]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Test drop_tracking_mir before querying generator.
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     errors::BuiltinEllpisisInclusiveRangePatterns,
25     lints::{
26         BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinClashingExtern,
27         BuiltinClashingExternSub, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink,
28         BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr,
29         BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives,
30         BuiltinExplicitOutlivesSuggestion, BuiltinIncompleteFeatures,
31         BuiltinIncompleteFeaturesHelp, BuiltinIncompleteFeaturesNote, BuiltinKeywordIdents,
32         BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
33         BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
34         BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasGenericBounds,
35         BuiltinTypeAliasGenericBoundsSuggestion, BuiltinTypeAliasWhereClause,
36         BuiltinUnexpectedCliConfigName, BuiltinUnexpectedCliConfigValue,
37         BuiltinUngatedAsyncFnTrackCaller, BuiltinUnnameableTestItems, BuiltinUnpermittedTypeInit,
38         BuiltinUnpermittedTypeInitSub, BuiltinUnreachablePub, BuiltinUnsafe,
39         BuiltinUnstableFeatures, BuiltinUnusedDocComment, BuiltinUnusedDocCommentSub,
40         BuiltinWhileTrue, SuggestChangingAssocTypes,
41     },
42     types::{transparent_newtype_field, CItemKind},
43     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
44 };
45 use hir::IsAsync;
46 use rustc_ast::attr;
47 use rustc_ast::tokenstream::{TokenStream, TokenTree};
48 use rustc_ast::visit::{FnCtxt, FnKind};
49 use rustc_ast::{self as ast, *};
50 use rustc_ast_pretty::pprust::{self, expr_to_string};
51 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
52 use rustc_data_structures::stack::ensure_sufficient_stack;
53 use rustc_errors::{fluent, Applicability, DecorateLint, MultiSpan};
54 use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
55 use rustc_hir as hir;
56 use rustc_hir::def::{DefKind, Res};
57 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
58 use rustc_hir::intravisit::FnKind as HirFnKind;
59 use rustc_hir::{Body, FnDecl, ForeignItemKind, GenericParamKind, Node, PatKind, PredicateOrigin};
60 use rustc_index::vec::Idx;
61 use rustc_middle::lint::in_external_macro;
62 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
63 use rustc_middle::ty::print::with_no_trimmed_paths;
64 use rustc_middle::ty::subst::GenericArgKind;
65 use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef};
66 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
67 use rustc_span::edition::Edition;
68 use rustc_span::source_map::Spanned;
69 use rustc_span::symbol::{kw, sym, Ident, Symbol};
70 use rustc_span::{BytePos, InnerSpan, Span};
71 use rustc_target::abi::{Abi, VariantIdx};
72 use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
73 use rustc_trait_selection::traits::{self, misc::type_allowed_to_implement_copy};
74
75 use crate::nonstandard_style::{method_context, MethodLateContext};
76
77 use std::fmt::Write;
78
79 // hardwired lints from librustc_middle
80 pub use rustc_session::lint::builtin::*;
81
82 declare_lint! {
83     /// The `while_true` lint detects `while true { }`.
84     ///
85     /// ### Example
86     ///
87     /// ```rust,no_run
88     /// while true {
89     ///
90     /// }
91     /// ```
92     ///
93     /// {{produces}}
94     ///
95     /// ### Explanation
96     ///
97     /// `while true` should be replaced with `loop`. A `loop` expression is
98     /// the preferred way to write an infinite loop because it more directly
99     /// expresses the intent of the loop.
100     WHILE_TRUE,
101     Warn,
102     "suggest using `loop { }` instead of `while true { }`"
103 }
104
105 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
106
107 /// Traverse through any amount of parenthesis and return the first non-parens expression.
108 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
109     while let ast::ExprKind::Paren(sub) = &expr.kind {
110         expr = sub;
111     }
112     expr
113 }
114
115 impl EarlyLintPass for WhileTrue {
116     #[inline]
117     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
118         if let ast::ExprKind::While(cond, _, label) = &e.kind
119             && let cond = pierce_parens(cond)
120             && let ast::ExprKind::Lit(token_lit) = cond.kind
121             && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
122             && !cond.span.from_expansion()
123         {
124             let condition_span = e.span.with_hi(cond.span.hi());
125             let replace = format!(
126                             "{}loop",
127                             label.map_or_else(String::new, |label| format!(
128                                 "{}: ",
129                                 label.ident,
130                             ))
131                         );
132             cx.emit_spanned_lint(WHILE_TRUE, condition_span, BuiltinWhileTrue {
133                 suggestion: condition_span,
134                 replace,
135             });
136         }
137     }
138 }
139
140 declare_lint! {
141     /// The `box_pointers` lints use of the Box type.
142     ///
143     /// ### Example
144     ///
145     /// ```rust,compile_fail
146     /// #![deny(box_pointers)]
147     /// struct Foo {
148     ///     x: Box<isize>,
149     /// }
150     /// ```
151     ///
152     /// {{produces}}
153     ///
154     /// ### Explanation
155     ///
156     /// This lint is mostly historical, and not particularly useful. `Box<T>`
157     /// used to be built into the language, and the only way to do heap
158     /// allocation. Today's Rust can call into other allocators, etc.
159     BOX_POINTERS,
160     Allow,
161     "use of owned (Box type) heap memory"
162 }
163
164 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
165
166 impl BoxPointers {
167     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
168         for leaf in ty.walk() {
169             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
170                 if leaf_ty.is_box() {
171                     cx.emit_spanned_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty });
172                 }
173             }
174         }
175     }
176 }
177
178 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
179     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
180         match it.kind {
181             hir::ItemKind::Fn(..)
182             | hir::ItemKind::TyAlias(..)
183             | hir::ItemKind::Enum(..)
184             | hir::ItemKind::Struct(..)
185             | hir::ItemKind::Union(..) => {
186                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.owner_id))
187             }
188             _ => (),
189         }
190
191         // If it's a struct, we also have to check the fields' types
192         match it.kind {
193             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
194                 for field in struct_def.fields() {
195                     self.check_heap_type(cx, field.span, cx.tcx.type_of(field.def_id));
196                 }
197             }
198             _ => (),
199         }
200     }
201
202     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
203         let ty = cx.typeck_results().node_type(e.hir_id);
204         self.check_heap_type(cx, e.span, ty);
205     }
206 }
207
208 declare_lint! {
209     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
210     /// instead of `Struct { x }` in a pattern.
211     ///
212     /// ### Example
213     ///
214     /// ```rust
215     /// struct Point {
216     ///     x: i32,
217     ///     y: i32,
218     /// }
219     ///
220     ///
221     /// fn main() {
222     ///     let p = Point {
223     ///         x: 5,
224     ///         y: 5,
225     ///     };
226     ///
227     ///     match p {
228     ///         Point { x: x, y: y } => (),
229     ///     }
230     /// }
231     /// ```
232     ///
233     /// {{produces}}
234     ///
235     /// ### Explanation
236     ///
237     /// The preferred style is to avoid the repetition of specifying both the
238     /// field name and the binding name if both identifiers are the same.
239     NON_SHORTHAND_FIELD_PATTERNS,
240     Warn,
241     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
242 }
243
244 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
245
246 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
247     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
248         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
249             let variant = cx
250                 .typeck_results()
251                 .pat_ty(pat)
252                 .ty_adt_def()
253                 .expect("struct pattern type is not an ADT")
254                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
255             for fieldpat in field_pats {
256                 if fieldpat.is_shorthand {
257                     continue;
258                 }
259                 if fieldpat.span.from_expansion() {
260                     // Don't lint if this is a macro expansion: macro authors
261                     // shouldn't have to worry about this kind of style issue
262                     // (Issue #49588)
263                     continue;
264                 }
265                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
266                     if cx.tcx.find_field_index(ident, &variant)
267                         == Some(cx.typeck_results().field_index(fieldpat.hir_id))
268                     {
269                         cx.emit_spanned_lint(
270                             NON_SHORTHAND_FIELD_PATTERNS,
271                             fieldpat.span,
272                             BuiltinNonShorthandFieldPatterns {
273                                 ident,
274                                 suggestion: fieldpat.span,
275                                 prefix: binding_annot.prefix_str(),
276                             },
277                         );
278                     }
279                 }
280             }
281         }
282     }
283 }
284
285 declare_lint! {
286     /// The `unsafe_code` lint catches usage of `unsafe` code.
287     ///
288     /// ### Example
289     ///
290     /// ```rust,compile_fail
291     /// #![deny(unsafe_code)]
292     /// fn main() {
293     ///     unsafe {
294     ///
295     ///     }
296     /// }
297     /// ```
298     ///
299     /// {{produces}}
300     ///
301     /// ### Explanation
302     ///
303     /// This lint is intended to restrict the usage of `unsafe`, which can be
304     /// difficult to use correctly.
305     UNSAFE_CODE,
306     Allow,
307     "usage of `unsafe` code"
308 }
309
310 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
311
312 impl UnsafeCode {
313     fn report_unsafe(
314         &self,
315         cx: &EarlyContext<'_>,
316         span: Span,
317         decorate: impl for<'a> DecorateLint<'a, ()>,
318     ) {
319         // This comes from a macro that has `#[allow_internal_unsafe]`.
320         if span.allows_unsafe() {
321             return;
322         }
323
324         cx.emit_spanned_lint(UNSAFE_CODE, span, decorate);
325     }
326 }
327
328 impl EarlyLintPass for UnsafeCode {
329     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
330         if attr.has_name(sym::allow_internal_unsafe) {
331             self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe);
332         }
333     }
334
335     #[inline]
336     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
337         if let ast::ExprKind::Block(ref blk, _) = e.kind {
338             // Don't warn about generated blocks; that'll just pollute the output.
339             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
340                 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
341             }
342         }
343     }
344
345     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
346         match it.kind {
347             ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => {
348                 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
349             }
350
351             ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => {
352                 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
353             }
354
355             ast::ItemKind::Fn(..) => {
356                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
357                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
358                 }
359
360                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
361                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
362                 }
363
364                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
365                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
366                 }
367             }
368
369             ast::ItemKind::Static(..) => {
370                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
371                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
372                 }
373
374                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
375                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
376                 }
377
378                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
379                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
380                 }
381             }
382
383             _ => {}
384         }
385     }
386
387     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
388         if let ast::AssocItemKind::Fn(..) = it.kind {
389             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
390                 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
391             }
392             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
393                 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
394             }
395         }
396     }
397
398     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
399         if let FnKind::Fn(
400             ctxt,
401             _,
402             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
403             _,
404             _,
405             body,
406         ) = fk
407         {
408             let decorator = match ctxt {
409                 FnCtxt::Foreign => return,
410                 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
411                 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
412                 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
413             };
414             self.report_unsafe(cx, span, decorator);
415         }
416     }
417 }
418
419 declare_lint! {
420     /// The `missing_docs` lint detects missing documentation for public items.
421     ///
422     /// ### Example
423     ///
424     /// ```rust,compile_fail
425     /// #![deny(missing_docs)]
426     /// pub fn foo() {}
427     /// ```
428     ///
429     /// {{produces}}
430     ///
431     /// ### Explanation
432     ///
433     /// This lint is intended to ensure that a library is well-documented.
434     /// Items without documentation can be difficult for users to understand
435     /// how to use properly.
436     ///
437     /// This lint is "allow" by default because it can be noisy, and not all
438     /// projects may want to enforce everything to be documented.
439     pub MISSING_DOCS,
440     Allow,
441     "detects missing documentation for public members",
442     report_in_external_macro
443 }
444
445 pub struct MissingDoc {
446     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
447     doc_hidden_stack: Vec<bool>,
448 }
449
450 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
451
452 fn has_doc(attr: &ast::Attribute) -> bool {
453     if attr.is_doc_comment() {
454         return true;
455     }
456
457     if !attr.has_name(sym::doc) {
458         return false;
459     }
460
461     if attr.value_str().is_some() {
462         return true;
463     }
464
465     if let Some(list) = attr.meta_item_list() {
466         for meta in list {
467             if meta.has_name(sym::hidden) {
468                 return true;
469             }
470         }
471     }
472
473     false
474 }
475
476 impl MissingDoc {
477     pub fn new() -> MissingDoc {
478         MissingDoc { doc_hidden_stack: vec![false] }
479     }
480
481     fn doc_hidden(&self) -> bool {
482         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
483     }
484
485     fn check_missing_docs_attrs(
486         &self,
487         cx: &LateContext<'_>,
488         def_id: LocalDefId,
489         article: &'static str,
490         desc: &'static str,
491     ) {
492         // If we're building a test harness, then warning about
493         // documentation is probably not really relevant right now.
