]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Rollup merge of #107656 - jonhoo:bump-rust-installer, r=Mark-Simulacrum
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     errors::BuiltinEllpisisInclusiveRangePatterns,
25     lints::{
26         BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinClashingExtern,
27         BuiltinClashingExternSub, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink,
28         BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr,
29         BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives,
30         BuiltinExplicitOutlivesSuggestion, BuiltinIncompleteFeatures,
31         BuiltinIncompleteFeaturesHelp, BuiltinIncompleteFeaturesNote, BuiltinKeywordIdents,
32         BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
33         BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
34         BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasGenericBounds,
35         BuiltinTypeAliasGenericBoundsSuggestion, BuiltinTypeAliasWhereClause,
36         BuiltinUnexpectedCliConfigName, BuiltinUnexpectedCliConfigValue,
37         BuiltinUngatedAsyncFnTrackCaller, BuiltinUnnameableTestItems, BuiltinUnpermittedTypeInit,
38         BuiltinUnpermittedTypeInitSub, BuiltinUnreachablePub, BuiltinUnsafe,
39         BuiltinUnstableFeatures, BuiltinUnusedDocComment, BuiltinUnusedDocCommentSub,
40         BuiltinWhileTrue, SuggestChangingAssocTypes,
41     },
42     types::{transparent_newtype_field, CItemKind},
43     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
44 };
45 use hir::IsAsync;
46 use rustc_ast::attr;
47 use rustc_ast::tokenstream::{TokenStream, TokenTree};
48 use rustc_ast::visit::{FnCtxt, FnKind};
49 use rustc_ast::{self as ast, *};
50 use rustc_ast_pretty::pprust::{self, expr_to_string};
51 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
52 use rustc_data_structures::stack::ensure_sufficient_stack;
53 use rustc_errors::{fluent, Applicability, DecorateLint, MultiSpan};
54 use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
55 use rustc_hir as hir;
56 use rustc_hir::def::{DefKind, Res};
57 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
58 use rustc_hir::intravisit::FnKind as HirFnKind;
59 use rustc_hir::{Body, FnDecl, ForeignItemKind, GenericParamKind, Node, PatKind, PredicateOrigin};
60 use rustc_index::vec::Idx;
61 use rustc_middle::lint::in_external_macro;
62 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
63 use rustc_middle::ty::print::with_no_trimmed_paths;
64 use rustc_middle::ty::subst::GenericArgKind;
65 use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef};
66 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
67 use rustc_span::edition::Edition;
68 use rustc_span::source_map::Spanned;
69 use rustc_span::symbol::{kw, sym, Ident, Symbol};
70 use rustc_span::{BytePos, InnerSpan, Span};
71 use rustc_target::abi::{Abi, VariantIdx};
72 use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
73 use rustc_trait_selection::traits::{self, misc::type_allowed_to_implement_copy};
74
75 use crate::nonstandard_style::{method_context, MethodLateContext};
76
77 use std::fmt::Write;
78
79 // hardwired lints from librustc_middle
80 pub use rustc_session::lint::builtin::*;
81
82 declare_lint! {
83     /// The `while_true` lint detects `while true { }`.
84     ///
85     /// ### Example
86     ///
87     /// ```rust,no_run
88     /// while true {
89     ///
90     /// }
91     /// ```
92     ///
93     /// {{produces}}
94     ///
95     /// ### Explanation
96     ///
97     /// `while true` should be replaced with `loop`. A `loop` expression is
98     /// the preferred way to write an infinite loop because it more directly
99     /// expresses the intent of the loop.
100     WHILE_TRUE,
101     Warn,
102     "suggest using `loop { }` instead of `while true { }`"
103 }
104
105 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
106
107 /// Traverse through any amount of parenthesis and return the first non-parens expression.
108 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
109     while let ast::ExprKind::Paren(sub) = &expr.kind {
110         expr = sub;
111     }
112     expr
113 }
114
115 impl EarlyLintPass for WhileTrue {
116     #[inline]
117     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
118         if let ast::ExprKind::While(cond, _, label) = &e.kind
119             && let cond = pierce_parens(cond)
120             && let ast::ExprKind::Lit(token_lit) = cond.kind
121             && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
122             && !cond.span.from_expansion()
123         {
124             let condition_span = e.span.with_hi(cond.span.hi());
125             let replace = format!(
126                             "{}loop",
127                             label.map_or_else(String::new, |label| format!(
128                                 "{}: ",
129                                 label.ident,
130                             ))
131                         );
132             cx.emit_spanned_lint(WHILE_TRUE, condition_span, BuiltinWhileTrue {
133                 suggestion: condition_span,
134                 replace,
135             });
136         }
137     }
138 }
139
140 declare_lint! {
141     /// The `box_pointers` lints use of the Box type.
142     ///
143     /// ### Example
144     ///
145     /// ```rust,compile_fail
146     /// #![deny(box_pointers)]
147     /// struct Foo {
148     ///     x: Box<isize>,
149     /// }
150     /// ```
151     ///
152     /// {{produces}}
153     ///
154     /// ### Explanation
155     ///
156     /// This lint is mostly historical, and not particularly useful. `Box<T>`
157     /// used to be built into the language, and the only way to do heap
158     /// allocation. Today's Rust can call into other allocators, etc.
159     BOX_POINTERS,
160     Allow,
161     "use of owned (Box type) heap memory"
162 }
163
164 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
165
166 impl BoxPointers {
167     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
168         for leaf in ty.walk() {
169             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
170                 if leaf_ty.is_box() {
171                     cx.emit_spanned_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty });
172                 }
173             }
174         }
175     }
176 }
177
178 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
179     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
180         match it.kind {
181             hir::ItemKind::Fn(..)
182             | hir::ItemKind::TyAlias(..)
183             | hir::ItemKind::Enum(..)
184             | hir::ItemKind::Struct(..)
185             | hir::ItemKind::Union(..) => {
186                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.owner_id))
187             }
188             _ => (),
189         }
190
191         // If it's a struct, we also have to check the fields' types
192         match it.kind {
193             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
194                 for field in struct_def.fields() {
195                     self.check_heap_type(cx, field.span, cx.tcx.type_of(field.def_id));
196                 }
197             }
198             _ => (),
199         }
200     }
201
202     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
203         let ty = cx.typeck_results().node_type(e.hir_id);
204         self.check_heap_type(cx, e.span, ty);
205     }
206 }
207
208 declare_lint! {
209     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
210     /// instead of `Struct { x }` in a pattern.
211     ///
212     /// ### Example
213     ///
214     /// ```rust
215     /// struct Point {
216     ///     x: i32,
217     ///     y: i32,
218     /// }
219     ///
220     ///
221     /// fn main() {
222     ///     let p = Point {
223     ///         x: 5,
224     ///         y: 5,
225     ///     };
226     ///
227     ///     match p {
228     ///         Point { x: x, y: y } => (),
229     ///     }
230     /// }
231     /// ```
232     ///
233     /// {{produces}}
234     ///
235     /// ### Explanation
236     ///
237     /// The preferred style is to avoid the repetition of specifying both the
238     /// field name and the binding name if both identifiers are the same.
239     NON_SHORTHAND_FIELD_PATTERNS,
240     Warn,
241     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
242 }
243
244 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
245
246 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
247     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
248         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
249             let variant = cx
250                 .typeck_results()
251                 .pat_ty(pat)
252                 .ty_adt_def()
253                 .expect("struct pattern type is not an ADT")
254                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
255             for fieldpat in field_pats {
256                 if fieldpat.is_shorthand {
257                     continue;
258                 }
259                 if fieldpat.span.from_expansion() {
260                     // Don't lint if this is a macro expansion: macro authors
261                     // shouldn't have to worry about this kind of style issue
262                     // (Issue #49588)
263                     continue;
264                 }
265                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
266                     if cx.tcx.find_field_index(ident, &variant)
267                         == Some(cx.typeck_results().field_index(fieldpat.hir_id))
268                     {
269                         cx.emit_spanned_lint(
270                             NON_SHORTHAND_FIELD_PATTERNS,
271                             fieldpat.span,
272                             BuiltinNonShorthandFieldPatterns {
273                                 ident,
274                                 suggestion: fieldpat.span,
275                                 prefix: binding_annot.prefix_str(),
276                             },
277                         );
278                     }
279                 }
280             }
281         }
282     }
283 }
284
285 declare_lint! {
286     /// The `unsafe_code` lint catches usage of `unsafe` code.
