]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Rollup merge of #86755 - ojeda:shrink, r=Mark-Simulacrum
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 // ignore-tidy-filelength
2
3 //! Lints in the Rust compiler.
4 //!
5 //! This contains lints which can feasibly be implemented as their own
6 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
7 //! definitions of lints that are emitted directly inside the main compiler.
8 //!
9 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
10 //! Then add code to emit the new lint in the appropriate circumstances.
11 //! You can do that in an existing `LintPass` if it makes sense, or in a
12 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
13 //! compiler. Only do the latter if the check can't be written cleanly as a
14 //! `LintPass` (also, note that such lints will need to be defined in
15 //! `rustc_session::lint::builtin`, not here).
16 //!
17 //! If you define a new `EarlyLintPass`, you will also need to add it to the
18 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
19 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
20 //! with a `pub fn new()`.
21 //!
22 //! If you define a new `LateLintPass`, you will also need to add it to the
23 //! `late_lint_methods!` invocation in `lib.rs`.
24
25 use crate::{
26     types::{transparent_newtype_field, CItemKind},
27     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
28 };
29 use rustc_ast::attr;
30 use rustc_ast::tokenstream::{TokenStream, TokenTree};
31 use rustc_ast::visit::{FnCtxt, FnKind};
32 use rustc_ast::{self as ast, *};
33 use rustc_ast_pretty::pprust::{self, expr_to_string};
34 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
35 use rustc_data_structures::stack::ensure_sufficient_stack;
36 use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
37 use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType};
38 use rustc_feature::{GateIssue, Stability};
39 use rustc_hir as hir;
40 use rustc_hir::def::{DefKind, Res};
41 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet};
42 use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind};
43 use rustc_hir::{HirId, Node};
44 use rustc_index::vec::Idx;
45 use rustc_middle::lint::LintDiagnosticBuilder;
46 use rustc_middle::ty::print::with_no_trimmed_paths;
47 use rustc_middle::ty::subst::{GenericArgKind, Subst};
48 use rustc_middle::ty::Instance;
49 use rustc_middle::ty::{self, layout::LayoutError, Ty, TyCtxt};
50 use rustc_session::lint::FutureIncompatibilityReason;
51 use rustc_session::Session;
52 use rustc_span::edition::Edition;
53 use rustc_span::source_map::Spanned;
54 use rustc_span::symbol::{kw, sym, Ident, Symbol};
55 use rustc_span::{BytePos, Span};
56 use rustc_target::abi::{LayoutOf, VariantIdx};
57 use rustc_trait_selection::traits::misc::can_type_implement_copy;
58
59 use crate::nonstandard_style::{method_context, MethodLateContext};
60
61 use std::fmt::Write;
62 use tracing::{debug, trace};
63
64 // hardwired lints from librustc_middle
65 pub use rustc_session::lint::builtin::*;
66
67 declare_lint! {
68     /// The `while_true` lint detects `while true { }`.
69     ///
70     /// ### Example
71     ///
72     /// ```rust,no_run
73     /// while true {
74     ///
75     /// }
76     /// ```
77     ///
78     /// {{produces}}
79     ///
80     /// ### Explanation
81     ///
82     /// `while true` should be replaced with `loop`. A `loop` expression is
83     /// the preferred way to write an infinite loop because it more directly
84     /// expresses the intent of the loop.
85     WHILE_TRUE,
86     Warn,
87     "suggest using `loop { }` instead of `while true { }`"
88 }
89
90 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
91
92 /// Traverse through any amount of parenthesis and return the first non-parens expression.
93 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
94     while let ast::ExprKind::Paren(sub) = &expr.kind {
95         expr = sub;
96     }
97     expr
98 }
99
100 impl EarlyLintPass for WhileTrue {
101     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
102         if let ast::ExprKind::While(cond, _, label) = &e.kind {
103             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
104                 if let ast::LitKind::Bool(true) = lit.kind {
105                     if !lit.span.from_expansion() {
106                         let msg = "denote infinite loops with `loop { ... }`";
107                         let condition_span = e.span.with_hi(cond.span.hi());
108                         cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
109                             lint.build(msg)
110                                 .span_suggestion_short(
111                                     condition_span,
112                                     "use `loop`",
113                                     format!(
114                                         "{}loop",
115                                         label.map_or_else(String::new, |label| format!(
116                                             "{}: ",
117                                             label.ident,
118                                         ))
119                                     ),
120                                     Applicability::MachineApplicable,
121                                 )
122                                 .emit();
123                         })
124                     }
125                 }
126             }
127         }
128     }
129 }
130
131 declare_lint! {
132     /// The `box_pointers` lints use of the Box type.
133     ///
134     /// ### Example
135     ///
136     /// ```rust,compile_fail
137     /// #![deny(box_pointers)]
138     /// struct Foo {
139     ///     x: Box<isize>,
140     /// }
141     /// ```
142     ///
143     /// {{produces}}
144     ///
145     /// ### Explanation
146     ///
147     /// This lint is mostly historical, and not particularly useful. `Box<T>`
148     /// used to be built into the language, and the only way to do heap
149     /// allocation. Today's Rust can call into other allocators, etc.
150     BOX_POINTERS,
151     Allow,
152     "use of owned (Box type) heap memory"
153 }
154
155 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
156
157 impl BoxPointers {
158     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
159         for leaf in ty.walk() {
160             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
161                 if leaf_ty.is_box() {
162                     cx.struct_span_lint(BOX_POINTERS, span, |lint| {
163                         lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit()
164                     });
165                 }
166             }
167         }
168     }
169 }
170
171 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
172     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
173         match it.kind {
174             hir::ItemKind::Fn(..)
175             | hir::ItemKind::TyAlias(..)
176             | hir::ItemKind::Enum(..)
177             | hir::ItemKind::Struct(..)
178             | hir::ItemKind::Union(..) => {
179                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
180             }
181             _ => (),
182         }
183
184         // If it's a struct, we also have to check the fields' types
185         match it.kind {
186             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
187                 for struct_field in struct_def.fields() {
188                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
189                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
190                 }
191             }
192             _ => (),
193         }
194     }
195
196     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
197         let ty = cx.typeck_results().node_type(e.hir_id);
198         self.check_heap_type(cx, e.span, ty);
199     }
200 }
201
202 declare_lint! {
203     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
204     /// instead of `Struct { x }` in a pattern.
205     ///
206     /// ### Example
207     ///
208     /// ```rust
209     /// struct Point {
210     ///     x: i32,
211     ///     y: i32,
212     /// }
213     ///
214     ///
215     /// fn main() {
216     ///     let p = Point {
217     ///         x: 5,
218     ///         y: 5,
219     ///     };
220     ///
221     ///     match p {
222     ///         Point { x: x, y: y } => (),
223     ///     }
224     /// }
225     /// ```
226     ///
227     /// {{produces}}
228     ///
229     /// ### Explanation
230     ///
231     /// The preferred style is to avoid the repetition of specifying both the
232     /// field name and the binding name if both identifiers are the same.
233     NON_SHORTHAND_FIELD_PATTERNS,
234     Warn,
235     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
236 }
237
238 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
239
240 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
241     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
242         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
243             let variant = cx
244                 .typeck_results()
245                 .pat_ty(pat)
246                 .ty_adt_def()
247                 .expect("struct pattern type is not an ADT")
248                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
249             for fieldpat in field_pats {
250                 if fieldpat.is_shorthand {
251                     continue;
252                 }
253                 if fieldpat.span.from_expansion() {
254                     // Don't lint if this is a macro expansion: macro authors
255                     // shouldn't have to worry about this kind of style issue
256                     // (Issue #49588)
257                     continue;
258                 }
259                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
260                     if cx.tcx.find_field_index(ident, &variant)
261                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
262                     {
263                         cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
264                             let mut err = lint
265                                 .build(&format!("the `{}:` in this pattern is redundant", ident));
266                             let binding = match binding_annot {
267                                 hir::BindingAnnotation::Unannotated => None,
268                                 hir::BindingAnnotation::Mutable => Some("mut"),
269                                 hir::BindingAnnotation::Ref => Some("ref"),
270                                 hir::BindingAnnotation::RefMut => Some("ref mut"),
271                             };
272                             let ident = if let Some(binding) = binding {
273                                 format!("{} {}", binding, ident)
274                             } else {
275                                 ident.to_string()
276                             };
277                             err.span_suggestion(
278                                 fieldpat.span,
279                                 "use shorthand field pattern",
280                                 ident,
281                                 Applicability::MachineApplicable,
282                             );
283                             err.emit();
284                         });
285                     }
286                 }
287             }
288         }
289     }
290 }
291
292 declare_lint! {
293     /// The `unsafe_code` lint catches usage of `unsafe` code.
294     ///
295     /// ### Example
296     ///
297     /// ```rust,compile_fail
298     /// #![deny(unsafe_code)]
299     /// fn main() {
300     ///     unsafe {
301     ///
302     ///     }
303     /// }
304     /// ```
305     ///
306     /// {{produces}}
307     ///
308     /// ### Explanation
309     ///
310     /// This lint is intended to restrict the usage of `unsafe`, which can be
311     /// difficult to use correctly.
312     UNSAFE_CODE,
313     Allow,
314     "usage of `unsafe` code"
315 }
316
317 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
318
319 impl UnsafeCode {
320     fn report_unsafe(
321         &self,
322         cx: &EarlyContext<'_>,
323         span: Span,
324         decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>),
325     ) {
326         // This comes from a macro that has `#[allow_internal_unsafe]`.
327         if span.allows_unsafe() {
328             return;
329         }
330
331         cx.struct_span_lint(UNSAFE_CODE, span, decorate);
332     }
333
334     fn report_overriden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
335         self.report_unsafe(cx, span, |lint| {
336             lint.build(msg)
337                 .note(
338                     "the linker's behavior with multiple libraries exporting duplicate symbol \
339                     names is undefined and Rust cannot provide guarantees when you manually \
340                     override them",
341                 )
342                 .emit();
343         })
344     }
345 }
346
347 impl EarlyLintPass for UnsafeCode {
348     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
349         if cx.sess().check_name(attr, sym::allow_internal_unsafe) {
350             self.report_unsafe(cx, attr.span, |lint| {
351                 lint.build(
352                     "`allow_internal_unsafe` allows defining \
353                                                macros using unsafe without triggering \
354                                                the `unsafe_code` lint at their call site",
355                 )
356                 .emit()
357             });
358         }
359     }
360
361     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
362         if let ast::ExprKind::Block(ref blk, _) = e.kind {
363             // Don't warn about generated blocks; that'll just pollute the output.
