]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Auto merge of #76004 - richkadel:llvm-coverage-map-gen-6b.5, r=tmandry
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     types::CItemKind, EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
25 };
26 use rustc_ast::attr::{self, HasAttrs};
27 use rustc_ast::tokenstream::{TokenStream, TokenTree};
28 use rustc_ast::visit::{FnCtxt, FnKind};
29 use rustc_ast::{self as ast, *};
30 use rustc_ast_pretty::pprust::{self, expr_to_string};
31 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
32 use rustc_data_structures::stack::ensure_sufficient_stack;
33 use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
34 use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType};
35 use rustc_feature::{GateIssue, Stability};
36 use rustc_hir as hir;
37 use rustc_hir::def::{DefKind, Res};
38 use rustc_hir::def_id::DefId;
39 use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind};
40 use rustc_hir::{HirId, HirIdSet, Node};
41 use rustc_index::vec::Idx;
42 use rustc_middle::lint::LintDiagnosticBuilder;
43 use rustc_middle::ty::print::with_no_trimmed_paths;
44 use rustc_middle::ty::subst::{GenericArgKind, Subst};
45 use rustc_middle::ty::{self, layout::LayoutError, Ty, TyCtxt};
46 use rustc_session::lint::FutureIncompatibleInfo;
47 use rustc_session::Session;
48 use rustc_span::edition::Edition;
49 use rustc_span::source_map::Spanned;
50 use rustc_span::symbol::{kw, sym, Ident, Symbol};
51 use rustc_span::{BytePos, Span};
52 use rustc_target::abi::{LayoutOf, VariantIdx};
53 use rustc_trait_selection::traits::misc::can_type_implement_copy;
54
55 use crate::nonstandard_style::{method_context, MethodLateContext};
56
57 use std::fmt::Write;
58 use tracing::{debug, trace};
59
60 // hardwired lints from librustc_middle
61 pub use rustc_session::lint::builtin::*;
62
63 declare_lint! {
64     WHILE_TRUE,
65     Warn,
66     "suggest using `loop { }` instead of `while true { }`"
67 }
68
69 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
70
71 /// Traverse through any amount of parenthesis and return the first non-parens expression.
72 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
73     while let ast::ExprKind::Paren(sub) = &expr.kind {
74         expr = sub;
75     }
76     expr
77 }
78
79 impl EarlyLintPass for WhileTrue {
80     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
81         if let ast::ExprKind::While(cond, ..) = &e.kind {
82             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
83                 if let ast::LitKind::Bool(true) = lit.kind {
84                     if !lit.span.from_expansion() {
85                         let msg = "denote infinite loops with `loop { ... }`";
86                         let condition_span = cx.sess.source_map().guess_head_span(e.span);
87                         cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
88                             lint.build(msg)
89                                 .span_suggestion_short(
90                                     condition_span,
91                                     "use `loop`",
92                                     "loop".to_owned(),
93                                     Applicability::MachineApplicable,
94                                 )
95                                 .emit();
96                         })
97                     }
98                 }
99             }
100         }
101     }
102 }
103
104 declare_lint! {
105     BOX_POINTERS,
106     Allow,
107     "use of owned (Box type) heap memory"
108 }
109
110 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
111
112 impl BoxPointers {
113     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
114         for leaf in ty.walk() {
115             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
116                 if leaf_ty.is_box() {
117                     cx.struct_span_lint(BOX_POINTERS, span, |lint| {
118                         lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit()
119                     });
120                 }
121             }
122         }
123     }
124 }
125
126 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
127     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
128         match it.kind {
129             hir::ItemKind::Fn(..)
130             | hir::ItemKind::TyAlias(..)
131             | hir::ItemKind::Enum(..)
132             | hir::ItemKind::Struct(..)
133             | hir::ItemKind::Union(..) => {
134                 let def_id = cx.tcx.hir().local_def_id(it.hir_id);
135                 self.check_heap_type(cx, it.span, cx.tcx.type_of(def_id))
136             }
137             _ => (),
138         }
139
140         // If it's a struct, we also have to check the fields' types
141         match it.kind {
142             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
143                 for struct_field in struct_def.fields() {
144                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
145                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
146                 }
147             }
148             _ => (),
149         }
150     }
151
152     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
153         let ty = cx.typeck_results().node_type(e.hir_id);
154         self.check_heap_type(cx, e.span, ty);
155     }
156 }
157
158 declare_lint! {
159     NON_SHORTHAND_FIELD_PATTERNS,
160     Warn,
161     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
162 }
163
164 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
165
166 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
167     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
168         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
169             let variant = cx
170                 .typeck_results()
171                 .pat_ty(pat)
172                 .ty_adt_def()
173                 .expect("struct pattern type is not an ADT")
174                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
175             for fieldpat in field_pats {
176                 if fieldpat.is_shorthand {
177                     continue;
178                 }
179                 if fieldpat.span.from_expansion() {
180                     // Don't lint if this is a macro expansion: macro authors
181                     // shouldn't have to worry about this kind of style issue
182                     // (Issue #49588)
183                     continue;
184                 }
185                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
186                     if cx.tcx.find_field_index(ident, &variant)
187                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
188                     {
189                         cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
190                             let mut err = lint
191                                 .build(&format!("the `{}:` in this pattern is redundant", ident));
192                             let binding = match binding_annot {
193                                 hir::BindingAnnotation::Unannotated => None,
194                                 hir::BindingAnnotation::Mutable => Some("mut"),
195                                 hir::BindingAnnotation::Ref => Some("ref"),
196                                 hir::BindingAnnotation::RefMut => Some("ref mut"),
197                             };
198                             let ident = if let Some(binding) = binding {
199                                 format!("{} {}", binding, ident)
200                             } else {
201                                 ident.to_string()
202                             };
203                             err.span_suggestion(
204                                 fieldpat.span,
205                                 "use shorthand field pattern",
206                                 ident,
207                                 Applicability::MachineApplicable,
208                             );
209                             err.emit();
210                         });
211                     }
212                 }
213             }
214         }
215     }
216 }
217
218 declare_lint! {
219     UNSAFE_CODE,
220     Allow,
221     "usage of `unsafe` code"
222 }
223
224 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
225
226 impl UnsafeCode {
227     fn report_unsafe(
228         &self,
229         cx: &EarlyContext<'_>,
230         span: Span,
231         decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>),
232     ) {
233         // This comes from a macro that has `#[allow_internal_unsafe]`.
234         if span.allows_unsafe() {
235             return;
236         }
237
238         cx.struct_span_lint(UNSAFE_CODE, span, decorate);
239     }
240 }
241
242 impl EarlyLintPass for UnsafeCode {
243     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
244         if cx.sess().check_name(attr, sym::allow_internal_unsafe) {
245             self.report_unsafe(cx, attr.span, |lint| {
246                 lint.build(
247                     "`allow_internal_unsafe` allows defining \
248                                                macros using unsafe without triggering \
249                                                the `unsafe_code` lint at their call site",
250                 )
251                 .emit()
252             });
253         }
254     }
255
256     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
257         if let ast::ExprKind::Block(ref blk, _) = e.kind {
258             // Don't warn about generated blocks; that'll just pollute the output.
259             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
260                 self.report_unsafe(cx, blk.span, |lint| {
261                     lint.build("usage of an `unsafe` block").emit()
262                 });
263             }
264         }
265     }
266
267     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
268         match it.kind {
269             ast::ItemKind::Trait(_, ast::Unsafe::Yes(_), ..) => {
270                 self.report_unsafe(cx, it.span, |lint| {
271                     lint.build("declaration of an `unsafe` trait").emit()
272                 })
273             }
274
275             ast::ItemKind::Impl { unsafety: ast::Unsafe::Yes(_), .. } => {
276                 self.report_unsafe(cx, it.span, |lint| {
277                     lint.build("implementation of an `unsafe` trait").emit()
278                 })
279             }
280
281             _ => {}
282         }
283     }
284
285     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
286         if let FnKind::Fn(
287             ctxt,
288             _,
289             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
290             _,
291             body,
292         ) = fk
293         {
294             let msg = match ctxt {
295                 FnCtxt::Foreign => return,
296                 FnCtxt::Free => "declaration of an `unsafe` function",
297                 FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
298                 FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
299             };
300             self.report_unsafe(cx, span, |lint| lint.build(msg).emit());
301         }
302     }
303 }
304
305 declare_lint! {
306     pub MISSING_DOCS,
307     Allow,
308     "detects missing documentation for public members",
309     report_in_external_macro
310 }
311
312 pub struct MissingDoc {
313     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
314     doc_hidden_stack: Vec<bool>,
315
316     /// Private traits or trait items that leaked through. Don't check their methods.