494         if cx.sess().opts.test {
495             return;
496         }
497
498         // `#[doc(hidden)]` disables missing_docs check.
499         if self.doc_hidden() {
500             return;
501         }
502
503         // Only check publicly-visible items, using the result from the privacy pass.
504         // It's an option so the crate root can also use this function (it doesn't
505         // have a `NodeId`).
506         if def_id != CRATE_DEF_ID {
507             if !cx.effective_visibilities.is_exported(def_id) {
508                 return;
509             }
510         }
511
512         let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
513         let has_doc = attrs.iter().any(has_doc);
514         if !has_doc {
515             cx.emit_spanned_lint(
516                 MISSING_DOCS,
517                 cx.tcx.def_span(def_id),
518                 BuiltinMissingDoc { article, desc },
519             );
520         }
521     }
522 }
523
524 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
525     #[inline]
526     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
527         let doc_hidden = self.doc_hidden()
528             || attrs.iter().any(|attr| {
529                 attr.has_name(sym::doc)
530                     && match attr.meta_item_list() {
531                         None => false,
532                         Some(l) => attr::list_contains_name(&l, sym::hidden),
533                     }
534             });
535         self.doc_hidden_stack.push(doc_hidden);
536     }
537
538     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
539         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
540     }
541
542     fn check_crate(&mut self, cx: &LateContext<'_>) {
543         self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
544     }
545
546     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
547         match it.kind {
548             hir::ItemKind::Trait(..) => {
549                 // Issue #11592: traits are always considered exported, even when private.
550                 if cx.tcx.visibility(it.owner_id)
551                     == ty::Visibility::Restricted(
552                         cx.tcx.parent_module_from_def_id(it.owner_id.def_id).to_def_id(),
553                     )
554                 {
555                     return;
556                 }
557             }
558             hir::ItemKind::TyAlias(..)
559             | hir::ItemKind::Fn(..)
560             | hir::ItemKind::Macro(..)
561             | hir::ItemKind::Mod(..)
562             | hir::ItemKind::Enum(..)
563             | hir::ItemKind::Struct(..)
564             | hir::ItemKind::Union(..)
565             | hir::ItemKind::Const(..)
566             | hir::ItemKind::Static(..) => {}
567
568             _ => return,
569         };
570
571         let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
572
573         self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
574     }
575
576     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
577         let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
578
579         self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
580     }
581
582     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
583         // If the method is an impl for a trait, don't doc.
584         let context = method_context(cx, impl_item.owner_id.def_id);
585         if context == MethodLateContext::TraitImpl {
586             return;
587         }
588
589         // If the method is an impl for an item with docs_hidden, don't doc.
590         if context == MethodLateContext::PlainImpl {
591             let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
592             let impl_ty = cx.tcx.type_of(parent);
593             let outerdef = match impl_ty.kind() {
594                 ty::Adt(def, _) => Some(def.did()),
595                 ty::Foreign(def_id) => Some(*def_id),
596                 _ => None,
597             };
598             let is_hidden = match outerdef {
599                 Some(id) => cx.tcx.is_doc_hidden(id),
600                 None => false,
601             };
602             if is_hidden {
603                 return;
604             }
605         }
606
607         let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
608         self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
609     }
610
611     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
612         let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
613         self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
614     }
615
616     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
617         if !sf.is_positional() {
618             self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
619         }
620     }
621
622     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
623         self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
624     }
625 }
626
627 declare_lint! {
628     /// The `missing_copy_implementations` lint detects potentially-forgotten
629     /// implementations of [`Copy`].
630     ///
631     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
632     ///
633     /// ### Example
634     ///
635     /// ```rust,compile_fail
636     /// #![deny(missing_copy_implementations)]
637     /// pub struct Foo {
638     ///     pub field: i32
639     /// }
640     /// # fn main() {}
641     /// ```
642     ///
643     /// {{produces}}
644     ///
645     /// ### Explanation
646     ///
647     /// Historically (before 1.0), types were automatically marked as `Copy`
648     /// if possible. This was changed so that it required an explicit opt-in
649     /// by implementing the `Copy` trait. As part of this change, a lint was
650     /// added to alert if a copyable type was not marked `Copy`.
651     ///
652     /// This lint is "allow" by default because this code isn't bad; it is
653     /// common to write newtypes like this specifically so that a `Copy` type
654     /// is no longer `Copy`. `Copy` types can result in unintended copies of
655     /// large data which can impact performance.
656     pub MISSING_COPY_IMPLEMENTATIONS,
657     Allow,
658     "detects potentially-forgotten implementations of `Copy`"
659 }
660
661 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
662
663 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
664     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
665         if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
666             return;
667         }
668         let (def, ty) = match item.kind {
669             hir::ItemKind::Struct(_, ref ast_generics) => {
670                 if !ast_generics.params.is_empty() {
671                     return;
672                 }
673                 let def = cx.tcx.adt_def(item.owner_id);
674                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
675             }
676             hir::ItemKind::Union(_, ref ast_generics) => {
677                 if !ast_generics.params.is_empty() {
678                     return;
679                 }
680                 let def = cx.tcx.adt_def(item.owner_id);
681                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
682             }
683             hir::ItemKind::Enum(_, ref ast_generics) => {
684                 if !ast_generics.params.is_empty() {
685                     return;
686                 }
687                 let def = cx.tcx.adt_def(item.owner_id);
688                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
689             }
690             _ => return,
691         };
692         if def.has_dtor(cx.tcx) {
693             return;
694         }
695
696         // If the type contains a raw pointer, it may represent something like a handle,
697         // and recommending Copy might be a bad idea.
698         for field in def.all_fields() {
699             let did = field.did;
700             if cx.tcx.type_of(did).is_unsafe_ptr() {
701                 return;
702             }
703         }
704         let param_env = ty::ParamEnv::empty();
705         if ty.is_copy_modulo_regions(cx.tcx, param_env) {
706             return;
707         }
708
709         // We shouldn't recommend implementing `Copy` on stateful things,
710         // such as iterators.
711         if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
712             && cx.tcx
713                 .infer_ctxt()
714                 .build()
715                 .type_implements_trait(iter_trait, [ty], param_env)
716                 .must_apply_modulo_regions()
717         {
718             return;
719         }
720
721         // Default value of clippy::trivially_copy_pass_by_ref
722         const MAX_SIZE: u64 = 256;
723
724         if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
725             if size > MAX_SIZE {
726                 return;
727             }
728         }
729
730         if type_allowed_to_implement_copy(
731             cx.tcx,
732             param_env,
733             ty,
734             traits::ObligationCause::misc(item.span, item.owner_id.def_id),
735         )
736         .is_ok()
737         {
738             cx.emit_spanned_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
739         }
740     }
741 }
742
743 declare_lint! {
744     /// The `missing_debug_implementations` lint detects missing
745     /// implementations of [`fmt::Debug`].
746     ///
747     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
748     ///
749     /// ### Example
750     ///
751     /// ```rust,compile_fail
752     /// #![deny(missing_debug_implementations)]
753     /// pub struct Foo;
754     /// # fn main() {}
755     /// ```
756     ///
757     /// {{produces}}
758     ///
759     /// ### Explanation
760     ///
761     /// Having a `Debug` implementation on all types can assist with
762     /// debugging, as it provides a convenient way to format and display a
763     /// value. Using the `#[derive(Debug)]` attribute will automatically
764     /// generate a typical implementation, or a custom implementation can be
765     /// added by manually implementing the `Debug` trait.
766     ///
767     /// This lint is "allow" by default because adding `Debug` to all types can
768     /// have a negative impact on compile time and code size. It also requires
769     /// boilerplate to be added to every type, which can be an impediment.
770     MISSING_DEBUG_IMPLEMENTATIONS,
771     Allow,
772     "detects missing implementations of Debug"
773 }
774
775 #[derive(Default)]
776 pub struct MissingDebugImplementations {
777     impling_types: Option<LocalDefIdSet>,
778 }
779
780 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
781
782 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
783     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
784         if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
785             return;
786         }
787
788         match item.kind {
789             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
790             _ => return,
791         }
792
793         let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
794             return
795         };
796
797         if self.impling_types.is_none() {
798             let mut impls = LocalDefIdSet::default();
799             cx.tcx.for_each_impl(debug, |d| {
800                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
801                     if let Some(def_id) = ty_def.did().as_local() {
802                         impls.insert(def_id);
803                     }
804                 }
805             });
806
807             self.impling_types = Some(impls);
808             debug!("{:?}", self.impling_types);
809         }
810
811         if !self.impling_types.as_ref().unwrap().contains(&item.owner_id.def_id) {
812             cx.emit_spanned_lint(
813                 MISSING_DEBUG_IMPLEMENTATIONS,
814                 item.span,
815                 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
816             );
817         }
818     }
819 }
820
821 declare_lint! {
822     /// The `anonymous_parameters` lint detects anonymous parameters in trait
823     /// definitions.
824     ///
825     /// ### Example
826     ///
827     /// ```rust,edition2015,compile_fail
828     /// #![deny(anonymous_parameters)]
829     /// // edition 2015
830     /// pub trait Foo {
831     ///     fn foo(usize);
832     /// }
833     /// fn main() {}
834     /// ```
835     ///
836     /// {{produces}}
837     ///
838     /// ### Explanation
839     ///
840     /// This syntax is mostly a historical accident, and can be worked around
841     /// quite easily by adding an `_` pattern or a descriptive identifier:
842     ///
843     /// ```rust
844     /// trait Foo {
845     ///     fn foo(_: usize);
846     /// }
847     /// ```
848     ///
849     /// This syntax is now a hard error in the 2018 edition. In the 2015
850     /// edition, this lint is "warn" by default. This lint
851     /// enables the [`cargo fix`] tool with the `--edition` flag to
852     /// automatically transition old code from the 2015 edition to 2018. The
853     /// tool will run this lint and automatically apply the
854     /// suggested fix from the compiler (which is to add `_` to each
855     /// parameter). This provides a completely automated way to update old
856     /// code for a new edition. See [issue #41686] for more details.
857     ///
858     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
859     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
860     pub ANONYMOUS_PARAMETERS,
861     Warn,
862     "detects anonymous parameters",
863     @future_incompatible = FutureIncompatibleInfo {
864         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
865         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
866     };
867 }
868
869 declare_lint_pass!(
870     /// Checks for use of anonymous parameters (RFC 1685).
871     AnonymousParameters => [ANONYMOUS_PARAMETERS]
872 );
873
874 impl EarlyLintPass for AnonymousParameters {
875     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
876         if cx.sess().edition() != Edition::Edition2015 {
877             // This is a hard error in future editions; avoid linting and erroring
878             return;
879         }
880         if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
881             for arg in sig.decl.inputs.iter() {
882                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
883                     if ident.name == kw::Empty {
884                         let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
885
886                         let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
887                             (snip.as_str(), Applicability::MachineApplicable)
888                         } else {
889                             ("<type>", Applicability::HasPlaceholders)
890                         };
891                         cx.emit_spanned_lint(
892                             ANONYMOUS_PARAMETERS,
893                             arg.pat.span,
894                             BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
895                         );
896                     }
897                 }
898             }
899         }
900     }
901 }
902
903 /// Check for use of attributes which have been deprecated.
904 #[derive(Clone)]
905 pub struct DeprecatedAttr {
906     // This is not free to compute, so we want to keep it around, rather than
907     // compute it for every attribute.
