735         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1736             match &pat.kind {
1737                 PatKind::Range(
1738                     a,
1739                     Some(b),
1740                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1741                 ) => Some((a.as_deref(), b, *span)),
1742                 _ => None,
1743             }
1744         }
1745
1746         let (parenthesise, endpoints) = match &pat.kind {
1747             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1748             _ => (false, matches_ellipsis_pat(pat)),
1749         };
1750
1751         if let Some((start, end, join)) = endpoints {
1752             if parenthesise {
1753                 self.node_id = Some(pat.id);
1754                 let end = expr_to_string(&end);
1755                 let replace = match start {
1756                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1757                     None => format!("&(..={})", end),
1758                 };
1759                 if join.edition() >= Edition::Edition2021 {
1760                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1761                         span: pat.span,
1762                         suggestion: pat.span,
1763                         replace,
1764                     });
1765                 } else {
1766                     cx.emit_spanned_lint(
1767                         ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1768                         pat.span,
1769                         BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1770                             suggestion: pat.span,
1771                             replace,
1772                         },
1773                     );
1774                 }
1775             } else {
1776                 let replace = "..=";
1777                 if join.edition() >= Edition::Edition2021 {
1778                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1779                         span: pat.span,
1780                         suggestion: join,
1781                         replace: replace.to_string(),
1782                     });
1783                 } else {
1784                     cx.emit_spanned_lint(
1785                         ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1786                         join,
1787                         BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1788                             suggestion: join,
1789                         },
1790                     );
1791                 }
1792             };
1793         }
1794     }
1795
1796     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1797         if let Some(node_id) = self.node_id {
1798             if pat.id == node_id {
1799                 self.node_id = None
1800             }
1801         }
1802     }
1803 }
1804
1805 declare_lint! {
1806     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1807     /// that are not able to be run by the test harness because they are in a
1808     /// position where they are not nameable.
1809     ///
1810     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1811     ///
1812     /// ### Example
1813     ///
1814     /// ```rust,test
1815     /// fn main() {
1816     ///     #[test]
1817     ///     fn foo() {
1818     ///         // This test will not fail because it does not run.
1819     ///         assert_eq!(1, 2);
1820     ///     }
1821     /// }
1822     /// ```
1823     ///
1824     /// {{produces}}
1825     ///
1826     /// ### Explanation
1827     ///
1828     /// In order for the test harness to run a test, the test function must be
1829     /// located in a position where it can be accessed from the crate root.
1830     /// This generally means it must be defined in a module, and not anywhere
1831     /// else such as inside another function. The compiler previously allowed
1832     /// this without an error, so a lint was added as an alert that a test is
1833     /// not being used. Whether or not this should be allowed has not yet been
1834     /// decided, see [RFC 2471] and [issue #36629].
1835     ///
1836     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1837     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1838     UNNAMEABLE_TEST_ITEMS,
1839     Warn,
1840     "detects an item that cannot be named being marked as `#[test_case]`",
1841     report_in_external_macro
1842 }
1843
1844 pub struct UnnameableTestItems {
1845     boundary: Option<hir::OwnerId>, // Id of the item under which things are not nameable
1846     items_nameable: bool,
1847 }
1848
1849 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1850
1851 impl UnnameableTestItems {
1852     pub fn new() -> Self {
1853         Self { boundary: None, items_nameable: true }
1854     }
1855 }
1856
1857 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1858     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1859         if self.items_nameable {
1860             if let hir::ItemKind::Mod(..) = it.kind {
1861             } else {
1862                 self.items_nameable = false;
1863                 self.boundary = Some(it.owner_id);
1864             }
1865             return;
1866         }
1867
1868         let attrs = cx.tcx.hir().attrs(it.hir_id());
1869         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1870             cx.emit_spanned_lint(UNNAMEABLE_TEST_ITEMS, attr.span, BuiltinUnnameableTestItems);
1871         }
1872     }
1873
1874     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1875         if !self.items_nameable && self.boundary == Some(it.owner_id) {
1876             self.items_nameable = true;
1877         }
1878     }
1879 }
1880
1881 declare_lint! {
1882     /// The `keyword_idents` lint detects edition keywords being used as an
1883     /// identifier.
1884     ///
1885     /// ### Example
1886     ///
1887     /// ```rust,edition2015,compile_fail
1888     /// #![deny(keyword_idents)]
1889     /// // edition 2015
1890     /// fn dyn() {}
1891     /// ```
1892     ///
1893     /// {{produces}}
1894     ///
1895     /// ### Explanation
1896     ///
1897     /// Rust [editions] allow the language to evolve without breaking
1898     /// backwards compatibility. This lint catches code that uses new keywords
1899     /// that are added to the language that are used as identifiers (such as a
1900     /// variable name, function name, etc.). If you switch the compiler to a
1901     /// new edition without updating the code, then it will fail to compile if
1902     /// you are using a new keyword as an identifier.
1903     ///
1904     /// You can manually change the identifiers to a non-keyword, or use a
1905     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1906     ///
1907     /// This lint solves the problem automatically. It is "allow" by default
1908     /// because the code is perfectly valid in older editions. The [`cargo
1909     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1910     /// and automatically apply the suggested fix from the compiler (which is
1911     /// to use a raw identifier). This provides a completely automated way to
1912     /// update old code for a new edition.
1913     ///
1914     /// [editions]: https://doc.rust-lang.org/edition-guide/
1915     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1916     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1917     pub KEYWORD_IDENTS,
1918     Allow,
1919     "detects edition keywords being used as an identifier",
1920     @future_incompatible = FutureIncompatibleInfo {
1921         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1922         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1923     };
1924 }
1925
1926 declare_lint_pass!(
1927     /// Check for uses of edition keywords used as an identifier.
1928     KeywordIdents => [KEYWORD_IDENTS]
1929 );
1930
1931 struct UnderMacro(bool);
1932
1933 impl KeywordIdents {
1934     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1935         for tt in tokens.into_trees() {
1936             match tt {
1937                 // Only report non-raw idents.