317     private_traits: FxHashSet<hir::HirId>,
318 }
319
320 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
321
322 fn has_doc(sess: &Session, attr: &ast::Attribute) -> bool {
323     if attr.is_doc_comment() {
324         return true;
325     }
326
327     if !sess.check_name(attr, sym::doc) {
328         return false;
329     }
330
331     if attr.is_value_str() {
332         return true;
333     }
334
335     if let Some(list) = attr.meta_item_list() {
336         for meta in list {
337             if meta.has_name(sym::include) || meta.has_name(sym::hidden) {
338                 return true;
339             }
340         }
341     }
342
343     false
344 }
345
346 impl MissingDoc {
347     pub fn new() -> MissingDoc {
348         MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
349     }
350
351     fn doc_hidden(&self) -> bool {
352         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
353     }
354
355     fn check_missing_docs_attrs(
356         &self,
357         cx: &LateContext<'_>,
358         id: Option<hir::HirId>,
359         attrs: &[ast::Attribute],
360         sp: Span,
361         article: &'static str,
362         desc: &'static str,
363     ) {
364         // If we're building a test harness, then warning about
365         // documentation is probably not really relevant right now.
366         if cx.sess().opts.test {
367             return;
368         }
369
370         // `#[doc(hidden)]` disables missing_docs check.
371         if self.doc_hidden() {
372             return;
373         }
374
375         // Only check publicly-visible items, using the result from the privacy pass.
376         // It's an option so the crate root can also use this function (it doesn't
377         // have a `NodeId`).
378         if let Some(id) = id {
379             if !cx.access_levels.is_exported(id) {
380                 return;
381             }
382         }
383
384         let has_doc = attrs.iter().any(|a| has_doc(cx.sess(), a));
385         if !has_doc {
386             cx.struct_span_lint(
387                 MISSING_DOCS,
388                 cx.tcx.sess.source_map().guess_head_span(sp),
389                 |lint| {
390                     lint.build(&format!("missing documentation for {} {}", article, desc)).emit()
391                 },
392             );
393         }
394     }
395 }
396
397 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
398     fn enter_lint_attrs(&mut self, cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
399         let doc_hidden = self.doc_hidden()
400             || attrs.iter().any(|attr| {
401                 cx.sess().check_name(attr, sym::doc)
402                     && match attr.meta_item_list() {
403                         None => false,
404                         Some(l) => attr::list_contains_name(&l, sym::hidden),
405                     }
406             });
407         self.doc_hidden_stack.push(doc_hidden);
408     }
409
410     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
411         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
412     }
413
414     fn check_crate(&mut self, cx: &LateContext<'_>, krate: &hir::Crate<'_>) {
415         self.check_missing_docs_attrs(cx, None, &krate.item.attrs, krate.item.span, "the", "crate");
416
417         for macro_def in krate.exported_macros {
418             let has_doc = macro_def.attrs.iter().any(|a| has_doc(cx.sess(), a));
419             if !has_doc {
420                 cx.struct_span_lint(
421                     MISSING_DOCS,
422                     cx.tcx.sess.source_map().guess_head_span(macro_def.span),
423                     |lint| lint.build("missing documentation for macro").emit(),
424                 );
425             }
426         }
427     }
428
429     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
430         match it.kind {
431             hir::ItemKind::Trait(.., trait_item_refs) => {
432                 // Issue #11592: traits are always considered exported, even when private.
433                 if let hir::VisibilityKind::Inherited = it.vis.node {
434                     self.private_traits.insert(it.hir_id);
435                     for trait_item_ref in trait_item_refs {
436                         self.private_traits.insert(trait_item_ref.id.hir_id);
437                     }
438                     return;
439                 }
440             }
441             hir::ItemKind::Impl { of_trait: Some(ref trait_ref), items, .. } => {
442                 // If the trait is private, add the impl items to `private_traits` so they don't get
443                 // reported for missing docs.
444                 let real_trait = trait_ref.path.res.def_id();
445                 if let Some(def_id) = real_trait.as_local() {
446                     let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id);
447                     if let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) {
448                         if let hir::VisibilityKind::Inherited = item.vis.node {
449                             for impl_item_ref in items {
450                                 self.private_traits.insert(impl_item_ref.id.hir_id);
451                             }
452                         }
453                     }
454                 }
455                 return;
456             }
457
458             hir::ItemKind::TyAlias(..)
459             | hir::ItemKind::Fn(..)
460             | hir::ItemKind::Mod(..)
461             | hir::ItemKind::Enum(..)
462             | hir::ItemKind::Struct(..)
463             | hir::ItemKind::Union(..)
464             | hir::ItemKind::Const(..)
465             | hir::ItemKind::Static(..) => {}
466
467             _ => return,
468         };
469
470         let def_id = cx.tcx.hir().local_def_id(it.hir_id);
471         let (article, desc) = cx.tcx.article_and_description(def_id.to_def_id());
472
473         self.check_missing_docs_attrs(cx, Some(it.hir_id), &it.attrs, it.span, article, desc);
474     }
475
476     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
477         if self.private_traits.contains(&trait_item.hir_id) {
478             return;
479         }
480
481         let def_id = cx.tcx.hir().local_def_id(trait_item.hir_id);
482         let (article, desc) = cx.tcx.article_and_description(def_id.to_def_id());
483
484         self.check_missing_docs_attrs(
485             cx,
486             Some(trait_item.hir_id),
487             &trait_item.attrs,
488             trait_item.span,
489             article,
490             desc,
491         );
492     }
493
494     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
495         // If the method is an impl for a trait, don't doc.
496         if method_context(cx, impl_item.hir_id) == MethodLateContext::TraitImpl {
497             return;
498         }
499
500         let def_id = cx.tcx.hir().local_def_id(impl_item.hir_id);
501         let (article, desc) = cx.tcx.article_and_description(def_id.to_def_id());
502         self.check_missing_docs_attrs(
503             cx,
504             Some(impl_item.hir_id),
505             &impl_item.attrs,
506             impl_item.span,
507             article,
508             desc,
509         );
510     }
511
512     fn check_struct_field(&mut self, cx: &LateContext<'_>, sf: &hir::StructField<'_>) {
513         if !sf.is_positional() {
514             self.check_missing_docs_attrs(
515                 cx,
516                 Some(sf.hir_id),
517                 &sf.attrs,
518                 sf.span,
519                 "a",
520                 "struct field",
521             )
522         }
523     }
524
525     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
526         self.check_missing_docs_attrs(cx, Some(v.id), &v.attrs, v.span, "a", "variant");
527     }
528 }
529
530 declare_lint! {
531     pub MISSING_COPY_IMPLEMENTATIONS,
532     Allow,
533     "detects potentially-forgotten implementations of `Copy`"
534 }
535
536 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
537
538 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
539     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
540         if !cx.access_levels.is_reachable(item.hir_id) {
541             return;
542         }
543         let (def, ty) = match item.kind {
544             hir::ItemKind::Struct(_, ref ast_generics) => {
545                 if !ast_generics.params.is_empty() {
546                     return;
547                 }
548                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
549                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
550             }
551             hir::ItemKind::Union(_, ref ast_generics) => {
552                 if !ast_generics.params.is_empty() {
553                     return;
554                 }
555                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
556                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
557             }
558             hir::ItemKind::Enum(_, ref ast_generics) => {
559                 if !ast_generics.params.is_empty() {
560                     return;
561                 }
562                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
563                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
564             }
565             _ => return,
566         };
567         if def.has_dtor(cx.tcx) {
568             return;
569         }
570         let param_env = ty::ParamEnv::empty();
571         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
572             return;
573         }
574         if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() {
575             cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
576                 lint.build(
577                     "type could implement `Copy`; consider adding `impl \
578                           Copy`",
579                 )
580                 .emit()
581             })
582         }
583     }
584 }
585
586 declare_lint! {
587     MISSING_DEBUG_IMPLEMENTATIONS,
588     Allow,
589     "detects missing implementations of Debug"
590 }
591
592 #[derive(Default)]
593 pub struct MissingDebugImplementations {
594     impling_types: Option<HirIdSet>,
595 }
596
597 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
598
599 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
600     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
601         if !cx.access_levels.is_reachable(item.hir_id) {
602             return;
603         }
604
605         match item.kind {
606             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
607             _ => return,
608         }
609
610         let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) {
611             Some(debug) => debug,
612             None => return,
613         };
614
615         if self.impling_types.is_none() {
616             let mut impls = HirIdSet::default();
617             cx.tcx.for_each_impl(debug, |d| {
618                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
619                     if let Some(def_id) = ty_def.did.as_local() {
620                         impls.insert(cx.tcx.hir().local_def_id_to_hir_id(def_id));
621                     }
622                 }
623             });
624
625             self.impling_types = Some(impls);
626             debug!("{:?}", self.impling_types);
627         }
628
629         if !self.impling_types.as_ref().unwrap().contains(&item.hir_id) {
630             cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
631                 lint.build(&format!(
632                     "type does not implement `{}`; consider adding `#[derive(Debug)]` \
633                      or a manual implementation",
634                     cx.tcx.def_path_str(debug)
635                 ))
636                 .emit()
637             });
638         }
639     }
640 }
641
642 declare_lint! {
643     pub ANONYMOUS_PARAMETERS,
644     Allow,
645     "detects anonymous parameters",
646     @future_incompatible = FutureIncompatibleInfo {
647         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
648         edition: Some(Edition::Edition2018),
649     };
650 }
651
652 declare_lint_pass!(
653     /// Checks for use of anonymous parameters (RFC 1685).