908     depr_attrs: Vec<&'static BuiltinAttribute>,
909 }
910
911 impl_lint_pass!(DeprecatedAttr => []);
912
913 impl DeprecatedAttr {
914     pub fn new() -> DeprecatedAttr {
915         DeprecatedAttr { depr_attrs: deprecated_attributes() }
916     }
917 }
918
919 impl EarlyLintPass for DeprecatedAttr {
920     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
921         for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
922             if attr.ident().map(|ident| ident.name) == Some(*name) {
923                 if let &AttributeGate::Gated(
924                     Stability::Deprecated(link, suggestion),
925                     name,
926                     reason,
927                     _,
928                 ) = gate
929                 {
930                     let suggestion = match suggestion {
931                         Some(msg) => {
932                             BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg }
933                         }
934                         None => {
935                             BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span }
936                         }
937                     };
938                     cx.emit_spanned_lint(
939                         DEPRECATED,
940                         attr.span,
941                         BuiltinDeprecatedAttrLink { name, reason, link, suggestion },
942                     );
943                 }
944                 return;
945             }
946         }
947         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
948             cx.emit_spanned_lint(
949                 DEPRECATED,
950                 attr.span,
951                 BuiltinDeprecatedAttrUsed {
952                     name: pprust::path_to_string(&attr.get_normal_item().path),
953                     suggestion: attr.span,
954                 },
955             );
956         }
957     }
958 }
959
960 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
961     use rustc_ast::token::CommentKind;
962
963     let mut attrs = attrs.iter().peekable();
964
965     // Accumulate a single span for sugared doc comments.
966     let mut sugared_span: Option<Span> = None;
967
968     while let Some(attr) = attrs.next() {
969         let is_doc_comment = attr.is_doc_comment();
970         if is_doc_comment {
971             sugared_span =
972                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
973         }
974
975         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
976             continue;
977         }
978
979         let span = sugared_span.take().unwrap_or(attr.span);
980
981         if is_doc_comment || attr.has_name(sym::doc) {
982             let sub = match attr.kind {
983                 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
984                     BuiltinUnusedDocCommentSub::PlainHelp
985                 }
986                 AttrKind::DocComment(CommentKind::Block, _) => {
987                     BuiltinUnusedDocCommentSub::BlockHelp
988                 }
989             };
990             cx.emit_spanned_lint(
991                 UNUSED_DOC_COMMENTS,
992                 span,
993                 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
994             );
995         }
996     }
997 }
998
999 impl EarlyLintPass for UnusedDocComment {
1000     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1001         let kind = match stmt.kind {
1002             ast::StmtKind::Local(..) => "statements",
1003             // Disabled pending discussion in #78306
1004             ast::StmtKind::Item(..) => return,
1005             // expressions will be reported by `check_expr`.
1006             ast::StmtKind::Empty
1007             | ast::StmtKind::Semi(_)
1008             | ast::StmtKind::Expr(_)
1009             | ast::StmtKind::MacCall(_) => return,
1010         };
1011
1012         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1013     }
1014
1015     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1016         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1017         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1018     }
1019
1020     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1021         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1022     }
1023
1024     fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1025         warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1026     }
1027
1028     fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
1029         warn_if_doc(cx, block.span, "blocks", &block.attrs());
1030     }
1031
1032     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1033         if let ast::ItemKind::ForeignMod(_) = item.kind {
1034             warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
1035         }
1036     }
1037 }
1038
1039 declare_lint! {
1040     /// The `no_mangle_const_items` lint detects any `const` items with the
1041     /// [`no_mangle` attribute].
1042     ///
1043     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1044     ///
1045     /// ### Example
1046     ///
1047     /// ```rust,compile_fail
1048     /// #[no_mangle]
1049     /// const FOO: i32 = 5;
1050     /// ```
1051     ///
1052     /// {{produces}}
1053     ///
1054     /// ### Explanation
1055     ///
1056     /// Constants do not have their symbols exported, and therefore, this
1057     /// probably means you meant to use a [`static`], not a [`const`].
1058     ///
1059     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1060     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1061     NO_MANGLE_CONST_ITEMS,
1062     Deny,
1063     "const items will not have their symbols exported"
1064 }
1065
1066 declare_lint! {
1067     /// The `no_mangle_generic_items` lint detects generic items that must be
1068     /// mangled.
1069     ///
1070     /// ### Example
1071     ///
1072     /// ```rust
1073     /// #[no_mangle]
1074     /// fn foo<T>(t: T) {
1075     ///
1076     /// }
1077     /// ```
1078     ///
1079     /// {{produces}}
1080     ///
1081     /// ### Explanation
1082     ///
1083     /// A function with generics must have its symbol mangled to accommodate
1084     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1085     /// this situation, and should be removed.
1086     ///
1087     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1088     NO_MANGLE_GENERIC_ITEMS,
1089     Warn,
1090     "generic items must be mangled"
1091 }
1092
1093 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1094
1095 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1096     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1097         let attrs = cx.tcx.hir().attrs(it.hir_id());
1098         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1099                                              impl_generics: Option<&hir::Generics<'_>>,
1100                                              generics: &hir::Generics<'_>,
1101                                              span| {
1102             for param in
1103                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1104             {
1105                 match param.kind {
1106                     GenericParamKind::Lifetime { .. } => {}
1107                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1108                         cx.emit_spanned_lint(
1109                             NO_MANGLE_GENERIC_ITEMS,
1110                             span,
1111                             BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span },
1112                         );
1113                         break;
1114                     }
1115                 }
1116             }
1117         };
1118         match it.kind {
1119             hir::ItemKind::Fn(.., ref generics, _) => {
1120                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1121                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1122                 }
1123             }
1124             hir::ItemKind::Const(..) => {
1125                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1126                     // account for "pub const" (#45562)
1127                     let start = cx
1128                         .tcx
1129                         .sess
1130                         .source_map()
1131                         .span_to_snippet(it.span)
1132                         .map(|snippet| snippet.find("const").unwrap_or(0))
1133                         .unwrap_or(0) as u32;
1134                     // `const` is 5 chars
1135                     let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1136
1137                     // Const items do not refer to a particular location in memory, and therefore
1138                     // don't have anything to attach a symbol to
1139                     cx.emit_spanned_lint(
1140                         NO_MANGLE_CONST_ITEMS,
1141                         it.span,
1142                         BuiltinConstNoMangle { suggestion },
1143                     );
1144                 }
1145             }
1146             hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1147                 for it in *items {
1148                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1149                         if let Some(no_mangle_attr) = cx
1150                             .sess()
1151                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1152                         {
1153                             check_no_mangle_on_generic_fn(
1154                                 no_mangle_attr,
1155                                 Some(generics),
1156                                 cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(),
1157                                 it.span,
1158                             );
1159                         }
1160                     }
1161                 }
1162             }
1163             _ => {}
1164         }
1165     }
1166 }
1167
1168 declare_lint! {
1169     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1170     /// T` because it is [undefined behavior].
1171     ///
1172     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1173     ///
1174     /// ### Example
1175     ///
1176     /// ```rust,compile_fail
1177     /// unsafe {
1178     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1179     /// }
1180     /// ```
1181     ///
1182     /// {{produces}}
1183     ///
1184     /// ### Explanation
1185     ///
1186     /// Certain assumptions are made about aliasing of data, and this transmute
1187     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1188     ///
1189     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1190     MUTABLE_TRANSMUTES,
1191     Deny,
1192     "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1193 }
1194
1195 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1196
1197 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1198     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1199         if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1200             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1201         {
1202             if from_mutbl < to_mutbl {
1203                 cx.emit_spanned_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1204             }
1205         }
1206
1207         fn get_transmute_from_to<'tcx>(
1208             cx: &LateContext<'tcx>,
1209             expr: &hir::Expr<'_>,
1210         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1211             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1212                 cx.qpath_res(qpath, expr.hir_id)
1213             } else {
1214                 return None;
1215             };
1216             if let Res::Def(DefKind::Fn, did) = def {
1217                 if !def_id_is_transmute(cx, did) {
1218                     return None;
1219                 }
1220                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1221                 let from = sig.inputs().skip_binder()[0];
1222                 let to = sig.output().skip_binder();
1223                 return Some((from, to));
1224             }
1225             None
1226         }
1227
1228         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1229             cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
1230         }
1231     }
1232 }
1233
1234 declare_lint! {
1235     /// The `unstable_features` is deprecated and should no longer be used.
1236     UNSTABLE_FEATURES,
1237     Allow,
1238     "enabling unstable features (deprecated. do not use)"
1239 }
1240
1241 declare_lint_pass!(
1242     /// Forbids using the `#[feature(...)]` attribute
1243     UnstableFeatures => [UNSTABLE_FEATURES]
1244 );
1245
1246 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1247     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1248         if attr.has_name(sym::feature) {
1249             if let Some(items) = attr.meta_item_list() {
1250                 for item in items {
1251                     cx.emit_spanned_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1252                 }
1253             }
1254         }
1255     }
1256 }
1257
1258 declare_lint! {
1259     /// The `ungated_async_fn_track_caller` lint warns when the
1260     /// `#[track_caller]` attribute is used on an async function, method, or
1261     /// closure, without enabling the corresponding unstable feature flag.
1262     ///
1263     /// ### Example
1264     ///
1265     /// ```rust
1266     /// #[track_caller]
1267     /// async fn foo() {}
1268     /// ```
1269     ///
1270     /// {{produces}}
1271     ///
1272     /// ### Explanation
1273     ///
1274     /// The attribute must be used in conjunction with the
1275     /// [`closure_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1276     /// annotation will function as a no-op.
1277     ///
1278     /// [`closure_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/closure-track-caller.html
1279     UNGATED_ASYNC_FN_TRACK_CALLER,
1280     Warn,
1281     "enabling track_caller on an async fn is a no-op unless the closure_track_caller feature is enabled"
1282 }
1283
1284 declare_lint_pass!(
1285     /// Explains corresponding feature flag must be enabled for the `#[track_caller] attribute to
1286     /// do anything
1287     UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1288 );
1289
1290 impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1291     fn check_fn(
1292         &mut self,
1293         cx: &LateContext<'_>,
1294         fn_kind: HirFnKind<'_>,
1295         _: &'tcx FnDecl<'_>,
1296         _: &'tcx Body<'_>,
1297         span: Span,
1298         def_id: LocalDefId,
1299     ) {
1300         if fn_kind.asyncness() == IsAsync::Async
1301             && !cx.tcx.features().closure_track_caller
1302             // Now, check if the function has the `#[track_caller]` attribute
1303             && let Some(attr) = cx.tcx.get_attr(def_id.to_def_id(), sym::track_caller)
1304         {
1305             cx.emit_spanned_lint(UNGATED_ASYNC_FN_TRACK_CALLER, attr.span, BuiltinUngatedAsyncFnTrackCaller {
1306                 label: span,
1307                 parse_sess: &cx.tcx.sess.parse_sess,
1308             });
1309         }
1310     }
1311 }
1312
1313 declare_lint! {
1314     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1315     /// the crate root.
1316     ///
1317     /// ### Example
1318     ///
1319     /// ```rust,compile_fail
1320     /// #![deny(unreachable_pub)]
1321     /// mod foo {
1322     ///     pub mod bar {
1323     ///
1324     ///     }
1325     /// }
1326     /// ```
1327     ///
1328     /// {{produces}}
1329     ///
1330     /// ### Explanation
1331     ///
1332     /// A bare `pub` visibility may be misleading if the item is not actually
1333     /// publicly exported from the crate. The `pub(crate)` visibility is
1334     /// recommended to be used instead, which more clearly expresses the intent
1335     /// that the item is only visible within its own crate.
1336     ///
1337     /// This lint is "allow" by default because it will trigger for a large
1338     /// amount existing Rust code, and has some false-positives. Eventually it
1339     /// is desired for this to become warn-by-default.
1340     pub UNREACHABLE_PUB,
1341     Allow,
1342     "`pub` items not reachable from crate root"
1343 }
1344
1345 declare_lint_pass!(
1346     /// Lint for items marked `pub` that aren't reachable from other crates.
1347     UnreachablePub => [UNREACHABLE_PUB]
1348 );
1349
1350 impl UnreachablePub {
1351     fn perform_lint(
1352         &self,
1353         cx: &LateContext<'_>,
1354         what: &str,
1355         def_id: LocalDefId,
1356         vis_span: Span,
1357         exportable: bool,
1358     ) {
1359         let mut applicability = Applicability::MachineApplicable;
1360         if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1361         {
1362             if vis_span.from_expansion() {
1363                 applicability = Applicability::MaybeIncorrect;
1364             }
1365             let def_span = cx.tcx.def_span(def_id);
1366             cx.emit_spanned_lint(
1367                 UNREACHABLE_PUB,
1368                 def_span,
1369                 BuiltinUnreachablePub {
1370                     what,
1371                     suggestion: (vis_span, applicability),
1372                     help: exportable.then_some(()),
1373                 },
1374             );
1375         }
1376     }
1377 }
1378
1379 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1380     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1381         // Do not warn for fake `use` statements.