1938                 TokenTree::Token(token, _) => {
1939                     if let Some((ident, false)) = token.ident() {
1940                         self.check_ident_token(cx, UnderMacro(true), ident);
1941                     }
1942                 }
1943                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1944             }
1945         }
1946     }
1947
1948     fn check_ident_token(
1949         &mut self,
1950         cx: &EarlyContext<'_>,
1951         UnderMacro(under_macro): UnderMacro,
1952         ident: Ident,
1953     ) {
1954         let next_edition = match cx.sess().edition() {
1955             Edition::Edition2015 => {
1956                 match ident.name {
1957                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1958
1959                     // rust-lang/rust#56327: Conservatively do not
1960                     // attempt to report occurrences of `dyn` within
1961                     // macro definitions or invocations, because `dyn`
1962                     // can legitimately occur as a contextual keyword
1963                     // in 2015 code denoting its 2018 meaning, and we
1964                     // do not want rustfix to inject bugs into working
1965                     // code by rewriting such occurrences.
1966                     //
1967                     // But if we see `dyn` outside of a macro, we know
1968                     // its precise role in the parsed AST and thus are
1969                     // assured this is truly an attempt to use it as
1970                     // an identifier.
1971                     kw::Dyn if !under_macro => Edition::Edition2018,
1972
1973                     _ => return,
1974                 }
1975             }
1976
1977             // There are no new keywords yet for the 2018 edition and beyond.
1978             _ => return,
1979         };
1980
1981         // Don't lint `r#foo`.
1982         if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1983             return;
1984         }
1985
1986         cx.emit_spanned_lint(
1987             KEYWORD_IDENTS,
1988             ident.span,
1989             BuiltinKeywordIdents { kw: ident, next: next_edition, suggestion: ident.span },
1990         );
1991     }
1992 }
1993
1994 impl EarlyLintPass for KeywordIdents {
1995     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1996         self.check_tokens(cx, mac_def.body.tokens.clone());
1997     }
1998     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1999         self.check_tokens(cx, mac.args.tokens.clone());
2000     }
2001     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
2002         self.check_ident_token(cx, UnderMacro(false), ident);
2003     }
2004 }
2005
2006 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2007
2008 impl ExplicitOutlivesRequirements {
2009     fn lifetimes_outliving_lifetime<'tcx>(
2010         inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
2011         def_id: DefId,
2012     ) -> Vec<ty::Region<'tcx>> {
2013         inferred_outlives
2014             .iter()
2015             .filter_map(|(clause, _)| match *clause {
2016                 ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
2017                     ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
2018                     _ => None,
2019                 },
2020                 _ => None,
2021             })
2022             .collect()
2023     }
2024
2025     fn lifetimes_outliving_type<'tcx>(
2026         inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
2027         index: u32,
2028     ) -> Vec<ty::Region<'tcx>> {
2029         inferred_outlives
2030             .iter()
2031             .filter_map(|(clause, _)| match *clause {
2032                 ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2033                     a.is_param(index).then_some(b)
2034                 }
2035                 _ => None,
2036             })
2037             .collect()
2038     }
2039
2040     fn collect_outlives_bound_spans<'tcx>(
2041         &self,
2042         tcx: TyCtxt<'tcx>,
2043         bounds: &hir::GenericBounds<'_>,
2044         inferred_outlives: &[ty::Region<'tcx>],
2045         predicate_span: Span,
2046     ) -> Vec<(usize, Span)> {
2047         use rustc_middle::middle::resolve_lifetime::Region;
2048
2049         bounds
2050             .iter()
2051             .enumerate()
2052             .filter_map(|(i, bound)| {
2053                 let hir::GenericBound::Outlives(lifetime) = bound else {
2054                     return None;
2055                 };
2056
2057                 let is_inferred = match tcx.named_region(lifetime.hir_id) {
2058                     Some(Region::EarlyBound(def_id)) => inferred_outlives
2059                         .iter()
2060                         .any(|r| matches!(**r, ty::ReEarlyBound(ebr) if { ebr.def_id == def_id })),
2061                     _ => false,
2062                 };
2063
2064                 if !is_inferred {
2065                     return None;
2066                 }
2067
2068                 let span = bound.span().find_ancestor_inside(predicate_span)?;
2069                 if in_external_macro(tcx.sess, span) {
2070                     return None;
2071                 }
2072
2073                 Some((i, span))
2074             })
2075             .collect()
2076     }
2077
2078     fn consolidate_outlives_bound_spans(
2079         &self,
2080         lo: Span,
2081         bounds: &hir::GenericBounds<'_>,
2082         bound_spans: Vec<(usize, Span)>,
2083     ) -> Vec<Span> {
2084         if bounds.is_empty() {
2085             return Vec::new();
2086         }
2087         if bound_spans.len() == bounds.len() {
2088             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2089             // If all bounds are inferable, we want to delete the colon, so
2090             // start from just after the parameter (span passed as argument)
2091             vec![lo.to(last_bound_span)]
2092         } else {
2093             let mut merged = Vec::new();
2094             let mut last_merged_i = None;
2095
2096             let mut from_start = true;
2097             for (i, bound_span) in bound_spans {
2098                 match last_merged_i {
2099                     // If the first bound is inferable, our span should also eat the leading `+`.
2100                     None if i == 0 => {
2101                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2102                         last_merged_i = Some(0);
2103                     }
2104                     // If consecutive bounds are inferable, merge their spans
2105                     Some(h) if i == h + 1 => {
2106                         if let Some(tail) = merged.last_mut() {
2107                             // Also eat the trailing `+` if the first
2108                             // more-than-one bound is inferable
2109                             let to_span = if from_start && i < bounds.len() {
2110                                 bounds[i + 1].span().shrink_to_lo()
2111                             } else {
2112                                 bound_span
2113                             };
2114                             *tail = tail.to(to_span);
2115                             last_merged_i = Some(i);
2116                         } else {
2117                             bug!("another bound-span visited earlier");
2118                         }
2119                     }
2120                     _ => {
2121                         // When we find a non-inferable bound, subsequent inferable bounds
2122                         // won't be consecutive from the start (and we'll eat the leading
2123                         // `+` rather than the trailing one)
2124                         from_start = false;
2125                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2126                         last_merged_i = Some(i);
2127                     }
2128                 }
2129             }
2130             merged
2131         }
2132     }
2133 }
2134
2135 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2136     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2137         use rustc_middle::middle::resolve_lifetime::Region;
2138
2139         let def_id = item.owner_id.def_id;
2140         if let hir::ItemKind::Struct(_, hir_generics)
2141         | hir::ItemKind::Enum(_, hir_generics)
2142         | hir::ItemKind::Union(_, hir_generics) = item.kind
2143         {
2144             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2145             if inferred_outlives.is_empty() {
2146                 return;
2147             }
2148
2149             let ty_generics = cx.tcx.generics_of(def_id);
2150
2151             let mut bound_count = 0;
2152             let mut lint_spans = Vec::new();
2153             let mut where_lint_spans = Vec::new();
2154             let mut dropped_predicate_count = 0;
2155             let num_predicates = hir_generics.predicates.len();
2156             for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2157                 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2158                     match where_predicate {
2159                         hir::WherePredicate::RegionPredicate(predicate) => {
2160                             if let Some(Region::EarlyBound(region_def_id)) =
2161                                 cx.tcx.named_region(predicate.lifetime.hir_id)
2162                             {
2163                                 (
2164                                     Self::lifetimes_outliving_lifetime(
2165                                         inferred_outlives,
2166                                         region_def_id,
2167                                     ),
2168                                     &predicate.bounds,
2169                                     predicate.span,
2170                                     predicate.in_where_clause,
2171                                 )
2172                             } else {
2173                                 continue;
2174                             }
2175                         }
2176                         hir::WherePredicate::BoundPredicate(predicate) => {
2177                             // FIXME we can also infer bounds on associated types,
2178                             // and should check for them here.