364             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
365                 self.report_unsafe(cx, blk.span, |lint| {
366                     lint.build("usage of an `unsafe` block").emit()
367                 });
368             }
369         }
370     }
371
372     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
373         match it.kind {
374             ast::ItemKind::Trait(box ast::TraitKind(_, ast::Unsafe::Yes(_), ..)) => self
375                 .report_unsafe(cx, it.span, |lint| {
376                     lint.build("declaration of an `unsafe` trait").emit()
377                 }),
378
379             ast::ItemKind::Impl(box ast::ImplKind { unsafety: ast::Unsafe::Yes(_), .. }) => self
380                 .report_unsafe(cx, it.span, |lint| {
381                     lint.build("implementation of an `unsafe` trait").emit()
382                 }),
383
384             ast::ItemKind::Fn(..) => {
385                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
386                     self.report_overriden_symbol_name(
387                         cx,
388                         attr.span,
389                         "declaration of a `no_mangle` function",
390                     );
391                 }
392                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
393                     self.report_overriden_symbol_name(
394                         cx,
395                         attr.span,
396                         "declaration of a function with `export_name`",
397                     );
398                 }
399             }
400
401             ast::ItemKind::Static(..) => {
402                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
403                     self.report_overriden_symbol_name(
404                         cx,
405                         attr.span,
406                         "declaration of a `no_mangle` static",
407                     );
408                 }
409                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
410                     self.report_overriden_symbol_name(
411                         cx,
412                         attr.span,
413                         "declaration of a static with `export_name`",
414                     );
415                 }
416             }
417
418             _ => {}
419         }
420     }
421
422     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
423         if let FnKind::Fn(
424             ctxt,
425             _,
426             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
427             _,
428             body,
429         ) = fk
430         {
431             let msg = match ctxt {
432                 FnCtxt::Foreign => return,
433                 FnCtxt::Free => "declaration of an `unsafe` function",
434                 FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
435                 FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
436             };
437             self.report_unsafe(cx, span, |lint| lint.build(msg).emit());
438         }
439     }
440 }
441
442 declare_lint! {
443     /// The `missing_docs` lint detects missing documentation for public items.
444     ///
445     /// ### Example
446     ///
447     /// ```rust,compile_fail
448     /// #![deny(missing_docs)]
449     /// pub fn foo() {}
450     /// ```
451     ///
452     /// {{produces}}
453     ///
454     /// ### Explanation
455     ///
456     /// This lint is intended to ensure that a library is well-documented.
457     /// Items without documentation can be difficult for users to understand
458     /// how to use properly.
459     ///
460     /// This lint is "allow" by default because it can be noisy, and not all
461     /// projects may want to enforce everything to be documented.
462     pub MISSING_DOCS,
463     Allow,
464     "detects missing documentation for public members",
465     report_in_external_macro
466 }
467
468 pub struct MissingDoc {
469     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
470     doc_hidden_stack: Vec<bool>,
471
472     /// Private traits or trait items that leaked through. Don't check their methods.
473     private_traits: FxHashSet<hir::HirId>,
474 }
475
476 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
477
478 fn has_doc(sess: &Session, attr: &ast::Attribute) -> bool {
479     if attr.is_doc_comment() {
480         return true;
481     }
482
483     if !sess.check_name(attr, sym::doc) {
484         return false;
485     }
486
487     if attr.value_str().is_some() {
488         return true;
489     }
490
491     if let Some(list) = attr.meta_item_list() {
492         for meta in list {
493             if meta.has_name(sym::hidden) {
494                 return true;
495             }
496         }
497     }
498
499     false
500 }
501
502 impl MissingDoc {
503     pub fn new() -> MissingDoc {
504         MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
505     }
506
507     fn doc_hidden(&self) -> bool {
508         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
509     }
510
511     fn check_missing_docs_attrs(
512         &self,
513         cx: &LateContext<'_>,
514         id: hir::HirId,
515         sp: Span,
516         article: &'static str,
517         desc: &'static str,
518     ) {
519         // If we're building a test harness, then warning about
520         // documentation is probably not really relevant right now.
521         if cx.sess().opts.test {
522             return;
523         }
524
525         // `#[doc(hidden)]` disables missing_docs check.
526         if self.doc_hidden() {
527             return;
528         }
529
530         // Only check publicly-visible items, using the result from the privacy pass.
531         // It's an option so the crate root can also use this function (it doesn't
532         // have a `NodeId`).
533         if id != hir::CRATE_HIR_ID {
534             if !cx.access_levels.is_exported(id) {
535                 return;
536             }
537         }
538
539         let attrs = cx.tcx.hir().attrs(id);
540         let has_doc = attrs.iter().any(|a| has_doc(cx.sess(), a));
541         if !has_doc {
542             cx.struct_span_lint(
543                 MISSING_DOCS,
544                 cx.tcx.sess.source_map().guess_head_span(sp),
545                 |lint| {
546                     lint.build(&format!("missing documentation for {} {}", article, desc)).emit()
547                 },
548             );
549         }
550     }
551 }
552
553 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
554     fn enter_lint_attrs(&mut self, cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
555         let doc_hidden = self.doc_hidden()
556             || attrs.iter().any(|attr| {
557                 cx.sess().check_name(attr, sym::doc)
558                     && match attr.meta_item_list() {
559                         None => false,
560                         Some(l) => attr::list_contains_name(&l, sym::hidden),
561                     }
562             });
563         self.doc_hidden_stack.push(doc_hidden);
564     }
565
566     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
567         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
568     }
569
570     fn check_crate(&mut self, cx: &LateContext<'_>, krate: &hir::Crate<'_>) {
571         self.check_missing_docs_attrs(cx, hir::CRATE_HIR_ID, krate.item.inner, "the", "crate");
572
573         for macro_def in krate.exported_macros {
574             let attrs = cx.tcx.hir().attrs(macro_def.hir_id());
575             let has_doc = attrs.iter().any(|a| has_doc(cx.sess(), a));
576             if !has_doc {
577                 cx.struct_span_lint(
578                     MISSING_DOCS,
579                     cx.tcx.sess.source_map().guess_head_span(macro_def.span),
580                     |lint| lint.build("missing documentation for macro").emit(),
581                 );
582             }
583         }
584     }
585
586     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
587         match it.kind {
588             hir::ItemKind::Trait(.., trait_item_refs) => {
589                 // Issue #11592: traits are always considered exported, even when private.
590                 if let hir::VisibilityKind::Inherited = it.vis.node {
591                     self.private_traits.insert(it.hir_id());
592                     for trait_item_ref in trait_item_refs {
593                         self.private_traits.insert(trait_item_ref.id.hir_id());
594                     }
595                     return;
596                 }
597             }
598             hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => {
599                 // If the trait is private, add the impl items to `private_traits` so they don't get
600                 // reported for missing docs.
601                 let real_trait = trait_ref.path.res.def_id();
602                 if let Some(def_id) = real_trait.as_local() {
603                     let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id);
604                     if let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) {
605                         if let hir::VisibilityKind::Inherited = item.vis.node {
606                             for impl_item_ref in items {
607                                 self.private_traits.insert(impl_item_ref.id.hir_id());
608                             }
609                         }
610                     }
611                 }
612                 return;
613             }
614
615             hir::ItemKind::TyAlias(..)
616             | hir::ItemKind::Fn(..)
617             | hir::ItemKind::Mod(..)
618             | hir::ItemKind::Enum(..)
619             | hir::ItemKind::Struct(..)
620             | hir::ItemKind::Union(..)
621             | hir::ItemKind::Const(..)
622             | hir::ItemKind::Static(..) => {}
623
624             _ => return,
625         };
626
627         let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
628
629         self.check_missing_docs_attrs(cx, it.hir_id(), it.span, article, desc);
630     }
631
632     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
633         if self.private_traits.contains(&trait_item.hir_id()) {
634             return;
635         }
636
637         let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
638
639         self.check_missing_docs_attrs(cx, trait_item.hir_id(), trait_item.span, article, desc);
640     }
641
642     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
643         // If the method is an impl for a trait, don't doc.
644         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
645             return;
646         }
647
648         let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
649         self.check_missing_docs_attrs(cx, impl_item.hir_id(), impl_item.span, article, desc);
650     }
651
652     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
653         let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
654         self.check_missing_docs_attrs(cx, foreign_item.hir_id(), foreign_item.span, article, desc);
655     }
656
657     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
658         if !sf.is_positional() {
659             self.check_missing_docs_attrs(cx, sf.hir_id, sf.span, "a", "struct field")
660         }
661     }
662
663     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
664         self.check_missing_docs_attrs(cx, v.id, v.span, "a", "variant");
665     }
666 }
667
668 declare_lint! {
669     /// The `missing_copy_implementations` lint detects potentially-forgotten
670     /// implementations of [`Copy`].
671     ///
672     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
673     ///
674     /// ### Example
675     ///
676     /// ```rust,compile_fail
677     /// #![deny(missing_copy_implementations)]
678     /// pub struct Foo {
679     ///     pub field: i32
680     /// }
681     /// # fn main() {}
682     /// ```
683     ///
684     /// {{produces}}
685     ///
686     /// ### Explanation
687     ///
688     /// Historically (before 1.0), types were automatically marked as `Copy`
689     /// if possible. This was changed so that it required an explicit opt-in
690     /// by implementing the `Copy` trait. As part of this change, a lint was
691     /// added to alert if a copyable type was not marked `Copy`.
692     ///
693     /// This lint is "allow" by default because this code isn't bad; it is
694     /// common to write newtypes like this specifically so that a `Copy` type
695     /// is no longer `Copy`. `Copy` types can result in unintended copies of
696     /// large data which can impact performance.
697     pub MISSING_COPY_IMPLEMENTATIONS,
698     Allow,
699     "detects potentially-forgotten implementations of `Copy`"
700 }
701
702 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
703
704 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
705     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
706         if !cx.access_levels.is_reachable(item.hir_id()) {
707             return;
708         }
709         let (def, ty) = match item.kind {
710             hir::ItemKind::Struct(_, ref ast_generics) => {
711                 if !ast_generics.params.is_empty() {
712                     return;
713                 }
714                 let def = cx.tcx.adt_def(item.def_id);
715                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
716             }
717             hir::ItemKind::Union(_, ref ast_generics) => {
718                 if !ast_generics.params.is_empty() {
719                     return;
720                 }
721                 let def = cx.tcx.adt_def(item.def_id);
722                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
723             }
724             hir::ItemKind::Enum(_, ref ast_generics) => {
725                 if !ast_generics.params.is_empty() {
726                     return;
727                 }
728                 let def = cx.tcx.adt_def(item.def_id);
729                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
730             }
731             _ => return,
732         };
733         if def.has_dtor(cx.tcx) {
734             return;
735         }
736         let param_env = ty::ParamEnv::empty();
737         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
738             return;
739         }
740         if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() {
741             cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
742                 lint.build(
743                     "type could implement `Copy`; consider adding `impl \
744                           Copy`",
745                 )
746                 .emit()
747             })
748         }
749     }
750 }
751
752 declare_lint! {
753     /// The `missing_debug_implementations` lint detects missing
754     /// implementations of [`fmt::Debug`].
755     ///
756     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
757     ///
758     /// ### Example
759     ///
760     /// ```rust,compile_fail
761     /// #![deny(missing_debug_implementations)]
762     /// pub struct Foo;
763     /// # fn main() {}
764     /// ```
765     ///
766     /// {{produces}}
767     ///
768     /// ### Explanation
769     ///
770     /// Having a `Debug` implementation on all types can assist with
771     /// debugging, as it provides a convenient way to format and display a
772     /// value. Using the `#[derive(Debug)]` attribute will automatically
773     /// generate a typical implementation, or a custom implementation can be
774     /// added by manually implementing the `Debug` trait.
775     ///
776     /// This lint is "allow" by default because adding `Debug` to all types can
777     /// have a negative impact on compile time and code size. It also requires
778     /// boilerplate to be added to every type, which can be an impediment.
