]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Auto merge of #98960 - cjgillot:entry-kind, r=estebank
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     errors::BuiltinEllpisisInclusiveRangePatterns,
25     types::{transparent_newtype_field, CItemKind},
26     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
27 };
28 use rustc_ast::attr;
29 use rustc_ast::tokenstream::{TokenStream, TokenTree};
30 use rustc_ast::visit::{FnCtxt, FnKind};
31 use rustc_ast::{self as ast, *};
32 use rustc_ast_pretty::pprust::{self, expr_to_string};
33 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
34 use rustc_data_structures::stack::ensure_sufficient_stack;
35 use rustc_errors::{
36     fluent, Applicability, Diagnostic, DiagnosticMessage, DiagnosticStyledString,
37     LintDiagnosticBuilder, MultiSpan,
38 };
39 use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
40 use rustc_hir as hir;
41 use rustc_hir::def::{DefKind, Res};
42 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
43 use rustc_hir::{ForeignItemKind, GenericParamKind, HirId, PatKind, PredicateOrigin};
44 use rustc_index::vec::Idx;
45 use rustc_middle::lint::in_external_macro;
46 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
47 use rustc_middle::ty::print::with_no_trimmed_paths;
48 use rustc_middle::ty::subst::GenericArgKind;
49 use rustc_middle::ty::Instance;
50 use rustc_middle::ty::{self, Ty, TyCtxt};
51 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
52 use rustc_span::edition::Edition;
53 use rustc_span::source_map::Spanned;
54 use rustc_span::symbol::{kw, sym, Ident, Symbol};
55 use rustc_span::{BytePos, InnerSpan, Span};
56 use rustc_target::abi::VariantIdx;
57 use rustc_trait_selection::traits::{self, misc::can_type_implement_copy};
58
59 use crate::nonstandard_style::{method_context, MethodLateContext};
60
61 use std::fmt::Write;
62
63 // hardwired lints from librustc_middle
64 pub use rustc_session::lint::builtin::*;
65
66 declare_lint! {
67     /// The `while_true` lint detects `while true { }`.
68     ///
69     /// ### Example
70     ///
71     /// ```rust,no_run
72     /// while true {
73     ///
74     /// }
75     /// ```
76     ///
77     /// {{produces}}
78     ///
79     /// ### Explanation
80     ///
81     /// `while true` should be replaced with `loop`. A `loop` expression is
82     /// the preferred way to write an infinite loop because it more directly
83     /// expresses the intent of the loop.
84     WHILE_TRUE,
85     Warn,
86     "suggest using `loop { }` instead of `while true { }`"
87 }
88
89 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
90
91 /// Traverse through any amount of parenthesis and return the first non-parens expression.
92 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
93     while let ast::ExprKind::Paren(sub) = &expr.kind {
94         expr = sub;
95     }
96     expr
97 }
98
99 impl EarlyLintPass for WhileTrue {
100     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
101         if let ast::ExprKind::While(cond, _, label) = &e.kind {
102             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
103                 if let ast::LitKind::Bool(true) = lit.kind {
104                     if !lit.span.from_expansion() {
105                         let condition_span = e.span.with_hi(cond.span.hi());
106                         cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
107                             lint.build(fluent::lint::builtin_while_true)
108                                 .span_suggestion_short(
109                                     condition_span,
110                                     fluent::lint::suggestion,
111                                     format!(
112                                         "{}loop",
113                                         label.map_or_else(String::new, |label| format!(
114                                             "{}: ",
115                                             label.ident,
116                                         ))
117                                     ),
118                                     Applicability::MachineApplicable,
119                                 )
120                                 .emit();
121                         })
122                     }
123                 }
124             }
125         }
126     }
127 }
128
129 declare_lint! {
130     /// The `box_pointers` lints use of the Box type.
131     ///
132     /// ### Example
133     ///
134     /// ```rust,compile_fail
135     /// #![deny(box_pointers)]
136     /// struct Foo {
137     ///     x: Box<isize>,
138     /// }
139     /// ```
140     ///
141     /// {{produces}}
142     ///
143     /// ### Explanation
144     ///
145     /// This lint is mostly historical, and not particularly useful. `Box<T>`
146     /// used to be built into the language, and the only way to do heap
147     /// allocation. Today's Rust can call into other allocators, etc.
148     BOX_POINTERS,
149     Allow,
150     "use of owned (Box type) heap memory"
151 }
152
153 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
154
155 impl BoxPointers {
156     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
157         for leaf in ty.walk() {
158             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
159                 if leaf_ty.is_box() {
160                     cx.struct_span_lint(BOX_POINTERS, span, |lint| {
161                         lint.build(fluent::lint::builtin_box_pointers).set_arg("ty", ty).emit();
162                     });
163                 }
164             }
165         }
166     }
167 }
168
169 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
170     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
171         match it.kind {
172             hir::ItemKind::Fn(..)
173             | hir::ItemKind::TyAlias(..)
174             | hir::ItemKind::Enum(..)
175             | hir::ItemKind::Struct(..)
176             | hir::ItemKind::Union(..) => {
177                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
178             }
179             _ => (),
180         }
181
182         // If it's a struct, we also have to check the fields' types
183         match it.kind {
184             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
185                 for struct_field in struct_def.fields() {
186                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
187                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
188                 }
189             }
190             _ => (),
191         }
192     }
193
194     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
195         let ty = cx.typeck_results().node_type(e.hir_id);
196         self.check_heap_type(cx, e.span, ty);
197     }
198 }
199
200 declare_lint! {
201     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
202     /// instead of `Struct { x }` in a pattern.
203     ///
204     /// ### Example
205     ///
206     /// ```rust
207     /// struct Point {
208     ///     x: i32,
209     ///     y: i32,
210     /// }
211     ///
212     ///
213     /// fn main() {
214     ///     let p = Point {
215     ///         x: 5,
216     ///         y: 5,
217     ///     };
218     ///
219     ///     match p {
220     ///         Point { x: x, y: y } => (),
221     ///     }
222     /// }
223     /// ```
224     ///
225     /// {{produces}}
226     ///
227     /// ### Explanation
228     ///
229     /// The preferred style is to avoid the repetition of specifying both the
230     /// field name and the binding name if both identifiers are the same.
231     NON_SHORTHAND_FIELD_PATTERNS,
232     Warn,
233     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
234 }
235
236 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
237
238 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
239     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
240         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
241             let variant = cx
242                 .typeck_results()
243                 .pat_ty(pat)
244                 .ty_adt_def()
245                 .expect("struct pattern type is not an ADT")
246                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
247             for fieldpat in field_pats {
248                 if fieldpat.is_shorthand {
249                     continue;
250                 }
251                 if fieldpat.span.from_expansion() {
252                     // Don't lint if this is a macro expansion: macro authors
253                     // shouldn't have to worry about this kind of style issue
254                     // (Issue #49588)
255                     continue;
256                 }
257                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
258                     if cx.tcx.find_field_index(ident, &variant)
259                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
260                     {
261                         cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
262                             let binding = match binding_annot {
263                                 hir::BindingAnnotation::Unannotated => None,
264                                 hir::BindingAnnotation::Mutable => Some("mut"),
265                                 hir::BindingAnnotation::Ref => Some("ref"),
266                                 hir::BindingAnnotation::RefMut => Some("ref mut"),
267                             };
268                             let suggested_ident = if let Some(binding) = binding {
269                                 format!("{} {}", binding, ident)
270                             } else {
271                                 ident.to_string()
272                             };
273                             lint.build(fluent::lint::builtin_non_shorthand_field_patterns)
274                                 .set_arg("ident", ident.clone())
275                                 .span_suggestion(
276                                     fieldpat.span,
277                                     fluent::lint::suggestion,
278                                     suggested_ident,
279                                     Applicability::MachineApplicable,
280                                 )
281                                 .emit();
282                         });
283                     }
284                 }
285             }
286         }
287     }
288 }
289
290 declare_lint! {
291     /// The `unsafe_code` lint catches usage of `unsafe` code.
292     ///
293     /// ### Example
294     ///
295     /// ```rust,compile_fail
296     /// #![deny(unsafe_code)]
297     /// fn main() {
298     ///     unsafe {
299     ///
300     ///     }
301     /// }
302     /// ```
303     ///
304     /// {{produces}}
305     ///
306     /// ### Explanation
307     ///
308     /// This lint is intended to restrict the usage of `unsafe`, which can be
309     /// difficult to use correctly.
310     UNSAFE_CODE,
311     Allow,
312     "usage of `unsafe` code"
313 }
314
315 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
316
317 impl UnsafeCode {
318     fn report_unsafe(
319         &self,
320         cx: &EarlyContext<'_>,
321         span: Span,
322         decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a, ()>),
323     ) {
324         // This comes from a macro that has `#[allow_internal_unsafe]`.
325         if span.allows_unsafe() {
326             return;
327         }
328
329         cx.struct_span_lint(UNSAFE_CODE, span, decorate);
330     }
331
332     fn report_overridden_symbol_name(
333         &self,
334         cx: &EarlyContext<'_>,
335         span: Span,
336         msg: DiagnosticMessage,
337     ) {
338         self.report_unsafe(cx, span, |lint| {
339             lint.build(msg).note(fluent::lint::builtin_overridden_symbol_name).emit();
340         })
341     }
342
343     fn report_overridden_symbol_section(
344         &self,
345         cx: &EarlyContext<'_>,
346         span: Span,
347         msg: DiagnosticMessage,
348     ) {
349         self.report_unsafe(cx, span, |lint| {
350             lint.build(msg).note(fluent::lint::builtin_overridden_symbol_section).emit();
351         })
352     }
353 }
354
355 impl EarlyLintPass for UnsafeCode {
356     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
357         if attr.has_name(sym::allow_internal_unsafe) {
358             self.report_unsafe(cx, attr.span, |lint| {
359                 lint.build(fluent::lint::builtin_allow_internal_unsafe).emit();
360             });
361         }
362     }
363
364     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
365         if let ast::ExprKind::Block(ref blk, _) = e.kind {
366             // Don't warn about generated blocks; that'll just pollute the output.
367             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
368                 self.report_unsafe(cx, blk.span, |lint| {
369                     lint.build(fluent::lint::builtin_unsafe_block).emit();
370                 });
371             }
372         }
373     }
374
375     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
376         match it.kind {
377             ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => self
378                 .report_unsafe(cx, it.span, |lint| {
379                     lint.build(fluent::lint::builtin_unsafe_trait).emit();
380                 }),
381
382             ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => self
383                 .report_unsafe(cx, it.span, |lint| {
384                     lint.build(fluent::lint::builtin_unsafe_impl).emit();
385                 }),
386
387             ast::ItemKind::Fn(..) => {
388                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
389                     self.report_overridden_symbol_name(
390                         cx,
391                         attr.span,
392                         fluent::lint::builtin_no_mangle_fn,
393                     );
394                 }
395
396                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
397                     self.report_overridden_symbol_name(
398                         cx,
399                         attr.span,
400                         fluent::lint::builtin_export_name_fn,
401                     );
402                 }
403
404                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
405                     self.report_overridden_symbol_section(
406                         cx,
407                         attr.span,
408                         fluent::lint::builtin_link_section_fn,
409                     );
410                 }
411             }
412
413             ast::ItemKind::Static(..) => {
414                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
415                     self.report_overridden_symbol_name(
416                         cx,
417                         attr.span,
418                         fluent::lint::builtin_no_mangle_static,
419                     );
420                 }
421
422                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
423                     self.report_overridden_symbol_name(
424                         cx,
425                         attr.span,
426                         fluent::lint::builtin_export_name_static,
427                     );
428                 }
429
430                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
431                     self.report_overridden_symbol_section(
432                         cx,
433                         attr.span,
434                         fluent::lint::builtin_link_section_static,
435                     );
436                 }
437             }
438
439             _ => {}
440         }
441     }
442
443     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
444         if let ast::AssocItemKind::Fn(..) = it.kind {
445             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
446                 self.report_overridden_symbol_name(
447                     cx,
448                     attr.span,
449                     fluent::lint::builtin_no_mangle_method,
450                 );
451             }
452             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
453                 self.report_overridden_symbol_name(
454                     cx,
455                     attr.span,
456                     fluent::lint::builtin_export_name_method,
457                 );
458             }
459         }
460     }
461
462     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
463         if let FnKind::Fn(
464             ctxt,
465             _,
466             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
467             _,
468             _,
469             body,
470         ) = fk
471         {
472             let msg = match ctxt {
473                 FnCtxt::Foreign => return,
474                 FnCtxt::Free => fluent::lint::builtin_decl_unsafe_fn,
475                 FnCtxt::Assoc(_) if body.is_none() => fluent::lint::builtin_decl_unsafe_method,
476                 FnCtxt::Assoc(_) => fluent::lint::builtin_impl_unsafe_method,
477             };
478             self.report_unsafe(cx, span, |lint| {
479                 lint.build(msg).emit();
480             });
481         }
482     }
483 }
484
485 declare_lint! {
486     /// The `missing_docs` lint detects missing documentation for public items.