1382         if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1383             return;
1384         }
1385         self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1386     }
1387
1388     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1389         self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1390     }
1391
1392     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1393         let map = cx.tcx.hir();
1394         if matches!(map.get_parent(field.hir_id), Node::Variant(_)) {
1395             return;
1396         }
1397         self.perform_lint(cx, "field", field.def_id, field.vis_span, false);
1398     }
1399
1400     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1401         // Only lint inherent impl items.
1402         if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1403             self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
1404         }
1405     }
1406 }
1407
1408 declare_lint! {
1409     /// The `type_alias_bounds` lint detects bounds in type aliases.
1410     ///
1411     /// ### Example
1412     ///
1413     /// ```rust
1414     /// type SendVec<T: Send> = Vec<T>;
1415     /// ```
1416     ///
1417     /// {{produces}}
1418     ///
1419     /// ### Explanation
1420     ///
1421     /// The trait bounds in a type alias are currently ignored, and should not
1422     /// be included to avoid confusion. This was previously allowed
1423     /// unintentionally; this may become a hard error in the future.
1424     TYPE_ALIAS_BOUNDS,
1425     Warn,
1426     "bounds in type aliases are not enforced"
1427 }
1428
1429 declare_lint_pass!(
1430     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1431     /// They are relevant when using associated types, but otherwise neither checked
1432     /// at definition site nor enforced at use site.
1433     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1434 );
1435
1436 impl TypeAliasBounds {
1437     pub(crate) fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1438         match *qpath {
1439             hir::QPath::TypeRelative(ref ty, _) => {
1440                 // If this is a type variable, we found a `T::Assoc`.
1441                 match ty.kind {
1442                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1443                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1444                     }
1445                     _ => false,
1446                 }
1447             }
1448             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1449         }
1450     }
1451 }
1452
1453 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1454     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1455         let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1456             return
1457         };
1458         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1459             // Bounds are respected for `type X = impl Trait`
1460             return;
1461         }
1462         // There must not be a where clause
1463         if type_alias_generics.predicates.is_empty() {
1464             return;
1465         }
1466
1467         let mut where_spans = Vec::new();
1468         let mut inline_spans = Vec::new();
1469         let mut inline_sugg = Vec::new();
1470         for p in type_alias_generics.predicates {
1471             let span = p.span();
1472             if p.in_where_clause() {
1473                 where_spans.push(span);
1474             } else {
1475                 for b in p.bounds() {
1476                     inline_spans.push(b.span());
1477                 }
1478                 inline_sugg.push((span, String::new()));
1479             }
1480         }
1481
1482         let mut suggested_changing_assoc_types = false;
1483         if !where_spans.is_empty() {
1484             let sub = (!suggested_changing_assoc_types).then(|| {
1485                 suggested_changing_assoc_types = true;
1486                 SuggestChangingAssocTypes { ty }
1487             });
1488             cx.emit_spanned_lint(
1489                 TYPE_ALIAS_BOUNDS,
1490                 where_spans,
1491                 BuiltinTypeAliasWhereClause {
1492                     suggestion: type_alias_generics.where_clause_span,
1493                     sub,
1494                 },
1495             );
1496         }
1497
1498         if !inline_spans.is_empty() {
1499             let suggestion = BuiltinTypeAliasGenericBoundsSuggestion { suggestions: inline_sugg };
1500             let sub = (!suggested_changing_assoc_types).then(|| {
1501                 suggested_changing_assoc_types = true;
1502                 SuggestChangingAssocTypes { ty }
1503             });
1504             cx.emit_spanned_lint(
1505                 TYPE_ALIAS_BOUNDS,
1506                 inline_spans,
1507                 BuiltinTypeAliasGenericBounds { suggestion, sub },
1508             );
1509         }
1510     }
1511 }
1512
1513 declare_lint_pass!(
1514     /// Lint constants that are erroneous.
1515     /// Without this lint, we might not get any diagnostic if the constant is
1516     /// unused within this crate, even though downstream crates can't use it
1517     /// without producing an error.
1518     UnusedBrokenConst => []
1519 );
1520
1521 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1522     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1523         match it.kind {
1524             hir::ItemKind::Const(_, body_id) => {
1525                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1526                 // trigger the query once for all constants since that will already report the errors
1527                 cx.tcx.ensure().const_eval_poly(def_id);
1528             }
1529             hir::ItemKind::Static(_, _, body_id) => {
1530                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1531                 cx.tcx.ensure().eval_static_initializer(def_id);
1532             }
1533             _ => {}
1534         }
1535     }
1536 }
1537
1538 declare_lint! {
1539     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1540     /// any type parameters.
1541     ///
1542     /// ### Example
1543     ///
1544     /// ```rust
1545     /// #![feature(trivial_bounds)]
1546     /// pub struct A where i32: Copy;
1547     /// ```
1548     ///
1549     /// {{produces}}
1550     ///
1551     /// ### Explanation
1552     ///
1553     /// Usually you would not write a trait bound that you know is always
1554     /// true, or never true. However, when using macros, the macro may not
1555     /// know whether or not the constraint would hold or not at the time when
1556     /// generating the code. Currently, the compiler does not alert you if the
1557     /// constraint is always true, and generates an error if it is never true.
1558     /// The `trivial_bounds` feature changes this to be a warning in both
1559     /// cases, giving macros more freedom and flexibility to generate code,
1560     /// while still providing a signal when writing non-macro code that
1561     /// something is amiss.
1562     ///
1563     /// See [RFC 2056] for more details. This feature is currently only
1564     /// available on the nightly channel, see [tracking issue #48214].
1565     ///
1566     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1567     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1568     TRIVIAL_BOUNDS,
1569     Warn,
1570     "these bounds don't depend on an type parameters"
1571 }
1572
1573 declare_lint_pass!(
1574     /// Lint for trait and lifetime bounds that don't depend on type parameters
1575     /// which either do nothing, or stop the item from being used.
1576     TrivialConstraints => [TRIVIAL_BOUNDS]
1577 );
1578
1579 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1580     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1581         use rustc_middle::ty::visit::TypeVisitable;
1582         use rustc_middle::ty::Clause;
1583         use rustc_middle::ty::PredicateKind::*;
1584
1585         if cx.tcx.features().trivial_bounds {
1586             let predicates = cx.tcx.predicates_of(item.owner_id);
1587             for &(predicate, span) in predicates.predicates {
1588                 let predicate_kind_name = match predicate.kind().skip_binder() {
1589                     Clause(Clause::Trait(..)) => "trait",
1590                     Clause(Clause::TypeOutlives(..)) |
1591                     Clause(Clause::RegionOutlives(..)) => "lifetime",
1592
1593                     // Ignore projections, as they can only be global
1594                     // if the trait bound is global
1595                     Clause(Clause::Projection(..)) |
1596                     // Ignore bounds that a user can't type
1597                     WellFormed(..) |
1598                     ObjectSafe(..) |
1599                     ClosureKind(..) |
1600                     Subtype(..) |
1601                     Coerce(..) |
1602                     ConstEvaluatable(..) |
1603                     ConstEquate(..) |
1604                     Ambiguous |
1605                     TypeWellFormedFromEnv(..) => continue,
1606                 };
1607                 if predicate.is_global() {
1608                     cx.emit_spanned_lint(
1609                         TRIVIAL_BOUNDS,
1610                         span,
1611                         BuiltinTrivialBounds { predicate_kind_name, predicate },
1612                     );
1613                 }
1614             }
1615         }
1616     }
1617 }
1618
1619 declare_lint_pass!(
1620     /// Does nothing as a lint pass, but registers some `Lint`s
1621     /// which are used by other parts of the compiler.
1622     SoftLints => [
1623         WHILE_TRUE,
1624         BOX_POINTERS,
1625         NON_SHORTHAND_FIELD_PATTERNS,
1626         UNSAFE_CODE,
1627         MISSING_DOCS,
1628         MISSING_COPY_IMPLEMENTATIONS,
1629         MISSING_DEBUG_IMPLEMENTATIONS,
1630         ANONYMOUS_PARAMETERS,
1631         UNUSED_DOC_COMMENTS,
1632         NO_MANGLE_CONST_ITEMS,
1633         NO_MANGLE_GENERIC_ITEMS,
1634         MUTABLE_TRANSMUTES,
1635         UNSTABLE_FEATURES,
1636         UNREACHABLE_PUB,
1637         TYPE_ALIAS_BOUNDS,
1638         TRIVIAL_BOUNDS
1639     ]
1640 );
1641
1642 declare_lint! {
1643     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1644     /// pattern], which is deprecated.
1645     ///
1646     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1647     ///
1648     /// ### Example
1649     ///
1650     /// ```rust,edition2018
1651     /// let x = 123;
1652     /// match x {
1653     ///     0...100 => {}
1654     ///     _ => {}
1655     /// }
1656     /// ```
1657     ///
1658     /// {{produces}}
1659     ///
1660     /// ### Explanation
1661     ///
1662     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1663     /// confusion with the [`..` range expression]. Use the new form instead.
1664     ///
1665     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1666     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1667     Warn,
1668     "`...` range patterns are deprecated",
1669     @future_incompatible = FutureIncompatibleInfo {
1670         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1671         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1672     };
1673 }
1674
1675 #[derive(Default)]
1676 pub struct EllipsisInclusiveRangePatterns {
1677     /// If `Some(_)`, suppress all subsequent pattern
1678     /// warnings for better diagnostics.
1679     node_id: Option<ast::NodeId>,
1680 }
1681
1682 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1683
1684 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1685     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1686         if self.node_id.is_some() {
1687             // Don't recursively warn about patterns inside range endpoints.
1688             return;
1689         }
1690
1691         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1692
1693         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1694         /// corresponding to the ellipsis.
1695         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1696             match &pat.kind {
1697                 PatKind::Range(
1698                     a,
1699                     Some(b),
1700                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1701                 ) => Some((a.as_deref(), b, *span)),
1702                 _ => None,
1703             }
1704         }
1705
1706         let (parenthesise, endpoints) = match &pat.kind {
1707             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1708             _ => (false, matches_ellipsis_pat(pat)),
1709         };
1710
1711         if let Some((start, end, join)) = endpoints {
1712             if parenthesise {
1713                 self.node_id = Some(pat.id);
1714                 let end = expr_to_string(&end);
1715                 let replace = match start {
1716                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1717                     None => format!("&(..={})", end),
1718                 };
1719                 if join.edition() >= Edition::Edition2021 {
1720                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1721                         span: pat.span,
1722                         suggestion: pat.span,
1723                         replace,
1724                     });
1725                 } else {
1726                     cx.emit_spanned_lint(
1727                         ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1728                         pat.span,
1729                         BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1730                             suggestion: pat.span,
1731                             replace,
1732                         },
1733                     );
1734                 }
1735             } else {
1736                 let replace = "..=";
1737                 if join.edition() >= Edition::Edition2021 {
1738                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1739                         span: pat.span,
1740                         suggestion: join,
1741                         replace: replace.to_string(),
1742                     });
1743                 } else {
1744                     cx.emit_spanned_lint(
1745                         ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1746                         join,
1747                         BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1748                             suggestion: join,
1749                         },
1750                     );
1751                 }
1752             };
1753         }
1754     }
1755
1756     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1757         if let Some(node_id) = self.node_id {
1758             if pat.id == node_id {
1759                 self.node_id = None
1760             }
1761         }
1762     }
1763 }
1764
1765 declare_lint! {
1766     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1767     /// that are not able to be run by the test harness because they are in a
1768     /// position where they are not nameable.
1769     ///
1770     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1771     ///
1772     /// ### Example
1773     ///
1774     /// ```rust,test
1775     /// fn main() {
1776     ///     #[test]
1777     ///     fn foo() {
1778     ///         // This test will not fail because it does not run.