779     MISSING_DEBUG_IMPLEMENTATIONS,
780     Allow,
781     "detects missing implementations of Debug"
782 }
783
784 #[derive(Default)]
785 pub struct MissingDebugImplementations {
786     impling_types: Option<LocalDefIdSet>,
787 }
788
789 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
790
791 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
792     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
793         if !cx.access_levels.is_reachable(item.hir_id()) {
794             return;
795         }
796
797         match item.kind {
798             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
799             _ => return,
800         }
801
802         let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) {
803             Some(debug) => debug,
804             None => return,
805         };
806
807         if self.impling_types.is_none() {
808             let mut impls = LocalDefIdSet::default();
809             cx.tcx.for_each_impl(debug, |d| {
810                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
811                     if let Some(def_id) = ty_def.did.as_local() {
812                         impls.insert(def_id);
813                     }
814                 }
815             });
816
817             self.impling_types = Some(impls);
818             debug!("{:?}", self.impling_types);
819         }
820
821         if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
822             cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
823                 lint.build(&format!(
824                     "type does not implement `{}`; consider adding `#[derive(Debug)]` \
825                      or a manual implementation",
826                     cx.tcx.def_path_str(debug)
827                 ))
828                 .emit()
829             });
830         }
831     }
832 }
833
834 declare_lint! {
835     /// The `anonymous_parameters` lint detects anonymous parameters in trait
836     /// definitions.
837     ///
838     /// ### Example
839     ///
840     /// ```rust,edition2015,compile_fail
841     /// #![deny(anonymous_parameters)]
842     /// // edition 2015
843     /// pub trait Foo {
844     ///     fn foo(usize);
845     /// }
846     /// fn main() {}
847     /// ```
848     ///
849     /// {{produces}}
850     ///
851     /// ### Explanation
852     ///
853     /// This syntax is mostly a historical accident, and can be worked around
854     /// quite easily by adding an `_` pattern or a descriptive identifier:
855     ///
856     /// ```rust
857     /// trait Foo {
858     ///     fn foo(_: usize);
859     /// }
860     /// ```
861     ///
862     /// This syntax is now a hard error in the 2018 edition. In the 2015
863     /// edition, this lint is "warn" by default. This lint
864     /// enables the [`cargo fix`] tool with the `--edition` flag to
865     /// automatically transition old code from the 2015 edition to 2018. The
866     /// tool will run this lint and automatically apply the
867     /// suggested fix from the compiler (which is to add `_` to each
868     /// parameter). This provides a completely automated way to update old
869     /// code for a new edition. See [issue #41686] for more details.
870     ///
871     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
872     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
873     pub ANONYMOUS_PARAMETERS,
874     Warn,
875     "detects anonymous parameters",
876     @future_incompatible = FutureIncompatibleInfo {
877         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
878         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
879     };
880 }
881
882 declare_lint_pass!(
883     /// Checks for use of anonymous parameters (RFC 1685).
884     AnonymousParameters => [ANONYMOUS_PARAMETERS]
885 );
886
887 impl EarlyLintPass for AnonymousParameters {
888     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
889         if cx.sess.edition() != Edition::Edition2015 {
890             // This is a hard error in future editions; avoid linting and erroring
891             return;
892         }
893         if let ast::AssocItemKind::Fn(box FnKind(_, ref sig, _, _)) = it.kind {
894             for arg in sig.decl.inputs.iter() {
895                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
896                     if ident.name == kw::Empty {
897                         cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
898                             let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span);
899
900                             let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
901                                 (snip.as_str(), Applicability::MachineApplicable)
902                             } else {
903                                 ("<type>", Applicability::HasPlaceholders)
904                             };
905
906                             lint.build(
907                                 "anonymous parameters are deprecated and will be \
908                                      removed in the next edition.",
909                             )
910                             .span_suggestion(
911                                 arg.pat.span,
912                                 "try naming the parameter or explicitly \
913                                             ignoring it",
914                                 format!("_: {}", ty_snip),
915                                 appl,
916                             )
917                             .emit();
918                         })
919                     }
920                 }
921             }
922         }
923     }
924 }
925
926 /// Check for use of attributes which have been deprecated.
927 #[derive(Clone)]
928 pub struct DeprecatedAttr {
929     // This is not free to compute, so we want to keep it around, rather than
930     // compute it for every attribute.
931     depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>,
932 }
933
934 impl_lint_pass!(DeprecatedAttr => []);
935
936 impl DeprecatedAttr {
937     pub fn new() -> DeprecatedAttr {
938         DeprecatedAttr { depr_attrs: deprecated_attributes() }
939     }
940 }
941
942 fn lint_deprecated_attr(
943     cx: &EarlyContext<'_>,
944     attr: &ast::Attribute,
945     msg: &str,
946     suggestion: Option<&str>,
947 ) {
948     cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
949         lint.build(msg)
950             .span_suggestion_short(
951                 attr.span,
952                 suggestion.unwrap_or("remove this attribute"),
953                 String::new(),
954                 Applicability::MachineApplicable,
955             )
956             .emit();
957     })
958 }
959
960 impl EarlyLintPass for DeprecatedAttr {
961     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
962         for &&(n, _, _, ref g) in &self.depr_attrs {
963             if attr.ident().map(|ident| ident.name) == Some(n) {
964                 if let &AttributeGate::Gated(
965                     Stability::Deprecated(link, suggestion),
966                     name,
967                     reason,
968                     _,
969                 ) = g
970                 {
971                     let msg =
972                         format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
973                     lint_deprecated_attr(cx, attr, &msg, suggestion);
974                 }
975                 return;
976             }
977         }
978         if cx.sess().check_name(attr, sym::no_start) || cx.sess().check_name(attr, sym::crate_id) {
979             let path_str = pprust::path_to_string(&attr.get_normal_item().path);
980             let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
981             lint_deprecated_attr(cx, attr, &msg, None);
982         }
983     }
984 }
985
986 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
987     let mut attrs = attrs.iter().peekable();
988
989     // Accumulate a single span for sugared doc comments.
990     let mut sugared_span: Option<Span> = None;
991
992     while let Some(attr) = attrs.next() {
993         if attr.is_doc_comment() {
994             sugared_span =
995                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
996         }
997
998         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
999             continue;
1000         }
1001
1002         let span = sugared_span.take().unwrap_or(attr.span);
1003
1004         if attr.is_doc_comment() || cx.sess().check_name(attr, sym::doc) {
1005             cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
1006                 let mut err = lint.build("unused doc comment");
1007                 err.span_label(
1008                     node_span,
1009                     format!("rustdoc does not generate documentation for {}", node_kind),
1010                 );
1011                 err.emit();
1012             });
1013         }
1014     }
1015 }
1016
1017 impl EarlyLintPass for UnusedDocComment {
1018     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1019         let kind = match stmt.kind {
1020             ast::StmtKind::Local(..) => "statements",
1021             // Disabled pending discussion in #78306
1022             ast::StmtKind::Item(..) => return,
1023             // expressions will be reported by `check_expr`.
1024             ast::StmtKind::Empty
1025             | ast::StmtKind::Semi(_)
1026             | ast::StmtKind::Expr(_)
1027             | ast::StmtKind::MacCall(_) => return,
1028         };
1029
1030         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1031     }
1032
1033     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1034         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1035         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1036     }
1037
1038     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1039         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1040     }
1041 }
1042
1043 declare_lint! {
1044     /// The `no_mangle_const_items` lint detects any `const` items with the
1045     /// [`no_mangle` attribute].
1046     ///
1047     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1048     ///
1049     /// ### Example
1050     ///
1051     /// ```rust,compile_fail
1052     /// #[no_mangle]
1053     /// const FOO: i32 = 5;
1054     /// ```
1055     ///
1056     /// {{produces}}
1057     ///
1058     /// ### Explanation
1059     ///
1060     /// Constants do not have their symbols exported, and therefore, this
1061     /// probably means you meant to use a [`static`], not a [`const`].
1062     ///
1063     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1064     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1065     NO_MANGLE_CONST_ITEMS,
1066     Deny,
1067     "const items will not have their symbols exported"
1068 }
1069
1070 declare_lint! {
1071     /// The `no_mangle_generic_items` lint detects generic items that must be
1072     /// mangled.
1073     ///
1074     /// ### Example
1075     ///
1076     /// ```rust
1077     /// #[no_mangle]
1078     /// fn foo<T>(t: T) {
1079     ///
1080     /// }
1081     /// ```
1082     ///
1083     /// {{produces}}
1084     ///
1085     /// ### Explanation
1086     ///
1087     /// A function with generics must have its symbol mangled to accommodate
1088     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1089     /// this situation, and should be removed.
1090     ///
1091     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1092     NO_MANGLE_GENERIC_ITEMS,
1093     Warn,
1094     "generic items must be mangled"
1095 }
1096
1097 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1098
1099 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1100     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1101         let attrs = cx.tcx.hir().attrs(it.hir_id());
1102         match it.kind {
1103             hir::ItemKind::Fn(.., ref generics, _) => {
1104                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1105                     for param in generics.params {
1106                         match param.kind {
1107                             GenericParamKind::Lifetime { .. } => {}
1108                             GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1109                                 cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, it.span, |lint| {
1110                                     lint.build(
1111                                         "functions generic over types or consts must be mangled",
1112                                     )
1113                                     .span_suggestion_short(
1114                                         no_mangle_attr.span,
1115                                         "remove this attribute",
1116                                         String::new(),
1117                                         // Use of `#[no_mangle]` suggests FFI intent; correct
1118                                         // fix may be to monomorphize source by hand
1119                                         Applicability::MaybeIncorrect,
1120                                     )
1121                                     .emit();
1122                                 });
1123                                 break;
1124                             }
1125                         }
1126                     }
1127                 }
1128             }
1129             hir::ItemKind::Const(..) => {
1130                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1131                     // Const items do not refer to a particular location in memory, and therefore
1132                     // don't have anything to attach a symbol to
1133                     cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
1134                         let msg = "const items should never be `#[no_mangle]`";
1135                         let mut err = lint.build(msg);
1136
1137                         // account for "pub const" (#45562)
1138                         let start = cx
1139                             .tcx
1140                             .sess
1141                             .source_map()
1142                             .span_to_snippet(it.span)
1143                             .map(|snippet| snippet.find("const").unwrap_or(0))
1144                             .unwrap_or(0) as u32;
1145                         // `const` is 5 chars
1146                         let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1147                         err.span_suggestion(
1148                             const_span,
1149                             "try a static value",
1150                             "pub static".to_owned(),
1151                             Applicability::MachineApplicable,
1152                         );
1153                         err.emit();
1154                     });
1155                 }
1156             }
1157             _ => {}
1158         }
1159     }
1160 }
1161
1162 declare_lint! {
1163     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1164     /// T` because it is [undefined behavior].
1165     ///
1166     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1167     ///
1168     /// ### Example
1169     ///
1170     /// ```rust,compile_fail
1171     /// unsafe {
1172     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1173     /// }
1174     /// ```
1175     ///
1176     /// {{produces}}
1177     ///
1178     /// ### Explanation
1179     ///
1180     /// Certain assumptions are made about aliasing of data, and this transmute
1181     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1182     ///
1183     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1184     MUTABLE_TRANSMUTES,
1185     Deny,
1186     "mutating transmuted &mut T from &T may cause undefined behavior"
1187 }
1188
1189 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1190
1191 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1192     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1193         use rustc_target::spec::abi::Abi::RustIntrinsic;
1194         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1195             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1196         {
1197             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1198                 let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
1199                                consider instead using an UnsafeCell";
1200                 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit());
1201             }
1202         }
1203
1204         fn get_transmute_from_to<'tcx>(
1205             cx: &LateContext<'tcx>,
1206             expr: &hir::Expr<'_>,
1207         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1208             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1209                 cx.qpath_res(qpath, expr.hir_id)
1210             } else {
1211                 return None;
1212             };
1213             if let Res::Def(DefKind::Fn, did) = def {
1214                 if !def_id_is_transmute(cx, did) {
1215                     return None;
1216                 }
1217                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1218                 let from = sig.inputs().skip_binder()[0];
1219                 let to = sig.output().skip_binder();
1220                 return Some((from, to));
1221             }
1222             None
1223         }
1224
1225         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1226             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
1227                 && cx.tcx.item_name(def_id) == sym::transmute
1228         }
1229     }
1230 }
1231
1232 declare_lint! {
1233     /// The `unstable_features` is deprecated and should no longer be used.