487     ///
488     /// ### Example
489     ///
490     /// ```rust,compile_fail
491     /// #![deny(missing_docs)]
492     /// pub fn foo() {}
493     /// ```
494     ///
495     /// {{produces}}
496     ///
497     /// ### Explanation
498     ///
499     /// This lint is intended to ensure that a library is well-documented.
500     /// Items without documentation can be difficult for users to understand
501     /// how to use properly.
502     ///
503     /// This lint is "allow" by default because it can be noisy, and not all
504     /// projects may want to enforce everything to be documented.
505     pub MISSING_DOCS,
506     Allow,
507     "detects missing documentation for public members",
508     report_in_external_macro
509 }
510
511 pub struct MissingDoc {
512     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
513     doc_hidden_stack: Vec<bool>,
514 }
515
516 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
517
518 fn has_doc(attr: &ast::Attribute) -> bool {
519     if attr.is_doc_comment() {
520         return true;
521     }
522
523     if !attr.has_name(sym::doc) {
524         return false;
525     }
526
527     if attr.value_str().is_some() {
528         return true;
529     }
530
531     if let Some(list) = attr.meta_item_list() {
532         for meta in list {
533             if meta.has_name(sym::hidden) {
534                 return true;
535             }
536         }
537     }
538
539     false
540 }
541
542 impl MissingDoc {
543     pub fn new() -> MissingDoc {
544         MissingDoc { doc_hidden_stack: vec![false] }
545     }
546
547     fn doc_hidden(&self) -> bool {
548         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
549     }
550
551     fn check_missing_docs_attrs(
552         &self,
553         cx: &LateContext<'_>,
554         def_id: LocalDefId,
555         article: &'static str,
556         desc: &'static str,
557     ) {
558         // If we're building a test harness, then warning about
559         // documentation is probably not really relevant right now.
560         if cx.sess().opts.test {
561             return;
562         }
563
564         // `#[doc(hidden)]` disables missing_docs check.
565         if self.doc_hidden() {
566             return;
567         }
568
569         // Only check publicly-visible items, using the result from the privacy pass.
570         // It's an option so the crate root can also use this function (it doesn't
571         // have a `NodeId`).
572         if def_id != CRATE_DEF_ID {
573             if !cx.access_levels.is_exported(def_id) {
574                 return;
575             }
576         }
577
578         let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
579         let has_doc = attrs.iter().any(has_doc);
580         if !has_doc {
581             cx.struct_span_lint(MISSING_DOCS, cx.tcx.def_span(def_id), |lint| {
582                 lint.build(fluent::lint::builtin_missing_doc)
583                     .set_arg("article", article)
584                     .set_arg("desc", desc)
585                     .emit();
586             });
587         }
588     }
589 }
590
591 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
592     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
593         let doc_hidden = self.doc_hidden()
594             || attrs.iter().any(|attr| {
595                 attr.has_name(sym::doc)
596                     && match attr.meta_item_list() {
597                         None => false,
598                         Some(l) => attr::list_contains_name(&l, sym::hidden),
599                     }
600             });
601         self.doc_hidden_stack.push(doc_hidden);
602     }
603
604     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
605         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
606     }
607
608     fn check_crate(&mut self, cx: &LateContext<'_>) {
609         self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
610     }
611
612     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
613         match it.kind {
614             hir::ItemKind::Trait(..) => {
615                 // Issue #11592: traits are always considered exported, even when private.
616                 if cx.tcx.visibility(it.def_id)
617                     == ty::Visibility::Restricted(
618                         cx.tcx.parent_module_from_def_id(it.def_id).to_def_id(),
619                     )
620                 {
621                     return;
622                 }
623             }
624             hir::ItemKind::TyAlias(..)
625             | hir::ItemKind::Fn(..)
626             | hir::ItemKind::Macro(..)
627             | hir::ItemKind::Mod(..)
628             | hir::ItemKind::Enum(..)
629             | hir::ItemKind::Struct(..)
630             | hir::ItemKind::Union(..)
631             | hir::ItemKind::Const(..)
632             | hir::ItemKind::Static(..) => {}
633
634             _ => return,
635         };
636
637         let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
638
639         self.check_missing_docs_attrs(cx, it.def_id, article, desc);
640     }
641
642     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
643         let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
644
645         self.check_missing_docs_attrs(cx, trait_item.def_id, article, desc);
646     }
647
648     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
649         // If the method is an impl for a trait, don't doc.
650         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
651             return;
652         }
653
654         // If the method is an impl for an item with docs_hidden, don't doc.
655         if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
656             let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
657             let impl_ty = cx.tcx.type_of(parent);
658             let outerdef = match impl_ty.kind() {
659                 ty::Adt(def, _) => Some(def.did()),
660                 ty::Foreign(def_id) => Some(*def_id),
661                 _ => None,
662             };
663             let is_hidden = match outerdef {
664                 Some(id) => cx.tcx.is_doc_hidden(id),
665                 None => false,
666             };
667             if is_hidden {
668                 return;
669             }
670         }
671
672         let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
673         self.check_missing_docs_attrs(cx, impl_item.def_id, article, desc);
674     }
675
676     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
677         let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
678         self.check_missing_docs_attrs(cx, foreign_item.def_id, article, desc);
679     }
680
681     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
682         if !sf.is_positional() {
683             let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
684             self.check_missing_docs_attrs(cx, def_id, "a", "struct field")
685         }
686     }
687
688     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
689         self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), "a", "variant");
690     }
691 }
692
693 declare_lint! {
694     /// The `missing_copy_implementations` lint detects potentially-forgotten
695     /// implementations of [`Copy`].
696     ///
697     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
698     ///
699     /// ### Example
700     ///
701     /// ```rust,compile_fail
702     /// #![deny(missing_copy_implementations)]
703     /// pub struct Foo {
704     ///     pub field: i32
705     /// }
706     /// # fn main() {}
707     /// ```
708     ///
709     /// {{produces}}
710     ///
711     /// ### Explanation
712     ///
713     /// Historically (before 1.0), types were automatically marked as `Copy`
714     /// if possible. This was changed so that it required an explicit opt-in
715     /// by implementing the `Copy` trait. As part of this change, a lint was
716     /// added to alert if a copyable type was not marked `Copy`.
717     ///
718     /// This lint is "allow" by default because this code isn't bad; it is
719     /// common to write newtypes like this specifically so that a `Copy` type
720     /// is no longer `Copy`. `Copy` types can result in unintended copies of
721     /// large data which can impact performance.
722     pub MISSING_COPY_IMPLEMENTATIONS,
723     Allow,
724     "detects potentially-forgotten implementations of `Copy`"
725 }
726
727 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
728
729 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
730     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
731         if !cx.access_levels.is_reachable(item.def_id) {
732             return;
733         }
734         let (def, ty) = match item.kind {
735             hir::ItemKind::Struct(_, ref ast_generics) => {
736                 if !ast_generics.params.is_empty() {
737                     return;
738                 }
739                 let def = cx.tcx.adt_def(item.def_id);
740                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
741             }
742             hir::ItemKind::Union(_, ref ast_generics) => {
743                 if !ast_generics.params.is_empty() {
744                     return;
745                 }
746                 let def = cx.tcx.adt_def(item.def_id);
747                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
748             }
749             hir::ItemKind::Enum(_, ref ast_generics) => {
750                 if !ast_generics.params.is_empty() {
751                     return;
752                 }
753                 let def = cx.tcx.adt_def(item.def_id);
754                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
755             }
756             _ => return,
757         };
758         if def.has_dtor(cx.tcx) {
759             return;
760         }
761         let param_env = ty::ParamEnv::empty();
762         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
763             return;
764         }
765         if can_type_implement_copy(
766             cx.tcx,
767             param_env,
768             ty,
769             traits::ObligationCause::misc(item.span, item.hir_id()),
770         )
771         .is_ok()
772         {
773             cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
774                 lint.build(fluent::lint::builtin_missing_copy_impl).emit();
775             })
776         }
777     }
778 }
779
780 declare_lint! {
781     /// The `missing_debug_implementations` lint detects missing
782     /// implementations of [`fmt::Debug`].
783     ///
784     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
785     ///
786     /// ### Example
787     ///
788     /// ```rust,compile_fail
789     /// #![deny(missing_debug_implementations)]
790     /// pub struct Foo;
791     /// # fn main() {}
792     /// ```
793     ///
794     /// {{produces}}
795     ///
796     /// ### Explanation
797     ///
798     /// Having a `Debug` implementation on all types can assist with
799     /// debugging, as it provides a convenient way to format and display a
800     /// value. Using the `#[derive(Debug)]` attribute will automatically
801     /// generate a typical implementation, or a custom implementation can be
802     /// added by manually implementing the `Debug` trait.
803     ///
804     /// This lint is "allow" by default because adding `Debug` to all types can
805     /// have a negative impact on compile time and code size. It also requires
806     /// boilerplate to be added to every type, which can be an impediment.
807     MISSING_DEBUG_IMPLEMENTATIONS,
808     Allow,
809     "detects missing implementations of Debug"
810 }
811
812 #[derive(Default)]
813 pub struct MissingDebugImplementations {
814     impling_types: Option<LocalDefIdSet>,
815 }
816
817 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
818
819 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
820     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
821         if !cx.access_levels.is_reachable(item.def_id) {
822             return;
823         }
824
825         match item.kind {
826             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
827             _ => return,
828         }
829
830         let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
831             return
832         };
833
834         if self.impling_types.is_none() {
835             let mut impls = LocalDefIdSet::default();
836             cx.tcx.for_each_impl(debug, |d| {
837                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
838                     if let Some(def_id) = ty_def.did().as_local() {
839                         impls.insert(def_id);
840                     }
841                 }
842             });
843
844             self.impling_types = Some(impls);
845             debug!("{:?}", self.impling_types);
846         }
847
848         if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
849             cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
850                 lint.build(fluent::lint::builtin_missing_debug_impl)
851                     .set_arg("debug", cx.tcx.def_path_str(debug))
852                     .emit();
853             });
854         }
855     }
856 }
857
858 declare_lint! {
859     /// The `anonymous_parameters` lint detects anonymous parameters in trait
860     /// definitions.