287     ///
288     /// ### Example
289     ///
290     /// ```rust,compile_fail
291     /// #![deny(unsafe_code)]
292     /// fn main() {
293     ///     unsafe {
294     ///
295     ///     }
296     /// }
297     /// ```
298     ///
299     /// {{produces}}
300     ///
301     /// ### Explanation
302     ///
303     /// This lint is intended to restrict the usage of `unsafe`, which can be
304     /// difficult to use correctly.
305     UNSAFE_CODE,
306     Allow,
307     "usage of `unsafe` code"
308 }
309
310 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
311
312 impl UnsafeCode {
313     fn report_unsafe(
314         &self,
315         cx: &EarlyContext<'_>,
316         span: Span,
317         decorate: impl for<'a> DecorateLint<'a, ()>,
318     ) {
319         // This comes from a macro that has `#[allow_internal_unsafe]`.
320         if span.allows_unsafe() {
321             return;
322         }
323
324         cx.emit_spanned_lint(UNSAFE_CODE, span, decorate);
325     }
326 }
327
328 impl EarlyLintPass for UnsafeCode {
329     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
330         if attr.has_name(sym::allow_internal_unsafe) {
331             self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe);
332         }
333     }
334
335     #[inline]
336     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
337         if let ast::ExprKind::Block(ref blk, _) = e.kind {
338             // Don't warn about generated blocks; that'll just pollute the output.
339             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
340                 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
341             }
342         }
343     }
344
345     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
346         match it.kind {
347             ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => {
348                 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
349             }
350
351             ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => {
352                 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
353             }
354
355             ast::ItemKind::Fn(..) => {
356                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
357                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
358                 }
359
360                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
361                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
362                 }
363
364                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
365                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
366                 }
367             }
368
369             ast::ItemKind::Static(..) => {
370                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
371                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
372                 }
373
374                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
375                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
376                 }
377
378                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
379                     self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
380                 }
381             }
382
383             _ => {}
384         }
385     }
386
387     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
388         if let ast::AssocItemKind::Fn(..) = it.kind {
389             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
390                 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
391             }
392             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
393                 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
394             }
395         }
396     }
397
398     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
399         if let FnKind::Fn(
400             ctxt,
401             _,
402             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
403             _,
404             _,
405             body,
406         ) = fk
407         {
408             let decorator = match ctxt {
409                 FnCtxt::Foreign => return,
410                 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
411                 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
412                 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
413             };
414             self.report_unsafe(cx, span, decorator);
415         }
416     }
417 }
418
419 declare_lint! {
420     /// The `missing_docs` lint detects missing documentation for public items.
421     ///
422     /// ### Example
423     ///
424     /// ```rust,compile_fail
425     /// #![deny(missing_docs)]
426     /// pub fn foo() {}
427     /// ```
428     ///
429     /// {{produces}}
430     ///
431     /// ### Explanation
432     ///
433     /// This lint is intended to ensure that a library is well-documented.
434     /// Items without documentation can be difficult for users to understand
435     /// how to use properly.
436     ///
437     /// This lint is "allow" by default because it can be noisy, and not all
438     /// projects may want to enforce everything to be documented.
439     pub MISSING_DOCS,
440     Allow,
441     "detects missing documentation for public members",
442     report_in_external_macro
443 }
444
445 pub struct MissingDoc {
446     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
447     doc_hidden_stack: Vec<bool>,
448 }
449
450 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
451
452 fn has_doc(attr: &ast::Attribute) -> bool {
453     if attr.is_doc_comment() {
454         return true;
455     }
456
457     if !attr.has_name(sym::doc) {
458         return false;
459     }
460
461     if attr.value_str().is_some() {
462         return true;
463     }
464
465     if let Some(list) = attr.meta_item_list() {
466         for meta in list {
467             if meta.has_name(sym::hidden) {
468                 return true;
469             }
470         }
471     }
472
473     false
474 }
475
476 impl MissingDoc {
477     pub fn new() -> MissingDoc {
478         MissingDoc { doc_hidden_stack: vec![false] }
479     }
480
481     fn doc_hidden(&self) -> bool {
482         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
483     }
484
485     fn check_missing_docs_attrs(
486         &self,
487         cx: &LateContext<'_>,
488         def_id: LocalDefId,
489         article: &'static str,
490         desc: &'static str,
491     ) {
492         // If we're building a test harness, then warning about
493         // documentation is probably not really relevant right now.
494         if cx.sess().opts.test {
495             return;
496         }
497
498         // `#[doc(hidden)]` disables missing_docs check.
499         if self.doc_hidden() {
500             return;
501         }
502
503         // Only check publicly-visible items, using the result from the privacy pass.
504         // It's an option so the crate root can also use this function (it doesn't
505         // have a `NodeId`).
506         if def_id != CRATE_DEF_ID {
507             if !cx.effective_visibilities.is_exported(def_id) {
508                 return;
509             }
510         }
511
512         let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
513         let has_doc = attrs.iter().any(has_doc);
514         if !has_doc {
515             cx.emit_spanned_lint(
516                 MISSING_DOCS,
517                 cx.tcx.def_span(def_id),
518                 BuiltinMissingDoc { article, desc },
519             );
520         }
521     }
522 }
523
524 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
525     #[inline]
526     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
527         let doc_hidden = self.doc_hidden()
528             || attrs.iter().any(|attr| {
529                 attr.has_name(sym::doc)
530                     && match attr.meta_item_list() {
531                         None => false,
532                         Some(l) => attr::list_contains_name(&l, sym::hidden),
533                     }
534             });
535         self.doc_hidden_stack.push(doc_hidden);
536     }
537
538     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
539         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
540     }
541
542     fn check_crate(&mut self, cx: &LateContext<'_>) {
543         self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
544     }
545
546     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
547         match it.kind {
548             hir::ItemKind::Trait(..) => {
549                 // Issue #11592: traits are always considered exported, even when private.
550                 if cx.tcx.visibility(it.owner_id)
551                     == ty::Visibility::Restricted(
552                         cx.tcx.parent_module_from_def_id(it.owner_id.def_id).to_def_id(),
553                     )
554                 {
555                     return;
556                 }
557             }
558             hir::ItemKind::TyAlias(..)
559             | hir::ItemKind::Fn(..)
560             | hir::ItemKind::Macro(..)
561             | hir::ItemKind::Mod(..)
562             | hir::ItemKind::Enum(..)
563             | hir::ItemKind::Struct(..)
564             | hir::ItemKind::Union(..)
565             | hir::ItemKind::Const(..)
566             | hir::ItemKind::Static(..) => {}
567
568             _ => return,
569         };
570
571         let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
572
573         self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
574     }
575
576     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
577         let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
578
579         self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
580     }
581
582     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
583         let context = method_context(cx, impl_item.owner_id.def_id);
584
585         match context {
586             // If the method is an impl for a trait, don't doc.
587             MethodLateContext::TraitImpl => return,
588             MethodLateContext::TraitAutoImpl => {}
589             // If the method is an impl for an item with docs_hidden, don't doc.