1234     UNSTABLE_FEATURES,
1235     Allow,
1236     "enabling unstable features (deprecated. do not use)"
1237 }
1238
1239 declare_lint_pass!(
1240     /// Forbids using the `#[feature(...)]` attribute
1241     UnstableFeatures => [UNSTABLE_FEATURES]
1242 );
1243
1244 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1245     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1246         if cx.sess().check_name(attr, sym::feature) {
1247             if let Some(items) = attr.meta_item_list() {
1248                 for item in items {
1249                     cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
1250                         lint.build("unstable feature").emit()
1251                     });
1252                 }
1253             }
1254         }
1255     }
1256 }
1257
1258 declare_lint! {
1259     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1260     /// the crate root.
1261     ///
1262     /// ### Example
1263     ///
1264     /// ```rust,compile_fail
1265     /// #![deny(unreachable_pub)]
1266     /// mod foo {
1267     ///     pub mod bar {
1268     ///
1269     ///     }
1270     /// }
1271     /// ```
1272     ///
1273     /// {{produces}}
1274     ///
1275     /// ### Explanation
1276     ///
1277     /// A bare `pub` visibility may be misleading if the item is not actually
1278     /// publicly exported from the crate. The `pub(crate)` visibility is
1279     /// recommended to be used instead, which more clearly expresses the intent
1280     /// that the item is only visible within its own crate.
1281     ///
1282     /// This lint is "allow" by default because it will trigger for a large
1283     /// amount existing Rust code, and has some false-positives. Eventually it
1284     /// is desired for this to become warn-by-default.
1285     pub UNREACHABLE_PUB,
1286     Allow,
1287     "`pub` items not reachable from crate root"
1288 }
1289
1290 declare_lint_pass!(
1291     /// Lint for items marked `pub` that aren't reachable from other crates.
1292     UnreachablePub => [UNREACHABLE_PUB]
1293 );
1294
1295 impl UnreachablePub {
1296     fn perform_lint(
1297         &self,
1298         cx: &LateContext<'_>,
1299         what: &str,
1300         id: hir::HirId,
1301         vis: &hir::Visibility<'_>,
1302         span: Span,
1303         exportable: bool,
1304     ) {
1305         let mut applicability = Applicability::MachineApplicable;
1306         match vis.node {
1307             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => {
1308                 if span.from_expansion() {
1309                     applicability = Applicability::MaybeIncorrect;
1310                 }
1311                 let def_span = cx.tcx.sess.source_map().guess_head_span(span);
1312                 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
1313                     let mut err = lint.build(&format!("unreachable `pub` {}", what));
1314                     let replacement = if cx.tcx.features().crate_visibility_modifier {
1315                         "crate"
1316                     } else {
1317                         "pub(crate)"
1318                     }
1319                     .to_owned();
1320
1321                     err.span_suggestion(
1322                         vis.span,
1323                         "consider restricting its visibility",
1324                         replacement,
1325                         applicability,
1326                     );
1327                     if exportable {
1328                         err.help("or consider exporting it for use by other crates");
1329                     }
1330                     err.emit();
1331                 });
1332             }
1333             _ => {}
1334         }
1335     }
1336 }
1337
1338 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1339     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1340         self.perform_lint(cx, "item", item.hir_id(), &item.vis, item.span, true);
1341     }
1342
1343     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1344         self.perform_lint(
1345             cx,
1346             "item",
1347             foreign_item.hir_id(),
1348             &foreign_item.vis,
1349             foreign_item.span,
1350             true,
1351         );
1352     }
1353
1354     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1355         self.perform_lint(cx, "field", field.hir_id, &field.vis, field.span, false);
1356     }
1357
1358     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1359         self.perform_lint(cx, "item", impl_item.hir_id(), &impl_item.vis, impl_item.span, false);
1360     }
1361 }
1362
1363 declare_lint! {
1364     /// The `type_alias_bounds` lint detects bounds in type aliases.
1365     ///
1366     /// ### Example
1367     ///
1368     /// ```rust
1369     /// type SendVec<T: Send> = Vec<T>;
1370     /// ```
1371     ///
1372     /// {{produces}}
1373     ///
1374     /// ### Explanation
1375     ///
1376     /// The trait bounds in a type alias are currently ignored, and should not
1377     /// be included to avoid confusion. This was previously allowed
1378     /// unintentionally; this may become a hard error in the future.
1379     TYPE_ALIAS_BOUNDS,
1380     Warn,
1381     "bounds in type aliases are not enforced"
1382 }
1383
1384 declare_lint_pass!(
1385     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1386     /// They are relevant when using associated types, but otherwise neither checked
1387     /// at definition site nor enforced at use site.
1388     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1389 );
1390
1391 impl TypeAliasBounds {
1392     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1393         match *qpath {
1394             hir::QPath::TypeRelative(ref ty, _) => {
1395                 // If this is a type variable, we found a `T::Assoc`.
1396                 match ty.kind {
1397                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1398                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1399                     }
1400                     _ => false,
1401                 }
1402             }
1403             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1404         }
1405     }
1406
1407     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) {
1408         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1409         // bound.  Let's see if this type does that.
1410
1411         // We use a HIR visitor to walk the type.
1412         use rustc_hir::intravisit::{self, Visitor};
1413         struct WalkAssocTypes<'a, 'db> {
1414             err: &'a mut DiagnosticBuilder<'db>,
1415         }
1416         impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
1417             type Map = intravisit::ErasedMap<'v>;
1418
1419             fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
1420                 intravisit::NestedVisitorMap::None
1421             }
1422
1423             fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) {
1424                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1425                     self.err.span_help(
1426                         span,
1427                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1428                          associated types in type aliases",
1429                     );
1430                 }
1431                 intravisit::walk_qpath(self, qpath, id, span)
1432             }
1433         }
1434
1435         // Let's go for a walk!
1436         let mut visitor = WalkAssocTypes { err };
1437         visitor.visit_ty(ty);
1438     }
1439 }
1440
1441 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1442     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1443         let (ty, type_alias_generics) = match item.kind {
1444             hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics),
1445             _ => return,
1446         };
1447         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1448             // Bounds are respected for `type X = impl Trait`
1449             return;
1450         }
1451         let mut suggested_changing_assoc_types = false;
1452         // There must not be a where clause
1453         if !type_alias_generics.where_clause.predicates.is_empty() {
1454             cx.lint(
1455                 TYPE_ALIAS_BOUNDS,
1456                 |lint| {
1457                     let mut err = lint.build("where clauses are not enforced in type aliases");
1458                     let spans: Vec<_> = type_alias_generics
1459                         .where_clause
1460                         .predicates
1461                         .iter()
1462                         .map(|pred| pred.span())
1463                         .collect();
1464                     err.set_span(spans);
1465                     err.span_suggestion(
1466                         type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1467                         "the clause will not be checked when the type alias is used, and should be removed",
1468                         String::new(),
1469                         Applicability::MachineApplicable,
1470                     );
1471                     if !suggested_changing_assoc_types {
1472                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1473                         suggested_changing_assoc_types = true;
1474                     }
1475                     err.emit();
1476                 },
1477             );
1478         }
1479         // The parameters must not have bounds
1480         for param in type_alias_generics.params.iter() {
1481             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1482             let suggestion = spans
1483                 .iter()
1484                 .map(|sp| {
1485                     let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1486                     (start.to(*sp), String::new())
1487                 })
1488                 .collect();
1489             if !spans.is_empty() {
1490                 cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| {
1491                     let mut err =
1492                         lint.build("bounds on generic parameters are not enforced in type aliases");
1493                     let msg = "the bound will not be checked when the type alias is used, \
1494                                    and should be removed";
1495                     err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1496                     if !suggested_changing_assoc_types {
1497                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1498                         suggested_changing_assoc_types = true;
1499                     }
1500                     err.emit();
1501                 });
1502             }
1503         }
1504     }
1505 }
1506
1507 declare_lint_pass!(
1508     /// Lint constants that are erroneous.
1509     /// Without this lint, we might not get any diagnostic if the constant is
1510     /// unused within this crate, even though downstream crates can't use it
1511     /// without producing an error.
1512     UnusedBrokenConst => []
1513 );
1514
1515 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1516     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1517         match it.kind {
1518             hir::ItemKind::Const(_, body_id) => {
1519                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1520                 // trigger the query once for all constants since that will already report the errors
1521                 // FIXME: Use ensure here
1522                 let _ = cx.tcx.const_eval_poly(def_id);
1523             }
1524             hir::ItemKind::Static(_, _, body_id) => {
1525                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1526                 // FIXME: Use ensure here
1527                 let _ = cx.tcx.eval_static_initializer(def_id);
1528             }
1529             _ => {}
1530         }
1531     }
1532 }
1533
1534 declare_lint! {
1535     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1536     /// any type parameters.
1537     ///
1538     /// ### Example
1539     ///
1540     /// ```rust
1541     /// #![feature(trivial_bounds)]
1542     /// pub struct A where i32: Copy;
1543     /// ```
1544     ///
1545     /// {{produces}}
1546     ///
1547     /// ### Explanation
1548     ///
1549     /// Usually you would not write a trait bound that you know is always
1550     /// true, or never true. However, when using macros, the macro may not
1551     /// know whether or not the constraint would hold or not at the time when
1552     /// generating the code. Currently, the compiler does not alert you if the
1553     /// constraint is always true, and generates an error if it is never true.
1554     /// The `trivial_bounds` feature changes this to be a warning in both
1555     /// cases, giving macros more freedom and flexibility to generate code,
1556     /// while still providing a signal when writing non-macro code that
1557     /// something is amiss.
1558     ///
1559     /// See [RFC 2056] for more details. This feature is currently only
1560     /// available on the nightly channel, see [tracking issue #48214].
1561     ///
1562     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1563     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1564     TRIVIAL_BOUNDS,
1565     Warn,
1566     "these bounds don't depend on an type parameters"
1567 }
1568
1569 declare_lint_pass!(
1570     /// Lint for trait and lifetime bounds that don't depend on type parameters
1571     /// which either do nothing, or stop the item from being used.
1572     TrivialConstraints => [TRIVIAL_BOUNDS]
1573 );
1574
1575 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1576     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1577         use rustc_middle::ty::fold::TypeFoldable;
1578         use rustc_middle::ty::PredicateKind::*;
1579
1580         if cx.tcx.features().trivial_bounds {
1581             let predicates = cx.tcx.predicates_of(item.def_id);
1582             for &(predicate, span) in predicates.predicates {
1583                 let predicate_kind_name = match predicate.kind().skip_binder() {
1584                     Trait(..) => "Trait",
1585                     TypeOutlives(..) |
1586                     RegionOutlives(..) => "Lifetime",
1587
1588                     // Ignore projections, as they can only be global
1589                     // if the trait bound is global
1590                     Projection(..) |
1591                     // Ignore bounds that a user can't type
1592                     WellFormed(..) |
1593                     ObjectSafe(..) |
1594                     ClosureKind(..) |
1595                     Subtype(..) |
1596                     ConstEvaluatable(..) |
1597                     ConstEquate(..) |
1598                     TypeWellFormedFromEnv(..) => continue,
1599                 };
1600                 if predicate.is_global() {
1601                     cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1602                         lint.build(&format!(
1603                             "{} bound {} does not depend on any type \
1604                                 or lifetime parameters",
1605                             predicate_kind_name, predicate
1606                         ))
1607                         .emit()
1608                     });
1609                 }
1610             }
1611         }
1612     }
1613 }
1614
1615 declare_lint_pass!(
1616     /// Does nothing as a lint pass, but registers some `Lint`s
1617     /// which are used by other parts of the compiler.