861     ///
862     /// ### Example
863     ///
864     /// ```rust,edition2015,compile_fail
865     /// #![deny(anonymous_parameters)]
866     /// // edition 2015
867     /// pub trait Foo {
868     ///     fn foo(usize);
869     /// }
870     /// fn main() {}
871     /// ```
872     ///
873     /// {{produces}}
874     ///
875     /// ### Explanation
876     ///
877     /// This syntax is mostly a historical accident, and can be worked around
878     /// quite easily by adding an `_` pattern or a descriptive identifier:
879     ///
880     /// ```rust
881     /// trait Foo {
882     ///     fn foo(_: usize);
883     /// }
884     /// ```
885     ///
886     /// This syntax is now a hard error in the 2018 edition. In the 2015
887     /// edition, this lint is "warn" by default. This lint
888     /// enables the [`cargo fix`] tool with the `--edition` flag to
889     /// automatically transition old code from the 2015 edition to 2018. The
890     /// tool will run this lint and automatically apply the
891     /// suggested fix from the compiler (which is to add `_` to each
892     /// parameter). This provides a completely automated way to update old
893     /// code for a new edition. See [issue #41686] for more details.
894     ///
895     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
896     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
897     pub ANONYMOUS_PARAMETERS,
898     Warn,
899     "detects anonymous parameters",
900     @future_incompatible = FutureIncompatibleInfo {
901         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
902         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
903     };
904 }
905
906 declare_lint_pass!(
907     /// Checks for use of anonymous parameters (RFC 1685).
908     AnonymousParameters => [ANONYMOUS_PARAMETERS]
909 );
910
911 impl EarlyLintPass for AnonymousParameters {
912     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
913         if cx.sess().edition() != Edition::Edition2015 {
914             // This is a hard error in future editions; avoid linting and erroring
915             return;
916         }
917         if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
918             for arg in sig.decl.inputs.iter() {
919                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
920                     if ident.name == kw::Empty {
921                         cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
922                             let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
923
924                             let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
925                                 (snip.as_str(), Applicability::MachineApplicable)
926                             } else {
927                                 ("<type>", Applicability::HasPlaceholders)
928                             };
929
930                             lint.build(fluent::lint::builtin_anonymous_params)
931                                 .span_suggestion(
932                                     arg.pat.span,
933                                     fluent::lint::suggestion,
934                                     format!("_: {}", ty_snip),
935                                     appl,
936                                 )
937                                 .emit();
938                         })
939                     }
940                 }
941             }
942         }
943     }
944 }
945
946 /// Check for use of attributes which have been deprecated.
947 #[derive(Clone)]
948 pub struct DeprecatedAttr {
949     // This is not free to compute, so we want to keep it around, rather than
950     // compute it for every attribute.
951     depr_attrs: Vec<&'static BuiltinAttribute>,
952 }
953
954 impl_lint_pass!(DeprecatedAttr => []);
955
956 impl DeprecatedAttr {
957     pub fn new() -> DeprecatedAttr {
958         DeprecatedAttr { depr_attrs: deprecated_attributes() }
959     }
960 }
961
962 impl EarlyLintPass for DeprecatedAttr {
963     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
964         for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
965             if attr.ident().map(|ident| ident.name) == Some(*name) {
966                 if let &AttributeGate::Gated(
967                     Stability::Deprecated(link, suggestion),
968                     name,
969                     reason,
970                     _,
971                 ) = gate
972                 {
973                     cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
974                         // FIXME(davidtwco) translatable deprecated attr
975                         lint.build(fluent::lint::builtin_deprecated_attr_link)
976                             .set_arg("name", name)
977                             .set_arg("reason", reason)
978                             .set_arg("link", link)
979                             .span_suggestion_short(
980                                 attr.span,
981                                 suggestion.map(|s| s.into()).unwrap_or(
982                                     fluent::lint::builtin_deprecated_attr_default_suggestion,
983                                 ),
984                                 "",
985                                 Applicability::MachineApplicable,
986                             )
987                             .emit();
988                     });
989                 }
990                 return;
991             }
992         }
993         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
994             cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
995                 lint.build(fluent::lint::builtin_deprecated_attr_used)
996                     .set_arg("name", pprust::path_to_string(&attr.get_normal_item().path))
997                     .span_suggestion_short(
998                         attr.span,
999                         fluent::lint::builtin_deprecated_attr_default_suggestion,
1000                         "",
1001                         Applicability::MachineApplicable,
1002                     )
1003                     .emit();
1004             });
1005         }
1006     }
1007 }
1008
1009 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
1010     use rustc_ast::token::CommentKind;
1011
1012     let mut attrs = attrs.iter().peekable();
1013
1014     // Accumulate a single span for sugared doc comments.
1015     let mut sugared_span: Option<Span> = None;
1016
1017     while let Some(attr) = attrs.next() {
1018         let is_doc_comment = attr.is_doc_comment();
1019         if is_doc_comment {
1020             sugared_span =
1021                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
1022         }
1023
1024         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
1025             continue;
1026         }
1027
1028         let span = sugared_span.take().unwrap_or(attr.span);
1029
1030         if is_doc_comment || attr.has_name(sym::doc) {
1031             cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
1032                 let mut err = lint.build(fluent::lint::builtin_unused_doc_comment);
1033                 err.set_arg("kind", node_kind);
1034                 err.span_label(node_span, fluent::lint::label);
1035                 match attr.kind {
1036                     AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
1037                         err.help(fluent::lint::plain_help);
1038                     }
1039                     AttrKind::DocComment(CommentKind::Block, _) => {
1040                         err.help(fluent::lint::block_help);
1041                     }
1042                 }
1043                 err.emit();
1044             });
1045         }
1046     }
1047 }
1048
1049 impl EarlyLintPass for UnusedDocComment {
1050     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1051         let kind = match stmt.kind {
1052             ast::StmtKind::Local(..) => "statements",
1053             // Disabled pending discussion in #78306
1054             ast::StmtKind::Item(..) => return,
1055             // expressions will be reported by `check_expr`.
1056             ast::StmtKind::Empty
1057             | ast::StmtKind::Semi(_)
1058             | ast::StmtKind::Expr(_)
1059             | ast::StmtKind::MacCall(_) => return,
1060         };
1061
1062         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1063     }
1064
1065     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1066         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1067         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1068     }
1069
1070     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1071         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1072     }
1073
1074     fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1075         warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1076     }
1077
1078     fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
1079         warn_if_doc(cx, block.span, "blocks", &block.attrs());
1080     }
1081
1082     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1083         if let ast::ItemKind::ForeignMod(_) = item.kind {
1084             warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
1085         }
1086     }
1087 }
1088
1089 declare_lint! {
1090     /// The `no_mangle_const_items` lint detects any `const` items with the
1091     /// [`no_mangle` attribute].
1092     ///
1093     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1094     ///
1095     /// ### Example
1096     ///
1097     /// ```rust,compile_fail
1098     /// #[no_mangle]
1099     /// const FOO: i32 = 5;
1100     /// ```
1101     ///
1102     /// {{produces}}
1103     ///
1104     /// ### Explanation
1105     ///
1106     /// Constants do not have their symbols exported, and therefore, this
1107     /// probably means you meant to use a [`static`], not a [`const`].
1108     ///
1109     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1110     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1111     NO_MANGLE_CONST_ITEMS,
1112     Deny,
1113     "const items will not have their symbols exported"
1114 }
1115
1116 declare_lint! {
1117     /// The `no_mangle_generic_items` lint detects generic items that must be
1118     /// mangled.
1119     ///
1120     /// ### Example
1121     ///
1122     /// ```rust
1123     /// #[no_mangle]
1124     /// fn foo<T>(t: T) {
1125     ///
1126     /// }
1127     /// ```
1128     ///
1129     /// {{produces}}
1130     ///
1131     /// ### Explanation
1132     ///
1133     /// A function with generics must have its symbol mangled to accommodate
1134     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1135     /// this situation, and should be removed.
1136     ///
1137     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1138     NO_MANGLE_GENERIC_ITEMS,
1139     Warn,
1140     "generic items must be mangled"
1141 }
1142
1143 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1144
1145 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1146     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1147         let attrs = cx.tcx.hir().attrs(it.hir_id());
1148         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1149                                              impl_generics: Option<&hir::Generics<'_>>,
1150                                              generics: &hir::Generics<'_>,
1151                                              span| {
1152             for param in
1153                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1154             {
1155                 match param.kind {
1156                     GenericParamKind::Lifetime { .. } => {}
1157                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1158                         cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
1159                             lint.build(fluent::lint::builtin_no_mangle_generic)
1160                                 .span_suggestion_short(
1161                                     no_mangle_attr.span,
1162                                     fluent::lint::suggestion,
1163                                     "",
1164                                     // Use of `#[no_mangle]` suggests FFI intent; correct
1165                                     // fix may be to monomorphize source by hand
1166                                     Applicability::MaybeIncorrect,
1167                                 )
1168                                 .emit();
1169                         });
1170                         break;
1171                     }
1172                 }
1173             }
1174         };
1175         match it.kind {
1176             hir::ItemKind::Fn(.., ref generics, _) => {
1177                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1178                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1179                 }
1180             }
1181             hir::ItemKind::Const(..) => {
1182                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1183                     // Const items do not refer to a particular location in memory, and therefore
1184                     // don't have anything to attach a symbol to
1185                     cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
1186                         let mut err = lint.build(fluent::lint::builtin_const_no_mangle);
1187
1188                         // account for "pub const" (#45562)
1189                         let start = cx
1190                             .tcx
1191                             .sess
1192                             .source_map()
1193                             .span_to_snippet(it.span)
1194                             .map(|snippet| snippet.find("const").unwrap_or(0))
1195                             .unwrap_or(0) as u32;
1196                         // `const` is 5 chars
1197                         let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1198                         err.span_suggestion(
1199                             const_span,
1200                             fluent::lint::suggestion,
1201                             "pub static",
1202                             Applicability::MachineApplicable,
1203                         );
1204                         err.emit();
1205                     });
1206                 }
1207             }
1208             hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1209                 for it in *items {
1210                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1211                         if let Some(no_mangle_attr) = cx
1212                             .sess()
1213                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1214                         {
1215                             check_no_mangle_on_generic_fn(
1216                                 no_mangle_attr,
1217                                 Some(generics),
1218                                 cx.tcx.hir().get_generics(it.id.def_id).unwrap(),
1219                                 it.span,
1220                             );
1221                         }
1222                     }
1223                 }
1224             }
1225             _ => {}
1226         }
1227     }
1228 }
1229
1230 declare_lint! {
1231     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1232     /// T` because it is [undefined behavior].
1233     ///
1234     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1235     ///
1236     /// ### Example
1237     ///
1238     /// ```rust,compile_fail
1239     /// unsafe {
1240     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1241     /// }
1242     /// ```
1243     ///
1244     /// {{produces}}
1245     ///
1246     /// ### Explanation
1247     ///
1248     /// Certain assumptions are made about aliasing of data, and this transmute
1249     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1250     ///
1251     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1252     MUTABLE_TRANSMUTES,
1253     Deny,
1254     "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1255 }
1256
1257 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1258
1259 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1260     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1261         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1262             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1263         {
1264             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1265                 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| {
1266                     lint.build(fluent::lint::builtin_mutable_transmutes).emit();
1267                 });
1268             }
1269         }
1270
1271         fn get_transmute_from_to<'tcx>(
1272             cx: &LateContext<'tcx>,
1273             expr: &hir::Expr<'_>,
1274         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1275             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1276                 cx.qpath_res(qpath, expr.hir_id)
1277             } else {
1278                 return None;
1279             };
1280             if let Res::Def(DefKind::Fn, did) = def {
1281                 if !def_id_is_transmute(cx, did) {
1282                     return None;
1283                 }
1284                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1285                 let from = sig.inputs().skip_binder()[0];
1286                 let to = sig.output().skip_binder();
1287                 return Some((from, to));
1288             }
1289             None
1290         }
1291
1292         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1293             cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
1294         }
1295     }
1296 }
1297
1298 declare_lint! {
1299     /// The `unstable_features` is deprecated and should no longer be used.