590             MethodLateContext::PlainImpl => {
591                 let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
592                 let impl_ty = cx.tcx.type_of(parent);
593                 let outerdef = match impl_ty.kind() {
594                     ty::Adt(def, _) => Some(def.did()),
595                     ty::Foreign(def_id) => Some(*def_id),
596                     _ => None,
597                 };
598                 let is_hidden = match outerdef {
599                     Some(id) => cx.tcx.is_doc_hidden(id),
600                     None => false,
601                 };
602                 if is_hidden {
603                     return;
604                 }
605             }
606         }
607
608         let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
609         self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
610     }
611
612     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
613         let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
614         self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
615     }
616
617     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
618         if !sf.is_positional() {
619             self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
620         }
621     }
622
623     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
624         self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
625     }
626 }
627
628 declare_lint! {
629     /// The `missing_copy_implementations` lint detects potentially-forgotten
630     /// implementations of [`Copy`].
631     ///
632     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
633     ///
634     /// ### Example
635     ///
636     /// ```rust,compile_fail
637     /// #![deny(missing_copy_implementations)]
638     /// pub struct Foo {
639     ///     pub field: i32
640     /// }
641     /// # fn main() {}
642     /// ```
643     ///
644     /// {{produces}}
645     ///
646     /// ### Explanation
647     ///
648     /// Historically (before 1.0), types were automatically marked as `Copy`
649     /// if possible. This was changed so that it required an explicit opt-in
650     /// by implementing the `Copy` trait. As part of this change, a lint was
651     /// added to alert if a copyable type was not marked `Copy`.
652     ///
653     /// This lint is "allow" by default because this code isn't bad; it is
654     /// common to write newtypes like this specifically so that a `Copy` type
655     /// is no longer `Copy`. `Copy` types can result in unintended copies of
656     /// large data which can impact performance.
657     pub MISSING_COPY_IMPLEMENTATIONS,
658     Allow,
659     "detects potentially-forgotten implementations of `Copy`"
660 }
661
662 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
663
664 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
665     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
666         if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
667             return;
668         }
669         let (def, ty) = match item.kind {
670             hir::ItemKind::Struct(_, ref ast_generics) => {
671                 if !ast_generics.params.is_empty() {
672                     return;
673                 }
674                 let def = cx.tcx.adt_def(item.owner_id);
675                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
676             }
677             hir::ItemKind::Union(_, ref ast_generics) => {
678                 if !ast_generics.params.is_empty() {
679                     return;
680                 }
681                 let def = cx.tcx.adt_def(item.owner_id);
682                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
683             }
684             hir::ItemKind::Enum(_, ref ast_generics) => {
685                 if !ast_generics.params.is_empty() {
686                     return;
687                 }
688                 let def = cx.tcx.adt_def(item.owner_id);
689                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
690             }
691             _ => return,
692         };
693         if def.has_dtor(cx.tcx) {
694             return;
695         }
696
697         // If the type contains a raw pointer, it may represent something like a handle,
698         // and recommending Copy might be a bad idea.
699         for field in def.all_fields() {
700             let did = field.did;
701             if cx.tcx.type_of(did).is_unsafe_ptr() {
702                 return;
703             }
704         }
705         let param_env = ty::ParamEnv::empty();
706         if ty.is_copy_modulo_regions(cx.tcx, param_env) {
707             return;
708         }
709
710         // We shouldn't recommend implementing `Copy` on stateful things,
711         // such as iterators.
712         if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
713             && cx.tcx
714                 .infer_ctxt()
715                 .build()
716                 .type_implements_trait(iter_trait, [ty], param_env)
717                 .must_apply_modulo_regions()
718         {
719             return;
720         }
721
722         // Default value of clippy::trivially_copy_pass_by_ref
723         const MAX_SIZE: u64 = 256;
724
725         if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
726             if size > MAX_SIZE {
727                 return;
728             }
729         }
730
731         if type_allowed_to_implement_copy(
732             cx.tcx,
733             param_env,
734             ty,
735             traits::ObligationCause::misc(item.span, item.owner_id.def_id),
736         )
737         .is_ok()
738         {
739             cx.emit_spanned_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
740         }
741     }
742 }
743
744 declare_lint! {
745     /// The `missing_debug_implementations` lint detects missing
746     /// implementations of [`fmt::Debug`].
747     ///
748     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
749     ///
750     /// ### Example
751     ///
752     /// ```rust,compile_fail
753     /// #![deny(missing_debug_implementations)]
754     /// pub struct Foo;
755     /// # fn main() {}
756     /// ```
757     ///
758     /// {{produces}}
759     ///
760     /// ### Explanation
761     ///
762     /// Having a `Debug` implementation on all types can assist with
763     /// debugging, as it provides a convenient way to format and display a
764     /// value. Using the `#[derive(Debug)]` attribute will automatically
765     /// generate a typical implementation, or a custom implementation can be
766     /// added by manually implementing the `Debug` trait.
767     ///
768     /// This lint is "allow" by default because adding `Debug` to all types can
769     /// have a negative impact on compile time and code size. It also requires
770     /// boilerplate to be added to every type, which can be an impediment.
771     MISSING_DEBUG_IMPLEMENTATIONS,
772     Allow,
773     "detects missing implementations of Debug"
774 }
775
776 #[derive(Default)]
777 pub struct MissingDebugImplementations {
778     impling_types: Option<LocalDefIdSet>,
779 }
780
781 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
782
783 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
784     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
785         if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
786             return;
787         }
788
789         match item.kind {
790             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
791             _ => return,
792         }
793
794         let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
795             return
796         };
797
798         if self.impling_types.is_none() {
799             let mut impls = LocalDefIdSet::default();
800             cx.tcx.for_each_impl(debug, |d| {
801                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
802                     if let Some(def_id) = ty_def.did().as_local() {
803                         impls.insert(def_id);
804                     }
805                 }
806             });
807
808             self.impling_types = Some(impls);
809             debug!("{:?}", self.impling_types);
810         }
811
812         if !self.impling_types.as_ref().unwrap().contains(&item.owner_id.def_id) {
813             cx.emit_spanned_lint(
814                 MISSING_DEBUG_IMPLEMENTATIONS,
815                 item.span,
816                 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
817             );
818         }
819     }
820 }
821
822 declare_lint! {
823     /// The `anonymous_parameters` lint detects anonymous parameters in trait
824     /// definitions.
825     ///
826     /// ### Example
827     ///
828     /// ```rust,edition2015,compile_fail
829     /// #![deny(anonymous_parameters)]
830     /// // edition 2015
831     /// pub trait Foo {
832     ///     fn foo(usize);
833     /// }
834     /// fn main() {}
835     /// ```
836     ///
837     /// {{produces}}
838     ///
839     /// ### Explanation
840     ///
841     /// This syntax is mostly a historical accident, and can be worked around
842     /// quite easily by adding an `_` pattern or a descriptive identifier:
843     ///
844     /// ```rust
845     /// trait Foo {
846     ///     fn foo(_: usize);
847     /// }
848     /// ```
849     ///
850     /// This syntax is now a hard error in the 2018 edition. In the 2015
851     /// edition, this lint is "warn" by default. This lint
852     /// enables the [`cargo fix`] tool with the `--edition` flag to
853     /// automatically transition old code from the 2015 edition to 2018. The
854     /// tool will run this lint and automatically apply the
855     /// suggested fix from the compiler (which is to add `_` to each
856     /// parameter). This provides a completely automated way to update old
857     /// code for a new edition. See [issue #41686] for more details.
858     ///
859     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
860     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
861     pub ANONYMOUS_PARAMETERS,
862     Warn,
863     "detects anonymous parameters",
864     @future_incompatible = FutureIncompatibleInfo {
865         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
866         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
867     };
868 }
869
870 declare_lint_pass!(
871     /// Checks for use of anonymous parameters (RFC 1685).