1618     SoftLints => [
1619         WHILE_TRUE,
1620         BOX_POINTERS,
1621         NON_SHORTHAND_FIELD_PATTERNS,
1622         UNSAFE_CODE,
1623         MISSING_DOCS,
1624         MISSING_COPY_IMPLEMENTATIONS,
1625         MISSING_DEBUG_IMPLEMENTATIONS,
1626         ANONYMOUS_PARAMETERS,
1627         UNUSED_DOC_COMMENTS,
1628         NO_MANGLE_CONST_ITEMS,
1629         NO_MANGLE_GENERIC_ITEMS,
1630         MUTABLE_TRANSMUTES,
1631         UNSTABLE_FEATURES,
1632         UNREACHABLE_PUB,
1633         TYPE_ALIAS_BOUNDS,
1634         TRIVIAL_BOUNDS
1635     ]
1636 );
1637
1638 declare_lint! {
1639     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1640     /// pattern], which is deprecated.
1641     ///
1642     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1643     ///
1644     /// ### Example
1645     ///
1646     /// ```rust
1647     /// let x = 123;
1648     /// match x {
1649     ///     0...100 => {}
1650     ///     _ => {}
1651     /// }
1652     /// ```
1653     ///
1654     /// {{produces}}
1655     ///
1656     /// ### Explanation
1657     ///
1658     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1659     /// confusion with the [`..` range expression]. Use the new form instead.
1660     ///
1661     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1662     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1663     Warn,
1664     "`...` range patterns are deprecated",
1665     @future_incompatible = FutureIncompatibleInfo {
1666         reference: "issue #80165 <https://github.com/rust-lang/rust/issues/80165>",
1667         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1668     };
1669 }
1670
1671 #[derive(Default)]
1672 pub struct EllipsisInclusiveRangePatterns {
1673     /// If `Some(_)`, suppress all subsequent pattern
1674     /// warnings for better diagnostics.
1675     node_id: Option<ast::NodeId>,
1676 }
1677
1678 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1679
1680 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1681     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1682         if self.node_id.is_some() {
1683             // Don't recursively warn about patterns inside range endpoints.
1684             return;
1685         }
1686
1687         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1688
1689         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1690         /// corresponding to the ellipsis.
1691         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1692             match &pat.kind {
1693                 PatKind::Range(
1694                     a,
1695                     Some(b),
1696                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1697                 ) => Some((a.as_deref(), b, *span)),
1698                 _ => None,
1699             }
1700         }
1701
1702         let (parenthesise, endpoints) = match &pat.kind {
1703             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1704             _ => (false, matches_ellipsis_pat(pat)),
1705         };
1706
1707         if let Some((start, end, join)) = endpoints {
1708             let msg = "`...` range patterns are deprecated";
1709             let suggestion = "use `..=` for an inclusive range";
1710             if parenthesise {
1711                 self.node_id = Some(pat.id);
1712                 let end = expr_to_string(&end);
1713                 let replace = match start {
1714                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1715                     None => format!("&(..={})", end),
1716                 };
1717                 if join.edition() >= Edition::Edition2021 {
1718                     let mut err =
1719                         rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,);
1720                     err.span_suggestion(
1721                         pat.span,
1722                         suggestion,
1723                         replace,
1724                         Applicability::MachineApplicable,
1725                     )
1726                     .emit();
1727                 } else {
1728                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1729                         lint.build(msg)
1730                             .span_suggestion(
1731                                 pat.span,
1732                                 suggestion,
1733                                 replace,
1734                                 Applicability::MachineApplicable,
1735                             )
1736                             .emit();
1737                     });
1738                 }
1739             } else {
1740                 let replace = "..=".to_owned();
1741                 if join.edition() >= Edition::Edition2021 {
1742                     let mut err =
1743                         rustc_errors::struct_span_err!(cx.sess, pat.span, E0783, "{}", msg,);
1744                     err.span_suggestion_short(
1745                         join,
1746                         suggestion,
1747                         replace,
1748                         Applicability::MachineApplicable,
1749                     )
1750                     .emit();
1751                 } else {
1752                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1753                         lint.build(msg)
1754                             .span_suggestion_short(
1755                                 join,
1756                                 suggestion,
1757                                 replace,
1758                                 Applicability::MachineApplicable,
1759                             )
1760                             .emit();
1761                     });
1762                 }
1763             };
1764         }
1765     }
1766
1767     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1768         if let Some(node_id) = self.node_id {
1769             if pat.id == node_id {
1770                 self.node_id = None
1771             }
1772         }
1773     }
1774 }
1775
1776 declare_lint! {
1777     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1778     /// that are not able to be run by the test harness because they are in a
1779     /// position where they are not nameable.
1780     ///
1781     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1782     ///
1783     /// ### Example
1784     ///
1785     /// ```rust,test
1786     /// fn main() {
1787     ///     #[test]
1788     ///     fn foo() {
1789     ///         // This test will not fail because it does not run.
1790     ///         assert_eq!(1, 2);
1791     ///     }
1792     /// }
1793     /// ```
1794     ///
1795     /// {{produces}}
1796     ///
1797     /// ### Explanation
1798     ///
1799     /// In order for the test harness to run a test, the test function must be
1800     /// located in a position where it can be accessed from the crate root.
1801     /// This generally means it must be defined in a module, and not anywhere
1802     /// else such as inside another function. The compiler previously allowed
1803     /// this without an error, so a lint was added as an alert that a test is
1804     /// not being used. Whether or not this should be allowed has not yet been
1805     /// decided, see [RFC 2471] and [issue #36629].
1806     ///
1807     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1808     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1809     UNNAMEABLE_TEST_ITEMS,
1810     Warn,
1811     "detects an item that cannot be named being marked as `#[test_case]`",
1812     report_in_external_macro
1813 }
1814
1815 pub struct UnnameableTestItems {
1816     boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
1817     items_nameable: bool,
1818 }
1819
1820 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1821
1822 impl UnnameableTestItems {
1823     pub fn new() -> Self {
1824         Self { boundary: None, items_nameable: true }
1825     }
1826 }
1827
1828 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1829     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1830         if self.items_nameable {
1831             if let hir::ItemKind::Mod(..) = it.kind {
1832             } else {
1833                 self.items_nameable = false;
1834                 self.boundary = Some(it.def_id);
1835             }
1836             return;
1837         }
1838
1839         let attrs = cx.tcx.hir().attrs(it.hir_id());
1840         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1841             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1842                 lint.build("cannot test inner items").emit()
1843             });
1844         }
1845     }
1846
1847     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1848         if !self.items_nameable && self.boundary == Some(it.def_id) {
1849             self.items_nameable = true;
1850         }
1851     }
1852 }
1853
1854 declare_lint! {
1855     /// The `keyword_idents` lint detects edition keywords being used as an
1856     /// identifier.
1857     ///
1858     /// ### Example
1859     ///
1860     /// ```rust,edition2015,compile_fail
1861     /// #![deny(keyword_idents)]
1862     /// // edition 2015
1863     /// fn dyn() {}
1864     /// ```
1865     ///
1866     /// {{produces}}
1867     ///
1868     /// ### Explanation
1869     ///
1870     /// Rust [editions] allow the language to evolve without breaking
1871     /// backwards compatibility. This lint catches code that uses new keywords
1872     /// that are added to the language that are used as identifiers (such as a
1873     /// variable name, function name, etc.). If you switch the compiler to a
1874     /// new edition without updating the code, then it will fail to compile if
1875     /// you are using a new keyword as an identifier.
1876     ///
1877     /// You can manually change the identifiers to a non-keyword, or use a
1878     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1879     ///
1880     /// This lint solves the problem automatically. It is "allow" by default
1881     /// because the code is perfectly valid in older editions. The [`cargo
1882     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1883     /// and automatically apply the suggested fix from the compiler (which is
1884     /// to use a raw identifier). This provides a completely automated way to
1885     /// update old code for a new edition.
1886     ///
1887     /// [editions]: https://doc.rust-lang.org/edition-guide/
1888     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1889     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1890     pub KEYWORD_IDENTS,
1891     Allow,
1892     "detects edition keywords being used as an identifier",
1893     @future_incompatible = FutureIncompatibleInfo {
1894         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1895         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1896     };
1897 }
1898
1899 declare_lint_pass!(
1900     /// Check for uses of edition keywords used as an identifier.
1901     KeywordIdents => [KEYWORD_IDENTS]
1902 );
1903
1904 struct UnderMacro(bool);
1905
1906 impl KeywordIdents {
1907     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1908         for tt in tokens.into_trees() {
1909             match tt {
1910                 // Only report non-raw idents.
1911                 TokenTree::Token(token) => {
1912                     if let Some((ident, false)) = token.ident() {
1913                         self.check_ident_token(cx, UnderMacro(true), ident);
1914                     }
1915                 }
1916                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1917             }
1918         }
1919     }
1920
1921     fn check_ident_token(
1922         &mut self,
1923         cx: &EarlyContext<'_>,
1924         UnderMacro(under_macro): UnderMacro,
1925         ident: Ident,
1926     ) {
1927         let next_edition = match cx.sess.edition() {
1928             Edition::Edition2015 => {
1929                 match ident.name {
1930                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1931
1932                     // rust-lang/rust#56327: Conservatively do not
1933                     // attempt to report occurrences of `dyn` within
1934                     // macro definitions or invocations, because `dyn`
1935                     // can legitimately occur as a contextual keyword
1936                     // in 2015 code denoting its 2018 meaning, and we
1937                     // do not want rustfix to inject bugs into working
1938                     // code by rewriting such occurrences.
1939                     //
1940                     // But if we see `dyn` outside of a macro, we know
1941                     // its precise role in the parsed AST and thus are
1942                     // assured this is truly an attempt to use it as
1943                     // an identifier.
1944                     kw::Dyn if !under_macro => Edition::Edition2018,
1945
1946                     _ => return,
1947                 }
1948             }
1949
1950             // There are no new keywords yet for the 2018 edition and beyond.
1951             _ => return,
1952         };
1953
1954         // Don't lint `r#foo`.