2179                             match predicate.bounded_ty.kind {
2180                                 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2181                                     let Res::Def(DefKind::TyParam, def_id) = path.res else {
2182                                     continue;
2183                                 };
2184                                     let index = ty_generics.param_def_id_to_index[&def_id];
2185                                     (
2186                                         Self::lifetimes_outliving_type(inferred_outlives, index),
2187                                         &predicate.bounds,
2188                                         predicate.span,
2189                                         predicate.origin == PredicateOrigin::WhereClause,
2190                                     )
2191                                 }
2192                                 _ => {
2193                                     continue;
2194                                 }
2195                             }
2196                         }
2197                         _ => continue,
2198                     };
2199                 if relevant_lifetimes.is_empty() {
2200                     continue;
2201                 }
2202
2203                 let bound_spans = self.collect_outlives_bound_spans(
2204                     cx.tcx,
2205                     bounds,
2206                     &relevant_lifetimes,
2207                     predicate_span,
2208                 );
2209                 bound_count += bound_spans.len();
2210
2211                 let drop_predicate = bound_spans.len() == bounds.len();
2212                 if drop_predicate {
2213                     dropped_predicate_count += 1;
2214                 }
2215
2216                 if drop_predicate && !in_where_clause {
2217                     lint_spans.push(predicate_span);
2218                 } else if drop_predicate && i + 1 < num_predicates {
2219                     // If all the bounds on a predicate were inferable and there are
2220                     // further predicates, we want to eat the trailing comma.
2221                     let next_predicate_span = hir_generics.predicates[i + 1].span();
2222                     where_lint_spans.push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2223                 } else {
2224                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2225                         predicate_span.shrink_to_lo(),
2226                         bounds,
2227                         bound_spans,
2228                     ));
2229                 }
2230             }
2231
2232             // If all predicates are inferable, drop the entire clause
2233             // (including the `where`)
2234             if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2235             {
2236                 let where_span = hir_generics.where_clause_span;
2237                 // Extend the where clause back to the closing `>` of the
2238                 // generics, except for tuple struct, which have the `where`
2239                 // after the fields of the struct.
2240                 let full_where_span =
2241                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2242                         where_span
2243                     } else {
2244                         hir_generics.span.shrink_to_hi().to(where_span)
2245                     };
2246
2247                 // Due to macro expansions, the `full_where_span` might not actually contain all predicates.
2248                 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2249                     lint_spans.push(full_where_span);
2250                 } else {
2251                     lint_spans.extend(where_lint_spans);
2252                 }
2253             } else {
2254                 lint_spans.extend(where_lint_spans);
2255             }
2256
2257             if !lint_spans.is_empty() {
2258                 // Do not automatically delete outlives requirements from macros.
2259                 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2260                 {
2261                     Applicability::MachineApplicable
2262                 } else {
2263                     Applicability::MaybeIncorrect
2264                 };
2265
2266                 cx.emit_spanned_lint(
2267                     EXPLICIT_OUTLIVES_REQUIREMENTS,
2268                     lint_spans.clone(),
2269                     BuiltinExplicitOutlives {
2270                         count: bound_count,
2271                         suggestion: BuiltinExplicitOutlivesSuggestion {
2272                             spans: lint_spans,
2273                             applicability,
2274                         },
2275                     },
2276                 );
2277             }
2278         }
2279     }
2280 }
2281
2282 declare_lint! {
2283     /// The `incomplete_features` lint detects unstable features enabled with
2284     /// the [`feature` attribute] that may function improperly in some or all
2285     /// cases.
2286     ///
2287     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2288     ///
2289     /// ### Example
2290     ///
2291     /// ```rust
2292     /// #![feature(generic_const_exprs)]
2293     /// ```
2294     ///
2295     /// {{produces}}
2296     ///
2297     /// ### Explanation
2298     ///
2299     /// Although it is encouraged for people to experiment with unstable
2300     /// features, some of them are known to be incomplete or faulty. This lint
2301     /// is a signal that the feature has not yet been finished, and you may
2302     /// experience problems with it.
2303     pub INCOMPLETE_FEATURES,
2304     Warn,
2305     "incomplete features that may function improperly in some or all cases"
2306 }
2307
2308 declare_lint_pass!(
2309     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2310     IncompleteFeatures => [INCOMPLETE_FEATURES]
2311 );
2312
2313 impl EarlyLintPass for IncompleteFeatures {
2314     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2315         let features = cx.sess().features_untracked();
2316         features
2317             .declared_lang_features
2318             .iter()
2319             .map(|(name, span, _)| (name, span))
2320             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2321             .filter(|(&name, _)| features.incomplete(name))
2322             .for_each(|(&name, &span)| {
2323                 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2324                     .map(|n| BuiltinIncompleteFeaturesNote { n });
2325                 let help = if HAS_MIN_FEATURES.contains(&name) {
2326                     Some(BuiltinIncompleteFeaturesHelp)
2327                 } else {
2328                     None
2329                 };
2330                 cx.emit_spanned_lint(
2331                     INCOMPLETE_FEATURES,
2332                     span,
2333                     BuiltinIncompleteFeatures { name, note, help },
2334                 );
2335             });
2336     }
2337 }
2338
2339 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2340
2341 declare_lint! {
2342     /// The `invalid_value` lint detects creating a value that is not valid,
2343     /// such as a null reference.