872     AnonymousParameters => [ANONYMOUS_PARAMETERS]
873 );
874
875 impl EarlyLintPass for AnonymousParameters {
876     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
877         if cx.sess().edition() != Edition::Edition2015 {
878             // This is a hard error in future editions; avoid linting and erroring
879             return;
880         }
881         if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
882             for arg in sig.decl.inputs.iter() {
883                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
884                     if ident.name == kw::Empty {
885                         let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
886
887                         let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
888                             (snip.as_str(), Applicability::MachineApplicable)
889                         } else {
890                             ("<type>", Applicability::HasPlaceholders)
891                         };
892                         cx.emit_spanned_lint(
893                             ANONYMOUS_PARAMETERS,
894                             arg.pat.span,
895                             BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
896                         );
897                     }
898                 }
899             }
900         }
901     }
902 }
903
904 /// Check for use of attributes which have been deprecated.
905 #[derive(Clone)]
906 pub struct DeprecatedAttr {
907     // This is not free to compute, so we want to keep it around, rather than
908     // compute it for every attribute.
909     depr_attrs: Vec<&'static BuiltinAttribute>,
910 }
911
912 impl_lint_pass!(DeprecatedAttr => []);
913
914 impl DeprecatedAttr {
915     pub fn new() -> DeprecatedAttr {
916         DeprecatedAttr { depr_attrs: deprecated_attributes() }
917     }
918 }
919
920 impl EarlyLintPass for DeprecatedAttr {
921     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
922         for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
923             if attr.ident().map(|ident| ident.name) == Some(*name) {
924                 if let &AttributeGate::Gated(
925                     Stability::Deprecated(link, suggestion),
926                     name,
927                     reason,
928                     _,
929                 ) = gate
930                 {
931                     let suggestion = match suggestion {
932                         Some(msg) => {
933                             BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg }
934                         }
935                         None => {
936                             BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span }
937                         }
938                     };
939                     cx.emit_spanned_lint(
940                         DEPRECATED,
941                         attr.span,
942                         BuiltinDeprecatedAttrLink { name, reason, link, suggestion },
943                     );
944                 }
945                 return;
946             }
947         }
948         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
949             cx.emit_spanned_lint(
950                 DEPRECATED,
951                 attr.span,
952                 BuiltinDeprecatedAttrUsed {
953                     name: pprust::path_to_string(&attr.get_normal_item().path),
954                     suggestion: attr.span,
955                 },
956             );
957         }
958     }
959 }
960
961 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
962     use rustc_ast::token::CommentKind;
963
964     let mut attrs = attrs.iter().peekable();
965
966     // Accumulate a single span for sugared doc comments.
967     let mut sugared_span: Option<Span> = None;
968
969     while let Some(attr) = attrs.next() {
970         let is_doc_comment = attr.is_doc_comment();
971         if is_doc_comment {
972             sugared_span =
973                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
974         }
975
976         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
977             continue;
978         }
979
980         let span = sugared_span.take().unwrap_or(attr.span);
981
982         if is_doc_comment || attr.has_name(sym::doc) {
983             let sub = match attr.kind {
984                 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
985                     BuiltinUnusedDocCommentSub::PlainHelp
986                 }
987                 AttrKind::DocComment(CommentKind::Block, _) => {
988                     BuiltinUnusedDocCommentSub::BlockHelp
989                 }
990             };
991             cx.emit_spanned_lint(
992                 UNUSED_DOC_COMMENTS,
993                 span,
994                 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
995             );
996         }
997     }
998 }
999
1000 impl EarlyLintPass for UnusedDocComment {
1001     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1002         let kind = match stmt.kind {
1003             ast::StmtKind::Local(..) => "statements",
1004             // Disabled pending discussion in #78306
1005             ast::StmtKind::Item(..) => return,
1006             // expressions will be reported by `check_expr`.
1007             ast::StmtKind::Empty
1008             | ast::StmtKind::Semi(_)
1009             | ast::StmtKind::Expr(_)
1010             | ast::StmtKind::MacCall(_) => return,
1011         };
1012
1013         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1014     }
1015
1016     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1017         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1018         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1019     }
1020
1021     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1022         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1023     }
1024
1025     fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1026         warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1027     }
1028
1029     fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
1030         warn_if_doc(cx, block.span, "blocks", &block.attrs());
1031     }
1032
1033     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1034         if let ast::ItemKind::ForeignMod(_) = item.kind {
1035             warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
1036         }
1037     }
1038 }
1039
1040 declare_lint! {
1041     /// The `no_mangle_const_items` lint detects any `const` items with the
1042     /// [`no_mangle` attribute].
1043     ///
1044     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1045     ///
1046     /// ### Example
1047     ///
1048     /// ```rust,compile_fail
1049     /// #[no_mangle]
1050     /// const FOO: i32 = 5;
1051     /// ```
1052     ///
1053     /// {{produces}}
1054     ///
1055     /// ### Explanation
1056     ///
1057     /// Constants do not have their symbols exported, and therefore, this
1058     /// probably means you meant to use a [`static`], not a [`const`].
1059     ///
1060     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1061     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1062     NO_MANGLE_CONST_ITEMS,
1063     Deny,
1064     "const items will not have their symbols exported"
1065 }
1066
1067 declare_lint! {
1068     /// The `no_mangle_generic_items` lint detects generic items that must be
1069     /// mangled.
1070     ///
1071     /// ### Example
1072     ///
1073     /// ```rust
1074     /// #[no_mangle]
1075     /// fn foo<T>(t: T) {
1076     ///
1077     /// }
1078     /// ```
1079     ///
1080     /// {{produces}}
1081     ///
1082     /// ### Explanation
1083     ///
1084     /// A function with generics must have its symbol mangled to accommodate
1085     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1086     /// this situation, and should be removed.
1087     ///
1088     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1089     NO_MANGLE_GENERIC_ITEMS,
1090     Warn,
1091     "generic items must be mangled"
1092 }
1093
1094 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1095
1096 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1097     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1098         let attrs = cx.tcx.hir().attrs(it.hir_id());
1099         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1100                                              impl_generics: Option<&hir::Generics<'_>>,
1101                                              generics: &hir::Generics<'_>,
1102                                              span| {
1103             for param in
1104                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1105             {
1106                 match param.kind {
1107                     GenericParamKind::Lifetime { .. } => {}
1108                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1109                         cx.emit_spanned_lint(
1110                             NO_MANGLE_GENERIC_ITEMS,
1111                             span,
1112                             BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span },
1113                         );
1114                         break;
1115                     }
1116                 }
1117             }
1118         };
1119         match it.kind {
1120             hir::ItemKind::Fn(.., ref generics, _) => {
1121                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1122                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1123                 }
1124             }
1125             hir::ItemKind::Const(..) => {
1126                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1127                     // account for "pub const" (#45562)
1128                     let start = cx
1129                         .tcx
1130                         .sess
1131                         .source_map()
1132                         .span_to_snippet(it.span)
1133                         .map(|snippet| snippet.find("const").unwrap_or(0))
1134                         .unwrap_or(0) as u32;
1135                     // `const` is 5 chars
1136                     let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1137
1138                     // Const items do not refer to a particular location in memory, and therefore
1139                     // don't have anything to attach a symbol to
1140                     cx.emit_spanned_lint(
1141                         NO_MANGLE_CONST_ITEMS,
1142                         it.span,
1143                         BuiltinConstNoMangle { suggestion },
1144                     );
1145                 }
1146             }
1147             hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1148                 for it in *items {
1149                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1150                         if let Some(no_mangle_attr) = cx
1151                             .sess()
1152                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1153                         {
1154                             check_no_mangle_on_generic_fn(
1155                                 no_mangle_attr,
1156                                 Some(generics),
1157                                 cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(),
1158                                 it.span,
1159                             );
1160                         }
1161                     }
1162                 }
1163             }
1164             _ => {}
1165         }
1166     }
1167 }
1168
1169 declare_lint! {
1170     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1171     /// T` because it is [undefined behavior].