1955         if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1956             return;
1957         }
1958
1959         cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
1960             lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
1961                 .span_suggestion(
1962                     ident.span,
1963                     "you can use a raw identifier to stay compatible",
1964                     format!("r#{}", ident),
1965                     Applicability::MachineApplicable,
1966                 )
1967                 .emit()
1968         });
1969     }
1970 }
1971
1972 impl EarlyLintPass for KeywordIdents {
1973     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
1974         self.check_tokens(cx, mac_def.body.inner_tokens());
1975     }
1976     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1977         self.check_tokens(cx, mac.args.inner_tokens());
1978     }
1979     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
1980         self.check_ident_token(cx, UnderMacro(false), ident);
1981     }
1982 }
1983
1984 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1985
1986 impl ExplicitOutlivesRequirements {
1987     fn lifetimes_outliving_lifetime<'tcx>(
1988         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1989         index: u32,
1990     ) -> Vec<ty::Region<'tcx>> {
1991         inferred_outlives
1992             .iter()
1993             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
1994                 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a {
1995                     ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
1996                     _ => None,
1997                 },
1998                 _ => None,
1999             })
2000             .collect()
2001     }
2002
2003     fn lifetimes_outliving_type<'tcx>(
2004         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2005         index: u32,
2006     ) -> Vec<ty::Region<'tcx>> {
2007         inferred_outlives
2008             .iter()
2009             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2010                 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2011                     a.is_param(index).then_some(b)
2012                 }
2013                 _ => None,
2014             })
2015             .collect()
2016     }
2017
2018     fn collect_outlived_lifetimes<'tcx>(
2019         &self,
2020         param: &'tcx hir::GenericParam<'tcx>,
2021         tcx: TyCtxt<'tcx>,
2022         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2023         ty_generics: &'tcx ty::Generics,
2024     ) -> Vec<ty::Region<'tcx>> {
2025         let index =
2026             ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()];
2027
2028         match param.kind {
2029             hir::GenericParamKind::Lifetime { .. } => {
2030                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
2031             }
2032             hir::GenericParamKind::Type { .. } => {
2033                 Self::lifetimes_outliving_type(inferred_outlives, index)
2034             }
2035             hir::GenericParamKind::Const { .. } => Vec::new(),
2036         }
2037     }
2038
2039     fn collect_outlives_bound_spans<'tcx>(
2040         &self,
2041         tcx: TyCtxt<'tcx>,
2042         bounds: &hir::GenericBounds<'_>,
2043         inferred_outlives: &[ty::Region<'tcx>],
2044         infer_static: bool,
2045     ) -> Vec<(usize, Span)> {
2046         use rustc_middle::middle::resolve_lifetime::Region;
2047
2048         bounds
2049             .iter()
2050             .enumerate()
2051             .filter_map(|(i, bound)| {
2052                 if let hir::GenericBound::Outlives(lifetime) = bound {
2053                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
2054                         Some(Region::Static) if infer_static => {
2055                             inferred_outlives.iter().any(|r| matches!(r, ty::ReStatic))
2056                         }
2057                         Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
2058                             if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false }
2059                         }),
2060                         _ => false,
2061                     };
2062                     is_inferred.then_some((i, bound.span()))
2063                 } else {
2064                     None
2065                 }
2066             })
2067             .collect()
2068     }
2069
2070     fn consolidate_outlives_bound_spans(
2071         &self,
2072         lo: Span,
2073         bounds: &hir::GenericBounds<'_>,
2074         bound_spans: Vec<(usize, Span)>,
2075     ) -> Vec<Span> {
2076         if bounds.is_empty() {
2077             return Vec::new();
2078         }
2079         if bound_spans.len() == bounds.len() {
2080             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2081             // If all bounds are inferable, we want to delete the colon, so
2082             // start from just after the parameter (span passed as argument)
2083             vec![lo.to(last_bound_span)]
2084         } else {
2085             let mut merged = Vec::new();
2086             let mut last_merged_i = None;
2087
2088             let mut from_start = true;
2089             for (i, bound_span) in bound_spans {
2090                 match last_merged_i {
2091                     // If the first bound is inferable, our span should also eat the leading `+`.
2092                     None if i == 0 => {
2093                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2094                         last_merged_i = Some(0);
2095                     }
2096                     // If consecutive bounds are inferable, merge their spans
2097                     Some(h) if i == h + 1 => {
2098                         if let Some(tail) = merged.last_mut() {
2099                             // Also eat the trailing `+` if the first
2100                             // more-than-one bound is inferable
2101                             let to_span = if from_start && i < bounds.len() {
2102                                 bounds[i + 1].span().shrink_to_lo()
2103                             } else {
2104                                 bound_span
2105                             };
2106                             *tail = tail.to(to_span);
2107                             last_merged_i = Some(i);
2108                         } else {
2109                             bug!("another bound-span visited earlier");
2110                         }
2111                     }
2112                     _ => {
2113                         // When we find a non-inferable bound, subsequent inferable bounds
2114                         // won't be consecutive from the start (and we'll eat the leading
2115                         // `+` rather than the trailing one)
2116                         from_start = false;
2117                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2118                         last_merged_i = Some(i);
2119                     }
2120                 }
2121             }
2122             merged
2123         }
2124     }
2125 }
2126
2127 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2128     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2129         use rustc_middle::middle::resolve_lifetime::Region;
2130
2131         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
2132         let def_id = item.def_id;
2133         if let hir::ItemKind::Struct(_, ref hir_generics)
2134         | hir::ItemKind::Enum(_, ref hir_generics)
2135         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
2136         {
2137             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2138             if inferred_outlives.is_empty() {
2139                 return;
2140             }
2141
2142             let ty_generics = cx.tcx.generics_of(def_id);
2143
2144             let mut bound_count = 0;
2145             let mut lint_spans = Vec::new();
2146
2147             for param in hir_generics.params {
2148                 let has_lifetime_bounds = param
2149                     .bounds
2150                     .iter()
2151                     .any(|bound| matches!(bound, hir::GenericBound::Outlives(_)));
2152                 if !has_lifetime_bounds {
2153                     continue;
2154                 }
2155
2156                 let relevant_lifetimes =
2157                     self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
2158                 if relevant_lifetimes.is_empty() {
2159                     continue;
2160                 }
2161
2162                 let bound_spans = self.collect_outlives_bound_spans(
2163                     cx.tcx,
2164                     &param.bounds,
2165                     &relevant_lifetimes,
2166                     infer_static,
2167                 );
2168                 bound_count += bound_spans.len();
2169                 lint_spans.extend(self.consolidate_outlives_bound_spans(
2170                     param.span.shrink_to_hi(),
2171                     &param.bounds,
2172                     bound_spans,
2173                 ));
2174             }
2175
2176             let mut where_lint_spans = Vec::new();
2177             let mut dropped_predicate_count = 0;
2178             let num_predicates = hir_generics.where_clause.predicates.len();
2179             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
2180                 let (relevant_lifetimes, bounds, span) = match where_predicate {
2181                     hir::WherePredicate::RegionPredicate(predicate) => {
2182                         if let Some(Region::EarlyBound(index, ..)) =
2183                             cx.tcx.named_region(predicate.lifetime.hir_id)
2184                         {
2185                             (
2186                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
2187                                 &predicate.bounds,
2188                                 predicate.span,
2189                             )
2190                         } else {
2191                             continue;
2192                         }
2193                     }
2194                     hir::WherePredicate::BoundPredicate(predicate) => {
2195                         // FIXME we can also infer bounds on associated types,
2196                         // and should check for them here.
2197                         match predicate.bounded_ty.kind {
2198                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
2199                                 if let Res::Def(DefKind::TyParam, def_id) = path.res {
2200                                     let index = ty_generics.param_def_id_to_index[&def_id];
2201                                     (
2202                                         Self::lifetimes_outliving_type(inferred_outlives, index),
2203                                         &predicate.bounds,
2204                                         predicate.span,
2205                                     )
2206                                 } else {
2207                                     continue;
2208                                 }
2209                             }
2210                             _ => {
2211                                 continue;
2212                             }
2213                         }
2214                     }
2215                     _ => continue,
2216                 };
2217                 if relevant_lifetimes.is_empty() {
2218                     continue;
2219                 }
2220
2221                 let bound_spans = self.collect_outlives_bound_spans(
2222                     cx.tcx,
2223                     bounds,
2224                     &relevant_lifetimes,
2225                     infer_static,
2226                 );
2227                 bound_count += bound_spans.len();
2228
2229                 let drop_predicate = bound_spans.len() == bounds.len();
2230                 if drop_predicate {
2231                     dropped_predicate_count += 1;
2232                 }
2233
2234                 // If all the bounds on a predicate were inferable and there are
2235                 // further predicates, we want to eat the trailing comma.
2236                 if drop_predicate && i + 1 < num_predicates {
2237                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
2238                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
2239                 } else {
2240                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2241                         span.shrink_to_lo(),
2242                         bounds,
2243                         bound_spans,
2244                     ));
2245                 }
2246             }
2247
2248             // If all predicates are inferable, drop the entire clause
2249             // (including the `where`)
2250             if num_predicates > 0 && dropped_predicate_count == num_predicates {
2251                 let where_span = hir_generics
2252                     .where_clause
2253                     .span()
2254                     .expect("span of (nonempty) where clause should exist");
2255                 // Extend the where clause back to the closing `>` of the
2256                 // generics, except for tuple struct, which have the `where`
2257                 // after the fields of the struct.
2258                 let full_where_span =
2259                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2260                         where_span
2261                     } else {
2262                         hir_generics.span.shrink_to_hi().to(where_span)
2263                     };
2264                 lint_spans.push(full_where_span);
2265             } else {
2266                 lint_spans.extend(where_lint_spans);
2267             }
2268
2269             if !lint_spans.is_empty() {
2270                 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
2271                     lint.build("outlives requirements can be inferred")
2272                         .multipart_suggestion(
2273                             if bound_count == 1 {
2274                                 "remove this bound"
2275                             } else {
2276                                 "remove these bounds"
2277                             },
2278                             lint_spans
2279                                 .into_iter()
2280                                 .map(|span| (span, "".to_owned()))
2281                                 .collect::<Vec<_>>(),
2282                             Applicability::MachineApplicable,
2283                         )
2284                         .emit();
2285                 });
2286             }
2287         }
2288     }
2289 }
2290
2291 declare_lint! {
2292     /// The `incomplete_features` lint detects unstable features enabled with
2293     /// the [`feature` attribute] that may function improperly in some or all
2294     /// cases.
2295     ///
2296     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2297     ///
2298     /// ### Example
2299     ///
2300     /// ```rust
2301     /// #![feature(generic_associated_types)]
2302     /// ```
2303     ///
2304     /// {{produces}}
2305     ///
2306     /// ### Explanation
2307     ///
2308     /// Although it is encouraged for people to experiment with unstable
2309     /// features, some of them are known to be incomplete or faulty. This lint
2310     /// is a signal that the feature has not yet been finished, and you may
2311     /// experience problems with it.
2312     pub INCOMPLETE_FEATURES,
2313     Warn,
2314     "incomplete features that may function improperly in some or all cases"
2315 }
2316
2317 declare_lint_pass!(
2318     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2319     IncompleteFeatures => [INCOMPLETE_FEATURES]
2320 );
2321
2322 impl EarlyLintPass for IncompleteFeatures {
2323     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2324         let features = cx.sess.features_untracked();
2325         features
2326             .declared_lang_features
2327             .iter()
2328             .map(|(name, span, _)| (name, span))
2329             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2330             .filter(|(&name, _)| features.incomplete(name))
2331             .for_each(|(&name, &span)| {
2332                 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
2333                     let mut builder = lint.build(&format!(
2334                         "the feature `{}` is incomplete and may not be safe to use \
2335                          and/or cause compiler crashes",
2336                         name,
2337                     ));
2338                     if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
2339                         builder.note(&format!(
2340                             "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
2341                              for more information",
2342                             n, n,
2343                         ));
2344                     }
2345                     if HAS_MIN_FEATURES.contains(&name) {
2346                         builder.help(&format!(
2347                             "consider using `min_{}` instead, which is more stable and complete",
2348                             name,
2349                         ));
2350                     }
2351                     builder.emit();
2352                 })
2353             });
2354     }
2355 }
2356
2357 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2358
2359 declare_lint! {
2360     /// The `invalid_value` lint detects creating a value that is not valid,
2361     /// such as a null reference.