1779     ///         assert_eq!(1, 2);
1780     ///     }
1781     /// }
1782     /// ```
1783     ///
1784     /// {{produces}}
1785     ///
1786     /// ### Explanation
1787     ///
1788     /// In order for the test harness to run a test, the test function must be
1789     /// located in a position where it can be accessed from the crate root.
1790     /// This generally means it must be defined in a module, and not anywhere
1791     /// else such as inside another function. The compiler previously allowed
1792     /// this without an error, so a lint was added as an alert that a test is
1793     /// not being used. Whether or not this should be allowed has not yet been
1794     /// decided, see [RFC 2471] and [issue #36629].
1795     ///
1796     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1797     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1798     UNNAMEABLE_TEST_ITEMS,
1799     Warn,
1800     "detects an item that cannot be named being marked as `#[test_case]`",
1801     report_in_external_macro
1802 }
1803
1804 pub struct UnnameableTestItems {
1805     boundary: Option<hir::OwnerId>, // Id of the item under which things are not nameable
1806     items_nameable: bool,
1807 }
1808
1809 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1810
1811 impl UnnameableTestItems {
1812     pub fn new() -> Self {
1813         Self { boundary: None, items_nameable: true }
1814     }
1815 }
1816
1817 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1818     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1819         if self.items_nameable {
1820             if let hir::ItemKind::Mod(..) = it.kind {
1821             } else {
1822                 self.items_nameable = false;
1823                 self.boundary = Some(it.owner_id);
1824             }
1825             return;
1826         }
1827
1828         let attrs = cx.tcx.hir().attrs(it.hir_id());
1829         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1830             cx.emit_spanned_lint(UNNAMEABLE_TEST_ITEMS, attr.span, BuiltinUnnameableTestItems);
1831         }
1832     }
1833
1834     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1835         if !self.items_nameable && self.boundary == Some(it.owner_id) {
1836             self.items_nameable = true;
1837         }
1838     }
1839 }
1840
1841 declare_lint! {
1842     /// The `keyword_idents` lint detects edition keywords being used as an
1843     /// identifier.
1844     ///
1845     /// ### Example
1846     ///
1847     /// ```rust,edition2015,compile_fail
1848     /// #![deny(keyword_idents)]
1849     /// // edition 2015
1850     /// fn dyn() {}
1851     /// ```
1852     ///
1853     /// {{produces}}
1854     ///
1855     /// ### Explanation
1856     ///
1857     /// Rust [editions] allow the language to evolve without breaking
1858     /// backwards compatibility. This lint catches code that uses new keywords
1859     /// that are added to the language that are used as identifiers (such as a
1860     /// variable name, function name, etc.). If you switch the compiler to a
1861     /// new edition without updating the code, then it will fail to compile if
1862     /// you are using a new keyword as an identifier.
1863     ///
1864     /// You can manually change the identifiers to a non-keyword, or use a
1865     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1866     ///
1867     /// This lint solves the problem automatically. It is "allow" by default
1868     /// because the code is perfectly valid in older editions. The [`cargo
1869     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1870     /// and automatically apply the suggested fix from the compiler (which is
1871     /// to use a raw identifier). This provides a completely automated way to
1872     /// update old code for a new edition.
1873     ///
1874     /// [editions]: https://doc.rust-lang.org/edition-guide/
1875     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1876     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1877     pub KEYWORD_IDENTS,
1878     Allow,
1879     "detects edition keywords being used as an identifier",
1880     @future_incompatible = FutureIncompatibleInfo {
1881         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1882         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1883     };
1884 }
1885
1886 declare_lint_pass!(
1887     /// Check for uses of edition keywords used as an identifier.
1888     KeywordIdents => [KEYWORD_IDENTS]
1889 );
1890
1891 struct UnderMacro(bool);
1892
1893 impl KeywordIdents {
1894     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1895         for tt in tokens.into_trees() {
1896             match tt {
1897                 // Only report non-raw idents.
1898                 TokenTree::Token(token, _) => {
1899                     if let Some((ident, false)) = token.ident() {
1900                         self.check_ident_token(cx, UnderMacro(true), ident);
1901                     }
1902                 }
1903                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1904             }
1905         }
1906     }
1907
1908     fn check_ident_token(
1909         &mut self,
1910         cx: &EarlyContext<'_>,
1911         UnderMacro(under_macro): UnderMacro,
1912         ident: Ident,
1913     ) {
1914         let next_edition = match cx.sess().edition() {
1915             Edition::Edition2015 => {
1916                 match ident.name {
1917                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1918
1919                     // rust-lang/rust#56327: Conservatively do not
1920                     // attempt to report occurrences of `dyn` within
1921                     // macro definitions or invocations, because `dyn`
1922                     // can legitimately occur as a contextual keyword
1923                     // in 2015 code denoting its 2018 meaning, and we
1924                     // do not want rustfix to inject bugs into working
1925                     // code by rewriting such occurrences.
1926                     //
1927                     // But if we see `dyn` outside of a macro, we know
1928                     // its precise role in the parsed AST and thus are
1929                     // assured this is truly an attempt to use it as
1930                     // an identifier.
1931                     kw::Dyn if !under_macro => Edition::Edition2018,
1932
1933                     _ => return,
1934                 }
1935             }
1936
1937             // There are no new keywords yet for the 2018 edition and beyond.
1938             _ => return,
1939         };
1940
1941         // Don't lint `r#foo`.
1942         if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1943             return;
1944         }
1945
1946         cx.emit_spanned_lint(
1947             KEYWORD_IDENTS,
1948             ident.span,
1949             BuiltinKeywordIdents { kw: ident, next: next_edition, suggestion: ident.span },
1950         );
1951     }
1952 }
1953
1954 impl EarlyLintPass for KeywordIdents {
1955     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1956         self.check_tokens(cx, mac_def.body.tokens.clone());
1957     }
1958     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1959         self.check_tokens(cx, mac.args.tokens.clone());
1960     }
1961     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
1962         self.check_ident_token(cx, UnderMacro(false), ident);
1963     }
1964 }
1965
1966 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1967
1968 impl ExplicitOutlivesRequirements {
1969     fn lifetimes_outliving_lifetime<'tcx>(
1970         inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
1971         def_id: DefId,
1972     ) -> Vec<ty::Region<'tcx>> {
1973         inferred_outlives
1974             .iter()
1975             .filter_map(|(clause, _)| match *clause {
1976                 ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
1977                     ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
1978                     _ => None,
1979                 },
1980                 _ => None,
1981             })
1982             .collect()
1983     }
1984
1985     fn lifetimes_outliving_type<'tcx>(
1986         inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
1987         index: u32,
1988     ) -> Vec<ty::Region<'tcx>> {
1989         inferred_outlives
1990             .iter()
1991             .filter_map(|(clause, _)| match *clause {
1992                 ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1993                     a.is_param(index).then_some(b)
1994                 }
1995                 _ => None,
1996             })
1997             .collect()
1998     }
1999
2000     fn collect_outlives_bound_spans<'tcx>(
2001         &self,
2002         tcx: TyCtxt<'tcx>,
2003         bounds: &hir::GenericBounds<'_>,
2004         inferred_outlives: &[ty::Region<'tcx>],
2005         predicate_span: Span,
2006     ) -> Vec<(usize, Span)> {
2007         use rustc_middle::middle::resolve_lifetime::Region;
2008
2009         bounds
2010             .iter()
2011             .enumerate()
2012             .filter_map(|(i, bound)| {
2013                 let hir::GenericBound::Outlives(lifetime) = bound else {
2014                     return None;
2015                 };
2016
2017                 let is_inferred = match tcx.named_region(lifetime.hir_id) {
2018                     Some(Region::EarlyBound(def_id)) => inferred_outlives
2019                         .iter()
2020                         .any(|r| matches!(**r, ty::ReEarlyBound(ebr) if { ebr.def_id == def_id })),
2021                     _ => false,
2022                 };
2023
2024                 if !is_inferred {
2025                     return None;
2026                 }
2027
2028                 let span = bound.span().find_ancestor_inside(predicate_span)?;
2029                 if in_external_macro(tcx.sess, span) {
2030                     return None;
2031                 }
2032
2033                 Some((i, span))
2034             })
2035             .collect()
2036     }
2037
2038     fn consolidate_outlives_bound_spans(
2039         &self,
2040         lo: Span,
2041         bounds: &hir::GenericBounds<'_>,
2042         bound_spans: Vec<(usize, Span)>,
2043     ) -> Vec<Span> {
2044         if bounds.is_empty() {
2045             return Vec::new();
2046         }
2047         if bound_spans.len() == bounds.len() {
2048             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2049             // If all bounds are inferable, we want to delete the colon, so
2050             // start from just after the parameter (span passed as argument)
2051             vec![lo.to(last_bound_span)]
2052         } else {
2053             let mut merged = Vec::new();
2054             let mut last_merged_i = None;
2055
2056             let mut from_start = true;
2057             for (i, bound_span) in bound_spans {
2058                 match last_merged_i {
2059                     // If the first bound is inferable, our span should also eat the leading `+`.
2060                     None if i == 0 => {
2061                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2062                         last_merged_i = Some(0);
2063                     }
2064                     // If consecutive bounds are inferable, merge their spans
2065                     Some(h) if i == h + 1 => {
2066                         if let Some(tail) = merged.last_mut() {
2067                             // Also eat the trailing `+` if the first
2068                             // more-than-one bound is inferable
2069                             let to_span = if from_start && i < bounds.len() {
2070                                 bounds[i + 1].span().shrink_to_lo()
2071                             } else {
2072                                 bound_span
2073                             };
2074                             *tail = tail.to(to_span);
2075                             last_merged_i = Some(i);
2076                         } else {
2077                             bug!("another bound-span visited earlier");
2078                         }
2079                     }
2080                     _ => {
2081                         // When we find a non-inferable bound, subsequent inferable bounds
2082                         // won't be consecutive from the start (and we'll eat the leading
2083                         // `+` rather than the trailing one)
2084                         from_start = false;
2085                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2086                         last_merged_i = Some(i);
2087                     }
2088                 }
2089             }
2090             merged
2091         }
2092     }
2093 }
2094
2095 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2096     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2097         use rustc_middle::middle::resolve_lifetime::Region;
2098
2099         let def_id = item.owner_id.def_id;
2100         if let hir::ItemKind::Struct(_, hir_generics)
2101         | hir::ItemKind::Enum(_, hir_generics)
2102         | hir::ItemKind::Union(_, hir_generics) = item.kind
2103         {
2104             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2105             if inferred_outlives.is_empty() {
2106                 return;
2107             }
2108
2109             let ty_generics = cx.tcx.generics_of(def_id);
2110
2111             let mut bound_count = 0;
2112             let mut lint_spans = Vec::new();
2113             let mut where_lint_spans = Vec::new();
2114             let mut dropped_predicate_count = 0;
2115             let num_predicates = hir_generics.predicates.len();
2116             for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2117                 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2118                     match where_predicate {
2119                         hir::WherePredicate::RegionPredicate(predicate) => {
2120                             if let Some(Region::EarlyBound(region_def_id)) =
2121                                 cx.tcx.named_region(predicate.lifetime.hir_id)
2122                             {
2123                                 (
2124                                     Self::lifetimes_outliving_lifetime(
2125                                         inferred_outlives,
2126                                         region_def_id,
2127                                     ),
2128                                     &predicate.bounds,
2129                                     predicate.span,
2130                                     predicate.in_where_clause,
2131                                 )
2132                             } else {
2133                                 continue;
2134                             }
2135                         }
2136                         hir::WherePredicate::BoundPredicate(predicate) => {
2137                             // FIXME we can also infer bounds on associated types,
2138                             // and should check for them here.