1300     UNSTABLE_FEATURES,
1301     Allow,
1302     "enabling unstable features (deprecated. do not use)"
1303 }
1304
1305 declare_lint_pass!(
1306     /// Forbids using the `#[feature(...)]` attribute
1307     UnstableFeatures => [UNSTABLE_FEATURES]
1308 );
1309
1310 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1311     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1312         if attr.has_name(sym::feature) {
1313             if let Some(items) = attr.meta_item_list() {
1314                 for item in items {
1315                     cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
1316                         lint.build(fluent::lint::builtin_unstable_features).emit();
1317                     });
1318                 }
1319             }
1320         }
1321     }
1322 }
1323
1324 declare_lint! {
1325     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1326     /// the crate root.
1327     ///
1328     /// ### Example
1329     ///
1330     /// ```rust,compile_fail
1331     /// #![deny(unreachable_pub)]
1332     /// mod foo {
1333     ///     pub mod bar {
1334     ///
1335     ///     }
1336     /// }
1337     /// ```
1338     ///
1339     /// {{produces}}
1340     ///
1341     /// ### Explanation
1342     ///
1343     /// A bare `pub` visibility may be misleading if the item is not actually
1344     /// publicly exported from the crate. The `pub(crate)` visibility is
1345     /// recommended to be used instead, which more clearly expresses the intent
1346     /// that the item is only visible within its own crate.
1347     ///
1348     /// This lint is "allow" by default because it will trigger for a large
1349     /// amount existing Rust code, and has some false-positives. Eventually it
1350     /// is desired for this to become warn-by-default.
1351     pub UNREACHABLE_PUB,
1352     Allow,
1353     "`pub` items not reachable from crate root"
1354 }
1355
1356 declare_lint_pass!(
1357     /// Lint for items marked `pub` that aren't reachable from other crates.
1358     UnreachablePub => [UNREACHABLE_PUB]
1359 );
1360
1361 impl UnreachablePub {
1362     fn perform_lint(
1363         &self,
1364         cx: &LateContext<'_>,
1365         what: &str,
1366         def_id: LocalDefId,
1367         vis_span: Span,
1368         exportable: bool,
1369     ) {
1370         let mut applicability = Applicability::MachineApplicable;
1371         if cx.tcx.visibility(def_id).is_public() && !cx.access_levels.is_reachable(def_id) {
1372             if vis_span.from_expansion() {
1373                 applicability = Applicability::MaybeIncorrect;
1374             }
1375             let def_span = cx.tcx.def_span(def_id);
1376             cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
1377                 let mut err = lint.build(fluent::lint::builtin_unreachable_pub);
1378                 err.set_arg("what", what);
1379
1380                 err.span_suggestion(
1381                     vis_span,
1382                     fluent::lint::suggestion,
1383                     "pub(crate)",
1384                     applicability,
1385                 );
1386                 if exportable {
1387                     err.help(fluent::lint::help);
1388                 }
1389                 err.emit();
1390             });
1391         }
1392     }
1393 }
1394
1395 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1396     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1397         // Do not warn for fake `use` statements.
1398         if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1399             return;
1400         }
1401         self.perform_lint(cx, "item", item.def_id, item.vis_span, true);
1402     }
1403
1404     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1405         self.perform_lint(cx, "item", foreign_item.def_id, foreign_item.vis_span, true);
1406     }
1407
1408     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1409         let def_id = cx.tcx.hir().local_def_id(field.hir_id);
1410         self.perform_lint(cx, "field", def_id, field.vis_span, false);
1411     }
1412
1413     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1414         // Only lint inherent impl items.
1415         if cx.tcx.associated_item(impl_item.def_id).trait_item_def_id.is_none() {
1416             self.perform_lint(cx, "item", impl_item.def_id, impl_item.vis_span, false);
1417         }
1418     }
1419 }
1420
1421 declare_lint! {
1422     /// The `type_alias_bounds` lint detects bounds in type aliases.
1423     ///
1424     /// ### Example
1425     ///
1426     /// ```rust
1427     /// type SendVec<T: Send> = Vec<T>;
1428     /// ```
1429     ///
1430     /// {{produces}}
1431     ///
1432     /// ### Explanation
1433     ///
1434     /// The trait bounds in a type alias are currently ignored, and should not
1435     /// be included to avoid confusion. This was previously allowed
1436     /// unintentionally; this may become a hard error in the future.
1437     TYPE_ALIAS_BOUNDS,
1438     Warn,
1439     "bounds in type aliases are not enforced"
1440 }
1441
1442 declare_lint_pass!(
1443     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1444     /// They are relevant when using associated types, but otherwise neither checked
1445     /// at definition site nor enforced at use site.
1446     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1447 );
1448
1449 impl TypeAliasBounds {
1450     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1451         match *qpath {
1452             hir::QPath::TypeRelative(ref ty, _) => {
1453                 // If this is a type variable, we found a `T::Assoc`.
1454                 match ty.kind {
1455                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1456                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1457                     }
1458                     _ => false,
1459                 }
1460             }
1461             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1462         }
1463     }
1464
1465     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
1466         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1467         // bound.  Let's see if this type does that.
1468
1469         // We use a HIR visitor to walk the type.
1470         use rustc_hir::intravisit::{self, Visitor};
1471         struct WalkAssocTypes<'a> {
1472             err: &'a mut Diagnostic,
1473         }
1474         impl Visitor<'_> for WalkAssocTypes<'_> {
1475             fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
1476                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1477                     self.err.span_help(span, fluent::lint::builtin_type_alias_bounds_help);
1478                 }
1479                 intravisit::walk_qpath(self, qpath, id, span)
1480             }
1481         }
1482
1483         // Let's go for a walk!
1484         let mut visitor = WalkAssocTypes { err };
1485         visitor.visit_ty(ty);
1486     }
1487 }
1488
1489 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1490     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1491         let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1492             return
1493         };
1494         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1495             // Bounds are respected for `type X = impl Trait`
1496             return;
1497         }
1498         // There must not be a where clause
1499         if type_alias_generics.predicates.is_empty() {
1500             return;
1501         }
1502
1503         let mut where_spans = Vec::new();
1504         let mut inline_spans = Vec::new();
1505         let mut inline_sugg = Vec::new();
1506         for p in type_alias_generics.predicates {
1507             let span = p.span();
1508             if p.in_where_clause() {
1509                 where_spans.push(span);
1510             } else {
1511                 for b in p.bounds() {
1512                     inline_spans.push(b.span());
1513                 }
1514                 inline_sugg.push((span, String::new()));
1515             }
1516         }
1517
1518         let mut suggested_changing_assoc_types = false;
1519         if !where_spans.is_empty() {
1520             cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
1521                 let mut err = lint.build(fluent::lint::builtin_type_alias_where_clause);
1522                 err.set_span(where_spans);
1523                 err.span_suggestion(
1524                     type_alias_generics.where_clause_span,
1525                     fluent::lint::suggestion,
1526                     "",
1527                     Applicability::MachineApplicable,
1528                 );
1529                 if !suggested_changing_assoc_types {
1530                     TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1531                     suggested_changing_assoc_types = true;
1532                 }
1533                 err.emit();
1534             });
1535         }
1536
1537         if !inline_spans.is_empty() {
1538             cx.lint(TYPE_ALIAS_BOUNDS, |lint| {
1539                 let mut err = lint.build(fluent::lint::builtin_type_alias_generic_bounds);
1540                 err.set_span(inline_spans);
1541                 err.multipart_suggestion(
1542                     fluent::lint::suggestion,
1543                     inline_sugg,
1544                     Applicability::MachineApplicable,
1545                 );
1546                 if !suggested_changing_assoc_types {
1547                     TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1548                 }
1549                 err.emit();
1550             });
1551         }
1552     }
1553 }
1554
1555 declare_lint_pass!(
1556     /// Lint constants that are erroneous.
1557     /// Without this lint, we might not get any diagnostic if the constant is
1558     /// unused within this crate, even though downstream crates can't use it
1559     /// without producing an error.
1560     UnusedBrokenConst => []
1561 );
1562
1563 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1564     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1565         match it.kind {
1566             hir::ItemKind::Const(_, body_id) => {
1567                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1568                 // trigger the query once for all constants since that will already report the errors
1569                 cx.tcx.ensure().const_eval_poly(def_id);
1570             }
1571             hir::ItemKind::Static(_, _, body_id) => {
1572                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1573                 cx.tcx.ensure().eval_static_initializer(def_id);
1574             }
1575             _ => {}
1576         }
1577     }
1578 }
1579
1580 declare_lint! {
1581     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1582     /// any type parameters.
1583     ///
1584     /// ### Example
1585     ///
1586     /// ```rust
1587     /// #![feature(trivial_bounds)]
1588     /// pub struct A where i32: Copy;
1589     /// ```
1590     ///
1591     /// {{produces}}
1592     ///
1593     /// ### Explanation
1594     ///
1595     /// Usually you would not write a trait bound that you know is always
1596     /// true, or never true. However, when using macros, the macro may not
1597     /// know whether or not the constraint would hold or not at the time when
1598     /// generating the code. Currently, the compiler does not alert you if the
1599     /// constraint is always true, and generates an error if it is never true.
1600     /// The `trivial_bounds` feature changes this to be a warning in both
1601     /// cases, giving macros more freedom and flexibility to generate code,
1602     /// while still providing a signal when writing non-macro code that
1603     /// something is amiss.
1604     ///
1605     /// See [RFC 2056] for more details. This feature is currently only
1606     /// available on the nightly channel, see [tracking issue #48214].
1607     ///
1608     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1609     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1610     TRIVIAL_BOUNDS,
1611     Warn,
1612     "these bounds don't depend on an type parameters"
1613 }
1614
1615 declare_lint_pass!(
1616     /// Lint for trait and lifetime bounds that don't depend on type parameters
1617     /// which either do nothing, or stop the item from being used.
1618     TrivialConstraints => [TRIVIAL_BOUNDS]
1619 );
1620
1621 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1622     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1623         use rustc_middle::ty::visit::TypeVisitable;
1624         use rustc_middle::ty::PredicateKind::*;
1625
1626         if cx.tcx.features().trivial_bounds {
1627             let predicates = cx.tcx.predicates_of(item.def_id);
1628             for &(predicate, span) in predicates.predicates {
1629                 let predicate_kind_name = match predicate.kind().skip_binder() {
1630                     Trait(..) => "trait",
1631                     TypeOutlives(..) |
1632                     RegionOutlives(..) => "lifetime",
1633
1634                     // Ignore projections, as they can only be global
1635                     // if the trait bound is global
1636                     Projection(..) |
1637                     // Ignore bounds that a user can't type
1638                     WellFormed(..) |
1639                     ObjectSafe(..) |
1640                     ClosureKind(..) |
1641                     Subtype(..) |
1642                     Coerce(..) |
1643                     ConstEvaluatable(..) |
1644                     ConstEquate(..) |
1645                     TypeWellFormedFromEnv(..) => continue,
1646                 };
1647                 if predicate.is_global() {
1648                     cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1649                         lint.build(fluent::lint::builtin_trivial_bounds)
1650                             .set_arg("predicate_kind_name", predicate_kind_name)
1651                             .set_arg("predicate", predicate)
1652                             .emit();
1653                     });
1654                 }
1655             }
1656         }
1657     }
1658 }
1659
1660 declare_lint_pass!(
1661     /// Does nothing as a lint pass, but registers some `Lint`s
1662     /// which are used by other parts of the compiler.