2362     ///
2363     /// ### Example
2364     ///
2365     /// ```rust,no_run
2366     /// # #![allow(unused)]
2367     /// unsafe {
2368     ///     let x: &'static i32 = std::mem::zeroed();
2369     /// }
2370     /// ```
2371     ///
2372     /// {{produces}}
2373     ///
2374     /// ### Explanation
2375     ///
2376     /// In some situations the compiler can detect that the code is creating
2377     /// an invalid value, which should be avoided.
2378     ///
2379     /// In particular, this lint will check for improper use of
2380     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2381     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2382     /// lint should provide extra information to indicate what the problem is
2383     /// and a possible solution.
2384     ///
2385     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2386     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2387     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2388     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2389     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2390     pub INVALID_VALUE,
2391     Warn,
2392     "an invalid value is being created (such as a null reference)"
2393 }
2394
2395 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2396
2397 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2398     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2399         #[derive(Debug, Copy, Clone, PartialEq)]
2400         enum InitKind {
2401             Zeroed,
2402             Uninit,
2403         }
2404
2405         /// Information about why a type cannot be initialized this way.
2406         /// Contains an error message and optionally a span to point at.
2407         type InitError = (String, Option<Span>);
2408
2409         /// Test if this constant is all-0.
2410         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2411             use hir::ExprKind::*;
2412             use rustc_ast::LitKind::*;
2413             match &expr.kind {
2414                 Lit(lit) => {
2415                     if let Int(i, _) = lit.node {
2416                         i == 0
2417                     } else {
2418                         false
2419                     }
2420                 }
2421                 Tup(tup) => tup.iter().all(is_zero),
2422                 _ => false,
2423             }
2424         }
2425
2426         /// Determine if this expression is a "dangerous initialization".
2427         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2428             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2429                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2430                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2431                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2432
2433                     if cx.tcx.is_diagnostic_item(sym::mem_zeroed, def_id) {
2434                         return Some(InitKind::Zeroed);
2435                     } else if cx.tcx.is_diagnostic_item(sym::mem_uninitialized, def_id) {
2436                         return Some(InitKind::Uninit);
2437                     } else if cx.tcx.is_diagnostic_item(sym::transmute, def_id) && is_zero(&args[0])
2438                     {
2439                         return Some(InitKind::Zeroed);
2440                     }
2441                 }
2442             } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind {
2443                 // Find problematic calls to `MaybeUninit::assume_init`.
2444                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2445                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2446                     // This is a call to *some* method named `assume_init`.
2447                     // See if the `self` parameter is one of the dangerous constructors.
2448                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2449                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2450                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2451
2452                             if cx.tcx.is_diagnostic_item(sym::maybe_uninit_zeroed, def_id) {
2453                                 return Some(InitKind::Zeroed);
2454                             } else if cx.tcx.is_diagnostic_item(sym::maybe_uninit_uninit, def_id) {
2455                                 return Some(InitKind::Uninit);
2456                             }
2457                         }
2458                     }
2459                 }
2460             }
2461
2462             None
2463         }
2464
2465         /// Test if this enum has several actually "existing" variants.
2466         /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
2467         fn is_multi_variant(adt: &ty::AdtDef) -> bool {
2468             // As an approximation, we only count dataless variants. Those are definitely inhabited.
2469             let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count();
2470             existing_variants > 1
2471         }
2472
2473         /// Return `Some` only if we are sure this type does *not*
2474         /// allow zero initialization.
2475         fn ty_find_init_error<'tcx>(
2476             tcx: TyCtxt<'tcx>,
2477             ty: Ty<'tcx>,
2478             init: InitKind,
2479         ) -> Option<InitError> {
2480             use rustc_middle::ty::TyKind::*;
2481             match ty.kind() {
2482                 // Primitive types that don't like 0 as a value.
2483                 Ref(..) => Some(("references must be non-null".to_string(), None)),
2484                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2485                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2486                 Never => Some(("the `!` type has no valid value".to_string(), None)),
2487                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2488                 // raw ptr to dyn Trait
2489                 {
2490                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
2491                 }
2492                 // Primitive types with other constraints.
2493                 Bool if init == InitKind::Uninit => {
2494                     Some(("booleans must be either `true` or `false`".to_string(), None))
2495                 }
2496                 Char if init == InitKind::Uninit => {
2497                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
2498                 }
2499                 // Recurse and checks for some compound types.
2500                 Adt(adt_def, substs) if !adt_def.is_union() => {
2501                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
2502                     use std::ops::Bound;
2503                     match tcx.layout_scalar_valid_range(adt_def.did) {
2504                         // We exploit here that `layout_scalar_valid_range` will never
2505                         // return `Bound::Excluded`.  (And we have tests checking that we
2506                         // handle the attribute correctly.)
2507                         (Bound::Included(lo), _) if lo > 0 => {
2508                             return Some((format!("`{}` must be non-null", ty), None));
2509                         }
2510                         (Bound::Included(_), _) | (_, Bound::Included(_))
2511                             if init == InitKind::Uninit =>
2512                         {
2513                             return Some((
2514                                 format!(
2515                                     "`{}` must be initialized inside its custom valid range",
2516                                     ty,
2517                                 ),
2518                                 None,
2519                             ));
2520                         }
2521                         _ => {}
2522                     }
2523                     // Now, recurse.
2524                     match adt_def.variants.len() {
2525                         0 => Some(("enums with no variants have no valid value".to_string(), None)),
2526                         1 => {
2527                             // Struct, or enum with exactly one variant.
2528                             // Proceed recursively, check all fields.
2529                             let variant = &adt_def.variants[VariantIdx::from_u32(0)];
2530                             variant.fields.iter().find_map(|field| {
2531                                 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
2532                                     |(mut msg, span)| {
2533                                         if span.is_none() {
2534                                             // Point to this field, should be helpful for figuring
2535                                             // out where the source of the error is.
2536                                             let span = tcx.def_span(field.did);
2537                                             write!(
2538                                                 &mut msg,
2539                                                 " (in this {} field)",
2540                                                 adt_def.descr()
2541                                             )
2542                                             .unwrap();
2543                                             (msg, Some(span))
2544                                         } else {
2545                                             // Just forward.
2546                                             (msg, span)
2547                                         }
2548                                     },
2549                                 )
2550                             })
2551                         }
2552                         // Multi-variant enum.
2553                         _ => {
2554                             if init == InitKind::Uninit && is_multi_variant(adt_def) {
2555                                 let span = tcx.def_span(adt_def.did);
2556                                 Some((
2557                                     "enums have to be initialized to a variant".to_string(),
2558                                     Some(span),
2559                                 ))
2560                             } else {
2561                                 // In principle, for zero-initialization we could figure out which variant corresponds
2562                                 // to tag 0, and check that... but for now we just accept all zero-initializations.
2563                                 None
2564                             }
2565                         }
2566                     }
2567                 }
2568                 Tuple(..) => {
2569                     // Proceed recursively, check all fields.
2570                     ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
2571                 }
2572                 // Conservative fallback.
2573                 _ => None,
2574             }
2575         }
2576
2577         if let Some(init) = is_dangerous_init(cx, expr) {
2578             // This conjures an instance of a type out of nothing,
2579             // using zeroed or uninitialized memory.
2580             // We are extremely conservative with what we warn about.
2581             let conjured_ty = cx.typeck_results().expr_ty(expr);
2582             if let Some((msg, span)) =
2583                 with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init))
2584             {
2585                 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2586                     let mut err = lint.build(&format!(
2587                         "the type `{}` does not permit {}",
2588                         conjured_ty,
2589                         match init {
2590                             InitKind::Zeroed => "zero-initialization",
2591                             InitKind::Uninit => "being left uninitialized",
2592                         },
2593                     ));
2594                     err.span_label(expr.span, "this code causes undefined behavior when executed");
2595                     err.span_label(
2596                         expr.span,
2597                         "help: use `MaybeUninit<T>` instead, \
2598                             and only call `assume_init` after initialization is done",
2599                     );
2600                     if let Some(span) = span {
2601                         err.span_note(span, &msg);
2602                     } else {
2603                         err.note(&msg);
2604                     }
2605                     err.emit();
2606                 });
2607             }
2608         }
2609     }
2610 }
2611
2612 declare_lint! {
2613     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2614     /// has been declared with the same name but different types.
2615     ///
2616     /// ### Example
2617     ///
2618     /// ```rust
2619     /// mod m {
2620     ///     extern "C" {
2621     ///         fn foo();
2622     ///     }
2623     /// }
2624     ///
2625     /// extern "C" {
2626     ///     fn foo(_: u32);
2627     /// }
2628     /// ```
2629     ///
2630     /// {{produces}}
2631     ///
2632     /// ### Explanation
2633     ///
2634     /// Because two symbols of the same name cannot be resolved to two
2635     /// different functions at link time, and one function cannot possibly
2636     /// have two types, a clashing extern declaration is almost certainly a
2637     /// mistake. Check to make sure that the `extern` definitions are correct
2638     /// and equivalent, and possibly consider unifying them in one location.
2639     ///
2640     /// This lint does not run between crates because a project may have
2641     /// dependencies which both rely on the same extern function, but declare
2642     /// it in a different (but valid) way. For example, they may both declare
2643     /// an opaque type for one or more of the arguments (which would end up
2644     /// distinct types), or use types that are valid conversions in the
2645     /// language the `extern fn` is defined in. In these cases, the compiler
2646     /// can't say that the clashing declaration is incorrect.
2647     pub CLASHING_EXTERN_DECLARATIONS,
2648     Warn,
2649     "detects when an extern fn has been declared with the same name but different types"
2650 }
2651
2652 pub struct ClashingExternDeclarations {
2653     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2654     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2655     /// the symbol should be reported as a clashing declaration.
2656     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2657     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2658     seen_decls: FxHashMap<Symbol, HirId>,
2659 }
2660
2661 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2662 /// just from declaration itself. This is important because we don't want to report clashes on
2663 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2664 /// different name.
2665 enum SymbolName {
2666     /// The name of the symbol + the span of the annotation which introduced the link name.
2667     Link(Symbol, Span),
2668     /// No link name, so just the name of the symbol.
2669     Normal(Symbol),
2670 }
2671
2672 impl SymbolName {
2673     fn get_name(&self) -> Symbol {
2674         match self {
2675             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2676         }
2677     }
2678 }
2679
2680 impl ClashingExternDeclarations {
2681     crate fn new() -> Self {
2682         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2683     }
2684     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2685     /// for the item, return its HirId without updating the set.
2686     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2687         let did = fi.def_id.to_def_id();
2688         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2689         let name = Symbol::intern(tcx.symbol_name(instance).name);
2690         if let Some(&hir_id) = self.seen_decls.get(&name) {
2691             // Avoid updating the map with the new entry when we do find a collision. We want to
2692             // make sure we're always pointing to the first definition as the previous declaration.
2693             // This lets us avoid emitting "knock-on" diagnostics.
2694             Some(hir_id)
2695         } else {
2696             self.seen_decls.insert(name, fi.hir_id())
2697         }
2698     }
2699
2700     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2701     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2702     /// symbol's name.
2703     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2704         if let Some((overridden_link_name, overridden_link_name_span)) =
2705             tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
2706                 // FIXME: Instead of searching through the attributes again to get span
2707                 // information, we could have codegen_fn_attrs also give span information back for
2708                 // where the attribute was defined. However, until this is found to be a
2709                 // bottleneck, this does just fine.