2139                             match predicate.bounded_ty.kind {
2140                                 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2141                                     let Res::Def(DefKind::TyParam, def_id) = path.res else {
2142                                     continue;
2143                                 };
2144                                     let index = ty_generics.param_def_id_to_index[&def_id];
2145                                     (
2146                                         Self::lifetimes_outliving_type(inferred_outlives, index),
2147                                         &predicate.bounds,
2148                                         predicate.span,
2149                                         predicate.origin == PredicateOrigin::WhereClause,
2150                                     )
2151                                 }
2152                                 _ => {
2153                                     continue;
2154                                 }
2155                             }
2156                         }
2157                         _ => continue,
2158                     };
2159                 if relevant_lifetimes.is_empty() {
2160                     continue;
2161                 }
2162
2163                 let bound_spans = self.collect_outlives_bound_spans(
2164                     cx.tcx,
2165                     bounds,
2166                     &relevant_lifetimes,
2167                     predicate_span,
2168                 );
2169                 bound_count += bound_spans.len();
2170
2171                 let drop_predicate = bound_spans.len() == bounds.len();
2172                 if drop_predicate {
2173                     dropped_predicate_count += 1;
2174                 }
2175
2176                 if drop_predicate {
2177                     if !in_where_clause {
2178                         lint_spans.push(predicate_span);
2179                     } else if predicate_span.from_expansion() {
2180                         // Don't try to extend the span if it comes from a macro expansion.
2181                         where_lint_spans.push(predicate_span);
2182                     } else if i + 1 < num_predicates {
2183                         // If all the bounds on a predicate were inferable and there are
2184                         // further predicates, we want to eat the trailing comma.
2185                         let next_predicate_span = hir_generics.predicates[i + 1].span();
2186                         if next_predicate_span.from_expansion() {
2187                             where_lint_spans.push(predicate_span);
2188                         } else {
2189                             where_lint_spans
2190                                 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2191                         }
2192                     } else {
2193                         // Eat the optional trailing comma after the last predicate.
2194                         let where_span = hir_generics.where_clause_span;
2195                         if where_span.from_expansion() {
2196                             where_lint_spans.push(predicate_span);
2197                         } else {
2198                             where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2199                         }
2200                     }
2201                 } else {
2202                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2203                         predicate_span.shrink_to_lo(),
2204                         bounds,
2205                         bound_spans,
2206                     ));
2207                 }
2208             }
2209
2210             // If all predicates are inferable, drop the entire clause
2211             // (including the `where`)
2212             if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2213             {
2214                 let where_span = hir_generics.where_clause_span;
2215                 // Extend the where clause back to the closing `>` of the
2216                 // generics, except for tuple struct, which have the `where`
2217                 // after the fields of the struct.
2218                 let full_where_span =
2219                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2220                         where_span
2221                     } else {
2222                         hir_generics.span.shrink_to_hi().to(where_span)
2223                     };
2224
2225                 // Due to macro expansions, the `full_where_span` might not actually contain all predicates.
2226                 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2227                     lint_spans.push(full_where_span);
2228                 } else {
2229                     lint_spans.extend(where_lint_spans);
2230                 }
2231             } else {
2232                 lint_spans.extend(where_lint_spans);
2233             }
2234
2235             if !lint_spans.is_empty() {
2236                 // Do not automatically delete outlives requirements from macros.
2237                 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2238                 {
2239                     Applicability::MachineApplicable
2240                 } else {
2241                     Applicability::MaybeIncorrect
2242                 };
2243
2244                 // Due to macros, there might be several predicates with the same span
2245                 // and we only want to suggest removing them once.
2246                 lint_spans.sort_unstable();
2247                 lint_spans.dedup();
2248
2249                 cx.emit_spanned_lint(
2250                     EXPLICIT_OUTLIVES_REQUIREMENTS,
2251                     lint_spans.clone(),
2252                     BuiltinExplicitOutlives {
2253                         count: bound_count,
2254                         suggestion: BuiltinExplicitOutlivesSuggestion {
2255                             spans: lint_spans,
2256                             applicability,
2257                         },
2258                     },
2259                 );
2260             }
2261         }
2262     }
2263 }
2264
2265 declare_lint! {
2266     /// The `incomplete_features` lint detects unstable features enabled with
2267     /// the [`feature` attribute] that may function improperly in some or all
2268     /// cases.
2269     ///
2270     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2271     ///
2272     /// ### Example
2273     ///
2274     /// ```rust
2275     /// #![feature(generic_const_exprs)]
2276     /// ```
2277     ///
2278     /// {{produces}}
2279     ///
2280     /// ### Explanation
2281     ///
2282     /// Although it is encouraged for people to experiment with unstable
2283     /// features, some of them are known to be incomplete or faulty. This lint
2284     /// is a signal that the feature has not yet been finished, and you may
2285     /// experience problems with it.
2286     pub INCOMPLETE_FEATURES,
2287     Warn,
2288     "incomplete features that may function improperly in some or all cases"
2289 }
2290
2291 declare_lint_pass!(
2292     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2293     IncompleteFeatures => [INCOMPLETE_FEATURES]
2294 );
2295
2296 impl EarlyLintPass for IncompleteFeatures {
2297     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2298         let features = cx.sess().features_untracked();
2299         features
2300             .declared_lang_features
2301             .iter()
2302             .map(|(name, span, _)| (name, span))
2303             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2304             .filter(|(&name, _)| features.incomplete(name))
2305             .for_each(|(&name, &span)| {
2306                 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2307                     .map(|n| BuiltinIncompleteFeaturesNote { n });
2308                 let help = if HAS_MIN_FEATURES.contains(&name) {
2309                     Some(BuiltinIncompleteFeaturesHelp)
2310                 } else {
2311                     None
2312                 };
2313                 cx.emit_spanned_lint(
2314                     INCOMPLETE_FEATURES,
2315                     span,
2316                     BuiltinIncompleteFeatures { name, note, help },
2317                 );
2318             });
2319     }
2320 }
2321
2322 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2323
2324 declare_lint! {
2325     /// The `invalid_value` lint detects creating a value that is not valid,
2326     /// such as a null reference.
2327     ///
2328     /// ### Example
2329     ///
2330     /// ```rust,no_run
2331     /// # #![allow(unused)]
2332     /// unsafe {
2333     ///     let x: &'static i32 = std::mem::zeroed();
2334     /// }
2335     /// ```
2336     ///
2337     /// {{produces}}
2338     ///
2339     /// ### Explanation
2340     ///
2341     /// In some situations the compiler can detect that the code is creating
2342     /// an invalid value, which should be avoided.
2343     ///
2344     /// In particular, this lint will check for improper use of
2345     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2346     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2347     /// lint should provide extra information to indicate what the problem is
2348     /// and a possible solution.
2349     ///
2350     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2351     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2352     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2353     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2354     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2355     pub INVALID_VALUE,
2356     Warn,
2357     "an invalid value is being created (such as a null reference)"
2358 }
2359
2360 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2361
2362 /// Information about why a type cannot be initialized this way.
2363 pub struct InitError {
2364     pub(crate) message: String,
2365     /// Spans from struct fields and similar that can be obtained from just the type.
2366     pub(crate) span: Option<Span>,
2367     /// Used to report a trace through adts.
2368     pub(crate) nested: Option<Box<InitError>>,
2369 }
2370 impl InitError {
2371     fn spanned(self, span: Span) -> InitError {
2372         Self { span: Some(span), ..self }
2373     }
2374
2375     fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2376         assert!(self.nested.is_none());
2377         Self { nested: nested.into().map(Box::new), ..self }
2378     }
2379 }
2380
2381 impl<'a> From<&'a str> for InitError {
2382     fn from(s: &'a str) -> Self {
2383         s.to_owned().into()
2384     }
2385 }
2386 impl From<String> for InitError {
2387     fn from(message: String) -> Self {
2388         Self { message, span: None, nested: None }
2389     }
2390 }
2391
2392 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2393     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2394         #[derive(Debug, Copy, Clone, PartialEq)]
2395         enum InitKind {
2396             Zeroed,
2397             Uninit,
2398         }
2399
2400         /// Test if this constant is all-0.
2401         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2402             use hir::ExprKind::*;
2403             use rustc_ast::LitKind::*;
2404             match &expr.kind {
2405                 Lit(lit) => {
2406                     if let Int(i, _) = lit.node {
2407                         i == 0
2408                     } else {
2409                         false
2410                     }
2411                 }
2412                 Tup(tup) => tup.iter().all(is_zero),
2413                 _ => false,
2414             }
2415         }
2416
2417         /// Determine if this expression is a "dangerous initialization".
2418         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2419             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2420                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2421                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2422                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2423                     match cx.tcx.get_diagnostic_name(def_id) {
2424                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2425                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2426                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2427                         _ => {}
2428                     }
2429                 }
2430             } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2431                 // Find problematic calls to `MaybeUninit::assume_init`.
2432                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2433                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2434                     // This is a call to *some* method named `assume_init`.
2435                     // See if the `self` parameter is one of the dangerous constructors.
2436                     if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind {
2437                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2438                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2439                             match cx.tcx.get_diagnostic_name(def_id) {
2440                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2441                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2442                                 _ => {}
2443                             }
2444                         }
2445                     }
2446                 }
2447             }
2448
2449             None
2450         }
2451
2452         fn variant_find_init_error<'tcx>(
2453             cx: &LateContext<'tcx>,
2454             ty: Ty<'tcx>,
2455             variant: &VariantDef,
2456             substs: ty::SubstsRef<'tcx>,
2457             descr: &str,
2458             init: InitKind,
2459         ) -> Option<InitError> {
2460             let mut field_err = variant.fields.iter().find_map(|field| {
2461                 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|mut err| {
2462                     if !field.did.is_local() {
2463                         err
2464                     } else if err.span.is_none() {
2465                         err.span = Some(cx.tcx.def_span(field.did));
2466                         write!(&mut err.message, " (in this {descr})").unwrap();
2467                         err
2468                     } else {
2469                         InitError::from(format!("in this {descr}"))
2470                             .spanned(cx.tcx.def_span(field.did))
2471                             .nested(err)
2472                     }
2473                 })
2474             });
2475
2476             // Check if this ADT has a constrained layout (like `NonNull` and friends).
2477             if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)) {
2478                 if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &layout.abi {
2479                     let range = scalar.valid_range(cx);
2480                     let msg = if !range.contains(0) {
2481                         "must be non-null"
2482                     } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2483                         // Prefer reporting on the fields over the entire struct for uninit,
2484                         // as the information bubbles out and it may be unclear why the type can't
2485                         // be null from just its outside signature.
2486
2487                         "must be initialized inside its custom valid range"
2488                     } else {
2489                         return field_err;
2490                     };
2491                     if let Some(field_err) = &mut field_err {
2492                         // Most of the time, if the field error is the same as the struct error,
2493                         // the struct error only happens because of the field error.
2494                         if field_err.message.contains(msg) {
2495                             field_err.message = format!("because {}", field_err.message);
2496                         }
2497                     }
2498                     return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2499                 }
2500             }
2501             field_err
2502         }
2503
2504         /// Return `Some` only if we are sure this type does *not*
2505         /// allow zero initialization.
2506         fn ty_find_init_error<'tcx>(
2507             cx: &LateContext<'tcx>,
2508             ty: Ty<'tcx>,
2509             init: InitKind,
2510         ) -> Option<InitError> {
2511             use rustc_type_ir::sty::TyKind::*;
2512             match ty.kind() {
2513                 // Primitive types that don't like 0 as a value.
2514                 Ref(..) => Some("references must be non-null".into()),
2515                 Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2516                 FnPtr(..) => Some("function pointers must be non-null".into()),
2517                 Never => Some("the `!` type has no valid value".into()),
2518                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2519                 // raw ptr to dyn Trait
2520                 {
2521                     Some("the vtable of a wide raw pointer must be non-null".into())
2522                 }
2523                 // Primitive types with other constraints.
2524                 Bool if init == InitKind::Uninit => {
2525                     Some("booleans must be either `true` or `false`".into())
2526                 }
2527                 Char if init == InitKind::Uninit => {
2528                     Some("characters must be a valid Unicode codepoint".into())
2529                 }
2530                 Int(_) | Uint(_) if init == InitKind::Uninit => {
2531                     Some("integers must be initialized".into())
2532                 }
2533                 Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()),
2534                 RawPtr(_) if init == InitKind::Uninit => {
2535                     Some("raw pointers must be initialized".into())
2536                 }
2537                 // Recurse and checks for some compound types. (but not unions)
2538                 Adt(adt_def, substs) if !adt_def.is_union() => {
2539                     // Handle structs.
2540                     if adt_def.is_struct() {
2541                         return variant_find_init_error(
2542                             cx,
2543                             ty,
2544                             adt_def.non_enum_variant(),
2545                             substs,
2546                             "struct field",
2547                             init,
2548                         );
2549                     }
2550                     // And now, enums.