1172     ///
1173     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1174     ///
1175     /// ### Example
1176     ///
1177     /// ```rust,compile_fail
1178     /// unsafe {
1179     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1180     /// }
1181     /// ```
1182     ///
1183     /// {{produces}}
1184     ///
1185     /// ### Explanation
1186     ///
1187     /// Certain assumptions are made about aliasing of data, and this transmute
1188     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1189     ///
1190     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1191     MUTABLE_TRANSMUTES,
1192     Deny,
1193     "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1194 }
1195
1196 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1197
1198 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1199     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1200         if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1201             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1202         {
1203             if from_mutbl < to_mutbl {
1204                 cx.emit_spanned_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1205             }
1206         }
1207
1208         fn get_transmute_from_to<'tcx>(
1209             cx: &LateContext<'tcx>,
1210             expr: &hir::Expr<'_>,
1211         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1212             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1213                 cx.qpath_res(qpath, expr.hir_id)
1214             } else {
1215                 return None;
1216             };
1217             if let Res::Def(DefKind::Fn, did) = def {
1218                 if !def_id_is_transmute(cx, did) {
1219                     return None;
1220                 }
1221                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1222                 let from = sig.inputs().skip_binder()[0];
1223                 let to = sig.output().skip_binder();
1224                 return Some((from, to));
1225             }
1226             None
1227         }
1228
1229         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1230             cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
1231         }
1232     }
1233 }
1234
1235 declare_lint! {
1236     /// The `unstable_features` is deprecated and should no longer be used.
1237     UNSTABLE_FEATURES,
1238     Allow,
1239     "enabling unstable features (deprecated. do not use)"
1240 }
1241
1242 declare_lint_pass!(
1243     /// Forbids using the `#[feature(...)]` attribute
1244     UnstableFeatures => [UNSTABLE_FEATURES]
1245 );
1246
1247 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1248     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1249         if attr.has_name(sym::feature) {
1250             if let Some(items) = attr.meta_item_list() {
1251                 for item in items {
1252                     cx.emit_spanned_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1253                 }
1254             }
1255         }
1256     }
1257 }
1258
1259 declare_lint! {
1260     /// The `ungated_async_fn_track_caller` lint warns when the
1261     /// `#[track_caller]` attribute is used on an async function, method, or
1262     /// closure, without enabling the corresponding unstable feature flag.
1263     ///
1264     /// ### Example
1265     ///
1266     /// ```rust
1267     /// #[track_caller]
1268     /// async fn foo() {}
1269     /// ```
1270     ///
1271     /// {{produces}}
1272     ///
1273     /// ### Explanation
1274     ///
1275     /// The attribute must be used in conjunction with the
1276     /// [`closure_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1277     /// annotation will function as a no-op.
1278     ///
1279     /// [`closure_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/closure-track-caller.html
1280     UNGATED_ASYNC_FN_TRACK_CALLER,
1281     Warn,
1282     "enabling track_caller on an async fn is a no-op unless the closure_track_caller feature is enabled"
1283 }
1284
1285 declare_lint_pass!(
1286     /// Explains corresponding feature flag must be enabled for the `#[track_caller] attribute to
1287     /// do anything
1288     UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1289 );
1290
1291 impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1292     fn check_fn(
1293         &mut self,
1294         cx: &LateContext<'_>,
1295         fn_kind: HirFnKind<'_>,
1296         _: &'tcx FnDecl<'_>,
1297         _: &'tcx Body<'_>,
1298         span: Span,
1299         def_id: LocalDefId,
1300     ) {
1301         if fn_kind.asyncness() == IsAsync::Async
1302             && !cx.tcx.features().closure_track_caller
1303             // Now, check if the function has the `#[track_caller]` attribute
1304             && let Some(attr) = cx.tcx.get_attr(def_id.to_def_id(), sym::track_caller)
1305         {
1306             cx.emit_spanned_lint(UNGATED_ASYNC_FN_TRACK_CALLER, attr.span, BuiltinUngatedAsyncFnTrackCaller {
1307                 label: span,
1308                 parse_sess: &cx.tcx.sess.parse_sess,
1309             });
1310         }
1311     }
1312 }
1313
1314 declare_lint! {
1315     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1316     /// the crate root.
1317     ///
1318     /// ### Example
1319     ///
1320     /// ```rust,compile_fail
1321     /// #![deny(unreachable_pub)]
1322     /// mod foo {
1323     ///     pub mod bar {
1324     ///
1325     ///     }
1326     /// }
1327     /// ```
1328     ///
1329     /// {{produces}}
1330     ///
1331     /// ### Explanation
1332     ///
1333     /// A bare `pub` visibility may be misleading if the item is not actually
1334     /// publicly exported from the crate. The `pub(crate)` visibility is
1335     /// recommended to be used instead, which more clearly expresses the intent
1336     /// that the item is only visible within its own crate.
1337     ///
1338     /// This lint is "allow" by default because it will trigger for a large
1339     /// amount existing Rust code, and has some false-positives. Eventually it
1340     /// is desired for this to become warn-by-default.
1341     pub UNREACHABLE_PUB,
1342     Allow,
1343     "`pub` items not reachable from crate root"
1344 }
1345
1346 declare_lint_pass!(
1347     /// Lint for items marked `pub` that aren't reachable from other crates.
1348     UnreachablePub => [UNREACHABLE_PUB]
1349 );
1350
1351 impl UnreachablePub {
1352     fn perform_lint(
1353         &self,
1354         cx: &LateContext<'_>,
1355         what: &str,
1356         def_id: LocalDefId,
1357         vis_span: Span,
1358         exportable: bool,
1359     ) {
1360         let mut applicability = Applicability::MachineApplicable;
1361         if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1362         {
1363             if vis_span.from_expansion() {
1364                 applicability = Applicability::MaybeIncorrect;
1365             }
1366             let def_span = cx.tcx.def_span(def_id);
1367             cx.emit_spanned_lint(
1368                 UNREACHABLE_PUB,
1369                 def_span,
1370                 BuiltinUnreachablePub {
1371                     what,
1372                     suggestion: (vis_span, applicability),
1373                     help: exportable.then_some(()),
1374                 },
1375             );
1376         }
1377     }
1378 }
1379
1380 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1381     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1382         // Do not warn for fake `use` statements.
1383         if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1384             return;
1385         }
1386         self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1387     }
1388
1389     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1390         self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1391     }
1392
1393     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1394         let map = cx.tcx.hir();
1395         if matches!(map.get_parent(field.hir_id), Node::Variant(_)) {
1396             return;
1397         }
1398         self.perform_lint(cx, "field", field.def_id, field.vis_span, false);
1399     }
1400
1401     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1402         // Only lint inherent impl items.
1403         if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1404             self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
1405         }
1406     }
1407 }
1408
1409 declare_lint! {
1410     /// The `type_alias_bounds` lint detects bounds in type aliases.
1411     ///
1412     /// ### Example
1413     ///
1414     /// ```rust
1415     /// type SendVec<T: Send> = Vec<T>;
1416     /// ```
1417     ///
1418     /// {{produces}}
1419     ///
1420     /// ### Explanation
1421     ///
1422     /// The trait bounds in a type alias are currently ignored, and should not
1423     /// be included to avoid confusion. This was previously allowed
1424     /// unintentionally; this may become a hard error in the future.
1425     TYPE_ALIAS_BOUNDS,
1426     Warn,
1427     "bounds in type aliases are not enforced"
1428 }
1429
1430 declare_lint_pass!(
1431     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1432     /// They are relevant when using associated types, but otherwise neither checked
1433     /// at definition site nor enforced at use site.
1434     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1435 );
1436
1437 impl TypeAliasBounds {
1438     pub(crate) fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1439         match *qpath {
1440             hir::QPath::TypeRelative(ref ty, _) => {
1441                 // If this is a type variable, we found a `T::Assoc`.