2710                 (
2711                     overridden_link_name,
2712                     tcx.get_attrs(fi.def_id.to_def_id())
2713                         .iter()
2714                         .find(|at| tcx.sess.check_name(at, sym::link_name))
2715                         .unwrap()
2716                         .span,
2717                 )
2718             })
2719         {
2720             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2721         } else {
2722             SymbolName::Normal(fi.ident.name)
2723         }
2724     }
2725
2726     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2727     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2728     /// with the same members (as the declarations shouldn't clash).
2729     fn structurally_same_type<'tcx>(
2730         cx: &LateContext<'tcx>,
2731         a: Ty<'tcx>,
2732         b: Ty<'tcx>,
2733         ckind: CItemKind,
2734     ) -> bool {
2735         fn structurally_same_type_impl<'tcx>(
2736             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2737             cx: &LateContext<'tcx>,
2738             a: Ty<'tcx>,
2739             b: Ty<'tcx>,
2740             ckind: CItemKind,
2741         ) -> bool {
2742             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2743             let tcx = cx.tcx;
2744
2745             // Given a transparent newtype, reach through and grab the inner
2746             // type unless the newtype makes the type non-null.
2747             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2748                 let mut ty = ty;
2749                 loop {
2750                     if let ty::Adt(def, substs) = *ty.kind() {
2751                         let is_transparent = def.subst(tcx, substs).repr.transparent();
2752                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def);
2753                         debug!(
2754                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2755                             ty, is_transparent, is_non_null
2756                         );
2757                         if is_transparent && !is_non_null {
2758                             debug_assert!(def.variants.len() == 1);
2759                             let v = &def.variants[VariantIdx::new(0)];
2760                             ty = transparent_newtype_field(tcx, v)
2761                                 .expect(
2762                                     "single-variant transparent structure with zero-sized field",
2763                                 )
2764                                 .ty(tcx, substs);
2765                             continue;
2766                         }
2767                     }
2768                     debug!("non_transparent_ty -> {:?}", ty);
2769                     return ty;
2770                 }
2771             };
2772
2773             let a = non_transparent_ty(a);
2774             let b = non_transparent_ty(b);
2775
2776             if !seen_types.insert((a, b)) {
2777                 // We've encountered a cycle. There's no point going any further -- the types are
2778                 // structurally the same.
2779                 return true;
2780             }
2781             let tcx = cx.tcx;
2782             if a == b || rustc_middle::ty::TyS::same_type(a, b) {
2783                 // All nominally-same types are structurally same, too.
2784                 true
2785             } else {
2786                 // Do a full, depth-first comparison between the two.
2787                 use rustc_middle::ty::TyKind::*;
2788                 let a_kind = a.kind();
2789                 let b_kind = b.kind();
2790
2791                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2792                     debug!("compare_layouts({:?}, {:?})", a, b);
2793                     let a_layout = &cx.layout_of(a)?.layout.abi;
2794                     let b_layout = &cx.layout_of(b)?.layout.abi;
2795                     debug!(
2796                         "comparing layouts: {:?} == {:?} = {}",
2797                         a_layout,
2798                         b_layout,
2799                         a_layout == b_layout
2800                     );
2801                     Ok(a_layout == b_layout)
2802                 };
2803
2804                 #[allow(rustc::usage_of_ty_tykind)]
2805                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2806                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2807                 };
2808
2809                 ensure_sufficient_stack(|| {
2810                     match (a_kind, b_kind) {
2811                         (Adt(a_def, a_substs), Adt(b_def, b_substs)) => {
2812                             let a = a.subst(cx.tcx, a_substs);
2813                             let b = b.subst(cx.tcx, b_substs);
2814                             debug!("Comparing {:?} and {:?}", a, b);
2815
2816                             // We can immediately rule out these types as structurally same if
2817                             // their layouts differ.
2818                             match compare_layouts(a, b) {
2819                                 Ok(false) => return false,
2820                                 _ => (), // otherwise, continue onto the full, fields comparison
2821                             }
2822
2823                             // Grab a flattened representation of all fields.
2824                             let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter());
2825                             let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter());
2826
2827                             // Perform a structural comparison for each field.
2828                             a_fields.eq_by(
2829                                 b_fields,
2830                                 |&ty::FieldDef { did: a_did, .. },
2831                                  &ty::FieldDef { did: b_did, .. }| {
2832                                     structurally_same_type_impl(
2833                                         seen_types,
2834                                         cx,
2835                                         tcx.type_of(a_did),
2836                                         tcx.type_of(b_did),
2837                                         ckind,
2838                                     )
2839                                 },
2840                             )
2841                         }
2842                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2843                             // For arrays, we also check the constness of the type.
2844                             a_const.val == b_const.val
2845                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2846                         }
2847                         (Slice(a_ty), Slice(b_ty)) => {
2848                             structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2849                         }
2850                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2851                             a_tymut.mutbl == b_tymut.mutbl
2852                                 && structurally_same_type_impl(
2853                                     seen_types,
2854                                     cx,
2855                                     &a_tymut.ty,
2856                                     &b_tymut.ty,
2857                                     ckind,
2858                                 )
2859                         }
2860                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2861                             // For structural sameness, we don't need the region to be same.
2862                             a_mut == b_mut
2863                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2864                         }
2865                         (FnDef(..), FnDef(..)) => {
2866                             let a_poly_sig = a.fn_sig(tcx);
2867                             let b_poly_sig = b.fn_sig(tcx);
2868
2869                             // As we don't compare regions, skip_binder is fine.
2870                             let a_sig = a_poly_sig.skip_binder();
2871                             let b_sig = b_poly_sig.skip_binder();
2872
2873                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2874                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2875                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2876                                     structurally_same_type_impl(seen_types, cx, a, b, ckind)
2877                                 })
2878                                 && structurally_same_type_impl(
2879                                     seen_types,
2880                                     cx,
2881                                     a_sig.output(),
2882                                     b_sig.output(),
2883                                     ckind,
2884                                 )
2885                         }
2886                         (Tuple(a_substs), Tuple(b_substs)) => {
2887                             a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| {
2888                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2889                             })
2890                         }
2891                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2892                         // For the purposes of this lint, take the conservative approach and mark them as
2893                         // not structurally same.
2894                         (Dynamic(..), Dynamic(..))
2895                         | (Error(..), Error(..))
2896                         | (Closure(..), Closure(..))
2897                         | (Generator(..), Generator(..))
2898                         | (GeneratorWitness(..), GeneratorWitness(..))
2899                         | (Projection(..), Projection(..))
2900                         | (Opaque(..), Opaque(..)) => false,
2901
2902                         // These definitely should have been caught above.
2903                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2904
2905                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2906                         // enum layout optimisation is being applied.
2907                         (Adt(..), other_kind) | (other_kind, Adt(..))
2908                             if is_primitive_or_pointer(other_kind) =>
2909                         {
2910                             let (primitive, adt) =
2911                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2912                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2913                                 ty == primitive
2914                             } else {
2915                                 compare_layouts(a, b).unwrap_or(false)
2916                             }
2917                         }
2918                         // Otherwise, just compare the layouts. This may fail to lint for some
2919                         // incompatible types, but at the very least, will stop reads into
2920                         // uninitialised memory.
2921                         _ => compare_layouts(a, b).unwrap_or(false),
2922                     }
2923                 })
2924             }
2925         }
2926         let mut seen_types = FxHashSet::default();
2927         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2928     }
2929 }
2930
2931 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2932
2933 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2934     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2935         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2936         if let ForeignItemKind::Fn(..) = this_fi.kind {
2937             let tcx = cx.tcx;
2938             if let Some(existing_hid) = self.insert(tcx, this_fi) {
2939                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
2940                 let this_decl_ty = tcx.type_of(this_fi.def_id);
2941                 debug!(
2942                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2943                     existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
2944                 );
2945                 // Check that the declarations match.
2946                 if !Self::structurally_same_type(
2947                     cx,
2948                     existing_decl_ty,
2949                     this_decl_ty,
2950                     CItemKind::Declaration,
2951                 ) {
2952                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid);
2953                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2954
2955                     // We want to ensure that we use spans for both decls that include where the
2956                     // name was defined, whether that was from the link_name attribute or not.
2957                     let get_relevant_span =
2958                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2959                             SymbolName::Normal(_) => fi.span,
2960                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2961                         };
2962                     // Finally, emit the diagnostic.
2963                     tcx.struct_span_lint_hir(
2964                         CLASHING_EXTERN_DECLARATIONS,
2965                         this_fi.hir_id(),
2966                         get_relevant_span(this_fi),
2967                         |lint| {
2968                             let mut expected_str = DiagnosticStyledString::new();
2969                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
2970                             let mut found_str = DiagnosticStyledString::new();
2971                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
2972
2973                             lint.build(&format!(
2974                                 "`{}` redeclare{} with a different signature",
2975                                 this_fi.ident.name,
2976                                 if orig.get_name() == this_fi.ident.name {
2977                                     "d".to_string()
2978                                 } else {
2979                                     format!("s `{}`", orig.get_name())
2980                                 }
2981                             ))
2982                             .span_label(
2983                                 get_relevant_span(orig_fi),
2984                                 &format!("`{}` previously declared here", orig.get_name()),
2985                             )
2986                             .span_label(
2987                                 get_relevant_span(this_fi),
2988                                 "this signature doesn't match the previous declaration",
2989                             )
2990                             .note_expected_found(&"", expected_str, &"", found_str)
2991                             .emit()
2992                         },
2993                     );
2994                 }
2995             }
2996         }
2997     }
2998 }
2999
3000 declare_lint! {
3001     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3002     /// which causes [undefined behavior].
3003     ///
3004     /// ### Example
3005     ///
3006     /// ```rust,no_run
3007     /// # #![allow(unused)]
3008     /// use std::ptr;
3009     /// unsafe {
3010     ///     let x = &*ptr::null::<i32>();
3011     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3012     ///     let x = *(0 as *const i32);
3013     /// }
3014     /// ```
3015     ///
3016     /// {{produces}}
3017     ///
3018     /// ### Explanation
3019     ///
3020     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3021     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3022     ///
3023     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3024     pub DEREF_NULLPTR,
3025     Warn,
3026     "detects when an null pointer is dereferenced"
3027 }
3028
3029 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3030
3031 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3032     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3033         /// test if expression is a null ptr
3034         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3035             match &expr.kind {
3036                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3037                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3038                         return is_zero(expr) || is_null_ptr(cx, expr);
3039                     }
3040                 }
3041                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3042                 rustc_hir::ExprKind::Call(ref path, _) => {
3043                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3044                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3045                             return cx.tcx.is_diagnostic_item(sym::ptr_null, def_id)
3046                                 || cx.tcx.is_diagnostic_item(sym::ptr_null_mut, def_id);
3047                         }
3048                     }
3049                 }
3050                 _ => {}
3051             }
3052             false
3053         }
3054
3055         /// test if expression is the literal `0`
3056         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3057             match &expr.kind {
3058                 rustc_hir::ExprKind::Lit(ref lit) => {
3059                     if let LitKind::Int(a, _) = lit.node {
3060                         return a == 0;
3061                     }
3062                 }
3063                 _ => {}
3064             }
3065             false
3066         }
3067
3068         if let rustc_hir::ExprKind::Unary(ref un_op, ref expr_deref) = expr.kind {
3069             if let rustc_hir::UnOp::Deref = un_op {
3070                 if is_null_ptr(cx, expr_deref) {
3071                     cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
3072                         let mut err = lint.build("dereferencing a null pointer");
3073                         err.span_label(
3074                             expr.span,
3075                             "this code causes undefined behavior when executed",
3076                         );
3077                         err.emit();
3078                     });
3079                 }
3080             }
3081         }
3082     }
3083 }