2344     ///
2345     /// ### Example
2346     ///
2347     /// ```rust,no_run
2348     /// # #![allow(unused)]
2349     /// unsafe {
2350     ///     let x: &'static i32 = std::mem::zeroed();
2351     /// }
2352     /// ```
2353     ///
2354     /// {{produces}}
2355     ///
2356     /// ### Explanation
2357     ///
2358     /// In some situations the compiler can detect that the code is creating
2359     /// an invalid value, which should be avoided.
2360     ///
2361     /// In particular, this lint will check for improper use of
2362     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2363     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2364     /// lint should provide extra information to indicate what the problem is
2365     /// and a possible solution.
2366     ///
2367     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2368     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2369     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2370     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2371     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2372     pub INVALID_VALUE,
2373     Warn,
2374     "an invalid value is being created (such as a null reference)"
2375 }
2376
2377 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2378
2379 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2380     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2381         #[derive(Debug, Copy, Clone, PartialEq)]
2382         enum InitKind {
2383             Zeroed,
2384             Uninit,
2385         }
2386
2387         /// Information about why a type cannot be initialized this way.
2388         struct InitError {
2389             message: String,
2390             /// Spans from struct fields and similar that can be obtained from just the type.
2391             span: Option<Span>,
2392             /// Used to report a trace through adts.
2393             nested: Option<Box<InitError>>,
2394         }
2395         impl InitError {
2396             fn spanned(self, span: Span) -> InitError {
2397                 Self { span: Some(span), ..self }
2398             }
2399
2400             fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2401                 assert!(self.nested.is_none());
2402                 Self { nested: nested.into().map(Box::new), ..self }
2403             }
2404         }
2405
2406         impl<'a> From<&'a str> for InitError {
2407             fn from(s: &'a str) -> Self {
2408                 s.to_owned().into()
2409             }
2410         }
2411         impl From<String> for InitError {
2412             fn from(message: String) -> Self {
2413                 Self { message, span: None, nested: None }
2414             }
2415         }
2416
2417         /// Test if this constant is all-0.
2418         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2419             use hir::ExprKind::*;
2420             use rustc_ast::LitKind::*;
2421             match &expr.kind {
2422                 Lit(lit) => {
2423                     if let Int(i, _) = lit.node {
2424                         i == 0
2425                     } else {
2426                         false
2427                     }
2428                 }
2429                 Tup(tup) => tup.iter().all(is_zero),
2430                 _ => false,
2431             }
2432         }
2433
2434         /// Determine if this expression is a "dangerous initialization".
2435         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2436             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2437                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2438                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2439                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2440                     match cx.tcx.get_diagnostic_name(def_id) {
2441                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2442                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2443                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2444                         _ => {}
2445                     }
2446                 }
2447             } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2448                 // Find problematic calls to `MaybeUninit::assume_init`.
2449                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2450                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2451                     // This is a call to *some* method named `assume_init`.
2452                     // See if the `self` parameter is one of the dangerous constructors.
2453                     if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind {
2454                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2455                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2456                             match cx.tcx.get_diagnostic_name(def_id) {
2457                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2458                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2459                                 _ => {}
2460                             }
2461                         }
2462                     }
2463                 }
2464             }
2465
2466             None
2467         }
2468
2469         fn variant_find_init_error<'tcx>(
2470             cx: &LateContext<'tcx>,
2471             ty: Ty<'tcx>,
2472             variant: &VariantDef,
2473             substs: ty::SubstsRef<'tcx>,
2474             descr: &str,
2475             init: InitKind,
2476         ) -> Option<InitError> {
2477             let mut field_err = variant.fields.iter().find_map(|field| {
2478                 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|mut err| {
2479                     if !field.did.is_local() {
2480                         err
2481                     } else if err.span.is_none() {
2482                         err.span = Some(cx.tcx.def_span(field.did));
2483                         write!(&mut err.message, " (in this {descr})").unwrap();
2484                         err
2485                     } else {
2486                         InitError::from(format!("in this {descr}"))
2487                             .spanned(cx.tcx.def_span(field.did))
2488                             .nested(err)
2489                     }
2490                 })
2491             });
2492
2493             // Check if this ADT has a constrained layout (like `NonNull` and friends).
2494             if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)) {
2495                 if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &layout.abi {
2496                     let range = scalar.valid_range(cx);
2497                     let msg = if !range.contains(0) {
2498                         "must be non-null"
2499                     } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2500                         // Prefer reporting on the fields over the entire struct for uninit,
2501                         // as the information bubbles out and it may be unclear why the type can't
2502                         // be null from just its outside signature.
2503
2504                         "must be initialized inside its custom valid range"
2505                     } else {
2506                         return field_err;
2507                     };
2508                     if let Some(field_err) = &mut field_err {
2509                         // Most of the time, if the field error is the same as the struct error,
2510                         // the struct error only happens because of the field error.
2511                         if field_err.message.contains(msg) {
2512                             field_err.message = format!("because {}", field_err.message);
2513                         }
2514                     }
2515                     return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2516                 }
2517             }
2518             field_err
2519         }
2520
2521         /// Return `Some` only if we are sure this type does *not*
2522         /// allow zero initialization.
2523         fn ty_find_init_error<'tcx>(
2524             cx: &LateContext<'tcx>,
2525             ty: Ty<'tcx>,
2526             init: InitKind,
2527         ) -> Option<InitError> {
2528             use rustc_type_ir::sty::TyKind::*;
2529             match ty.kind() {
2530                 // Primitive types that don't like 0 as a value.
2531                 Ref(..) => Some("references must be non-null".into()),
2532                 Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2533                 FnPtr(..) => Some("function pointers must be non-null".into()),
2534                 Never => Some("the `!` type has no valid value".into()),
2535                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2536                 // raw ptr to dyn Trait
2537                 {
2538                     Some("the vtable of a wide raw pointer must be non-null".into())
2539                 }
2540                 // Primitive types with other constraints.
2541                 Bool if init == InitKind::Uninit => {
2542                     Some("booleans must be either `true` or `false`".into())
2543                 }
2544                 Char if init == InitKind::Uninit => {
2545                     Some("characters must be a valid Unicode codepoint".into())
2546                 }
2547                 Int(_) | Uint(_) if init == InitKind::Uninit => {
2548                     Some("integers must be initialized".into())
2549                 }
2550                 Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()),
2551                 RawPtr(_) if init == InitKind::Uninit => {
2552                     Some("raw pointers must be initialized".into())
2553                 }
2554                 // Recurse and checks for some compound types. (but not unions)
2555                 Adt(adt_def, substs) if !adt_def.is_union() => {
2556                     // Handle structs.