1442                 match ty.kind {
1443                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1444                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1445                     }
1446                     _ => false,
1447                 }
1448             }
1449             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1450         }
1451     }
1452 }
1453
1454 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1455     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1456         let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1457             return
1458         };
1459         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1460             // Bounds are respected for `type X = impl Trait`
1461             return;
1462         }
1463         // There must not be a where clause
1464         if type_alias_generics.predicates.is_empty() {
1465             return;
1466         }
1467
1468         let mut where_spans = Vec::new();
1469         let mut inline_spans = Vec::new();
1470         let mut inline_sugg = Vec::new();
1471         for p in type_alias_generics.predicates {
1472             let span = p.span();
1473             if p.in_where_clause() {
1474                 where_spans.push(span);
1475             } else {
1476                 for b in p.bounds() {
1477                     inline_spans.push(b.span());
1478                 }
1479                 inline_sugg.push((span, String::new()));
1480             }
1481         }
1482
1483         let mut suggested_changing_assoc_types = false;
1484         if !where_spans.is_empty() {
1485             let sub = (!suggested_changing_assoc_types).then(|| {
1486                 suggested_changing_assoc_types = true;
1487                 SuggestChangingAssocTypes { ty }
1488             });
1489             cx.emit_spanned_lint(
1490                 TYPE_ALIAS_BOUNDS,
1491                 where_spans,
1492                 BuiltinTypeAliasWhereClause {
1493                     suggestion: type_alias_generics.where_clause_span,
1494                     sub,
1495                 },
1496             );
1497         }
1498
1499         if !inline_spans.is_empty() {
1500             let suggestion = BuiltinTypeAliasGenericBoundsSuggestion { suggestions: inline_sugg };
1501             let sub = (!suggested_changing_assoc_types).then(|| {
1502                 suggested_changing_assoc_types = true;
1503                 SuggestChangingAssocTypes { ty }
1504             });
1505             cx.emit_spanned_lint(
1506                 TYPE_ALIAS_BOUNDS,
1507                 inline_spans,
1508                 BuiltinTypeAliasGenericBounds { suggestion, sub },
1509             );
1510         }
1511     }
1512 }
1513
1514 declare_lint_pass!(
1515     /// Lint constants that are erroneous.
1516     /// Without this lint, we might not get any diagnostic if the constant is
1517     /// unused within this crate, even though downstream crates can't use it
1518     /// without producing an error.
1519     UnusedBrokenConst => []
1520 );
1521
1522 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1523     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1524         match it.kind {
1525             hir::ItemKind::Const(_, body_id) => {
1526                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1527                 // trigger the query once for all constants since that will already report the errors
1528                 cx.tcx.ensure().const_eval_poly(def_id);
1529             }
1530             hir::ItemKind::Static(_, _, body_id) => {
1531                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1532                 cx.tcx.ensure().eval_static_initializer(def_id);
1533             }
1534             _ => {}
1535         }
1536     }
1537 }
1538
1539 declare_lint! {
1540     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1541     /// any type parameters.
1542     ///
1543     /// ### Example
1544     ///
1545     /// ```rust
1546     /// #![feature(trivial_bounds)]
1547     /// pub struct A where i32: Copy;
1548     /// ```
1549     ///
1550     /// {{produces}}
1551     ///
1552     /// ### Explanation
1553     ///
1554     /// Usually you would not write a trait bound that you know is always
1555     /// true, or never true. However, when using macros, the macro may not
1556     /// know whether or not the constraint would hold or not at the time when
1557     /// generating the code. Currently, the compiler does not alert you if the
1558     /// constraint is always true, and generates an error if it is never true.
1559     /// The `trivial_bounds` feature changes this to be a warning in both
1560     /// cases, giving macros more freedom and flexibility to generate code,
1561     /// while still providing a signal when writing non-macro code that
1562     /// something is amiss.
1563     ///
1564     /// See [RFC 2056] for more details. This feature is currently only
1565     /// available on the nightly channel, see [tracking issue #48214].
1566     ///
1567     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1568     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1569     TRIVIAL_BOUNDS,
1570     Warn,
1571     "these bounds don't depend on an type parameters"
1572 }
1573
1574 declare_lint_pass!(
1575     /// Lint for trait and lifetime bounds that don't depend on type parameters
1576     /// which either do nothing, or stop the item from being used.
1577     TrivialConstraints => [TRIVIAL_BOUNDS]
1578 );
1579
1580 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1581     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1582         use rustc_middle::ty::visit::TypeVisitable;
1583         use rustc_middle::ty::Clause;
1584         use rustc_middle::ty::PredicateKind::*;
1585
1586         if cx.tcx.features().trivial_bounds {
1587             let predicates = cx.tcx.predicates_of(item.owner_id);
1588             for &(predicate, span) in predicates.predicates {
1589                 let predicate_kind_name = match predicate.kind().skip_binder() {
1590                     Clause(Clause::Trait(..)) => "trait",
1591                     Clause(Clause::TypeOutlives(..)) |
1592                     Clause(Clause::RegionOutlives(..)) => "lifetime",
1593
1594                     // Ignore projections, as they can only be global
1595                     // if the trait bound is global
1596                     Clause(Clause::Projection(..)) |
1597                     // Ignore bounds that a user can't type
1598                     WellFormed(..) |
1599                     ObjectSafe(..) |
1600                     ClosureKind(..) |
1601                     Subtype(..) |
1602                     Coerce(..) |
1603                     ConstEvaluatable(..) |
1604                     ConstEquate(..) |
1605                     Ambiguous |
1606                     TypeWellFormedFromEnv(..) => continue,
1607                 };
1608                 if predicate.is_global() {
1609                     cx.emit_spanned_lint(
1610                         TRIVIAL_BOUNDS,
1611                         span,
1612                         BuiltinTrivialBounds { predicate_kind_name, predicate },
1613                     );
1614                 }
1615             }
1616         }
1617     }
1618 }
1619
1620 declare_lint_pass!(
1621     /// Does nothing as a lint pass, but registers some `Lint`s
1622     /// which are used by other parts of the compiler.
1623     SoftLints => [
1624         WHILE_TRUE,
1625         BOX_POINTERS,
1626         NON_SHORTHAND_FIELD_PATTERNS,
1627         UNSAFE_CODE,
1628         MISSING_DOCS,
1629         MISSING_COPY_IMPLEMENTATIONS,
1630         MISSING_DEBUG_IMPLEMENTATIONS,
1631         ANONYMOUS_PARAMETERS,
1632         UNUSED_DOC_COMMENTS,
1633         NO_MANGLE_CONST_ITEMS,
1634         NO_MANGLE_GENERIC_ITEMS,
1635         MUTABLE_TRANSMUTES,
1636         UNSTABLE_FEATURES,
1637         UNREACHABLE_PUB,
1638         TYPE_ALIAS_BOUNDS,
1639         TRIVIAL_BOUNDS
1640     ]
1641 );
1642
1643 declare_lint! {
1644     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1645     /// pattern], which is deprecated.
1646     ///
1647     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1648     ///
1649     /// ### Example
1650     ///
1651     /// ```rust,edition2018
1652     /// let x = 123;
1653     /// match x {
1654     ///     0...100 => {}
1655     ///     _ => {}
1656     /// }
1657     /// ```
1658     ///
1659     /// {{produces}}
1660     ///
1661     /// ### Explanation
1662     ///
1663     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1664     /// confusion with the [`..` range expression]. Use the new form instead.
1665     ///
1666     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1667     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1668     Warn,
1669     "`...` range patterns are deprecated",
1670     @future_incompatible = FutureIncompatibleInfo {
1671         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1672         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1673     };
1674 }
1675
1676 #[derive(Default)]
1677 pub struct EllipsisInclusiveRangePatterns {
1678     /// If `Some(_)`, suppress all subsequent pattern
1679     /// warnings for better diagnostics.