1663     SoftLints => [
1664         WHILE_TRUE,
1665         BOX_POINTERS,
1666         NON_SHORTHAND_FIELD_PATTERNS,
1667         UNSAFE_CODE,
1668         MISSING_DOCS,
1669         MISSING_COPY_IMPLEMENTATIONS,
1670         MISSING_DEBUG_IMPLEMENTATIONS,
1671         ANONYMOUS_PARAMETERS,
1672         UNUSED_DOC_COMMENTS,
1673         NO_MANGLE_CONST_ITEMS,
1674         NO_MANGLE_GENERIC_ITEMS,
1675         MUTABLE_TRANSMUTES,
1676         UNSTABLE_FEATURES,
1677         UNREACHABLE_PUB,
1678         TYPE_ALIAS_BOUNDS,
1679         TRIVIAL_BOUNDS
1680     ]
1681 );
1682
1683 declare_lint! {
1684     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1685     /// pattern], which is deprecated.
1686     ///
1687     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1688     ///
1689     /// ### Example
1690     ///
1691     /// ```rust,edition2018
1692     /// let x = 123;
1693     /// match x {
1694     ///     0...100 => {}
1695     ///     _ => {}
1696     /// }
1697     /// ```
1698     ///
1699     /// {{produces}}
1700     ///
1701     /// ### Explanation
1702     ///
1703     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1704     /// confusion with the [`..` range expression]. Use the new form instead.
1705     ///
1706     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1707     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1708     Warn,
1709     "`...` range patterns are deprecated",
1710     @future_incompatible = FutureIncompatibleInfo {
1711         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1712         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1713     };
1714 }
1715
1716 #[derive(Default)]
1717 pub struct EllipsisInclusiveRangePatterns {
1718     /// If `Some(_)`, suppress all subsequent pattern
1719     /// warnings for better diagnostics.
1720     node_id: Option<ast::NodeId>,
1721 }
1722
1723 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1724
1725 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1726     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1727         if self.node_id.is_some() {
1728             // Don't recursively warn about patterns inside range endpoints.
1729             return;
1730         }
1731
1732         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1733
1734         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1735         /// corresponding to the ellipsis.
1736         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1737             match &pat.kind {
1738                 PatKind::Range(
1739                     a,
1740                     Some(b),
1741                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1742                 ) => Some((a.as_deref(), b, *span)),
1743                 _ => None,
1744             }
1745         }
1746
1747         let (parenthesise, endpoints) = match &pat.kind {
1748             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1749             _ => (false, matches_ellipsis_pat(pat)),
1750         };
1751
1752         if let Some((start, end, join)) = endpoints {
1753             let msg = fluent::lint::builtin_ellipsis_inclusive_range_patterns;
1754             let suggestion = fluent::lint::suggestion;
1755             if parenthesise {
1756                 self.node_id = Some(pat.id);
1757                 let end = expr_to_string(&end);
1758                 let replace = match start {
1759                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1760                     None => format!("&(..={})", end),
1761                 };
1762                 if join.edition() >= Edition::Edition2021 {
1763                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1764                         span: pat.span,
1765                         suggestion: pat.span,
1766                         replace,
1767                     });
1768                 } else {
1769                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1770                         lint.build(msg)
1771                             .span_suggestion(
1772                                 pat.span,
1773                                 suggestion,
1774                                 replace,
1775                                 Applicability::MachineApplicable,
1776                             )
1777                             .emit();
1778                     });
1779                 }
1780             } else {
1781                 let replace = "..=";
1782                 if join.edition() >= Edition::Edition2021 {
1783                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1784                         span: pat.span,
1785                         suggestion: join,
1786                         replace: replace.to_string(),
1787                     });
1788                 } else {
1789                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1790                         lint.build(msg)
1791                             .span_suggestion_short(
1792                                 join,
1793                                 suggestion,
1794                                 replace,
1795                                 Applicability::MachineApplicable,
1796                             )
1797                             .emit();
1798                     });
1799                 }
1800             };
1801         }
1802     }
1803
1804     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1805         if let Some(node_id) = self.node_id {
1806             if pat.id == node_id {
1807                 self.node_id = None
1808             }
1809         }
1810     }
1811 }
1812
1813 declare_lint! {
1814     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1815     /// that are not able to be run by the test harness because they are in a
1816     /// position where they are not nameable.
1817     ///
1818     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1819     ///
1820     /// ### Example
1821     ///
1822     /// ```rust,test
1823     /// fn main() {
1824     ///     #[test]
1825     ///     fn foo() {
1826     ///         // This test will not fail because it does not run.
1827     ///         assert_eq!(1, 2);
1828     ///     }
1829     /// }
1830     /// ```
1831     ///
1832     /// {{produces}}
1833     ///
1834     /// ### Explanation
1835     ///
1836     /// In order for the test harness to run a test, the test function must be
1837     /// located in a position where it can be accessed from the crate root.
1838     /// This generally means it must be defined in a module, and not anywhere
1839     /// else such as inside another function. The compiler previously allowed
1840     /// this without an error, so a lint was added as an alert that a test is
1841     /// not being used. Whether or not this should be allowed has not yet been
1842     /// decided, see [RFC 2471] and [issue #36629].
1843     ///
1844     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1845     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1846     UNNAMEABLE_TEST_ITEMS,
1847     Warn,
1848     "detects an item that cannot be named being marked as `#[test_case]`",
1849     report_in_external_macro
1850 }
1851
1852 pub struct UnnameableTestItems {
1853     boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
1854     items_nameable: bool,
1855 }
1856
1857 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1858
1859 impl UnnameableTestItems {
1860     pub fn new() -> Self {
1861         Self { boundary: None, items_nameable: true }
1862     }
1863 }
1864
1865 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1866     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1867         if self.items_nameable {
1868             if let hir::ItemKind::Mod(..) = it.kind {
1869             } else {
1870                 self.items_nameable = false;
1871                 self.boundary = Some(it.def_id);
1872             }
1873             return;
1874         }
1875
1876         let attrs = cx.tcx.hir().attrs(it.hir_id());
1877         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1878             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1879                 lint.build(fluent::lint::builtin_unnameable_test_items).emit();
1880             });
1881         }
1882     }
1883
1884     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1885         if !self.items_nameable && self.boundary == Some(it.def_id) {
1886             self.items_nameable = true;
1887         }
1888     }
1889 }
1890
1891 declare_lint! {
1892     /// The `keyword_idents` lint detects edition keywords being used as an
1893     /// identifier.
1894     ///
1895     /// ### Example
1896     ///
1897     /// ```rust,edition2015,compile_fail
1898     /// #![deny(keyword_idents)]
1899     /// // edition 2015
1900     /// fn dyn() {}
1901     /// ```
1902     ///
1903     /// {{produces}}
1904     ///
1905     /// ### Explanation
1906     ///
1907     /// Rust [editions] allow the language to evolve without breaking
1908     /// backwards compatibility. This lint catches code that uses new keywords
1909     /// that are added to the language that are used as identifiers (such as a
1910     /// variable name, function name, etc.). If you switch the compiler to a
1911     /// new edition without updating the code, then it will fail to compile if
1912     /// you are using a new keyword as an identifier.
1913     ///
1914     /// You can manually change the identifiers to a non-keyword, or use a
1915     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1916     ///
1917     /// This lint solves the problem automatically. It is "allow" by default
1918     /// because the code is perfectly valid in older editions. The [`cargo
1919     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1920     /// and automatically apply the suggested fix from the compiler (which is
1921     /// to use a raw identifier). This provides a completely automated way to
1922     /// update old code for a new edition.
1923     ///
1924     /// [editions]: https://doc.rust-lang.org/edition-guide/
1925     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1926     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1927     pub KEYWORD_IDENTS,
1928     Allow,
1929     "detects edition keywords being used as an identifier",
1930     @future_incompatible = FutureIncompatibleInfo {
1931         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1932         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1933     };
1934 }
1935
1936 declare_lint_pass!(
1937     /// Check for uses of edition keywords used as an identifier.
1938     KeywordIdents => [KEYWORD_IDENTS]
1939 );
1940
1941 struct UnderMacro(bool);
1942
1943 impl KeywordIdents {
1944     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1945         for tt in tokens.into_trees() {
1946             match tt {
1947                 // Only report non-raw idents.
1948                 TokenTree::Token(token, _) => {
1949                     if let Some((ident, false)) = token.ident() {
1950                         self.check_ident_token(cx, UnderMacro(true), ident);
1951                     }
1952                 }
1953                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1954             }
1955         }
1956     }
1957
1958     fn check_ident_token(
1959         &mut self,
1960         cx: &EarlyContext<'_>,
1961         UnderMacro(under_macro): UnderMacro,
1962         ident: Ident,
1963     ) {
1964         let next_edition = match cx.sess().edition() {
1965             Edition::Edition2015 => {
1966                 match ident.name {
1967                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1968
1969                     // rust-lang/rust#56327: Conservatively do not
1970                     // attempt to report occurrences of `dyn` within
1971                     // macro definitions or invocations, because `dyn`
1972                     // can legitimately occur as a contextual keyword
1973                     // in 2015 code denoting its 2018 meaning, and we
1974                     // do not want rustfix to inject bugs into working
1975                     // code by rewriting such occurrences.
1976                     //
1977                     // But if we see `dyn` outside of a macro, we know
1978                     // its precise role in the parsed AST and thus are
1979                     // assured this is truly an attempt to use it as
1980                     // an identifier.
1981                     kw::Dyn if !under_macro => Edition::Edition2018,
1982
1983                     _ => return,
1984                 }
1985             }
1986
1987             // There are no new keywords yet for the 2018 edition and beyond.
1988             _ => return,
1989         };
1990
1991         // Don't lint `r#foo`.
1992         if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1993             return;
1994         }
1995
1996         cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
1997             lint.build(fluent::lint::builtin_keyword_idents)
1998                 .set_arg("kw", ident.clone())
1999                 .set_arg("next", next_edition)
2000                 .span_suggestion(
2001                     ident.span,
2002                     fluent::lint::suggestion,
2003                     format!("r#{}", ident),
2004                     Applicability::MachineApplicable,
2005                 )
2006                 .emit();
2007         });
2008     }
2009 }
2010
2011 impl EarlyLintPass for KeywordIdents {
2012     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
2013         self.check_tokens(cx, mac_def.body.inner_tokens());
2014     }
2015     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
2016         self.check_tokens(cx, mac.args.inner_tokens());
2017     }
2018     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
2019         self.check_ident_token(cx, UnderMacro(false), ident);
2020     }
2021 }
2022
2023 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2024
2025 impl ExplicitOutlivesRequirements {
2026     fn lifetimes_outliving_lifetime<'tcx>(
2027         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2028         def_id: DefId,
2029     ) -> Vec<ty::Region<'tcx>> {
2030         inferred_outlives
2031             .iter()
2032             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2033                 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
2034                     ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
2035                     _ => None,
2036                 },
2037                 _ => None,
2038             })
2039             .collect()
2040     }
2041
2042     fn lifetimes_outliving_type<'tcx>(
2043         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2044         index: u32,
2045     ) -> Vec<ty::Region<'tcx>> {
2046         inferred_outlives
2047             .iter()
2048             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2049                 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2050                     a.is_param(index).then_some(b)
2051                 }
2052                 _ => None,
2053             })
2054             .collect()
2055     }
2056
2057     fn collect_outlives_bound_spans<'tcx>(
2058         &self,
2059         tcx: TyCtxt<'tcx>,
2060         bounds: &hir::GenericBounds<'_>,
2061         inferred_outlives: &[ty::Region<'tcx>],
2062     ) -> Vec<(usize, Span)> {
2063         use rustc_middle::middle::resolve_lifetime::Region;
2064
2065         bounds
2066             .iter()
2067             .enumerate()
2068             .filter_map(|(i, bound)| {
2069                 if let hir::GenericBound::Outlives(lifetime) = bound {
2070                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
2071                         Some(Region::EarlyBound(def_id)) => inferred_outlives.iter().any(|r| {
2072                             if let ty::ReEarlyBound(ebr) = **r {
2073                                 ebr.def_id == def_id
2074                             } else {
2075                                 false
2076                             }
2077                         }),
2078                         _ => false,
2079                     };
2080                     is_inferred.then_some((i, bound.span()))
2081                 } else {
2082                     None
2083                 }
2084             })
2085             .filter(|(_, span)| !in_external_macro(tcx.sess, *span))
2086             .collect()
2087     }
2088
2089     fn consolidate_outlives_bound_spans(
2090         &self,
2091         lo: Span,
2092         bounds: &hir::GenericBounds<'_>,
2093         bound_spans: Vec<(usize, Span)>,
2094     ) -> Vec<Span> {
2095         if bounds.is_empty() {
2096             return Vec::new();
2097         }
2098         if bound_spans.len() == bounds.len() {
2099             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2100             // If all bounds are inferable, we want to delete the colon, so
2101             // start from just after the parameter (span passed as argument)
2102             vec![lo.to(last_bound_span)]
2103         } else {
2104             let mut merged = Vec::new();
2105             let mut last_merged_i = None;
2106
2107             let mut from_start = true;
2108             for (i, bound_span) in bound_spans {
2109                 match last_merged_i {
2110                     // If the first bound is inferable, our span should also eat the leading `+`.