2557                     if adt_def.is_struct() {
2558                         return variant_find_init_error(
2559                             cx,
2560                             ty,
2561                             adt_def.non_enum_variant(),
2562                             substs,
2563                             "struct field",
2564                             init,
2565                         );
2566                     }
2567                     // And now, enums.
2568                     let span = cx.tcx.def_span(adt_def.did());
2569                     let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2570                         let definitely_inhabited = match variant
2571                             .inhabited_predicate(cx.tcx, *adt_def)
2572                             .subst(cx.tcx, substs)
2573                             .apply_any_module(cx.tcx, cx.param_env)
2574                         {
2575                             // Entirely skip uninhbaited variants.
2576                             Some(false) => return None,
2577                             // Forward the others, but remember which ones are definitely inhabited.
2578                             Some(true) => true,
2579                             None => false,
2580                         };
2581                         Some((variant, definitely_inhabited))
2582                     });
2583                     let Some(first_variant) = potential_variants.next() else {
2584                         return Some(InitError::from("enums with no inhabited variants have no valid value").spanned(span));
2585                     };
2586                     // So we have at least one potentially inhabited variant. Might we have two?
2587                     let Some(second_variant) = potential_variants.next() else {
2588                         // There is only one potentially inhabited variant. So we can recursively check that variant!
2589                         return variant_find_init_error(
2590                             cx,
2591                             ty,
2592                             &first_variant.0,
2593                             substs,
2594                             "field of the only potentially inhabited enum variant",
2595                             init,
2596                         );
2597                     };
2598                     // So we have at least two potentially inhabited variants.
2599                     // If we can prove that we have at least two *definitely* inhabited variants,
2600                     // then we have a tag and hence leaving this uninit is definitely disallowed.
2601                     // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.)
2602                     if init == InitKind::Uninit {
2603                         let definitely_inhabited = (first_variant.1 as usize)
2604                             + (second_variant.1 as usize)
2605                             + potential_variants
2606                                 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2607                                 .count();
2608                         if definitely_inhabited > 1 {
2609                             return Some(InitError::from(
2610                                 "enums with multiple inhabited variants have to be initialized to a variant",
2611                             ).spanned(span));
2612                         }
2613                     }
2614                     // We couldn't find anything wrong here.
2615                     None
2616                 }
2617                 Tuple(..) => {
2618                     // Proceed recursively, check all fields.
2619                     ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2620                 }
2621                 Array(ty, len) => {
2622                     if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
2623                         // Array length known at array non-empty -- recurse.
2624                         ty_find_init_error(cx, *ty, init)
2625                     } else {
2626                         // Empty array or size unknown.
2627                         None
2628                     }
2629                 }
2630                 // Conservative fallback.
2631                 _ => None,
2632             }
2633         }
2634
2635         if let Some(init) = is_dangerous_init(cx, expr) {
2636             // This conjures an instance of a type out of nothing,
2637             // using zeroed or uninitialized memory.
2638             // We are extremely conservative with what we warn about.
2639             let conjured_ty = cx.typeck_results().expr_ty(expr);
2640             if let Some(mut err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init))
2641             {
2642                 // FIXME(davidtwco): make translatable
2643                 cx.struct_span_lint(
2644                     INVALID_VALUE,
2645                     expr.span,
2646                     DelayDm(|| {
2647                         format!(
2648                             "the type `{}` does not permit {}",
2649                             conjured_ty,
2650                             match init {
2651                                 InitKind::Zeroed => "zero-initialization",
2652                                 InitKind::Uninit => "being left uninitialized",
2653                             },
2654                         )
2655                     }),
2656                     |lint| {
2657                         lint.span_label(
2658                             expr.span,
2659                             "this code causes undefined behavior when executed",
2660                         );
2661                         lint.span_label(
2662                             expr.span,
2663                             "help: use `MaybeUninit<T>` instead, \
2664                             and only call `assume_init` after initialization is done",
2665                         );
2666                         loop {
2667                             if let Some(span) = err.span {
2668                                 lint.span_note(span, &err.message);
2669                             } else {
2670                                 lint.note(&err.message);
2671                             }
2672                             if let Some(e) = err.nested {
2673                                 err = *e;
2674                             } else {
2675                                 break;
2676                             }
2677                         }
2678                         lint
2679                     },
2680                 );
2681             }
2682         }
2683     }
2684 }
2685
2686 declare_lint! {
2687     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2688     /// has been declared with the same name but different types.
2689     ///
2690     /// ### Example
2691     ///
2692     /// ```rust
2693     /// mod m {
2694     ///     extern "C" {
2695     ///         fn foo();
2696     ///     }
2697     /// }
2698     ///
2699     /// extern "C" {
2700     ///     fn foo(_: u32);
2701     /// }
2702     /// ```
2703     ///
2704     /// {{produces}}
2705     ///
2706     /// ### Explanation
2707     ///
2708     /// Because two symbols of the same name cannot be resolved to two
2709     /// different functions at link time, and one function cannot possibly
2710     /// have two types, a clashing extern declaration is almost certainly a
2711     /// mistake. Check to make sure that the `extern` definitions are correct
2712     /// and equivalent, and possibly consider unifying them in one location.
2713     ///
2714     /// This lint does not run between crates because a project may have
2715     /// dependencies which both rely on the same extern function, but declare
2716     /// it in a different (but valid) way. For example, they may both declare
2717     /// an opaque type for one or more of the arguments (which would end up
2718     /// distinct types), or use types that are valid conversions in the
2719     /// language the `extern fn` is defined in. In these cases, the compiler
2720     /// can't say that the clashing declaration is incorrect.
2721     pub CLASHING_EXTERN_DECLARATIONS,
2722     Warn,
2723     "detects when an extern fn has been declared with the same name but different types"
2724 }
2725
2726 pub struct ClashingExternDeclarations {
2727     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2728     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2729     /// the symbol should be reported as a clashing declaration.
2730     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2731     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2732     seen_decls: FxHashMap<Symbol, HirId>,
2733 }
2734
2735 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2736 /// just from declaration itself. This is important because we don't want to report clashes on
2737 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2738 /// different name.
2739 enum SymbolName {
2740     /// The name of the symbol + the span of the annotation which introduced the link name.