654     AnonymousParameters => [ANONYMOUS_PARAMETERS]
655 );
656
657 impl EarlyLintPass for AnonymousParameters {
658     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
659         if let ast::AssocItemKind::Fn(_, ref sig, _, _) = it.kind {
660             for arg in sig.decl.inputs.iter() {
661                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
662                     if ident.name == kw::Invalid {
663                         cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
664                             let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span);
665
666                             let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
667                                 (snip.as_str(), Applicability::MachineApplicable)
668                             } else {
669                                 ("<type>", Applicability::HasPlaceholders)
670                             };
671
672                             lint.build(
673                                 "anonymous parameters are deprecated and will be \
674                                      removed in the next edition.",
675                             )
676                             .span_suggestion(
677                                 arg.pat.span,
678                                 "try naming the parameter or explicitly \
679                                             ignoring it",
680                                 format!("_: {}", ty_snip),
681                                 appl,
682                             )
683                             .emit();
684                         })
685                     }
686                 }
687             }
688         }
689     }
690 }
691
692 /// Check for use of attributes which have been deprecated.
693 #[derive(Clone)]
694 pub struct DeprecatedAttr {
695     // This is not free to compute, so we want to keep it around, rather than
696     // compute it for every attribute.
697     depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>,
698 }
699
700 impl_lint_pass!(DeprecatedAttr => []);
701
702 impl DeprecatedAttr {
703     pub fn new() -> DeprecatedAttr {
704         DeprecatedAttr { depr_attrs: deprecated_attributes() }
705     }
706 }
707
708 fn lint_deprecated_attr(
709     cx: &EarlyContext<'_>,
710     attr: &ast::Attribute,
711     msg: &str,
712     suggestion: Option<&str>,
713 ) {
714     cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
715         lint.build(msg)
716             .span_suggestion_short(
717                 attr.span,
718                 suggestion.unwrap_or("remove this attribute"),
719                 String::new(),
720                 Applicability::MachineApplicable,
721             )
722             .emit();
723     })
724 }
725
726 impl EarlyLintPass for DeprecatedAttr {
727     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
728         for &&(n, _, _, ref g) in &self.depr_attrs {
729             if attr.ident().map(|ident| ident.name) == Some(n) {
730                 if let &AttributeGate::Gated(
731                     Stability::Deprecated(link, suggestion),
732                     ref name,
733                     ref reason,
734                     _,
735                 ) = g
736                 {
737                     let msg =
738                         format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
739                     lint_deprecated_attr(cx, attr, &msg, suggestion);
740                 }
741                 return;
742             }
743         }
744         if cx.sess().check_name(attr, sym::no_start) || cx.sess().check_name(attr, sym::crate_id) {
745             let path_str = pprust::path_to_string(&attr.get_normal_item().path);
746             let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
747             lint_deprecated_attr(cx, attr, &msg, None);
748         }
749     }
750 }
751
752 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
753     let mut attrs = attrs.iter().peekable();
754
755     // Accumulate a single span for sugared doc comments.
756     let mut sugared_span: Option<Span> = None;
757
758     while let Some(attr) = attrs.next() {
759         if attr.is_doc_comment() {
760             sugared_span =
761                 Some(sugared_span.map_or_else(|| attr.span, |span| span.with_hi(attr.span.hi())));
762         }
763
764         if attrs.peek().map(|next_attr| next_attr.is_doc_comment()).unwrap_or_default() {
765             continue;
766         }
767
768         let span = sugared_span.take().unwrap_or_else(|| attr.span);
769
770         if attr.is_doc_comment() || cx.sess().check_name(attr, sym::doc) {
771             cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
772                 let mut err = lint.build("unused doc comment");
773                 err.span_label(
774                     node_span,
775                     format!("rustdoc does not generate documentation for {}", node_kind),
776                 );
777                 err.emit();
778             });
779         }
780     }
781 }
782
783 impl EarlyLintPass for UnusedDocComment {
784     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
785         let kind = match stmt.kind {
786             ast::StmtKind::Local(..) => "statements",
787             ast::StmtKind::Item(..) => "inner items",
788             // expressions will be reported by `check_expr`.
789             ast::StmtKind::Empty
790             | ast::StmtKind::Semi(_)
791             | ast::StmtKind::Expr(_)
792             | ast::StmtKind::MacCall(_) => return,
793         };
794
795         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
796     }
797
798     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
799         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
800         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
801     }
802
803     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
804         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
805     }
806 }
807
808 declare_lint! {
809     NO_MANGLE_CONST_ITEMS,
810     Deny,
811     "const items will not have their symbols exported"
812 }
813
814 declare_lint! {
815     NO_MANGLE_GENERIC_ITEMS,
816     Warn,
817     "generic items must be mangled"
818 }
819
820 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
821
822 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
823     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
824         match it.kind {
825             hir::ItemKind::Fn(.., ref generics, _) => {
826                 if let Some(no_mangle_attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
827                     for param in generics.params {
828                         match param.kind {
829                             GenericParamKind::Lifetime { .. } => {}
830                             GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
831                                 cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, it.span, |lint| {
832                                     lint.build(
833                                         "functions generic over types or consts must be mangled",
834                                     )
835                                     .span_suggestion_short(
836                                         no_mangle_attr.span,
837                                         "remove this attribute",
838                                         String::new(),
839                                         // Use of `#[no_mangle]` suggests FFI intent; correct
840                                         // fix may be to monomorphize source by hand
841                                         Applicability::MaybeIncorrect,
842                                     )
843                                     .emit();
844                                 });
845                                 break;
846                             }
847                         }
848                     }
849                 }
850             }
851             hir::ItemKind::Const(..) => {
852                 if cx.sess().contains_name(&it.attrs, sym::no_mangle) {
853                     // Const items do not refer to a particular location in memory, and therefore
854                     // don't have anything to attach a symbol to
855                     cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
856                         let msg = "const items should never be `#[no_mangle]`";
857                         let mut err = lint.build(msg);
858
859                         // account for "pub const" (#45562)
860                         let start = cx
861                             .tcx
862                             .sess
863                             .source_map()
864                             .span_to_snippet(it.span)
865                             .map(|snippet| snippet.find("const").unwrap_or(0))
866                             .unwrap_or(0) as u32;
867                         // `const` is 5 chars
868                         let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
869                         err.span_suggestion(
870                             const_span,
871                             "try a static value",
872                             "pub static".to_owned(),
873                             Applicability::MachineApplicable,
874                         );
875                         err.emit();
876                     });
877                 }
878             }
879             _ => {}
880         }
881     }
882 }
883
884 declare_lint! {
885     MUTABLE_TRANSMUTES,
886     Deny,
887     "mutating transmuted &mut T from &T may cause undefined behavior"
888 }
889
890 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
891
892 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
893     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
894         use rustc_target::spec::abi::Abi::RustIntrinsic;
895         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
896             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (&ty1.kind, &ty2.kind))
897         {
898             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
899                 let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
900                                consider instead using an UnsafeCell";
901                 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit());
902             }
903         }
904
905         fn get_transmute_from_to<'tcx>(
906             cx: &LateContext<'tcx>,
907             expr: &hir::Expr<'_>,
908         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
909             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
910                 cx.qpath_res(qpath, expr.hir_id)
911             } else {
912                 return None;
913             };
914             if let Res::Def(DefKind::Fn, did) = def {
915                 if !def_id_is_transmute(cx, did) {
916                     return None;
917                 }
918                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
919                 let from = sig.inputs().skip_binder()[0];
920                 let to = sig.output().skip_binder();
921                 return Some((from, to));
922             }
923             None
924         }
925
926         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
927             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
928                 && cx.tcx.item_name(def_id) == sym::transmute
929         }
930     }
931 }
932
933 declare_lint! {
934     UNSTABLE_FEATURES,
935     Allow,
936     "enabling unstable features (deprecated. do not use)"
937 }
938
939 declare_lint_pass!(
940     /// Forbids using the `#[feature(...)]` attribute
941     UnstableFeatures => [UNSTABLE_FEATURES]
942 );
943
944 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
945     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
946         if cx.sess().check_name(attr, sym::feature) {
947             if let Some(items) = attr.meta_item_list() {
948                 for item in items {
949                     cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
950                         lint.build("unstable feature").emit()
951                     });
952                 }
953             }
954         }
955     }
956 }
957
958 declare_lint! {
959     pub UNREACHABLE_PUB,
960     Allow,
961     "`pub` items not reachable from crate root"
962 }
963
964 declare_lint_pass!(
965     /// Lint for items marked `pub` that aren't reachable from other crates.