2111                     None if i == 0 => {
2112                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2113                         last_merged_i = Some(0);
2114                     }
2115                     // If consecutive bounds are inferable, merge their spans
2116                     Some(h) if i == h + 1 => {
2117                         if let Some(tail) = merged.last_mut() {
2118                             // Also eat the trailing `+` if the first
2119                             // more-than-one bound is inferable
2120                             let to_span = if from_start && i < bounds.len() {
2121                                 bounds[i + 1].span().shrink_to_lo()
2122                             } else {
2123                                 bound_span
2124                             };
2125                             *tail = tail.to(to_span);
2126                             last_merged_i = Some(i);
2127                         } else {
2128                             bug!("another bound-span visited earlier");
2129                         }
2130                     }
2131                     _ => {
2132                         // When we find a non-inferable bound, subsequent inferable bounds
2133                         // won't be consecutive from the start (and we'll eat the leading
2134                         // `+` rather than the trailing one)
2135                         from_start = false;
2136                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2137                         last_merged_i = Some(i);
2138                     }
2139                 }
2140             }
2141             merged
2142         }
2143     }
2144 }
2145
2146 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2147     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2148         use rustc_middle::middle::resolve_lifetime::Region;
2149
2150         let def_id = item.def_id;
2151         if let hir::ItemKind::Struct(_, ref hir_generics)
2152         | hir::ItemKind::Enum(_, ref hir_generics)
2153         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
2154         {
2155             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2156             if inferred_outlives.is_empty() {
2157                 return;
2158             }
2159
2160             let ty_generics = cx.tcx.generics_of(def_id);
2161
2162             let mut bound_count = 0;
2163             let mut lint_spans = Vec::new();
2164             let mut where_lint_spans = Vec::new();
2165             let mut dropped_predicate_count = 0;
2166             let num_predicates = hir_generics.predicates.len();
2167             for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2168                 let (relevant_lifetimes, bounds, span, in_where_clause) = match where_predicate {
2169                     hir::WherePredicate::RegionPredicate(predicate) => {
2170                         if let Some(Region::EarlyBound(region_def_id)) =
2171                             cx.tcx.named_region(predicate.lifetime.hir_id)
2172                         {
2173                             (
2174                                 Self::lifetimes_outliving_lifetime(
2175                                     inferred_outlives,
2176                                     region_def_id,
2177                                 ),
2178                                 &predicate.bounds,
2179                                 predicate.span,
2180                                 predicate.in_where_clause,
2181                             )
2182                         } else {
2183                             continue;
2184                         }
2185                     }
2186                     hir::WherePredicate::BoundPredicate(predicate) => {
2187                         // FIXME we can also infer bounds on associated types,
2188                         // and should check for them here.
2189                         match predicate.bounded_ty.kind {
2190                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
2191                                 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2192                                     continue
2193                                 };
2194                                 let index = ty_generics.param_def_id_to_index[&def_id];
2195                                 (
2196                                     Self::lifetimes_outliving_type(inferred_outlives, index),
2197                                     &predicate.bounds,
2198                                     predicate.span,
2199                                     predicate.origin == PredicateOrigin::WhereClause,
2200                                 )
2201                             }
2202                             _ => {
2203                                 continue;
2204                             }
2205                         }
2206                     }
2207                     _ => continue,
2208                 };
2209                 if relevant_lifetimes.is_empty() {
2210                     continue;
2211                 }
2212
2213                 let bound_spans =
2214                     self.collect_outlives_bound_spans(cx.tcx, bounds, &relevant_lifetimes);
2215                 bound_count += bound_spans.len();
2216
2217                 let drop_predicate = bound_spans.len() == bounds.len();
2218                 if drop_predicate {
2219                     dropped_predicate_count += 1;
2220                 }
2221
2222                 if drop_predicate && !in_where_clause {
2223                     lint_spans.push(span);
2224                 } else if drop_predicate && i + 1 < num_predicates {
2225                     // If all the bounds on a predicate were inferable and there are
2226                     // further predicates, we want to eat the trailing comma.
2227                     let next_predicate_span = hir_generics.predicates[i + 1].span();
2228                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
2229                 } else {
2230                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2231                         span.shrink_to_lo(),
2232                         bounds,
2233                         bound_spans,
2234                     ));
2235                 }
2236             }
2237
2238             // If all predicates are inferable, drop the entire clause
2239             // (including the `where`)
2240             if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2241             {
2242                 let where_span = hir_generics.where_clause_span;
2243                 // Extend the where clause back to the closing `>` of the
2244                 // generics, except for tuple struct, which have the `where`
2245                 // after the fields of the struct.
2246                 let full_where_span =
2247                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2248                         where_span
2249                     } else {
2250                         hir_generics.span.shrink_to_hi().to(where_span)
2251                     };
2252                 lint_spans.push(full_where_span);
2253             } else {
2254                 lint_spans.extend(where_lint_spans);
2255             }
2256
2257             if !lint_spans.is_empty() {
2258                 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
2259                     lint.build(fluent::lint::builtin_explicit_outlives)
2260                         .set_arg("count", bound_count)
2261                         .multipart_suggestion(
2262                             fluent::lint::suggestion,
2263                             lint_spans
2264                                 .into_iter()
2265                                 .map(|span| (span, String::new()))
2266                                 .collect::<Vec<_>>(),
2267                             Applicability::MachineApplicable,
2268                         )
2269                         .emit();
2270                 });
2271             }
2272         }
2273     }
2274 }
2275
2276 declare_lint! {
2277     /// The `incomplete_features` lint detects unstable features enabled with
2278     /// the [`feature` attribute] that may function improperly in some or all
2279     /// cases.
2280     ///
2281     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2282     ///
2283     /// ### Example
2284     ///
2285     /// ```rust
2286     /// #![feature(generic_const_exprs)]
2287     /// ```
2288     ///
2289     /// {{produces}}
2290     ///
2291     /// ### Explanation
2292     ///
2293     /// Although it is encouraged for people to experiment with unstable
2294     /// features, some of them are known to be incomplete or faulty. This lint
2295     /// is a signal that the feature has not yet been finished, and you may
2296     /// experience problems with it.
2297     pub INCOMPLETE_FEATURES,
2298     Warn,
2299     "incomplete features that may function improperly in some or all cases"
2300 }
2301
2302 declare_lint_pass!(
2303     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2304     IncompleteFeatures => [INCOMPLETE_FEATURES]
2305 );
2306
2307 impl EarlyLintPass for IncompleteFeatures {
2308     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2309         let features = cx.sess().features_untracked();
2310         features
2311             .declared_lang_features
2312             .iter()
2313             .map(|(name, span, _)| (name, span))
2314             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2315             .filter(|(&name, _)| features.incomplete(name))
2316             .for_each(|(&name, &span)| {
2317                 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
2318                     let mut builder = lint.build(fluent::lint::builtin_incomplete_features);
2319                     builder.set_arg("name", name);
2320                     if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
2321                         builder.set_arg("n", n);
2322                         builder.note(fluent::lint::note);
2323                     }
2324                     if HAS_MIN_FEATURES.contains(&name) {
2325                         builder.help(fluent::lint::help);
2326                     }
2327                     builder.emit();
2328                 })
2329             });
2330     }
2331 }
2332
2333 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2334
2335 declare_lint! {
2336     /// The `invalid_value` lint detects creating a value that is not valid,
2337     /// such as a null reference.
2338     ///
2339     /// ### Example
2340     ///
2341     /// ```rust,no_run
2342     /// # #![allow(unused)]
2343     /// unsafe {
2344     ///     let x: &'static i32 = std::mem::zeroed();
2345     /// }
2346     /// ```
2347     ///
2348     /// {{produces}}
2349     ///
2350     /// ### Explanation
2351     ///
2352     /// In some situations the compiler can detect that the code is creating
2353     /// an invalid value, which should be avoided.
2354     ///
2355     /// In particular, this lint will check for improper use of
2356     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2357     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2358     /// lint should provide extra information to indicate what the problem is
2359     /// and a possible solution.
2360     ///
2361     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2362     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2363     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2364     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2365     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2366     pub INVALID_VALUE,
2367     Warn,
2368     "an invalid value is being created (such as a null reference)"
2369 }
2370
2371 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2372
2373 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2374     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2375         #[derive(Debug, Copy, Clone, PartialEq)]
2376         enum InitKind {
2377             Zeroed,
2378             Uninit,
2379         }
2380
2381         /// Information about why a type cannot be initialized this way.
2382         /// Contains an error message and optionally a span to point at.
2383         type InitError = (String, Option<Span>);
2384
2385         /// Test if this constant is all-0.
2386         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2387             use hir::ExprKind::*;
2388             use rustc_ast::LitKind::*;
2389             match &expr.kind {
2390                 Lit(lit) => {
2391                     if let Int(i, _) = lit.node {
2392                         i == 0
2393                     } else {
2394                         false
2395                     }
2396                 }
2397                 Tup(tup) => tup.iter().all(is_zero),
2398                 _ => false,
2399             }
2400         }
2401
2402         /// Determine if this expression is a "dangerous initialization".
2403         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2404             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2405                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2406                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2407                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2408                     match cx.tcx.get_diagnostic_name(def_id) {
2409                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2410                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2411                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2412                         _ => {}
2413                     }
2414                 }
2415             } else if let hir::ExprKind::MethodCall(_, ref args, _) = expr.kind {
2416                 // Find problematic calls to `MaybeUninit::assume_init`.
2417                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2418                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2419                     // This is a call to *some* method named `assume_init`.
2420                     // See if the `self` parameter is one of the dangerous constructors.
2421                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2422                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2423                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2424                             match cx.tcx.get_diagnostic_name(def_id) {
2425                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2426                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2427                                 _ => {}
2428                             }
2429                         }
2430                     }
2431                 }
2432             }
2433
2434             None
2435         }
2436
2437         /// Test if this enum has several actually "existing" variants.
2438         /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
2439         fn is_multi_variant<'tcx>(adt: ty::AdtDef<'tcx>) -> bool {
2440             // As an approximation, we only count dataless variants. Those are definitely inhabited.