2741     Link(Symbol, Span),
2742     /// No link name, so just the name of the symbol.
2743     Normal(Symbol),
2744 }
2745
2746 impl SymbolName {
2747     fn get_name(&self) -> Symbol {
2748         match self {
2749             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2750         }
2751     }
2752 }
2753
2754 impl ClashingExternDeclarations {
2755     pub(crate) fn new() -> Self {
2756         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2757     }
2758     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2759     /// for the item, return its HirId without updating the set.
2760     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2761         let did = fi.owner_id.to_def_id();
2762         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2763         let name = Symbol::intern(tcx.symbol_name(instance).name);
2764         if let Some(&hir_id) = self.seen_decls.get(&name) {
2765             // Avoid updating the map with the new entry when we do find a collision. We want to
2766             // make sure we're always pointing to the first definition as the previous declaration.
2767             // This lets us avoid emitting "knock-on" diagnostics.
2768             Some(hir_id)
2769         } else {
2770             self.seen_decls.insert(name, fi.hir_id())
2771         }
2772     }
2773
2774     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2775     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2776     /// symbol's name.
2777     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2778         if let Some((overridden_link_name, overridden_link_name_span)) =
2779             tcx.codegen_fn_attrs(fi.owner_id).link_name.map(|overridden_link_name| {
2780                 // FIXME: Instead of searching through the attributes again to get span
2781                 // information, we could have codegen_fn_attrs also give span information back for
2782                 // where the attribute was defined. However, until this is found to be a
2783                 // bottleneck, this does just fine.
2784                 (
2785                     overridden_link_name,
2786                     tcx.get_attr(fi.owner_id.to_def_id(), sym::link_name).unwrap().span,
2787                 )
2788             })
2789         {
2790             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2791         } else {
2792             SymbolName::Normal(fi.ident.name)
2793         }
2794     }
2795
2796     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2797     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2798     /// with the same members (as the declarations shouldn't clash).
2799     fn structurally_same_type<'tcx>(
2800         cx: &LateContext<'tcx>,
2801         a: Ty<'tcx>,
2802         b: Ty<'tcx>,
2803         ckind: CItemKind,
2804     ) -> bool {
2805         fn structurally_same_type_impl<'tcx>(
2806             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2807             cx: &LateContext<'tcx>,
2808             a: Ty<'tcx>,
2809             b: Ty<'tcx>,
2810             ckind: CItemKind,
2811         ) -> bool {
2812             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2813             let tcx = cx.tcx;
2814
2815             // Given a transparent newtype, reach through and grab the inner
2816             // type unless the newtype makes the type non-null.
2817             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2818                 let mut ty = ty;
2819                 loop {
2820                     if let ty::Adt(def, substs) = *ty.kind() {
2821                         let is_transparent = def.repr().transparent();
2822                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
2823                         debug!(
2824                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2825                             ty, is_transparent, is_non_null
2826                         );
2827                         if is_transparent && !is_non_null {
2828                             debug_assert!(def.variants().len() == 1);
2829                             let v = &def.variant(VariantIdx::new(0));
2830                             ty = transparent_newtype_field(tcx, v)
2831                                 .expect(
2832                                     "single-variant transparent structure with zero-sized field",
2833                                 )
2834                                 .ty(tcx, substs);
2835                             continue;
2836                         }
2837                     }
2838                     debug!("non_transparent_ty -> {:?}", ty);
2839                     return ty;
2840                 }
2841             };
2842
2843             let a = non_transparent_ty(a);
2844             let b = non_transparent_ty(b);
2845
2846             if !seen_types.insert((a, b)) {
2847                 // We've encountered a cycle. There's no point going any further -- the types are
2848                 // structurally the same.
2849                 return true;
2850             }
2851             let tcx = cx.tcx;
2852             if a == b {
2853                 // All nominally-same types are structurally same, too.
2854                 true
2855             } else {
2856                 // Do a full, depth-first comparison between the two.
2857                 use rustc_type_ir::sty::TyKind::*;
2858                 let a_kind = a.kind();
2859                 let b_kind = b.kind();
2860
2861                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2862                     debug!("compare_layouts({:?}, {:?})", a, b);
2863                     let a_layout = &cx.layout_of(a)?.layout.abi();
2864                     let b_layout = &cx.layout_of(b)?.layout.abi();
2865                     debug!(
2866                         "comparing layouts: {:?} == {:?} = {}",
2867                         a_layout,
2868                         b_layout,
2869                         a_layout == b_layout
2870                     );
2871                     Ok(a_layout == b_layout)
2872                 };
2873
2874                 #[allow(rustc::usage_of_ty_tykind)]
2875                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2876                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2877                 };
2878
2879                 ensure_sufficient_stack(|| {
2880                     match (a_kind, b_kind) {
2881                         (Adt(a_def, _), Adt(b_def, _)) => {
2882                             // We can immediately rule out these types as structurally same if
2883                             // their layouts differ.
2884                             match compare_layouts(a, b) {
2885                                 Ok(false) => return false,
2886                                 _ => (), // otherwise, continue onto the full, fields comparison
2887                             }
2888
2889                             // Grab a flattened representation of all fields.
2890                             let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2891                             let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
2892
2893                             // Perform a structural comparison for each field.
2894                             a_fields.eq_by(
2895                                 b_fields,
2896                                 |&ty::FieldDef { did: a_did, .. },
2897                                  &ty::FieldDef { did: b_did, .. }| {
2898                                     structurally_same_type_impl(
2899                                         seen_types,
2900                                         cx,
2901                                         tcx.type_of(a_did),
2902                                         tcx.type_of(b_did),
2903                                         ckind,
2904                                     )
2905                                 },
2906                             )
2907                         }
2908                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2909                             // For arrays, we also check the constness of the type.
2910                             a_const.kind() == b_const.kind()
2911                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2912                         }
2913                         (Slice(a_ty), Slice(b_ty)) => {
2914                             structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2915                         }
2916                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2917                             a_tymut.mutbl == b_tymut.mutbl
2918                                 && structurally_same_type_impl(
2919                                     seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
2920                                 )
2921                         }
2922                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2923                             // For structural sameness, we don't need the region to be same.
2924                             a_mut == b_mut
2925                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2926                         }
2927                         (FnDef(..), FnDef(..)) => {
2928                             let a_poly_sig = a.fn_sig(tcx);
2929                             let b_poly_sig = b.fn_sig(tcx);
2930
2931                             // We don't compare regions, but leaving bound regions around ICEs, so
2932                             // we erase them.