966     UnreachablePub => [UNREACHABLE_PUB]
967 );
968
969 impl UnreachablePub {
970     fn perform_lint(
971         &self,
972         cx: &LateContext<'_>,
973         what: &str,
974         id: hir::HirId,
975         vis: &hir::Visibility<'_>,
976         span: Span,
977         exportable: bool,
978     ) {
979         let mut applicability = Applicability::MachineApplicable;
980         match vis.node {
981             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => {
982                 if span.from_expansion() {
983                     applicability = Applicability::MaybeIncorrect;
984                 }
985                 let def_span = cx.tcx.sess.source_map().guess_head_span(span);
986                 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
987                     let mut err = lint.build(&format!("unreachable `pub` {}", what));
988                     let replacement = if cx.tcx.features().crate_visibility_modifier {
989                         "crate"
990                     } else {
991                         "pub(crate)"
992                     }
993                     .to_owned();
994
995                     err.span_suggestion(
996                         vis.span,
997                         "consider restricting its visibility",
998                         replacement,
999                         applicability,
1000                     );
1001                     if exportable {
1002                         err.help("or consider exporting it for use by other crates");
1003                     }
1004                     err.emit();
1005                 });
1006             }
1007             _ => {}
1008         }
1009     }
1010 }
1011
1012 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1013     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1014         self.perform_lint(cx, "item", item.hir_id, &item.vis, item.span, true);
1015     }
1016
1017     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1018         self.perform_lint(
1019             cx,
1020             "item",
1021             foreign_item.hir_id,
1022             &foreign_item.vis,
1023             foreign_item.span,
1024             true,
1025         );
1026     }
1027
1028     fn check_struct_field(&mut self, cx: &LateContext<'_>, field: &hir::StructField<'_>) {
1029         self.perform_lint(cx, "field", field.hir_id, &field.vis, field.span, false);
1030     }
1031
1032     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1033         self.perform_lint(cx, "item", impl_item.hir_id, &impl_item.vis, impl_item.span, false);
1034     }
1035 }
1036
1037 declare_lint! {
1038     TYPE_ALIAS_BOUNDS,
1039     Warn,
1040     "bounds in type aliases are not enforced"
1041 }
1042
1043 declare_lint_pass!(
1044     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1045     /// They are relevant when using associated types, but otherwise neither checked
1046     /// at definition site nor enforced at use site.
1047     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1048 );
1049
1050 impl TypeAliasBounds {
1051     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1052         match *qpath {
1053             hir::QPath::TypeRelative(ref ty, _) => {
1054                 // If this is a type variable, we found a `T::Assoc`.
1055                 match ty.kind {
1056                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => match path.res {
1057                         Res::Def(DefKind::TyParam, _) => true,
1058                         _ => false,
1059                     },
1060                     _ => false,
1061                 }
1062             }
1063             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1064         }
1065     }
1066
1067     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) {
1068         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1069         // bound.  Let's see if this type does that.
1070
1071         // We use a HIR visitor to walk the type.
1072         use rustc_hir::intravisit::{self, Visitor};
1073         struct WalkAssocTypes<'a, 'db> {
1074             err: &'a mut DiagnosticBuilder<'db>,
1075         }
1076         impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
1077             type Map = intravisit::ErasedMap<'v>;
1078
1079             fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
1080                 intravisit::NestedVisitorMap::None
1081             }
1082
1083             fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) {
1084                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1085                     self.err.span_help(
1086                         span,
1087                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1088                          associated types in type aliases",
1089                     );
1090                 }
1091                 intravisit::walk_qpath(self, qpath, id, span)
1092             }
1093         }
1094
1095         // Let's go for a walk!
1096         let mut visitor = WalkAssocTypes { err };
1097         visitor.visit_ty(ty);
1098     }
1099 }
1100
1101 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1102     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1103         let (ty, type_alias_generics) = match item.kind {
1104             hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics),
1105             _ => return,
1106         };
1107         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1108             // Bounds are respected for `type X = impl Trait`
1109             return;
1110         }
1111         let mut suggested_changing_assoc_types = false;
1112         // There must not be a where clause
1113         if !type_alias_generics.where_clause.predicates.is_empty() {
1114             cx.lint(
1115                 TYPE_ALIAS_BOUNDS,
1116                 |lint| {
1117                     let mut err = lint.build("where clauses are not enforced in type aliases");
1118                     let spans: Vec<_> = type_alias_generics
1119                         .where_clause
1120                         .predicates
1121                         .iter()
1122                         .map(|pred| pred.span())
1123                         .collect();
1124                     err.set_span(spans);
1125                     err.span_suggestion(
1126                         type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1127                         "the clause will not be checked when the type alias is used, and should be removed",
1128                         String::new(),
1129                         Applicability::MachineApplicable,
1130                     );
1131                     if !suggested_changing_assoc_types {
1132                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1133                         suggested_changing_assoc_types = true;
1134                     }
1135                     err.emit();
1136                 },
1137             );
1138         }
1139         // The parameters must not have bounds
1140         for param in type_alias_generics.params.iter() {
1141             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1142             let suggestion = spans
1143                 .iter()
1144                 .map(|sp| {
1145                     let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1146                     (start.to(*sp), String::new())
1147                 })
1148                 .collect();
1149             if !spans.is_empty() {
1150                 cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| {
1151                     let mut err =
1152                         lint.build("bounds on generic parameters are not enforced in type aliases");
1153                     let msg = "the bound will not be checked when the type alias is used, \
1154                                    and should be removed";
1155                     err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1156                     if !suggested_changing_assoc_types {
1157                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1158                         suggested_changing_assoc_types = true;
1159                     }
1160                     err.emit();
1161                 });
1162             }
1163         }
1164     }
1165 }
1166
1167 declare_lint_pass!(
1168     /// Lint constants that are erroneous.
1169     /// Without this lint, we might not get any diagnostic if the constant is
1170     /// unused within this crate, even though downstream crates can't use it
1171     /// without producing an error.
1172     UnusedBrokenConst => []
1173 );
1174
1175 fn check_const(cx: &LateContext<'_>, body_id: hir::BodyId) {
1176     let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1177     // trigger the query once for all constants since that will already report the errors
1178     // FIXME: Use ensure here
1179     let _ = cx.tcx.const_eval_poly(def_id);
1180 }
1181
1182 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1183     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1184         match it.kind {
1185             hir::ItemKind::Const(_, body_id) => {
1186                 check_const(cx, body_id);
1187             }
1188             hir::ItemKind::Static(_, _, body_id) => {
1189                 check_const(cx, body_id);
1190             }
1191             _ => {}
1192         }
1193     }
1194 }
1195
1196 declare_lint! {
1197     TRIVIAL_BOUNDS,
1198     Warn,
1199     "these bounds don't depend on an type parameters"
1200 }
1201
1202 declare_lint_pass!(
1203     /// Lint for trait and lifetime bounds that don't depend on type parameters
1204     /// which either do nothing, or stop the item from being used.
1205     TrivialConstraints => [TRIVIAL_BOUNDS]
1206 );
1207
1208 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1209     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1210         use rustc_middle::ty::fold::TypeFoldable;
1211         use rustc_middle::ty::PredicateAtom::*;
1212
1213         if cx.tcx.features().trivial_bounds {
1214             let def_id = cx.tcx.hir().local_def_id(item.hir_id);
1215             let predicates = cx.tcx.predicates_of(def_id);
1216             for &(predicate, span) in predicates.predicates {
1217                 let predicate_kind_name = match predicate.skip_binders() {
1218                     Trait(..) => "Trait",
1219                     TypeOutlives(..) |
1220                     RegionOutlives(..) => "Lifetime",
1221
1222                     // Ignore projections, as they can only be global
1223                     // if the trait bound is global
1224                     Projection(..) |
1225                     // Ignore bounds that a user can't type
1226                     WellFormed(..) |
1227                     ObjectSafe(..) |
1228                     ClosureKind(..) |
1229                     Subtype(..) |
1230                     ConstEvaluatable(..) |
1231                     ConstEquate(..) => continue,
1232                 };
1233                 if predicate.is_global() {
1234                     cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1235                         lint.build(&format!(
1236                             "{} bound {} does not depend on any type \
1237                                 or lifetime parameters",
1238                             predicate_kind_name, predicate
1239                         ))
1240                         .emit()
1241                     });
1242                 }
1243             }
1244         }
1245     }
1246 }
1247
1248 declare_lint_pass!(
1249     /// Does nothing as a lint pass, but registers some `Lint`s
1250     /// which are used by other parts of the compiler.
1251     SoftLints => [
1252         WHILE_TRUE,
1253         BOX_POINTERS,
1254         NON_SHORTHAND_FIELD_PATTERNS,
1255         UNSAFE_CODE,
1256         MISSING_DOCS,
1257         MISSING_COPY_IMPLEMENTATIONS,
1258         MISSING_DEBUG_IMPLEMENTATIONS,
1259         ANONYMOUS_PARAMETERS,
1260         UNUSED_DOC_COMMENTS,
1261         NO_MANGLE_CONST_ITEMS,
1262         NO_MANGLE_GENERIC_ITEMS,
1263         MUTABLE_TRANSMUTES,
1264         UNSTABLE_FEATURES,
1265         UNREACHABLE_PUB,
1266         TYPE_ALIAS_BOUNDS,
1267         TRIVIAL_BOUNDS
1268     ]
1269 );
1270
1271 declare_lint! {
1272     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1273     Warn,
1274     "`...` range patterns are deprecated"
1275 }
1276
1277 #[derive(Default)]
1278 pub struct EllipsisInclusiveRangePatterns {
1279     /// If `Some(_)`, suppress all subsequent pattern
1280     /// warnings for better diagnostics.
1281     node_id: Option<ast::NodeId>,
1282 }
1283
1284 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1285
1286 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1287     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1288         if self.node_id.is_some() {
1289             // Don't recursively warn about patterns inside range endpoints.
1290             return;
1291         }
1292
1293         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1294
1295         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1296         /// corresponding to the ellipsis.