2551                     let span = cx.tcx.def_span(adt_def.did());
2552                     let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2553                         let definitely_inhabited = match variant
2554                             .inhabited_predicate(cx.tcx, *adt_def)
2555                             .subst(cx.tcx, substs)
2556                             .apply_any_module(cx.tcx, cx.param_env)
2557                         {
2558                             // Entirely skip uninhbaited variants.
2559                             Some(false) => return None,
2560                             // Forward the others, but remember which ones are definitely inhabited.
2561                             Some(true) => true,
2562                             None => false,
2563                         };
2564                         Some((variant, definitely_inhabited))
2565                     });
2566                     let Some(first_variant) = potential_variants.next() else {
2567                         return Some(InitError::from("enums with no inhabited variants have no valid value").spanned(span));
2568                     };
2569                     // So we have at least one potentially inhabited variant. Might we have two?
2570                     let Some(second_variant) = potential_variants.next() else {
2571                         // There is only one potentially inhabited variant. So we can recursively check that variant!
2572                         return variant_find_init_error(
2573                             cx,
2574                             ty,
2575                             &first_variant.0,
2576                             substs,
2577                             "field of the only potentially inhabited enum variant",
2578                             init,
2579                         );
2580                     };
2581                     // So we have at least two potentially inhabited variants.
2582                     // If we can prove that we have at least two *definitely* inhabited variants,
2583                     // then we have a tag and hence leaving this uninit is definitely disallowed.
2584                     // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.)
2585                     if init == InitKind::Uninit {
2586                         let definitely_inhabited = (first_variant.1 as usize)
2587                             + (second_variant.1 as usize)
2588                             + potential_variants
2589                                 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2590                                 .count();
2591                         if definitely_inhabited > 1 {
2592                             return Some(InitError::from(
2593                                 "enums with multiple inhabited variants have to be initialized to a variant",
2594                             ).spanned(span));
2595                         }
2596                     }
2597                     // We couldn't find anything wrong here.
2598                     None
2599                 }
2600                 Tuple(..) => {
2601                     // Proceed recursively, check all fields.
2602                     ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2603                 }
2604                 Array(ty, len) => {
2605                     if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
2606                         // Array length known at array non-empty -- recurse.
2607                         ty_find_init_error(cx, *ty, init)
2608                     } else {
2609                         // Empty array or size unknown.
2610                         None
2611                     }
2612                 }
2613                 // Conservative fallback.
2614                 _ => None,
2615             }
2616         }
2617
2618         if let Some(init) = is_dangerous_init(cx, expr) {
2619             // This conjures an instance of a type out of nothing,
2620             // using zeroed or uninitialized memory.
2621             // We are extremely conservative with what we warn about.
2622             let conjured_ty = cx.typeck_results().expr_ty(expr);
2623             if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2624                 let msg = match init {
2625                     InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2626                     InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_unint,
2627                 };
2628                 let sub = BuiltinUnpermittedTypeInitSub { err };
2629                 cx.emit_spanned_lint(
2630                     INVALID_VALUE,
2631                     expr.span,
2632                     BuiltinUnpermittedTypeInit { msg, ty: conjured_ty, label: expr.span, sub },
2633                 );
2634             }
2635         }
2636     }
2637 }
2638
2639 declare_lint! {
2640     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2641     /// has been declared with the same name but different types.
2642     ///
2643     /// ### Example
2644     ///
2645     /// ```rust
2646     /// mod m {
2647     ///     extern "C" {
2648     ///         fn foo();
2649     ///     }
2650     /// }
2651     ///
2652     /// extern "C" {
2653     ///     fn foo(_: u32);
2654     /// }
2655     /// ```
2656     ///
2657     /// {{produces}}
2658     ///
2659     /// ### Explanation
2660     ///
2661     /// Because two symbols of the same name cannot be resolved to two
2662     /// different functions at link time, and one function cannot possibly
2663     /// have two types, a clashing extern declaration is almost certainly a
2664     /// mistake. Check to make sure that the `extern` definitions are correct
2665     /// and equivalent, and possibly consider unifying them in one location.
2666     ///
2667     /// This lint does not run between crates because a project may have
2668     /// dependencies which both rely on the same extern function, but declare
2669     /// it in a different (but valid) way. For example, they may both declare
2670     /// an opaque type for one or more of the arguments (which would end up
2671     /// distinct types), or use types that are valid conversions in the
2672     /// language the `extern fn` is defined in. In these cases, the compiler
2673     /// can't say that the clashing declaration is incorrect.
2674     pub CLASHING_EXTERN_DECLARATIONS,
2675     Warn,
2676     "detects when an extern fn has been declared with the same name but different types"
2677 }
2678
2679 pub struct ClashingExternDeclarations {
2680     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2681     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2682     /// the symbol should be reported as a clashing declaration.
2683     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2684     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2685     seen_decls: FxHashMap<Symbol, hir::OwnerId>,
2686 }
2687
2688 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2689 /// just from declaration itself. This is important because we don't want to report clashes on
2690 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2691 /// different name.
2692 enum SymbolName {
2693     /// The name of the symbol + the span of the annotation which introduced the link name.
2694     Link(Symbol, Span),
2695     /// No link name, so just the name of the symbol.
2696     Normal(Symbol),
2697 }
2698
2699 impl SymbolName {
2700     fn get_name(&self) -> Symbol {
2701         match self {
2702             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2703         }
2704     }
2705 }
2706
2707 impl ClashingExternDeclarations {
2708     pub(crate) fn new() -> Self {
2709         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2710     }
2711
2712     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2713     /// for the item, return its HirId without updating the set.
2714     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<hir::OwnerId> {
2715         let did = fi.owner_id.to_def_id();
2716         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2717         let name = Symbol::intern(tcx.symbol_name(instance).name);
2718         if let Some(&existing_id) = self.seen_decls.get(&name) {
2719             // Avoid updating the map with the new entry when we do find a collision. We want to
2720             // make sure we're always pointing to the first definition as the previous declaration.
2721             // This lets us avoid emitting "knock-on" diagnostics.
2722             Some(existing_id)
2723         } else {
2724             self.seen_decls.insert(name, fi.owner_id)
2725         }
2726     }
2727
2728     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2729     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2730     /// symbol's name.
2731     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2732         if let Some((overridden_link_name, overridden_link_name_span)) =
2733             tcx.codegen_fn_attrs(fi.owner_id).link_name.map(|overridden_link_name| {
2734                 // FIXME: Instead of searching through the attributes again to get span
2735                 // information, we could have codegen_fn_attrs also give span information back for
2736                 // where the attribute was defined. However, until this is found to be a
2737                 // bottleneck, this does just fine.
2738                 (
2739                     overridden_link_name,
2740                     tcx.get_attr(fi.owner_id.to_def_id(), sym::link_name).unwrap().span,
2741                 )
2742             })
2743         {
2744             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2745         } else {
2746             SymbolName::Normal(fi.ident.name)
2747         }
2748     }
2749
2750     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2751     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2752     /// with the same members (as the declarations shouldn't clash).
2753     fn structurally_same_type<'tcx>(
2754         cx: &LateContext<'tcx>,
2755         a: Ty<'tcx>,
2756         b: Ty<'tcx>,
2757         ckind: CItemKind,
2758     ) -> bool {
2759         fn structurally_same_type_impl<'tcx>(
2760             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2761             cx: &LateContext<'tcx>,
2762             a: Ty<'tcx>,
2763             b: Ty<'tcx>,
2764             ckind: CItemKind,
2765         ) -> bool {
2766             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2767             let tcx = cx.tcx;
2768
2769             // Given a transparent newtype, reach through and grab the inner
2770             // type unless the newtype makes the type non-null.
2771             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2772                 let mut ty = ty;
2773                 loop {
2774                     if let ty::Adt(def, substs) = *ty.kind() {
2775                         let is_transparent = def.repr().transparent();
2776                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
2777                         debug!(
2778                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2779                             ty, is_transparent, is_non_null
2780                         );
2781                         if is_transparent && !is_non_null {
2782                             debug_assert!(def.variants().len() == 1);
2783                             let v = &def.variant(VariantIdx::new(0));
2784                             ty = transparent_newtype_field(tcx, v)
2785                                 .expect(
2786                                     "single-variant transparent structure with zero-sized field",
2787                                 )
2788                                 .ty(tcx, substs);
2789                             continue;
2790                         }
2791                     }
2792                     debug!("non_transparent_ty -> {:?}", ty);
2793                     return ty;
2794                 }
2795             };
2796
2797             let a = non_transparent_ty(a);
2798             let b = non_transparent_ty(b);
2799
2800             if !seen_types.insert((a, b)) {
2801                 // We've encountered a cycle. There's no point going any further -- the types are
2802                 // structurally the same.
2803                 return true;
2804             }
2805             let tcx = cx.tcx;
2806             if a == b {
2807                 // All nominally-same types are structurally same, too.
2808                 true
2809             } else {
2810                 // Do a full, depth-first comparison between the two.
2811                 use rustc_type_ir::sty::TyKind::*;
2812                 let a_kind = a.kind();
2813                 let b_kind = b.kind();
2814
2815                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2816                     debug!("compare_layouts({:?}, {:?})", a, b);
2817                     let a_layout = &cx.layout_of(a)?.layout.abi();
2818                     let b_layout = &cx.layout_of(b)?.layout.abi();
2819                     debug!(
2820                         "comparing layouts: {:?} == {:?} = {}",
2821                         a_layout,
2822                         b_layout,
2823                         a_layout == b_layout
2824                     );
2825                     Ok(a_layout == b_layout)
2826                 };
2827
2828                 #[allow(rustc::usage_of_ty_tykind)]
2829                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2830                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2831                 };
2832
2833                 ensure_sufficient_stack(|| {
2834                     match (a_kind, b_kind) {
2835                         (Adt(a_def, _), Adt(b_def, _)) => {
2836                             // We can immediately rule out these types as structurally same if
2837                             // their layouts differ.
2838                             match compare_layouts(a, b) {
2839                                 Ok(false) => return false,
2840                                 _ => (), // otherwise, continue onto the full, fields comparison
2841                             }
2842
2843                             // Grab a flattened representation of all fields.
2844                             let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2845                             let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
2846
2847                             // Perform a structural comparison for each field.
2848                             a_fields.eq_by(
2849                                 b_fields,
2850                                 |&ty::FieldDef { did: a_did, .. },
2851                                  &ty::FieldDef { did: b_did, .. }| {
2852                                     structurally_same_type_impl(
2853                                         seen_types,
2854                                         cx,
2855                                         tcx.type_of(a_did),
2856                                         tcx.type_of(b_did),
2857                                         ckind,
2858                                     )
2859                                 },
2860                             )
2861                         }
2862                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2863                             // For arrays, we also check the constness of the type.
2864                             a_const.kind() == b_const.kind()
2865                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2866                         }
2867                         (Slice(a_ty), Slice(b_ty)) => {
2868                             structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2869                         }
2870                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2871                             a_tymut.mutbl == b_tymut.mutbl
2872                                 && structurally_same_type_impl(
2873                                     seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
2874                                 )
2875                         }
2876                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2877                             // For structural sameness, we don't need the region to be same.
2878                             a_mut == b_mut
2879                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2880                         }
2881                         (FnDef(..), FnDef(..)) => {
2882                             let a_poly_sig = a.fn_sig(tcx);
2883                             let b_poly_sig = b.fn_sig(tcx);
2884
2885                             // We don't compare regions, but leaving bound regions around ICEs, so
2886                             // we erase them.
2887                             let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2888                             let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
2889
2890                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2891                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2892                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2893                                     structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
2894                                 })
2895                                 && structurally_same_type_impl(
2896                                     seen_types,
2897                                     cx,
2898                                     a_sig.output(),
2899                                     b_sig.output(),
2900                                     ckind,
2901                                 )
2902                         }
2903                         (Tuple(a_substs), Tuple(b_substs)) => {
2904                             a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
2905                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2906                             })
2907                         }
2908                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2909                         // For the purposes of this lint, take the conservative approach and mark them as
2910                         // not structurally same.
2911                         (Dynamic(..), Dynamic(..))