2933                             let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2934                             let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
2935
2936                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2937                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2938                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2939                                     structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
2940                                 })
2941                                 && structurally_same_type_impl(
2942                                     seen_types,
2943                                     cx,
2944                                     a_sig.output(),
2945                                     b_sig.output(),
2946                                     ckind,
2947                                 )
2948                         }
2949                         (Tuple(a_substs), Tuple(b_substs)) => {
2950                             a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
2951                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2952                             })
2953                         }
2954                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2955                         // For the purposes of this lint, take the conservative approach and mark them as
2956                         // not structurally same.
2957                         (Dynamic(..), Dynamic(..))
2958                         | (Error(..), Error(..))
2959                         | (Closure(..), Closure(..))
2960                         | (Generator(..), Generator(..))
2961                         | (GeneratorWitness(..), GeneratorWitness(..))
2962                         | (Alias(ty::Projection, ..), Alias(ty::Projection, ..))
2963                         | (Alias(ty::Opaque, ..), Alias(ty::Opaque, ..)) => false,
2964
2965                         // These definitely should have been caught above.
2966                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2967
2968                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2969                         // enum layout optimisation is being applied.
2970                         (Adt(..), other_kind) | (other_kind, Adt(..))
2971                             if is_primitive_or_pointer(other_kind) =>
2972                         {
2973                             let (primitive, adt) =
2974                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2975                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2976                                 ty == primitive
2977                             } else {
2978                                 compare_layouts(a, b).unwrap_or(false)
2979                             }
2980                         }
2981                         // Otherwise, just compare the layouts. This may fail to lint for some
2982                         // incompatible types, but at the very least, will stop reads into
2983                         // uninitialised memory.
2984                         _ => compare_layouts(a, b).unwrap_or(false),
2985                     }
2986                 })
2987             }
2988         }
2989         let mut seen_types = FxHashSet::default();
2990         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2991     }
2992 }
2993
2994 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2995
2996 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2997     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2998         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2999         if let ForeignItemKind::Fn(..) = this_fi.kind {
3000             let tcx = cx.tcx;
3001             if let Some(existing_hid) = self.insert(tcx, this_fi) {
3002                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
3003                 let this_decl_ty = tcx.type_of(this_fi.owner_id);
3004                 debug!(
3005                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
3006                     existing_hid, existing_decl_ty, this_fi.owner_id, this_decl_ty
3007                 );
3008                 // Check that the declarations match.
3009                 if !Self::structurally_same_type(
3010                     cx,
3011                     existing_decl_ty,
3012                     this_decl_ty,
3013                     CItemKind::Declaration,
3014                 ) {
3015                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
3016                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
3017
3018                     // We want to ensure that we use spans for both decls that include where the
3019                     // name was defined, whether that was from the link_name attribute or not.
3020                     let get_relevant_span =
3021                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
3022                             SymbolName::Normal(_) => fi.span,
3023                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
3024                         };
3025                     // Finally, emit the diagnostic.
3026
3027                     let msg = if orig.get_name() == this_fi.ident.name {
3028                         fluent::lint_builtin_clashing_extern_same_name
3029                     } else {
3030                         fluent::lint_builtin_clashing_extern_diff_name
3031                     };
3032                     tcx.struct_span_lint_hir(
3033                         CLASHING_EXTERN_DECLARATIONS,
3034                         this_fi.hir_id(),
3035                         get_relevant_span(this_fi),
3036                         msg,
3037                         |lint| {
3038                             let mut expected_str = DiagnosticStyledString::new();
3039                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
3040                             let mut found_str = DiagnosticStyledString::new();
3041                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
3042
3043                             lint.set_arg("this_fi", this_fi.ident.name)
3044                                 .set_arg("orig", orig.get_name())
3045                                 .span_label(get_relevant_span(orig_fi), fluent::previous_decl_label)
3046                                 .span_label(get_relevant_span(this_fi), fluent::mismatch_label)
3047                                 // FIXME(davidtwco): translatable expected/found
3048                                 .note_expected_found(&"", expected_str, &"", found_str)
3049                         },
3050                     );
3051                 }
3052             }
3053         }
3054     }
3055 }
3056
3057 declare_lint! {
3058     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3059     /// which causes [undefined behavior].
3060     ///
3061     /// ### Example
3062     ///
3063     /// ```rust,no_run
3064     /// # #![allow(unused)]
3065     /// use std::ptr;
3066     /// unsafe {
3067     ///     let x = &*ptr::null::<i32>();
3068     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3069     ///     let x = *(0 as *const i32);
3070     /// }
3071     /// ```
3072     ///
3073     /// {{produces}}
3074     ///
3075     /// ### Explanation
3076     ///
3077     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3078     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3079     ///
3080     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3081     pub DEREF_NULLPTR,
3082     Warn,
3083     "detects when an null pointer is dereferenced"
3084 }
3085
3086 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3087
3088 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3089     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3090         /// test if expression is a null ptr
3091         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3092             match &expr.kind {
3093                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3094                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3095                         return is_zero(expr) || is_null_ptr(cx, expr);
3096                     }
3097                 }
3098                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3099                 rustc_hir::ExprKind::Call(ref path, _) => {
3100                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3101                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3102                             return matches!(
3103                                 cx.tcx.get_diagnostic_name(def_id),
3104                                 Some(sym::ptr_null | sym::ptr_null_mut)
3105                             );
3106                         }
3107                     }
3108                 }
3109                 _ => {}
3110             }
3111             false
3112         }
3113
3114         /// test if expression is the literal `0`
3115         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3116             match &expr.kind {
3117                 rustc_hir::ExprKind::Lit(ref lit) => {
3118                     if let LitKind::Int(a, _) = lit.node {
3119                         return a == 0;
3120                     }
3121                 }
3122                 _ => {}
3123             }
3124             false
3125         }
3126
3127         if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3128             if is_null_ptr(cx, expr_deref) {
3129                 cx.emit_spanned_lint(
3130                     DEREF_NULLPTR,
3131                     expr.span,
3132                     BuiltinDerefNullptr { label: expr.span },
3133                 );
3134             }
3135         }
3136     }
3137 }
3138
3139 declare_lint! {
3140     /// The `named_asm_labels` lint detects the use of named labels in the
3141     /// inline `asm!` macro.