1297         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1298             match &pat.kind {
1299                 PatKind::Range(
1300                     a,
1301                     Some(b),
1302                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1303                 ) => Some((a.as_deref(), b, *span)),
1304                 _ => None,
1305             }
1306         }
1307
1308         let (parenthesise, endpoints) = match &pat.kind {
1309             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1310             _ => (false, matches_ellipsis_pat(pat)),
1311         };
1312
1313         if let Some((start, end, join)) = endpoints {
1314             let msg = "`...` range patterns are deprecated";
1315             let suggestion = "use `..=` for an inclusive range";
1316             if parenthesise {
1317                 self.node_id = Some(pat.id);
1318                 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1319                     let end = expr_to_string(&end);
1320                     let replace = match start {
1321                         Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1322                         None => format!("&(..={})", end),
1323                     };
1324                     lint.build(msg)
1325                         .span_suggestion(
1326                             pat.span,
1327                             suggestion,
1328                             replace,
1329                             Applicability::MachineApplicable,
1330                         )
1331                         .emit();
1332                 });
1333             } else {
1334                 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1335                     lint.build(msg)
1336                         .span_suggestion_short(
1337                             join,
1338                             suggestion,
1339                             "..=".to_owned(),
1340                             Applicability::MachineApplicable,
1341                         )
1342                         .emit();
1343                 });
1344             };
1345         }
1346     }
1347
1348     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1349         if let Some(node_id) = self.node_id {
1350             if pat.id == node_id {
1351                 self.node_id = None
1352             }
1353         }
1354     }
1355 }
1356
1357 declare_lint! {
1358     UNNAMEABLE_TEST_ITEMS,
1359     Warn,
1360     "detects an item that cannot be named being marked as `#[test_case]`",
1361     report_in_external_macro
1362 }
1363
1364 pub struct UnnameableTestItems {
1365     boundary: Option<hir::HirId>, // HirId of the item under which things are not nameable
1366     items_nameable: bool,
1367 }
1368
1369 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1370
1371 impl UnnameableTestItems {
1372     pub fn new() -> Self {
1373         Self { boundary: None, items_nameable: true }
1374     }
1375 }
1376
1377 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1378     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1379         if self.items_nameable {
1380             if let hir::ItemKind::Mod(..) = it.kind {
1381             } else {
1382                 self.items_nameable = false;
1383                 self.boundary = Some(it.hir_id);
1384             }
1385             return;
1386         }
1387
1388         if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::rustc_test_marker) {
1389             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1390                 lint.build("cannot test inner items").emit()
1391             });
1392         }
1393     }
1394
1395     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1396         if !self.items_nameable && self.boundary == Some(it.hir_id) {
1397             self.items_nameable = true;
1398         }
1399     }
1400 }
1401
1402 declare_lint! {
1403     pub KEYWORD_IDENTS,
1404     Allow,
1405     "detects edition keywords being used as an identifier",
1406     @future_incompatible = FutureIncompatibleInfo {
1407         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1408         edition: Some(Edition::Edition2018),
1409     };
1410 }
1411
1412 declare_lint_pass!(
1413     /// Check for uses of edition keywords used as an identifier.
1414     KeywordIdents => [KEYWORD_IDENTS]
1415 );
1416
1417 struct UnderMacro(bool);
1418
1419 impl KeywordIdents {
1420     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1421         for tt in tokens.into_trees() {
1422             match tt {
1423                 // Only report non-raw idents.
1424                 TokenTree::Token(token) => {
1425                     if let Some((ident, false)) = token.ident() {
1426                         self.check_ident_token(cx, UnderMacro(true), ident);
1427                     }
1428                 }
1429                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1430             }
1431         }
1432     }
1433
1434     fn check_ident_token(
1435         &mut self,
1436         cx: &EarlyContext<'_>,
1437         UnderMacro(under_macro): UnderMacro,
1438         ident: Ident,
1439     ) {
1440         let next_edition = match cx.sess.edition() {
1441             Edition::Edition2015 => {
1442                 match ident.name {
1443                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1444
1445                     // rust-lang/rust#56327: Conservatively do not
1446                     // attempt to report occurrences of `dyn` within
1447                     // macro definitions or invocations, because `dyn`
1448                     // can legitimately occur as a contextual keyword
1449                     // in 2015 code denoting its 2018 meaning, and we
1450                     // do not want rustfix to inject bugs into working
1451                     // code by rewriting such occurrences.
1452                     //
1453                     // But if we see `dyn` outside of a macro, we know
1454                     // its precise role in the parsed AST and thus are
1455                     // assured this is truly an attempt to use it as
1456                     // an identifier.
1457                     kw::Dyn if !under_macro => Edition::Edition2018,
1458
1459                     _ => return,
1460                 }
1461             }
1462
1463             // There are no new keywords yet for the 2018 edition and beyond.
1464             _ => return,
1465         };
1466
1467         // Don't lint `r#foo`.
1468         if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1469             return;
1470         }
1471
1472         cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
1473             lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
1474                 .span_suggestion(
1475                     ident.span,
1476                     "you can use a raw identifier to stay compatible",
1477                     format!("r#{}", ident),
1478                     Applicability::MachineApplicable,
1479                 )
1480                 .emit()
1481         });
1482     }
1483 }
1484
1485 impl EarlyLintPass for KeywordIdents {
1486     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
1487         self.check_tokens(cx, mac_def.body.inner_tokens());
1488     }
1489     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1490         self.check_tokens(cx, mac.args.inner_tokens());
1491     }
1492     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
1493         self.check_ident_token(cx, UnderMacro(false), ident);
1494     }
1495 }
1496
1497 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1498
1499 impl ExplicitOutlivesRequirements {
1500     fn lifetimes_outliving_lifetime<'tcx>(
1501         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1502         index: u32,
1503     ) -> Vec<ty::Region<'tcx>> {
1504         inferred_outlives
1505             .iter()
1506             .filter_map(|(pred, _)| match pred.skip_binders() {
1507                 ty::PredicateAtom::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a {
1508                     ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
1509                     _ => None,
1510                 },
1511                 _ => None,
1512             })
1513             .collect()
1514     }
1515
1516     fn lifetimes_outliving_type<'tcx>(
1517         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1518         index: u32,
1519     ) -> Vec<ty::Region<'tcx>> {
1520         inferred_outlives
1521             .iter()
1522             .filter_map(|(pred, _)| match pred.skip_binders() {
1523                 ty::PredicateAtom::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1524                     a.is_param(index).then_some(b)
1525                 }
1526                 _ => None,
1527             })
1528             .collect()
1529     }
1530
1531     fn collect_outlived_lifetimes<'tcx>(
1532         &self,
1533         param: &'tcx hir::GenericParam<'tcx>,
1534         tcx: TyCtxt<'tcx>,
1535         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1536         ty_generics: &'tcx ty::Generics,
1537     ) -> Vec<ty::Region<'tcx>> {
1538         let index =
1539             ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()];
1540
1541         match param.kind {
1542             hir::GenericParamKind::Lifetime { .. } => {
1543                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
1544             }
1545             hir::GenericParamKind::Type { .. } => {
1546                 Self::lifetimes_outliving_type(inferred_outlives, index)
1547             }
1548             hir::GenericParamKind::Const { .. } => Vec::new(),
1549         }
1550     }
1551
1552     fn collect_outlives_bound_spans<'tcx>(
1553         &self,
1554         tcx: TyCtxt<'tcx>,
1555         bounds: &hir::GenericBounds<'_>,
1556         inferred_outlives: &[ty::Region<'tcx>],
1557         infer_static: bool,
1558     ) -> Vec<(usize, Span)> {
1559         use rustc_middle::middle::resolve_lifetime::Region;
1560
1561         bounds
1562             .iter()
1563             .enumerate()
1564             .filter_map(|(i, bound)| {
1565                 if let hir::GenericBound::Outlives(lifetime) = bound {
1566                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
1567                         Some(Region::Static) if infer_static => inferred_outlives
1568                             .iter()
1569                             .any(|r| if let ty::ReStatic = r { true } else { false }),
1570                         Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
1571                             if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false }
1572                         }),
1573                         _ => false,
1574                     };
1575                     is_inferred.then_some((i, bound.span()))
1576                 } else {
1577                     None
1578                 }
1579             })
1580             .collect()
1581     }
1582
1583     fn consolidate_outlives_bound_spans(
1584         &self,
1585         lo: Span,
1586         bounds: &hir::GenericBounds<'_>,
1587         bound_spans: Vec<(usize, Span)>,
1588     ) -> Vec<Span> {
1589         if bounds.is_empty() {
1590             return Vec::new();
1591         }
1592         if bound_spans.len() == bounds.len() {
1593             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
1594             // If all bounds are inferable, we want to delete the colon, so
1595             // start from just after the parameter (span passed as argument)
1596             vec![lo.to(last_bound_span)]
1597         } else {
1598             let mut merged = Vec::new();
1599             let mut last_merged_i = None;
1600
1601             let mut from_start = true;
1602             for (i, bound_span) in bound_spans {
1603                 match last_merged_i {
1604                     // If the first bound is inferable, our span should also eat the leading `+`.