2441             let existing_variants = adt.variants().iter().filter(|v| v.fields.is_empty()).count();
2442             existing_variants > 1
2443         }
2444
2445         /// Return `Some` only if we are sure this type does *not*
2446         /// allow zero initialization.
2447         fn ty_find_init_error<'tcx>(
2448             cx: &LateContext<'tcx>,
2449             ty: Ty<'tcx>,
2450             init: InitKind,
2451         ) -> Option<InitError> {
2452             use rustc_type_ir::sty::TyKind::*;
2453             match ty.kind() {
2454                 // Primitive types that don't like 0 as a value.
2455                 Ref(..) => Some(("references must be non-null".to_string(), None)),
2456                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2457                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2458                 Never => Some(("the `!` type has no valid value".to_string(), None)),
2459                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2460                 // raw ptr to dyn Trait
2461                 {
2462                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
2463                 }
2464                 // Primitive types with other constraints.
2465                 Bool if init == InitKind::Uninit => {
2466                     Some(("booleans must be either `true` or `false`".to_string(), None))
2467                 }
2468                 Char if init == InitKind::Uninit => {
2469                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
2470                 }
2471                 Int(_) | Uint(_) if init == InitKind::Uninit => {
2472                     Some(("integers must not be uninitialized".to_string(), None))
2473                 }
2474                 Float(_) if init == InitKind::Uninit => {
2475                     Some(("floats must not be uninitialized".to_string(), None))
2476                 }
2477                 RawPtr(_) if init == InitKind::Uninit => {
2478                     Some(("raw pointers must not be uninitialized".to_string(), None))
2479                 }
2480                 // Recurse and checks for some compound types.
2481                 Adt(adt_def, substs) if !adt_def.is_union() => {
2482                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
2483                     use std::ops::Bound;
2484                     match cx.tcx.layout_scalar_valid_range(adt_def.did()) {
2485                         // We exploit here that `layout_scalar_valid_range` will never
2486                         // return `Bound::Excluded`.  (And we have tests checking that we
2487                         // handle the attribute correctly.)
2488                         (Bound::Included(lo), _) if lo > 0 => {
2489                             return Some((format!("`{}` must be non-null", ty), None));
2490                         }
2491                         (Bound::Included(_), _) | (_, Bound::Included(_))
2492                             if init == InitKind::Uninit =>
2493                         {
2494                             return Some((
2495                                 format!(
2496                                     "`{}` must be initialized inside its custom valid range",
2497                                     ty,
2498                                 ),
2499                                 None,
2500                             ));
2501                         }
2502                         _ => {}
2503                     }
2504                     // Now, recurse.
2505                     match adt_def.variants().len() {
2506                         0 => Some(("enums with no variants have no valid value".to_string(), None)),
2507                         1 => {
2508                             // Struct, or enum with exactly one variant.
2509                             // Proceed recursively, check all fields.
2510                             let variant = &adt_def.variant(VariantIdx::from_u32(0));
2511                             variant.fields.iter().find_map(|field| {
2512                                 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(
2513                                     |(mut msg, span)| {
2514                                         if span.is_none() {
2515                                             // Point to this field, should be helpful for figuring
2516                                             // out where the source of the error is.
2517                                             let span = cx.tcx.def_span(field.did);
2518                                             write!(
2519                                                 &mut msg,
2520                                                 " (in this {} field)",
2521                                                 adt_def.descr()
2522                                             )
2523                                             .unwrap();
2524                                             (msg, Some(span))
2525                                         } else {
2526                                             // Just forward.
2527                                             (msg, span)
2528                                         }
2529                                     },
2530                                 )
2531                             })
2532                         }
2533                         // Multi-variant enum.
2534                         _ => {
2535                             if init == InitKind::Uninit && is_multi_variant(*adt_def) {
2536                                 let span = cx.tcx.def_span(adt_def.did());
2537                                 Some((
2538                                     "enums have to be initialized to a variant".to_string(),
2539                                     Some(span),
2540                                 ))
2541                             } else {
2542                                 // In principle, for zero-initialization we could figure out which variant corresponds
2543                                 // to tag 0, and check that... but for now we just accept all zero-initializations.
2544                                 None
2545                             }
2546                         }
2547                     }
2548                 }
2549                 Tuple(..) => {
2550                     // Proceed recursively, check all fields.
2551                     ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2552                 }
2553                 Array(ty, len) => {
2554                     if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
2555                         // Array length known at array non-empty -- recurse.
2556                         ty_find_init_error(cx, *ty, init)
2557                     } else {
2558                         // Empty array or size unknown.
2559                         None
2560                     }
2561                 }
2562                 // Conservative fallback.
2563                 _ => None,
2564             }
2565         }
2566
2567         if let Some(init) = is_dangerous_init(cx, expr) {
2568             // This conjures an instance of a type out of nothing,
2569             // using zeroed or uninitialized memory.
2570             // We are extremely conservative with what we warn about.
2571             let conjured_ty = cx.typeck_results().expr_ty(expr);
2572             if let Some((msg, span)) =
2573                 with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init))
2574             {
2575                 // FIXME(davidtwco): make translatable
2576                 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2577                     let mut err = lint.build(&format!(
2578                         "the type `{}` does not permit {}",
2579                         conjured_ty,
2580                         match init {
2581                             InitKind::Zeroed => "zero-initialization",
2582                             InitKind::Uninit => "being left uninitialized",
2583                         },
2584                     ));
2585                     err.span_label(expr.span, "this code causes undefined behavior when executed");
2586                     err.span_label(
2587                         expr.span,
2588                         "help: use `MaybeUninit<T>` instead, \
2589                             and only call `assume_init` after initialization is done",
2590                     );
2591                     if let Some(span) = span {
2592                         err.span_note(span, &msg);
2593                     } else {
2594                         err.note(&msg);
2595                     }
2596                     err.emit();
2597                 });
2598             }
2599         }
2600     }
2601 }
2602
2603 declare_lint! {
2604     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2605     /// has been declared with the same name but different types.
2606     ///
2607     /// ### Example
2608     ///
2609     /// ```rust
2610     /// mod m {
2611     ///     extern "C" {
2612     ///         fn foo();
2613     ///     }
2614     /// }
2615     ///
2616     /// extern "C" {
2617     ///     fn foo(_: u32);
2618     /// }
2619     /// ```
2620     ///
2621     /// {{produces}}
2622     ///
2623     /// ### Explanation
2624     ///
2625     /// Because two symbols of the same name cannot be resolved to two
2626     /// different functions at link time, and one function cannot possibly
2627     /// have two types, a clashing extern declaration is almost certainly a
2628     /// mistake. Check to make sure that the `extern` definitions are correct
2629     /// and equivalent, and possibly consider unifying them in one location.
2630     ///
2631     /// This lint does not run between crates because a project may have
2632     /// dependencies which both rely on the same extern function, but declare
2633     /// it in a different (but valid) way. For example, they may both declare
2634     /// an opaque type for one or more of the arguments (which would end up
2635     /// distinct types), or use types that are valid conversions in the
2636     /// language the `extern fn` is defined in. In these cases, the compiler
2637     /// can't say that the clashing declaration is incorrect.
2638     pub CLASHING_EXTERN_DECLARATIONS,
2639     Warn,
2640     "detects when an extern fn has been declared with the same name but different types"
2641 }
2642
2643 pub struct ClashingExternDeclarations {
2644     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2645     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2646     /// the symbol should be reported as a clashing declaration.
2647     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2648     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2649     seen_decls: FxHashMap<Symbol, HirId>,
2650 }
2651
2652 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2653 /// just from declaration itself. This is important because we don't want to report clashes on
2654 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2655 /// different name.
2656 enum SymbolName {
2657     /// The name of the symbol + the span of the annotation which introduced the link name.
2658     Link(Symbol, Span),
2659     /// No link name, so just the name of the symbol.
2660     Normal(Symbol),
2661 }
2662
2663 impl SymbolName {
2664     fn get_name(&self) -> Symbol {
2665         match self {
2666             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2667         }
2668     }
2669 }
2670
2671 impl ClashingExternDeclarations {
2672     pub(crate) fn new() -> Self {
2673         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2674     }
2675     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2676     /// for the item, return its HirId without updating the set.
2677     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2678         let did = fi.def_id.to_def_id();
2679         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2680         let name = Symbol::intern(tcx.symbol_name(instance).name);
2681         if let Some(&hir_id) = self.seen_decls.get(&name) {
2682             // Avoid updating the map with the new entry when we do find a collision. We want to
2683             // make sure we're always pointing to the first definition as the previous declaration.
2684             // This lets us avoid emitting "knock-on" diagnostics.
2685             Some(hir_id)
2686         } else {
2687             self.seen_decls.insert(name, fi.hir_id())
2688         }
2689     }
2690
2691     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2692     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2693     /// symbol's name.
2694     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2695         if let Some((overridden_link_name, overridden_link_name_span)) =
2696             tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
2697                 // FIXME: Instead of searching through the attributes again to get span
2698                 // information, we could have codegen_fn_attrs also give span information back for
2699                 // where the attribute was defined. However, until this is found to be a
2700                 // bottleneck, this does just fine.
2701                 (
2702                     overridden_link_name,
2703                     tcx.get_attr(fi.def_id.to_def_id(), sym::link_name).unwrap().span,
2704                 )
2705             })
2706         {
2707             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2708         } else {
2709             SymbolName::Normal(fi.ident.name)
2710         }
2711     }
2712
2713     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2714     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2715     /// with the same members (as the declarations shouldn't clash).
2716     fn structurally_same_type<'tcx>(
2717         cx: &LateContext<'tcx>,
2718         a: Ty<'tcx>,
2719         b: Ty<'tcx>,
2720         ckind: CItemKind,
2721     ) -> bool {
2722         fn structurally_same_type_impl<'tcx>(
2723             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2724             cx: &LateContext<'tcx>,
2725             a: Ty<'tcx>,
2726             b: Ty<'tcx>,
2727             ckind: CItemKind,
2728         ) -> bool {
2729             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2730             let tcx = cx.tcx;
2731
2732             // Given a transparent newtype, reach through and grab the inner
2733             // type unless the newtype makes the type non-null.
2734             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2735                 let mut ty = ty;
2736                 loop {
2737                     if let ty::Adt(def, substs) = *ty.kind() {
2738                         let is_transparent = def.repr().transparent();
2739                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
2740                         debug!(
2741                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2742                             ty, is_transparent, is_non_null
2743                         );
2744                         if is_transparent && !is_non_null {
2745                             debug_assert!(def.variants().len() == 1);
2746                             let v = &def.variant(VariantIdx::new(0));
2747                             ty = transparent_newtype_field(tcx, v)
2748                                 .expect(
2749                                     "single-variant transparent structure with zero-sized field",
2750                                 )
2751                                 .ty(tcx, substs);
2752                             continue;
2753                         }
2754                     }
2755                     debug!("non_transparent_ty -> {:?}", ty);
2756                     return ty;
2757                 }
2758             };
2759
2760             let a = non_transparent_ty(a);
2761             let b = non_transparent_ty(b);
2762
2763             if !seen_types.insert((a, b)) {
2764                 // We've encountered a cycle. There's no point going any further -- the types are
2765                 // structurally the same.
2766                 return true;
2767             }
2768             let tcx = cx.tcx;
2769             if a == b {
2770                 // All nominally-same types are structurally same, too.
2771                 true
2772             } else {
2773                 // Do a full, depth-first comparison between the two.