3142     ///
3143     /// ### Example
3144     ///
3145     /// ```rust,compile_fail
3146     /// # #![feature(asm_experimental_arch)]
3147     /// use std::arch::asm;
3148     ///
3149     /// fn main() {
3150     ///     unsafe {
3151     ///         asm!("foo: bar");
3152     ///     }
3153     /// }
3154     /// ```
3155     ///
3156     /// {{produces}}
3157     ///
3158     /// ### Explanation
3159     ///
3160     /// LLVM is allowed to duplicate inline assembly blocks for any
3161     /// reason, for example when it is in a function that gets inlined. Because
3162     /// of this, GNU assembler [local labels] *must* be used instead of labels
3163     /// with a name. Using named labels might cause assembler or linker errors.
3164     ///
3165     /// See the explanation in [Rust By Example] for more details.
3166     ///
3167     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3168     /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
3169     pub NAMED_ASM_LABELS,
3170     Deny,
3171     "named labels in inline assembly",
3172 }
3173
3174 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3175
3176 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3177     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3178         if let hir::Expr {
3179             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3180             ..
3181         } = expr
3182         {
3183             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3184                 let template_str = template_sym.as_str();
3185                 let find_label_span = |needle: &str| -> Option<Span> {
3186                     if let Some(template_snippet) = template_snippet {
3187                         let snippet = template_snippet.as_str();
3188                         if let Some(pos) = snippet.find(needle) {
3189                             let end = pos
3190                                 + snippet[pos..]
3191                                     .find(|c| c == ':')
3192                                     .unwrap_or(snippet[pos..].len() - 1);
3193                             let inner = InnerSpan::new(pos, end);
3194                             return Some(template_span.from_inner(inner));
3195                         }
3196                     }
3197
3198                     None
3199                 };
3200
3201                 let mut found_labels = Vec::new();
3202
3203                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3204                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3205                 for statement in statements {
3206                     // If there's a comment, trim it from the statement
3207                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3208                     let mut start_idx = 0;
3209                     for (idx, _) in statement.match_indices(':') {
3210                         let possible_label = statement[start_idx..idx].trim();
3211                         let mut chars = possible_label.chars();
3212                         let Some(c) = chars.next() else {
3213                             // Empty string means a leading ':' in this section, which is not a label
3214                             break
3215                         };
3216                         // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3217                         if (c.is_alphabetic() || matches!(c, '.' | '_'))
3218                             && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3219                         {
3220                             found_labels.push(possible_label);
3221                         } else {
3222                             // If we encounter a non-label, there cannot be any further labels, so stop checking
3223                             break;
3224                         }
3225
3226                         start_idx = idx + 1;
3227                     }
3228                 }
3229
3230                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3231
3232                 if found_labels.len() > 0 {
3233                     let spans = found_labels
3234                         .into_iter()
3235                         .filter_map(|label| find_label_span(label))
3236                         .collect::<Vec<Span>>();
3237                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3238                     let target_spans: MultiSpan =
3239                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3240
3241                     cx.lookup_with_diagnostics(
3242                             NAMED_ASM_LABELS,
3243                             Some(target_spans),
3244                             fluent::lint_builtin_asm_labels,
3245                             |lint| lint,
3246                             BuiltinLintDiagnostics::NamedAsmLabel(
3247                                 "only local labels of the form `<number>:` should be used in inline asm"
3248                                     .to_string(),
3249                             ),
3250                         );
3251                 }
3252             }
3253         }
3254     }
3255 }
3256
3257 declare_lint! {
3258     /// The `special_module_name` lint detects module
3259     /// declarations for files that have a special meaning.
3260     ///
3261     /// ### Example
3262     ///
3263     /// ```rust,compile_fail
3264     /// mod lib;
3265     ///
3266     /// fn main() {
3267     ///     lib::run();
3268     /// }
3269     /// ```
3270     ///
3271     /// {{produces}}
3272     ///
3273     /// ### Explanation
3274     ///
3275     /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3276     /// library or binary crate, so declaring them as modules
3277     /// will lead to miscompilation of the crate unless configured
3278     /// explicitly.
3279     ///
3280     /// To access a library from a binary target within the same crate,
3281     /// use `your_crate_name::` as the path instead of `lib::`:
3282     ///
3283     /// ```rust,compile_fail
3284     /// // bar/src/lib.rs
3285     /// fn run() {
3286     ///     // ...
3287     /// }
3288     ///
3289     /// // bar/src/main.rs
3290     /// fn main() {
3291     ///     bar::run();
3292     /// }
3293     /// ```
3294     ///
3295     /// Binary targets cannot be used as libraries and so declaring
3296     /// one as a module is not allowed.
3297     pub SPECIAL_MODULE_NAME,
3298     Warn,
3299     "module declarations for files with a special meaning",
3300 }
3301
3302 declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3303
3304 impl EarlyLintPass for SpecialModuleName {
3305     fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3306         for item in &krate.items {
3307             if let ast::ItemKind::Mod(
3308                 _,
3309                 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _),
3310             ) = item.kind
3311             {
3312                 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3313                     continue;
3314                 }
3315
3316                 match item.ident.name.as_str() {
3317                     "lib" => cx.emit_spanned_lint(
3318                         SPECIAL_MODULE_NAME,
3319                         item.span,
3320                         BuiltinSpecialModuleNameUsed::Lib,
3321                     ),
3322                     "main" => cx.emit_spanned_lint(
3323                         SPECIAL_MODULE_NAME,
3324                         item.span,
3325                         BuiltinSpecialModuleNameUsed::Main,
3326                     ),
3327                     _ => continue,
3328                 }
3329             }
3330         }
3331     }
3332 }
3333
3334 pub use rustc_session::lint::builtin::UNEXPECTED_CFGS;
3335
3336 declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]);
3337
3338 impl EarlyLintPass for UnexpectedCfgs {
3339     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
3340         let cfg = &cx.sess().parse_sess.config;
3341         let check_cfg = &cx.sess().parse_sess.check_config;
3342         for &(name, value) in cfg {
3343             if let Some(names_valid) = &check_cfg.names_valid && !names_valid.contains(&name){
3344                 cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigName {
3345                     name,
3346                 });
3347             }
3348             if let Some(value) = value && let Some(values) = check_cfg.values_valid.get(&name) && !values.contains(&value) {
3349                 cx.emit_lint(
3350                     UNEXPECTED_CFGS,
3351                     BuiltinUnexpectedCliConfigValue { name, value },
3352                 );
3353             }
3354         }
3355     }
3356 }