1605                     None if i == 0 => {
1606                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
1607                         last_merged_i = Some(0);
1608                     }
1609                     // If consecutive bounds are inferable, merge their spans
1610                     Some(h) if i == h + 1 => {
1611                         if let Some(tail) = merged.last_mut() {
1612                             // Also eat the trailing `+` if the first
1613                             // more-than-one bound is inferable
1614                             let to_span = if from_start && i < bounds.len() {
1615                                 bounds[i + 1].span().shrink_to_lo()
1616                             } else {
1617                                 bound_span
1618                             };
1619                             *tail = tail.to(to_span);
1620                             last_merged_i = Some(i);
1621                         } else {
1622                             bug!("another bound-span visited earlier");
1623                         }
1624                     }
1625                     _ => {
1626                         // When we find a non-inferable bound, subsequent inferable bounds
1627                         // won't be consecutive from the start (and we'll eat the leading
1628                         // `+` rather than the trailing one)
1629                         from_start = false;
1630                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
1631                         last_merged_i = Some(i);
1632                     }
1633                 }
1634             }
1635             merged
1636         }
1637     }
1638 }
1639
1640 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
1641     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
1642         use rustc_middle::middle::resolve_lifetime::Region;
1643
1644         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
1645         let def_id = cx.tcx.hir().local_def_id(item.hir_id);
1646         if let hir::ItemKind::Struct(_, ref hir_generics)
1647         | hir::ItemKind::Enum(_, ref hir_generics)
1648         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
1649         {
1650             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
1651             if inferred_outlives.is_empty() {
1652                 return;
1653             }
1654
1655             let ty_generics = cx.tcx.generics_of(def_id);
1656
1657             let mut bound_count = 0;
1658             let mut lint_spans = Vec::new();
1659
1660             for param in hir_generics.params {
1661                 let has_lifetime_bounds = param.bounds.iter().any(|bound| {
1662                     if let hir::GenericBound::Outlives(_) = bound { true } else { false }
1663                 });
1664                 if !has_lifetime_bounds {
1665                     continue;
1666                 }
1667
1668                 let relevant_lifetimes =
1669                     self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
1670                 if relevant_lifetimes.is_empty() {
1671                     continue;
1672                 }
1673
1674                 let bound_spans = self.collect_outlives_bound_spans(
1675                     cx.tcx,
1676                     &param.bounds,
1677                     &relevant_lifetimes,
1678                     infer_static,
1679                 );
1680                 bound_count += bound_spans.len();
1681                 lint_spans.extend(self.consolidate_outlives_bound_spans(
1682                     param.span.shrink_to_hi(),
1683                     &param.bounds,
1684                     bound_spans,
1685                 ));
1686             }
1687
1688             let mut where_lint_spans = Vec::new();
1689             let mut dropped_predicate_count = 0;
1690             let num_predicates = hir_generics.where_clause.predicates.len();
1691             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
1692                 let (relevant_lifetimes, bounds, span) = match where_predicate {
1693                     hir::WherePredicate::RegionPredicate(predicate) => {
1694                         if let Some(Region::EarlyBound(index, ..)) =
1695                             cx.tcx.named_region(predicate.lifetime.hir_id)
1696                         {
1697                             (
1698                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
1699                                 &predicate.bounds,
1700                                 predicate.span,
1701                             )
1702                         } else {
1703                             continue;
1704                         }
1705                     }
1706                     hir::WherePredicate::BoundPredicate(predicate) => {
1707                         // FIXME we can also infer bounds on associated types,
1708                         // and should check for them here.
1709                         match predicate.bounded_ty.kind {
1710                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1711                                 if let Res::Def(DefKind::TyParam, def_id) = path.res {
1712                                     let index = ty_generics.param_def_id_to_index[&def_id];
1713                                     (
1714                                         Self::lifetimes_outliving_type(inferred_outlives, index),
1715                                         &predicate.bounds,
1716                                         predicate.span,
1717                                     )
1718                                 } else {
1719                                     continue;
1720                                 }
1721                             }
1722                             _ => {
1723                                 continue;
1724                             }
1725                         }
1726                     }
1727                     _ => continue,
1728                 };
1729                 if relevant_lifetimes.is_empty() {
1730                     continue;
1731                 }
1732
1733                 let bound_spans = self.collect_outlives_bound_spans(
1734                     cx.tcx,
1735                     bounds,
1736                     &relevant_lifetimes,
1737                     infer_static,
1738                 );
1739                 bound_count += bound_spans.len();
1740
1741                 let drop_predicate = bound_spans.len() == bounds.len();
1742                 if drop_predicate {
1743                     dropped_predicate_count += 1;
1744                 }
1745
1746                 // If all the bounds on a predicate were inferable and there are
1747                 // further predicates, we want to eat the trailing comma.
1748                 if drop_predicate && i + 1 < num_predicates {
1749                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
1750                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
1751                 } else {
1752                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
1753                         span.shrink_to_lo(),
1754                         bounds,
1755                         bound_spans,
1756                     ));
1757                 }
1758             }
1759
1760             // If all predicates are inferable, drop the entire clause
1761             // (including the `where`)
1762             if num_predicates > 0 && dropped_predicate_count == num_predicates {
1763                 let where_span = hir_generics
1764                     .where_clause
1765                     .span()
1766                     .expect("span of (nonempty) where clause should exist");
1767                 // Extend the where clause back to the closing `>` of the
1768                 // generics, except for tuple struct, which have the `where`
1769                 // after the fields of the struct.
1770                 let full_where_span =
1771                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
1772                         where_span
1773                     } else {
1774                         hir_generics.span.shrink_to_hi().to(where_span)
1775                     };
1776                 lint_spans.push(full_where_span);
1777             } else {
1778                 lint_spans.extend(where_lint_spans);
1779             }
1780
1781             if !lint_spans.is_empty() {
1782                 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
1783                     lint.build("outlives requirements can be inferred")
1784                         .multipart_suggestion(
1785                             if bound_count == 1 {
1786                                 "remove this bound"
1787                             } else {
1788                                 "remove these bounds"
1789                             },
1790                             lint_spans
1791                                 .into_iter()
1792                                 .map(|span| (span, "".to_owned()))
1793                                 .collect::<Vec<_>>(),
1794                             Applicability::MachineApplicable,
1795                         )
1796                         .emit();
1797                 });
1798             }
1799         }
1800     }
1801 }
1802
1803 declare_lint! {
1804     pub INCOMPLETE_FEATURES,
1805     Warn,
1806     "incomplete features that may function improperly in some or all cases"
1807 }
1808
1809 declare_lint_pass!(
1810     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `librustc_feature/active.rs`.
1811     IncompleteFeatures => [INCOMPLETE_FEATURES]
1812 );
1813
1814 impl EarlyLintPass for IncompleteFeatures {
1815     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
1816         let features = cx.sess.features_untracked();
1817         features
1818             .declared_lang_features
1819             .iter()
1820             .map(|(name, span, _)| (name, span))
1821             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
1822             .filter(|(name, _)| rustc_feature::INCOMPLETE_FEATURES.iter().any(|f| name == &f))
1823             .for_each(|(&name, &span)| {
1824                 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
1825                     let mut builder = lint.build(&format!(
1826                         "the feature `{}` is incomplete and may not be safe to use \
1827                          and/or cause compiler crashes",
1828                         name,
1829                     ));
1830                     if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
1831                         builder.note(&format!(
1832                             "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
1833                              for more information",
1834                             n, n,
1835                         ));
1836                     }
1837                     builder.emit();
1838                 })
1839             });
1840     }
1841 }
1842
1843 declare_lint! {
1844     pub INVALID_VALUE,
1845     Warn,
1846     "an invalid value is being created (such as a NULL reference)"
1847 }
1848
1849 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
1850
1851 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
1852     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
1853         #[derive(Debug, Copy, Clone, PartialEq)]
1854         enum InitKind {
1855             Zeroed,
1856             Uninit,
1857         };
1858
1859         /// Information about why a type cannot be initialized this way.
1860         /// Contains an error message and optionally a span to point at.
1861         type InitError = (String, Option<Span>);
1862
1863         /// Test if this constant is all-0.
1864         fn is_zero(expr: &hir::Expr<'_>) -> bool {
1865             use hir::ExprKind::*;
1866             use rustc_ast::LitKind::*;
1867             match &expr.kind {
1868                 Lit(lit) => {
1869                     if let Int(i, _) = lit.node {
1870                         i == 0
1871                     } else {
1872                         false
1873                     }
1874                 }
1875                 Tup(tup) => tup.iter().all(is_zero),
1876                 _ => false,
1877             }
1878         }
1879
1880         /// Determine if this expression is a "dangerous initialization".
1881         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
1882             // `transmute` is inside an anonymous module (the `extern` block?);
1883             // `Invalid` represents the empty string and matches that.
1884             // FIXME(#66075): use diagnostic items.  Somehow, that does not seem to work
1885             // on intrinsics right now.
1886             const TRANSMUTE_PATH: &[Symbol] =
1887                 &[sym::core, sym::intrinsics, kw::Invalid, sym::transmute];
1888
1889             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
1890                 // Find calls to `mem::{uninitialized,zeroed}` methods.