2774                 use rustc_type_ir::sty::TyKind::*;
2775                 let a_kind = a.kind();
2776                 let b_kind = b.kind();
2777
2778                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2779                     debug!("compare_layouts({:?}, {:?})", a, b);
2780                     let a_layout = &cx.layout_of(a)?.layout.abi();
2781                     let b_layout = &cx.layout_of(b)?.layout.abi();
2782                     debug!(
2783                         "comparing layouts: {:?} == {:?} = {}",
2784                         a_layout,
2785                         b_layout,
2786                         a_layout == b_layout
2787                     );
2788                     Ok(a_layout == b_layout)
2789                 };
2790
2791                 #[allow(rustc::usage_of_ty_tykind)]
2792                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2793                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2794                 };
2795
2796                 ensure_sufficient_stack(|| {
2797                     match (a_kind, b_kind) {
2798                         (Adt(a_def, _), Adt(b_def, _)) => {
2799                             // We can immediately rule out these types as structurally same if
2800                             // their layouts differ.
2801                             match compare_layouts(a, b) {
2802                                 Ok(false) => return false,
2803                                 _ => (), // otherwise, continue onto the full, fields comparison
2804                             }
2805
2806                             // Grab a flattened representation of all fields.
2807                             let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2808                             let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
2809
2810                             // Perform a structural comparison for each field.
2811                             a_fields.eq_by(
2812                                 b_fields,
2813                                 |&ty::FieldDef { did: a_did, .. },
2814                                  &ty::FieldDef { did: b_did, .. }| {
2815                                     structurally_same_type_impl(
2816                                         seen_types,
2817                                         cx,
2818                                         tcx.type_of(a_did),
2819                                         tcx.type_of(b_did),
2820                                         ckind,
2821                                     )
2822                                 },
2823                             )
2824                         }
2825                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2826                             // For arrays, we also check the constness of the type.
2827                             a_const.kind() == b_const.kind()
2828                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2829                         }
2830                         (Slice(a_ty), Slice(b_ty)) => {
2831                             structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2832                         }
2833                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2834                             a_tymut.mutbl == b_tymut.mutbl
2835                                 && structurally_same_type_impl(
2836                                     seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
2837                                 )
2838                         }
2839                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2840                             // For structural sameness, we don't need the region to be same.
2841                             a_mut == b_mut
2842                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2843                         }
2844                         (FnDef(..), FnDef(..)) => {
2845                             let a_poly_sig = a.fn_sig(tcx);
2846                             let b_poly_sig = b.fn_sig(tcx);
2847
2848                             // We don't compare regions, but leaving bound regions around ICEs, so
2849                             // we erase them.
2850                             let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2851                             let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
2852
2853                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2854                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2855                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2856                                     structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
2857                                 })
2858                                 && structurally_same_type_impl(
2859                                     seen_types,
2860                                     cx,
2861                                     a_sig.output(),
2862                                     b_sig.output(),
2863                                     ckind,
2864                                 )
2865                         }
2866                         (Tuple(a_substs), Tuple(b_substs)) => {
2867                             a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
2868                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2869                             })
2870                         }
2871                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2872                         // For the purposes of this lint, take the conservative approach and mark them as
2873                         // not structurally same.
2874                         (Dynamic(..), Dynamic(..))
2875                         | (Error(..), Error(..))
2876                         | (Closure(..), Closure(..))
2877                         | (Generator(..), Generator(..))
2878                         | (GeneratorWitness(..), GeneratorWitness(..))
2879                         | (Projection(..), Projection(..))
2880                         | (Opaque(..), Opaque(..)) => false,
2881
2882                         // These definitely should have been caught above.
2883                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2884
2885                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2886                         // enum layout optimisation is being applied.
2887                         (Adt(..), other_kind) | (other_kind, Adt(..))
2888                             if is_primitive_or_pointer(other_kind) =>
2889                         {
2890                             let (primitive, adt) =
2891                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2892                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2893                                 ty == primitive
2894                             } else {
2895                                 compare_layouts(a, b).unwrap_or(false)
2896                             }
2897                         }
2898                         // Otherwise, just compare the layouts. This may fail to lint for some
2899                         // incompatible types, but at the very least, will stop reads into
2900                         // uninitialised memory.
2901                         _ => compare_layouts(a, b).unwrap_or(false),
2902                     }
2903                 })
2904             }
2905         }
2906         let mut seen_types = FxHashSet::default();
2907         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2908     }
2909 }
2910
2911 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2912
2913 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2914     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2915         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2916         if let ForeignItemKind::Fn(..) = this_fi.kind {
2917             let tcx = cx.tcx;
2918             if let Some(existing_hid) = self.insert(tcx, this_fi) {
2919                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
2920                 let this_decl_ty = tcx.type_of(this_fi.def_id);
2921                 debug!(
2922                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2923                     existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
2924                 );
2925                 // Check that the declarations match.
2926                 if !Self::structurally_same_type(
2927                     cx,
2928                     existing_decl_ty,
2929                     this_decl_ty,
2930                     CItemKind::Declaration,
2931                 ) {
2932                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
2933                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2934
2935                     // We want to ensure that we use spans for both decls that include where the
2936                     // name was defined, whether that was from the link_name attribute or not.
2937                     let get_relevant_span =
2938                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2939                             SymbolName::Normal(_) => fi.span,
2940                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2941                         };
2942                     // Finally, emit the diagnostic.
2943                     tcx.struct_span_lint_hir(
2944                         CLASHING_EXTERN_DECLARATIONS,
2945                         this_fi.hir_id(),
2946                         get_relevant_span(this_fi),
2947                         |lint| {
2948                             let mut expected_str = DiagnosticStyledString::new();
2949                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
2950                             let mut found_str = DiagnosticStyledString::new();
2951                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
2952
2953                             lint.build(if orig.get_name() == this_fi.ident.name {
2954                                 fluent::lint::builtin_clashing_extern_same_name
2955                             } else {
2956                                 fluent::lint::builtin_clashing_extern_diff_name
2957                             })
2958                             .set_arg("this_fi", this_fi.ident.name)
2959                             .set_arg("orig", orig.get_name())
2960                             .span_label(
2961                                 get_relevant_span(orig_fi),
2962                                 fluent::lint::previous_decl_label,
2963                             )
2964                             .span_label(get_relevant_span(this_fi), fluent::lint::mismatch_label)
2965                             // FIXME(davidtwco): translatable expected/found
2966                             .note_expected_found(&"", expected_str, &"", found_str)
2967                             .emit();
2968                         },
2969                     );
2970                 }
2971             }
2972         }
2973     }
2974 }
2975
2976 declare_lint! {
2977     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
2978     /// which causes [undefined behavior].
2979     ///
2980     /// ### Example
2981     ///
2982     /// ```rust,no_run
2983     /// # #![allow(unused)]
2984     /// use std::ptr;
2985     /// unsafe {
2986     ///     let x = &*ptr::null::<i32>();
2987     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
2988     ///     let x = *(0 as *const i32);
2989     /// }
2990     /// ```
2991     ///
2992     /// {{produces}}
2993     ///
2994     /// ### Explanation
2995     ///
2996     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
2997     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
2998     ///
2999     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3000     pub DEREF_NULLPTR,
3001     Warn,
3002     "detects when an null pointer is dereferenced"
3003 }
3004
3005 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3006
3007 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3008     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3009         /// test if expression is a null ptr
3010         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3011             match &expr.kind {
3012                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3013                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3014                         return is_zero(expr) || is_null_ptr(cx, expr);
3015                     }
3016                 }
3017                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3018                 rustc_hir::ExprKind::Call(ref path, _) => {
3019                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3020                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3021                             return matches!(
3022                                 cx.tcx.get_diagnostic_name(def_id),
3023                                 Some(sym::ptr_null | sym::ptr_null_mut)
3024                             );
3025                         }
3026                     }
3027                 }
3028                 _ => {}
3029             }
3030             false
3031         }
3032
3033         /// test if expression is the literal `0`
3034         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3035             match &expr.kind {
3036                 rustc_hir::ExprKind::Lit(ref lit) => {
3037                     if let LitKind::Int(a, _) = lit.node {
3038                         return a == 0;
3039                     }
3040                 }
3041                 _ => {}
3042             }
3043             false
3044         }
3045
3046         if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3047             if is_null_ptr(cx, expr_deref) {
3048                 cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
3049                     let mut err = lint.build(fluent::lint::builtin_deref_nullptr);
3050                     err.span_label(expr.span, fluent::lint::label);
3051                     err.emit();
3052                 });
3053             }
3054         }
3055     }
3056 }
3057
3058 declare_lint! {
3059     /// The `named_asm_labels` lint detects the use of named labels in the
3060     /// inline `asm!` macro.
3061     ///
3062     /// ### Example
3063     ///
3064     /// ```rust,compile_fail
3065     /// use std::arch::asm;
3066     ///
3067     /// fn main() {
3068     ///     unsafe {
3069     ///         asm!("foo: bar");
3070     ///     }
3071     /// }
3072     /// ```
3073     ///
3074     /// {{produces}}
3075     ///
3076     /// ### Explanation
3077     ///
3078     /// LLVM is allowed to duplicate inline assembly blocks for any
3079     /// reason, for example when it is in a function that gets inlined. Because
3080     /// of this, GNU assembler [local labels] *must* be used instead of labels
3081     /// with a name. Using named labels might cause assembler or linker errors.
3082     ///
3083     /// See the explanation in [Rust By Example] for more details.
3084     ///
3085     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3086     /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
3087     pub NAMED_ASM_LABELS,
3088     Deny,
3089     "named labels in inline assembly",
3090 }
3091
3092 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3093
3094 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3095     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3096         if let hir::Expr {
3097             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3098             ..
3099         } = expr
3100         {
3101             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3102                 let template_str = template_sym.as_str();
3103                 let find_label_span = |needle: &str| -> Option<Span> {
3104                     if let Some(template_snippet) = template_snippet {
3105                         let snippet = template_snippet.as_str();
3106                         if let Some(pos) = snippet.find(needle) {
3107                             let end = pos
3108                                 + snippet[pos..]
3109                                     .find(|c| c == ':')
3110                                     .unwrap_or(snippet[pos..].len() - 1);
3111                             let inner = InnerSpan::new(pos, end);
3112                             return Some(template_span.from_inner(inner));
3113                         }
3114                     }
3115
3116                     None
3117                 };
3118
3119                 let mut found_labels = Vec::new();
3120
3121                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3122                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3123                 for statement in statements {
3124                     // If there's a comment, trim it from the statement
3125                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3126                     let mut start_idx = 0;
3127                     for (idx, _) in statement.match_indices(':') {
3128                         let possible_label = statement[start_idx..idx].trim();
3129                         let mut chars = possible_label.chars();
3130                         let Some(c) = chars.next() else {
3131                             // Empty string means a leading ':' in this section, which is not a label
3132                             break
3133                         };
3134                         // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3135                         if (c.is_alphabetic() || matches!(c, '.' | '_'))
3136                             && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3137                         {
3138                             found_labels.push(possible_label);
3139                         } else {
3140                             // If we encounter a non-label, there cannot be any further labels, so stop checking
3141                             break;
3142                         }
3143
3144                         start_idx = idx + 1;
3145                     }
3146                 }
3147
3148                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3149
3150                 if found_labels.len() > 0 {
3151                     let spans = found_labels
3152                         .into_iter()
3153                         .filter_map(|label| find_label_span(label))
3154                         .collect::<Vec<Span>>();
3155                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3156                     let target_spans: MultiSpan =
3157                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3158
3159                     cx.lookup_with_diagnostics(
3160                             NAMED_ASM_LABELS,
3161                             Some(target_spans),
3162                             |diag| {
3163                                 diag.build(fluent::lint::builtin_asm_labels).emit();
3164                             },
3165                             BuiltinLintDiagnostics::NamedAsmLabel(
3166                                 "only local labels of the form `<number>:` should be used in inline asm"
3167                                     .to_string(),
3168                             ),
3169                         );
3170                 }
3171             }
3172         }
3173     }
3174 }