1680     node_id: Option<ast::NodeId>,
1681 }
1682
1683 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1684
1685 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1686     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1687         if self.node_id.is_some() {
1688             // Don't recursively warn about patterns inside range endpoints.
1689             return;
1690         }
1691
1692         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1693
1694         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1695         /// corresponding to the ellipsis.
1696         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1697             match &pat.kind {
1698                 PatKind::Range(
1699                     a,
1700                     Some(b),
1701                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1702                 ) => Some((a.as_deref(), b, *span)),
1703                 _ => None,
1704             }
1705         }
1706
1707         let (parenthesise, endpoints) = match &pat.kind {
1708             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1709             _ => (false, matches_ellipsis_pat(pat)),
1710         };
1711
1712         if let Some((start, end, join)) = endpoints {
1713             if parenthesise {
1714                 self.node_id = Some(pat.id);
1715                 let end = expr_to_string(&end);
1716                 let replace = match start {
1717                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1718                     None => format!("&(..={})", end),
1719                 };
1720                 if join.edition() >= Edition::Edition2021 {
1721                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1722                         span: pat.span,
1723                         suggestion: pat.span,
1724                         replace,
1725                     });
1726                 } else {
1727                     cx.emit_spanned_lint(
1728                         ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1729                         pat.span,
1730                         BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1731                             suggestion: pat.span,
1732                             replace,
1733                         },
1734                     );
1735                 }
1736             } else {
1737                 let replace = "..=";
1738                 if join.edition() >= Edition::Edition2021 {
1739                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1740                         span: pat.span,
1741                         suggestion: join,
1742                         replace: replace.to_string(),
1743                     });
1744                 } else {
1745                     cx.emit_spanned_lint(
1746                         ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1747                         join,
1748                         BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1749                             suggestion: join,
1750                         },
1751                     );
1752                 }
1753             };
1754         }
1755     }
1756
1757     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1758         if let Some(node_id) = self.node_id {
1759             if pat.id == node_id {
1760                 self.node_id = None
1761             }
1762         }
1763     }
1764 }
1765
1766 declare_lint! {
1767     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1768     /// that are not able to be run by the test harness because they are in a
1769     /// position where they are not nameable.
1770     ///
1771     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1772     ///
1773     /// ### Example
1774     ///
1775     /// ```rust,test
1776     /// fn main() {
1777     ///     #[test]
1778     ///     fn foo() {
1779     ///         // This test will not fail because it does not run.
1780     ///         assert_eq!(1, 2);
1781     ///     }
1782     /// }
1783     /// ```
1784     ///
1785     /// {{produces}}
1786     ///
1787     /// ### Explanation
1788     ///
1789     /// In order for the test harness to run a test, the test function must be
1790     /// located in a position where it can be accessed from the crate root.
1791     /// This generally means it must be defined in a module, and not anywhere
1792     /// else such as inside another function. The compiler previously allowed
1793     /// this without an error, so a lint was added as an alert that a test is
1794     /// not being used. Whether or not this should be allowed has not yet been
1795     /// decided, see [RFC 2471] and [issue #36629].
1796     ///
1797     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1798     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1799     UNNAMEABLE_TEST_ITEMS,
1800     Warn,
1801     "detects an item that cannot be named being marked as `#[test_case]`",
1802     report_in_external_macro
1803 }
1804
1805 pub struct UnnameableTestItems {
1806     boundary: Option<hir::OwnerId>, // Id of the item under which things are not nameable
1807     items_nameable: bool,
1808 }
1809
1810 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1811
1812 impl UnnameableTestItems {
1813     pub fn new() -> Self {
1814         Self { boundary: None, items_nameable: true }
1815     }
1816 }
1817
1818 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1819     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1820         if self.items_nameable {
1821             if let hir::ItemKind::Mod(..) = it.kind {
1822             } else {
1823                 self.items_nameable = false;
1824                 self.boundary = Some(it.owner_id);
1825             }
1826             return;
1827         }
1828
1829         let attrs = cx.tcx.hir().attrs(it.hir_id());
1830         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1831             cx.emit_spanned_lint(UNNAMEABLE_TEST_ITEMS, attr.span, BuiltinUnnameableTestItems);
1832         }
1833     }
1834
1835     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1836         if !self.items_nameable && self.boundary == Some(it.owner_id) {
1837             self.items_nameable = true;
1838         }
1839     }
1840 }
1841
1842 declare_lint! {
1843     /// The `keyword_idents` lint detects edition keywords being used as an
1844     /// identifier.
1845     ///
1846     /// ### Example
1847     ///
1848     /// ```rust,edition2015,compile_fail
1849     /// #![deny(keyword_idents)]
1850     /// // edition 2015
1851     /// fn dyn() {}
1852     /// ```
1853     ///
1854     /// {{produces}}
1855     ///
1856     /// ### Explanation
1857     ///
1858     /// Rust [editions] allow the language to evolve without breaking
1859     /// backwards compatibility. This lint catches code that uses new keywords
1860     /// that are added to the language that are used as identifiers (such as a
1861     /// variable name, function name, etc.). If you switch the compiler to a
1862     /// new edition without updating the code, then it will fail to compile if
1863     /// you are using a new keyword as an identifier.
1864     ///
1865     /// You can manually change the identifiers to a non-keyword, or use a
1866     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1867     ///
1868     /// This lint solves the problem automatically. It is "allow" by default
1869     /// because the code is perfectly valid in older editions. The [`cargo
1870     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1871     /// and automatically apply the suggested fix from the compiler (which is
1872     /// to use a raw identifier). This provides a completely automated way to
1873     /// update old code for a new edition.
1874     ///
1875     /// [editions]: https://doc.rust-lang.org/edition-guide/
1876     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1877     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1878     pub KEYWORD_IDENTS,
1879     Allow,
1880     "detects edition keywords being used as an identifier",
1881     @future_incompatible = FutureIncompatibleInfo {
1882         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1883         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1884     };
1885 }
1886
1887 declare_lint_pass!(
1888     /// Check for uses of edition keywords used as an identifier.
1889     KeywordIdents => [KEYWORD_IDENTS]
1890 );
1891
1892 struct UnderMacro(bool);
1893
1894 impl KeywordIdents {
1895     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1896         for tt in tokens.into_trees() {
1897             match tt {
1898                 // Only report non-raw idents.
1899                 TokenTree::Token(token, _) => {
1900                     if let Some((ident, false)) = token.ident() {
1901                         self.check_ident_token(cx, UnderMacro(true), ident);
1902                     }
1903                 }
1904                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1905             }
1906         }
1907     }
1908
1909     fn check_ident_token(
1910         &mut self,
1911         cx: &EarlyContext<'_>,
1912         UnderMacro(under_macro): UnderMacro,
1913         ident: Ident,
1914     ) {
1915         let next_edition = match cx.sess().edition() {
1916             Edition::Edition2015 => {
1917                 match ident.name {
1918                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1919
1920                     // rust-lang/rust#56327: Conservatively do not
1921                     // attempt to report occurrences of `dyn` within
1922                     // macro definitions or invocations, because `dyn`
1923                     // can legitimately occur as a contextual keyword
1924                     // in 2015 code denoting its 2018 meaning, and we
1925                     // do not want rustfix to inject bugs into working
1926                     // code by rewriting such occurrences.
1927                     //
1928                     // But if we see `dyn` outside of a macro, we know
1929                     // its precise role in the parsed AST and thus are
1930                     // assured this is truly an attempt to use it as
1931                     // an identifier.
1932                     kw::Dyn if !under_macro => Edition::Edition2018,
1933
1934                     _ => return,
1935                 }
1936             }
1937
1938             // There are no new keywords yet for the 2018 edition and beyond.