1891                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
1892                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
1893
1894                     if cx.tcx.is_diagnostic_item(sym::mem_zeroed, def_id) {
1895                         return Some(InitKind::Zeroed);
1896                     } else if cx.tcx.is_diagnostic_item(sym::mem_uninitialized, def_id) {
1897                         return Some(InitKind::Uninit);
1898                     } else if cx.match_def_path(def_id, TRANSMUTE_PATH) {
1899                         if is_zero(&args[0]) {
1900                             return Some(InitKind::Zeroed);
1901                         }
1902                     }
1903                 }
1904             } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind {
1905                 // Find problematic calls to `MaybeUninit::assume_init`.
1906                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
1907                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
1908                     // This is a call to *some* method named `assume_init`.
1909                     // See if the `self` parameter is one of the dangerous constructors.
1910                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
1911                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
1912                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
1913
1914                             if cx.tcx.is_diagnostic_item(sym::maybe_uninit_zeroed, def_id) {
1915                                 return Some(InitKind::Zeroed);
1916                             } else if cx.tcx.is_diagnostic_item(sym::maybe_uninit_uninit, def_id) {
1917                                 return Some(InitKind::Uninit);
1918                             }
1919                         }
1920                     }
1921                 }
1922             }
1923
1924             None
1925         }
1926
1927         /// Test if this enum has several actually "existing" variants.
1928         /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
1929         fn is_multi_variant(adt: &ty::AdtDef) -> bool {
1930             // As an approximation, we only count dataless variants. Those are definitely inhabited.
1931             let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count();
1932             existing_variants > 1
1933         }
1934
1935         /// Return `Some` only if we are sure this type does *not*
1936         /// allow zero initialization.
1937         fn ty_find_init_error<'tcx>(
1938             tcx: TyCtxt<'tcx>,
1939             ty: Ty<'tcx>,
1940             init: InitKind,
1941         ) -> Option<InitError> {
1942             use rustc_middle::ty::TyKind::*;
1943             match ty.kind {
1944                 // Primitive types that don't like 0 as a value.
1945                 Ref(..) => Some(("references must be non-null".to_string(), None)),
1946                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
1947                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
1948                 Never => Some(("the `!` type has no valid value".to_string(), None)),
1949                 RawPtr(tm) if matches!(tm.ty.kind, Dynamic(..)) =>
1950                 // raw ptr to dyn Trait
1951                 {
1952                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
1953                 }
1954                 // Primitive types with other constraints.
1955                 Bool if init == InitKind::Uninit => {
1956                     Some(("booleans must be either `true` or `false`".to_string(), None))
1957                 }
1958                 Char if init == InitKind::Uninit => {
1959                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
1960                 }
1961                 // Recurse and checks for some compound types.
1962                 Adt(adt_def, substs) if !adt_def.is_union() => {
1963                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
1964                     use std::ops::Bound;
1965                     match tcx.layout_scalar_valid_range(adt_def.did) {
1966                         // We exploit here that `layout_scalar_valid_range` will never
1967                         // return `Bound::Excluded`.  (And we have tests checking that we
1968                         // handle the attribute correctly.)
1969                         (Bound::Included(lo), _) if lo > 0 => {
1970                             return Some((format!("`{}` must be non-null", ty), None));
1971                         }
1972                         (Bound::Included(_), _) | (_, Bound::Included(_))
1973                             if init == InitKind::Uninit =>
1974                         {
1975                             return Some((
1976                                 format!(
1977                                     "`{}` must be initialized inside its custom valid range",
1978                                     ty,
1979                                 ),
1980                                 None,
1981                             ));
1982                         }
1983                         _ => {}
1984                     }
1985                     // Now, recurse.
1986                     match adt_def.variants.len() {
1987                         0 => Some(("enums with no variants have no valid value".to_string(), None)),
1988                         1 => {
1989                             // Struct, or enum with exactly one variant.
1990                             // Proceed recursively, check all fields.
1991                             let variant = &adt_def.variants[VariantIdx::from_u32(0)];
1992                             variant.fields.iter().find_map(|field| {
1993                                 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
1994                                     |(mut msg, span)| {
1995                                         if span.is_none() {
1996                                             // Point to this field, should be helpful for figuring
1997                                             // out where the source of the error is.
1998                                             let span = tcx.def_span(field.did);
1999                                             write!(
2000                                                 &mut msg,
2001                                                 " (in this {} field)",
2002                                                 adt_def.descr()
2003                                             )
2004                                             .unwrap();
2005                                             (msg, Some(span))
2006                                         } else {
2007                                             // Just forward.
2008                                             (msg, span)
2009                                         }
2010                                     },
2011                                 )
2012                             })
2013                         }
2014                         // Multi-variant enum.
2015                         _ => {
2016                             if init == InitKind::Uninit && is_multi_variant(adt_def) {
2017                                 let span = tcx.def_span(adt_def.did);
2018                                 Some((
2019                                     "enums have to be initialized to a variant".to_string(),
2020                                     Some(span),
2021                                 ))
2022                             } else {
2023                                 // In principle, for zero-initialization we could figure out which variant corresponds
2024                                 // to tag 0, and check that... but for now we just accept all zero-initializations.
2025                                 None
2026                             }
2027                         }
2028                     }
2029                 }
2030                 Tuple(..) => {
2031                     // Proceed recursively, check all fields.
2032                     ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
2033                 }
2034                 // Conservative fallback.
2035                 _ => None,
2036             }
2037         }
2038
2039         if let Some(init) = is_dangerous_init(cx, expr) {
2040             // This conjures an instance of a type out of nothing,
2041             // using zeroed or uninitialized memory.
2042             // We are extremely conservative with what we warn about.
2043             let conjured_ty = cx.typeck_results().expr_ty(expr);
2044             if let Some((msg, span)) =
2045                 with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init))
2046             {
2047                 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2048                     let mut err = lint.build(&format!(
2049                         "the type `{}` does not permit {}",
2050                         conjured_ty,
2051                         match init {
2052                             InitKind::Zeroed => "zero-initialization",
2053                             InitKind::Uninit => "being left uninitialized",
2054                         },
2055                     ));
2056                     err.span_label(expr.span, "this code causes undefined behavior when executed");
2057                     err.span_label(
2058                         expr.span,
2059                         "help: use `MaybeUninit<T>` instead, \
2060                             and only call `assume_init` after initialization is done",
2061                     );
2062                     if let Some(span) = span {
2063                         err.span_note(span, &msg);
2064                     } else {
2065                         err.note(&msg);
2066                     }
2067                     err.emit();
2068                 });
2069             }
2070         }
2071     }
2072 }
2073
2074 declare_lint! {
2075     pub CLASHING_EXTERN_DECLARATIONS,
2076     Warn,
2077     "detects when an extern fn has been declared with the same name but different types"
2078 }
2079
2080 pub struct ClashingExternDeclarations {
2081     seen_decls: FxHashMap<Symbol, HirId>,
2082 }
2083
2084 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2085 /// just from declaration itself. This is important because we don't want to report clashes on
2086 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2087 /// different name.
2088 enum SymbolName {
2089     /// The name of the symbol + the span of the annotation which introduced the link name.
2090     Link(Symbol, Span),
2091     /// No link name, so just the name of the symbol.
2092     Normal(Symbol),
2093 }
2094
2095 impl SymbolName {
2096     fn get_name(&self) -> Symbol {
2097         match self {
2098             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2099         }
2100     }
2101 }
2102
2103 impl ClashingExternDeclarations {
2104     crate fn new() -> Self {
2105         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2106     }
2107     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2108     /// for the item, return its HirId without updating the set.
2109     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2110         let hid = fi.hir_id;
2111
2112         let name =
2113             &tcx.codegen_fn_attrs(tcx.hir().local_def_id(hid)).link_name.unwrap_or(fi.ident.name);
2114
2115         if self.seen_decls.contains_key(name) {
2116             // Avoid updating the map with the new entry when we do find a collision. We want to
2117             // make sure we're always pointing to the first definition as the previous declaration.
2118             // This lets us avoid emitting "knock-on" diagnostics.
2119             Some(*self.seen_decls.get(name).unwrap())
2120         } else {
2121             self.seen_decls.insert(*name, hid)
2122         }
2123     }
2124
2125     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2126     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2127     /// symbol's name.
2128     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2129         let did = tcx.hir().local_def_id(fi.hir_id);
2130         if let Some((overridden_link_name, overridden_link_name_span)) =
2131             tcx.codegen_fn_attrs(did).link_name.map(|overridden_link_name| {
2132                 // FIXME: Instead of searching through the attributes again to get span
2133                 // information, we could have codegen_fn_attrs also give span information back for
2134                 // where the attribute was defined. However, until this is found to be a
2135                 // bottleneck, this does just fine.
2136                 (
2137                     overridden_link_name,
2138                     tcx.get_attrs(did.to_def_id())
2139                         .iter()
2140                         .find(|at| tcx.sess.check_name(at, sym::link_name))
2141                         .unwrap()
2142                         .span,
2143                 )
2144             })
2145         {
2146             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2147         } else {
2148             SymbolName::Normal(fi.ident.name)
2149         }
2150     }
2151
2152     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2153     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2154     /// with the same members (as the declarations shouldn't clash).