2912                         | (Error(..), Error(..))
2913                         | (Closure(..), Closure(..))
2914                         | (Generator(..), Generator(..))
2915                         | (GeneratorWitness(..), GeneratorWitness(..))
2916                         | (Alias(ty::Projection, ..), Alias(ty::Projection, ..))
2917                         | (Alias(ty::Opaque, ..), Alias(ty::Opaque, ..)) => false,
2918
2919                         // These definitely should have been caught above.
2920                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2921
2922                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2923                         // enum layout optimisation is being applied.
2924                         (Adt(..), other_kind) | (other_kind, Adt(..))
2925                             if is_primitive_or_pointer(other_kind) =>
2926                         {
2927                             let (primitive, adt) =
2928                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2929                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2930                                 ty == primitive
2931                             } else {
2932                                 compare_layouts(a, b).unwrap_or(false)
2933                             }
2934                         }
2935                         // Otherwise, just compare the layouts. This may fail to lint for some
2936                         // incompatible types, but at the very least, will stop reads into
2937                         // uninitialised memory.
2938                         _ => compare_layouts(a, b).unwrap_or(false),
2939                     }
2940                 })
2941             }
2942         }
2943         let mut seen_types = FxHashSet::default();
2944         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2945     }
2946 }
2947
2948 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2949
2950 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2951     #[instrument(level = "trace", skip(self, cx))]
2952     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2953         if let ForeignItemKind::Fn(..) = this_fi.kind {
2954             let tcx = cx.tcx;
2955             if let Some(existing_did) = self.insert(tcx, this_fi) {
2956                 let existing_decl_ty = tcx.type_of(existing_did);
2957                 let this_decl_ty = tcx.type_of(this_fi.owner_id);
2958                 debug!(
2959                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2960                     existing_did, existing_decl_ty, this_fi.owner_id, this_decl_ty
2961                 );
2962                 // Check that the declarations match.
2963                 if !Self::structurally_same_type(
2964                     cx,
2965                     existing_decl_ty,
2966                     this_decl_ty,
2967                     CItemKind::Declaration,
2968                 ) {
2969                     let orig_fi = tcx.hir().expect_foreign_item(existing_did);
2970                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2971
2972                     // We want to ensure that we use spans for both decls that include where the
2973                     // name was defined, whether that was from the link_name attribute or not.
2974                     let get_relevant_span =
2975                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2976                             SymbolName::Normal(_) => fi.span,
2977                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2978                         };
2979
2980                     // Finally, emit the diagnostic.
2981                     let this = this_fi.ident.name;
2982                     let orig = orig.get_name();
2983                     let previous_decl_label = get_relevant_span(orig_fi);
2984                     let mismatch_label = get_relevant_span(this_fi);
2985                     let sub = BuiltinClashingExternSub {
2986                         tcx,
2987                         expected: existing_decl_ty,
2988                         found: this_decl_ty,
2989                     };
2990                     let decorator = if orig == this {
2991                         BuiltinClashingExtern::SameName {
2992                             this,
2993                             orig,
2994                             previous_decl_label,
2995                             mismatch_label,
2996                             sub,
2997                         }
2998                     } else {
2999                         BuiltinClashingExtern::DiffName {
3000                             this,
3001                             orig,
3002                             previous_decl_label,
3003                             mismatch_label,
3004                             sub,
3005                         }
3006                     };
3007                     tcx.emit_spanned_lint(
3008                         CLASHING_EXTERN_DECLARATIONS,
3009                         this_fi.hir_id(),
3010                         get_relevant_span(this_fi),
3011                         decorator,
3012                     );
3013                 }
3014             }
3015         }
3016     }
3017 }
3018
3019 declare_lint! {
3020     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3021     /// which causes [undefined behavior].
3022     ///
3023     /// ### Example
3024     ///
3025     /// ```rust,no_run
3026     /// # #![allow(unused)]
3027     /// use std::ptr;
3028     /// unsafe {
3029     ///     let x = &*ptr::null::<i32>();
3030     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3031     ///     let x = *(0 as *const i32);
3032     /// }
3033     /// ```
3034     ///
3035     /// {{produces}}
3036     ///
3037     /// ### Explanation
3038     ///
3039     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3040     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3041     ///
3042     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3043     pub DEREF_NULLPTR,
3044     Warn,
3045     "detects when an null pointer is dereferenced"
3046 }
3047
3048 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3049
3050 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3051     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3052         /// test if expression is a null ptr
3053         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3054             match &expr.kind {
3055                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3056                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3057                         return is_zero(expr) || is_null_ptr(cx, expr);
3058                     }
3059                 }
3060                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3061                 rustc_hir::ExprKind::Call(ref path, _) => {
3062                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3063                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3064                             return matches!(
3065                                 cx.tcx.get_diagnostic_name(def_id),
3066                                 Some(sym::ptr_null | sym::ptr_null_mut)
3067                             );
3068                         }
3069                     }
3070                 }
3071                 _ => {}
3072             }
3073             false
3074         }
3075
3076         /// test if expression is the literal `0`
3077         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3078             match &expr.kind {
3079                 rustc_hir::ExprKind::Lit(ref lit) => {
3080                     if let LitKind::Int(a, _) = lit.node {
3081                         return a == 0;
3082                     }
3083                 }
3084                 _ => {}
3085             }
3086             false
3087         }
3088
3089         if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3090             if is_null_ptr(cx, expr_deref) {
3091                 cx.emit_spanned_lint(
3092                     DEREF_NULLPTR,
3093                     expr.span,
3094                     BuiltinDerefNullptr { label: expr.span },
3095                 );
3096             }
3097         }
3098     }
3099 }
3100
3101 declare_lint! {
3102     /// The `named_asm_labels` lint detects the use of named labels in the
3103     /// inline `asm!` macro.
3104     ///
3105     /// ### Example
3106     ///
3107     /// ```rust,compile_fail
3108     /// # #![feature(asm_experimental_arch)]
3109     /// use std::arch::asm;
3110     ///
3111     /// fn main() {
3112     ///     unsafe {
3113     ///         asm!("foo: bar");
3114     ///     }
3115     /// }
3116     /// ```
3117     ///
3118     /// {{produces}}
3119     ///
3120     /// ### Explanation
3121     ///
3122     /// LLVM is allowed to duplicate inline assembly blocks for any
3123     /// reason, for example when it is in a function that gets inlined. Because
3124     /// of this, GNU assembler [local labels] *must* be used instead of labels
3125     /// with a name. Using named labels might cause assembler or linker errors.
3126     ///
3127     /// See the explanation in [Rust By Example] for more details.
3128     ///
3129     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3130     /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
3131     pub NAMED_ASM_LABELS,
3132     Deny,
3133     "named labels in inline assembly",
3134 }
3135
3136 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3137
3138 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3139     #[allow(rustc::diagnostic_outside_of_impl)]
3140     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3141         if let hir::Expr {
3142             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3143             ..
3144         } = expr
3145         {
3146             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3147                 let template_str = template_sym.as_str();
3148                 let find_label_span = |needle: &str| -> Option<Span> {
3149                     if let Some(template_snippet) = template_snippet {
3150                         let snippet = template_snippet.as_str();
3151                         if let Some(pos) = snippet.find(needle) {
3152                             let end = pos
3153                                 + snippet[pos..]
3154                                     .find(|c| c == ':')
3155                                     .unwrap_or(snippet[pos..].len() - 1);
3156                             let inner = InnerSpan::new(pos, end);
3157                             return Some(template_span.from_inner(inner));
3158                         }
3159                     }
3160
3161                     None
3162                 };
3163
3164                 let mut found_labels = Vec::new();
3165
3166                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3167                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3168                 for statement in statements {
3169                     // If there's a comment, trim it from the statement
3170                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3171                     let mut start_idx = 0;
3172                     for (idx, _) in statement.match_indices(':') {
3173                         let possible_label = statement[start_idx..idx].trim();
3174                         let mut chars = possible_label.chars();
3175                         let Some(c) = chars.next() else {
3176                             // Empty string means a leading ':' in this section, which is not a label
3177                             break
3178                         };
3179                         // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3180                         if (c.is_alphabetic() || matches!(c, '.' | '_'))
3181                             && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3182                         {
3183                             found_labels.push(possible_label);
3184                         } else {
3185                             // If we encounter a non-label, there cannot be any further labels, so stop checking
3186                             break;
3187                         }
3188
3189                         start_idx = idx + 1;
3190                     }
3191                 }
3192
3193                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3194
3195                 if found_labels.len() > 0 {
3196                     let spans = found_labels
3197                         .into_iter()
3198                         .filter_map(|label| find_label_span(label))
3199                         .collect::<Vec<Span>>();
3200                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3201                     let target_spans: MultiSpan =
3202                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3203
3204                     cx.lookup_with_diagnostics(
3205                             NAMED_ASM_LABELS,
3206                             Some(target_spans),
3207                             fluent::lint_builtin_asm_labels,
3208                             |lint| lint,
3209                             BuiltinLintDiagnostics::NamedAsmLabel(
3210                                 "only local labels of the form `<number>:` should be used in inline asm"
3211                                     .to_string(),
3212                             ),
3213                         );
3214                 }
3215             }
3216         }
3217     }
3218 }
3219
3220 declare_lint! {
3221     /// The `special_module_name` lint detects module
3222     /// declarations for files that have a special meaning.
3223     ///
3224     /// ### Example
3225     ///
3226     /// ```rust,compile_fail
3227     /// mod lib;
3228     ///
3229     /// fn main() {
3230     ///     lib::run();
3231     /// }
3232     /// ```
3233     ///
3234     /// {{produces}}
3235     ///
3236     /// ### Explanation
3237     ///
3238     /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3239     /// library or binary crate, so declaring them as modules
3240     /// will lead to miscompilation of the crate unless configured
3241     /// explicitly.
3242     ///
3243     /// To access a library from a binary target within the same crate,
3244     /// use `your_crate_name::` as the path instead of `lib::`:
3245     ///
3246     /// ```rust,compile_fail
3247     /// // bar/src/lib.rs
3248     /// fn run() {
3249     ///     // ...
3250     /// }
3251     ///
3252     /// // bar/src/main.rs
3253     /// fn main() {
3254     ///     bar::run();
3255     /// }
3256     /// ```
3257     ///
3258     /// Binary targets cannot be used as libraries and so declaring
3259     /// one as a module is not allowed.
3260     pub SPECIAL_MODULE_NAME,
3261     Warn,
3262     "module declarations for files with a special meaning",
3263 }
3264
3265 declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3266
3267 impl EarlyLintPass for SpecialModuleName {
3268     fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3269         for item in &krate.items {
3270             if let ast::ItemKind::Mod(
3271                 _,
3272                 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _),
3273             ) = item.kind
3274             {
3275                 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3276                     continue;
3277                 }
3278
3279                 match item.ident.name.as_str() {
3280                     "lib" => cx.emit_spanned_lint(
3281                         SPECIAL_MODULE_NAME,
3282                         item.span,
3283                         BuiltinSpecialModuleNameUsed::Lib,
3284                     ),
3285                     "main" => cx.emit_spanned_lint(
3286                         SPECIAL_MODULE_NAME,
3287                         item.span,
3288                         BuiltinSpecialModuleNameUsed::Main,
3289                     ),
3290                     _ => continue,
3291                 }
3292             }
3293         }
3294     }
3295 }
3296
3297 pub use rustc_session::lint::builtin::UNEXPECTED_CFGS;
3298
3299 declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]);
3300
3301 impl EarlyLintPass for UnexpectedCfgs {
3302     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
3303         let cfg = &cx.sess().parse_sess.config;
3304         let check_cfg = &cx.sess().parse_sess.check_config;
3305         for &(name, value) in cfg {
3306             if let Some(names_valid) = &check_cfg.names_valid && !names_valid.contains(&name){
3307                 cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigName {
3308                     name,
3309                 });
3310             }
3311             if let Some(value) = value && let Some(values) = check_cfg.values_valid.get(&name) && !values.contains(&value) {
3312                 cx.emit_lint(
3313                     UNEXPECTED_CFGS,
3314                     BuiltinUnexpectedCliConfigValue { name, value },
3315                 );
3316             }
3317         }
3318     }
3319 }