2155     fn structurally_same_type<'tcx>(
2156         cx: &LateContext<'tcx>,
2157         a: Ty<'tcx>,
2158         b: Ty<'tcx>,
2159         ckind: CItemKind,
2160     ) -> bool {
2161         fn structurally_same_type_impl<'tcx>(
2162             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2163             cx: &LateContext<'tcx>,
2164             a: Ty<'tcx>,
2165             b: Ty<'tcx>,
2166             ckind: CItemKind,
2167         ) -> bool {
2168             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2169             let tcx = cx.tcx;
2170
2171             // Given a transparent newtype, reach through and grab the inner
2172             // type unless the newtype makes the type non-null.
2173             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2174                 let mut ty = ty;
2175                 loop {
2176                     if let ty::Adt(def, substs) = ty.kind {
2177                         let is_transparent = def.subst(tcx, substs).repr.transparent();
2178                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def);
2179                         debug!(
2180                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2181                             ty, is_transparent, is_non_null
2182                         );
2183                         if is_transparent && !is_non_null {
2184                             debug_assert!(def.variants.len() == 1);
2185                             let v = &def.variants[VariantIdx::new(0)];
2186                             ty = v
2187                                 .transparent_newtype_field(tcx)
2188                                 .expect(
2189                                     "single-variant transparent structure with zero-sized field",
2190                                 )
2191                                 .ty(tcx, substs);
2192                             continue;
2193                         }
2194                     }
2195                     debug!("non_transparent_ty -> {:?}", ty);
2196                     return ty;
2197                 }
2198             };
2199
2200             let a = non_transparent_ty(a);
2201             let b = non_transparent_ty(b);
2202
2203             if !seen_types.insert((a, b)) {
2204                 // We've encountered a cycle. There's no point going any further -- the types are
2205                 // structurally the same.
2206                 return true;
2207             }
2208             let tcx = cx.tcx;
2209             if a == b || rustc_middle::ty::TyS::same_type(a, b) {
2210                 // All nominally-same types are structurally same, too.
2211                 true
2212             } else {
2213                 // Do a full, depth-first comparison between the two.
2214                 use rustc_middle::ty::TyKind::*;
2215                 let a_kind = &a.kind;
2216                 let b_kind = &b.kind;
2217
2218                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2219                     debug!("compare_layouts({:?}, {:?})", a, b);
2220                     let a_layout = &cx.layout_of(a)?.layout.abi;
2221                     let b_layout = &cx.layout_of(b)?.layout.abi;
2222                     debug!(
2223                         "comparing layouts: {:?} == {:?} = {}",
2224                         a_layout,
2225                         b_layout,
2226                         a_layout == b_layout
2227                     );
2228                     Ok(a_layout == b_layout)
2229                 };
2230
2231                 #[allow(rustc::usage_of_ty_tykind)]
2232                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2233                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2234                 };
2235
2236                 ensure_sufficient_stack(|| {
2237                     match (a_kind, b_kind) {
2238                         (Adt(a_def, a_substs), Adt(b_def, b_substs)) => {
2239                             let a = a.subst(cx.tcx, a_substs);
2240                             let b = b.subst(cx.tcx, b_substs);
2241                             debug!("Comparing {:?} and {:?}", a, b);
2242
2243                             // We can immediately rule out these types as structurally same if
2244                             // their layouts differ.
2245                             match compare_layouts(a, b) {
2246                                 Ok(false) => return false,
2247                                 _ => (), // otherwise, continue onto the full, fields comparison
2248                             }
2249
2250                             // Grab a flattened representation of all fields.
2251                             let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter());
2252                             let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter());
2253
2254                             // Perform a structural comparison for each field.
2255                             a_fields.eq_by(
2256                                 b_fields,
2257                                 |&ty::FieldDef { did: a_did, .. },
2258                                  &ty::FieldDef { did: b_did, .. }| {
2259                                     structurally_same_type_impl(
2260                                         seen_types,
2261                                         cx,
2262                                         tcx.type_of(a_did),
2263                                         tcx.type_of(b_did),
2264                                         ckind,
2265                                     )
2266                                 },
2267                             )
2268                         }
2269                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2270                             // For arrays, we also check the constness of the type.
2271                             a_const.val == b_const.val
2272                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2273                         }
2274                         (Slice(a_ty), Slice(b_ty)) => {
2275                             structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2276                         }
2277                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2278                             a_tymut.mutbl == b_tymut.mutbl
2279                                 && structurally_same_type_impl(
2280                                     seen_types,
2281                                     cx,
2282                                     &a_tymut.ty,
2283                                     &b_tymut.ty,
2284                                     ckind,
2285                                 )
2286                         }
2287                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2288                             // For structural sameness, we don't need the region to be same.
2289                             a_mut == b_mut
2290                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2291                         }
2292                         (FnDef(..), FnDef(..)) => {
2293                             let a_poly_sig = a.fn_sig(tcx);
2294                             let b_poly_sig = b.fn_sig(tcx);
2295
2296                             // As we don't compare regions, skip_binder is fine.
2297                             let a_sig = a_poly_sig.skip_binder();
2298                             let b_sig = b_poly_sig.skip_binder();
2299
2300                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2301                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2302                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2303                                     structurally_same_type_impl(seen_types, cx, a, b, ckind)
2304                                 })
2305                                 && structurally_same_type_impl(
2306                                     seen_types,
2307                                     cx,
2308                                     a_sig.output(),
2309                                     b_sig.output(),
2310                                     ckind,
2311                                 )
2312                         }
2313                         (Tuple(a_substs), Tuple(b_substs)) => {
2314                             a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| {
2315                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2316                             })
2317                         }
2318                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2319                         // For the purposes of this lint, take the conservative approach and mark them as
2320                         // not structurally same.
2321                         (Dynamic(..), Dynamic(..))
2322                         | (Error(..), Error(..))
2323                         | (Closure(..), Closure(..))
2324                         | (Generator(..), Generator(..))
2325                         | (GeneratorWitness(..), GeneratorWitness(..))
2326                         | (Projection(..), Projection(..))
2327                         | (Opaque(..), Opaque(..)) => false,
2328
2329                         // These definitely should have been caught above.
2330                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2331
2332                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2333                         // enum layout optimisation is being applied.
2334                         (Adt(..), other_kind) | (other_kind, Adt(..))
2335                             if is_primitive_or_pointer(other_kind) =>
2336                         {
2337                             let (primitive, adt) =
2338                                 if is_primitive_or_pointer(&a.kind) { (a, b) } else { (b, a) };
2339                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2340                                 ty == primitive
2341                             } else {
2342                                 compare_layouts(a, b).unwrap_or(false)
2343                             }
2344                         }
2345                         // Otherwise, just compare the layouts. This may fail to lint for some
2346                         // incompatible types, but at the very least, will stop reads into
2347                         // uninitialised memory.
2348                         _ => compare_layouts(a, b).unwrap_or(false),
2349                     }
2350                 })
2351             }
2352         }
2353         let mut seen_types = FxHashSet::default();
2354         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2355     }
2356 }
2357
2358 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2359
2360 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2361     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2362         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2363         if let ForeignItemKind::Fn(..) = this_fi.kind {
2364             let tcx = *&cx.tcx;
2365             if let Some(existing_hid) = self.insert(tcx, this_fi) {
2366                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
2367                 let this_decl_ty = tcx.type_of(tcx.hir().local_def_id(this_fi.hir_id));
2368                 debug!(
2369                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2370                     existing_hid, existing_decl_ty, this_fi.hir_id, this_decl_ty
2371                 );
2372                 // Check that the declarations match.
2373                 if !Self::structurally_same_type(
2374                     cx,
2375                     existing_decl_ty,
2376                     this_decl_ty,
2377                     CItemKind::Declaration,
2378                 ) {
2379                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid);
2380                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2381
2382                     // We want to ensure that we use spans for both decls that include where the
2383                     // name was defined, whether that was from the link_name attribute or not.
2384                     let get_relevant_span =
2385                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2386                             SymbolName::Normal(_) => fi.span,
2387                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2388                         };
2389                     // Finally, emit the diagnostic.
2390                     tcx.struct_span_lint_hir(
2391                         CLASHING_EXTERN_DECLARATIONS,
2392                         this_fi.hir_id,
2393                         get_relevant_span(this_fi),
2394                         |lint| {
2395                             let mut expected_str = DiagnosticStyledString::new();
2396                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
2397                             let mut found_str = DiagnosticStyledString::new();
2398                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
2399
2400                             lint.build(&format!(
2401                                 "`{}` redeclare{} with a different signature",
2402                                 this_fi.ident.name,
2403                                 if orig.get_name() == this_fi.ident.name {
2404                                     "d".to_string()
2405                                 } else {
2406                                     format!("s `{}`", orig.get_name())
2407                                 }
2408                             ))
2409                             .span_label(
2410                                 get_relevant_span(orig_fi),
2411                                 &format!("`{}` previously declared here", orig.get_name()),
2412                             )
2413                             .span_label(
2414                                 get_relevant_span(this_fi),
2415                                 "this signature doesn't match the previous declaration",
2416                             )
2417                             .note_expected_found(&"", expected_str, &"", found_str)
2418                             .emit()
2419                         },
2420                     );
2421                 }
2422             }
2423         }
2424     }
2425 }