1939             _ => return,
1940         };
1941
1942         // Don't lint `r#foo`.
1943         if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1944             return;
1945         }
1946
1947         cx.emit_spanned_lint(
1948             KEYWORD_IDENTS,
1949             ident.span,
1950             BuiltinKeywordIdents { kw: ident, next: next_edition, suggestion: ident.span },
1951         );
1952     }
1953 }
1954
1955 impl EarlyLintPass for KeywordIdents {
1956     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1957         self.check_tokens(cx, mac_def.body.tokens.clone());
1958     }
1959     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1960         self.check_tokens(cx, mac.args.tokens.clone());
1961     }
1962     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
1963         self.check_ident_token(cx, UnderMacro(false), ident);
1964     }
1965 }
1966
1967 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1968
1969 impl ExplicitOutlivesRequirements {
1970     fn lifetimes_outliving_lifetime<'tcx>(
1971         inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
1972         def_id: DefId,
1973     ) -> Vec<ty::Region<'tcx>> {
1974         inferred_outlives
1975             .iter()
1976             .filter_map(|(clause, _)| match *clause {
1977                 ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
1978                     ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
1979                     _ => None,
1980                 },
1981                 _ => None,
1982             })
1983             .collect()
1984     }
1985
1986     fn lifetimes_outliving_type<'tcx>(
1987         inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)],
1988         index: u32,
1989     ) -> Vec<ty::Region<'tcx>> {
1990         inferred_outlives
1991             .iter()
1992             .filter_map(|(clause, _)| match *clause {
1993                 ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1994                     a.is_param(index).then_some(b)
1995                 }
1996                 _ => None,
1997             })
1998             .collect()
1999     }
2000
2001     fn collect_outlives_bound_spans<'tcx>(
2002         &self,
2003         tcx: TyCtxt<'tcx>,
2004         bounds: &hir::GenericBounds<'_>,
2005         inferred_outlives: &[ty::Region<'tcx>],
2006         predicate_span: Span,
2007     ) -> Vec<(usize, Span)> {
2008         use rustc_middle::middle::resolve_lifetime::Region;
2009
2010         bounds
2011             .iter()
2012             .enumerate()
2013             .filter_map(|(i, bound)| {
2014                 let hir::GenericBound::Outlives(lifetime) = bound else {
2015                     return None;
2016                 };
2017
2018                 let is_inferred = match tcx.named_region(lifetime.hir_id) {
2019                     Some(Region::EarlyBound(def_id)) => inferred_outlives
2020                         .iter()
2021                         .any(|r| matches!(**r, ty::ReEarlyBound(ebr) if { ebr.def_id == def_id })),
2022                     _ => false,
2023                 };
2024
2025                 if !is_inferred {
2026                     return None;
2027                 }
2028
2029                 let span = bound.span().find_ancestor_inside(predicate_span)?;
2030                 if in_external_macro(tcx.sess, span) {
2031                     return None;
2032                 }
2033
2034                 Some((i, span))
2035             })
2036             .collect()
2037     }
2038
2039     fn consolidate_outlives_bound_spans(
2040         &self,
2041         lo: Span,
2042         bounds: &hir::GenericBounds<'_>,
2043         bound_spans: Vec<(usize, Span)>,
2044     ) -> Vec<Span> {
2045         if bounds.is_empty() {
2046             return Vec::new();
2047         }
2048         if bound_spans.len() == bounds.len() {
2049             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2050             // If all bounds are inferable, we want to delete the colon, so
2051             // start from just after the parameter (span passed as argument)
2052             vec![lo.to(last_bound_span)]
2053         } else {
2054             let mut merged = Vec::new();
2055             let mut last_merged_i = None;
2056
2057             let mut from_start = true;
2058             for (i, bound_span) in bound_spans {
2059                 match last_merged_i {
2060                     // If the first bound is inferable, our span should also eat the leading `+`.
2061                     None if i == 0 => {
2062                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2063                         last_merged_i = Some(0);
2064                     }
2065                     // If consecutive bounds are inferable, merge their spans
2066                     Some(h) if i == h + 1 => {
2067                         if let Some(tail) = merged.last_mut() {
2068                             // Also eat the trailing `+` if the first
2069                             // more-than-one bound is inferable
2070                             let to_span = if from_start && i < bounds.len() {
2071                                 bounds[i + 1].span().shrink_to_lo()
2072                             } else {
2073                                 bound_span
2074                             };
2075                             *tail = tail.to(to_span);
2076                             last_merged_i = Some(i);
2077                         } else {
2078                             bug!("another bound-span visited earlier");
2079                         }
2080                     }
2081                     _ => {
2082                         // When we find a non-inferable bound, subsequent inferable bounds
2083                         // won't be consecutive from the start (and we'll eat the leading
2084                         // `+` rather than the trailing one)
2085                         from_start = false;
2086                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2087                         last_merged_i = Some(i);
2088                     }
2089                 }
2090             }
2091             merged
2092         }
2093     }
2094 }
2095
2096 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2097     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2098         use rustc_middle::middle::resolve_lifetime::Region;
2099
2100         let def_id = item.owner_id.def_id;
2101         if let hir::ItemKind::Struct(_, hir_generics)
2102         | hir::ItemKind::Enum(_, hir_generics)
2103         | hir::ItemKind::Union(_, hir_generics) = item.kind
2104         {
2105             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2106             if inferred_outlives.is_empty() {
2107                 return;
2108             }
2109
2110             let ty_generics = cx.tcx.generics_of(def_id);
2111
2112             let mut bound_count = 0;
2113             let mut lint_spans = Vec::new();
2114             let mut where_lint_spans = Vec::new();
2115             let mut dropped_predicate_count = 0;
2116             let num_predicates = hir_generics.predicates.len();
2117             for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2118                 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2119                     match where_predicate {
2120                         hir::WherePredicate::RegionPredicate(predicate) => {
2121                             if let Some(Region::EarlyBound(region_def_id)) =
2122                                 cx.tcx.named_region(predicate.lifetime.hir_id)
2123                             {
2124                                 (
2125                                     Self::lifetimes_outliving_lifetime(
2126                                         inferred_outlives,
2127                                         region_def_id,
2128                                     ),
2129                                     &predicate.bounds,
2130                                     predicate.span,
2131                                     predicate.in_where_clause,
2132                                 )
2133                             } else {
2134                                 continue;
2135                             }
2136                         }
2137                         hir::WherePredicate::BoundPredicate(predicate) => {
2138                             // FIXME we can also infer bounds on associated types,
2139                             // and should check for them here.
2140                             match predicate.bounded_ty.kind {
2141                                 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2142                                     let Res::Def(DefKind::TyParam, def_id) = path.res else {
2143                                     continue;
2144                                 };
2145                                     let index = ty_generics.param_def_id_to_index[&def_id];
2146                                     (
2147                                         Self::lifetimes_outliving_type(inferred_outlives, index),
2148                                         &predicate.bounds,
2149                                         predicate.span,
2150                                         predicate.origin == PredicateOrigin::WhereClause,
2151                                     )
2152                                 }
2153                                 _ => {
2154                                     continue;
2155                                 }
2156                             }
2157                         }
2158                         _ => continue,
2159                     };
2160                 if relevant_lifetimes.is_empty() {
2161                     continue;
2162                 }
2163
2164                 let bound_spans = self.collect_outlives_bound_spans(
2165                     cx.tcx,
2166                     bounds,
2167                     &relevant_lifetimes,
2168                     predicate_span,
2169                 );
2170                 bound_count += bound_spans.len();
2171
2172                 let drop_predicate = bound_spans.len() == bounds.len();
2173                 if drop_predicate {
2174                     dropped_predicate_count += 1;
2175                 }
2176
2177                 if drop_predicate {
2178                     if !in_where_clause {
2179                         lint_spans.push(predicate_span);
2180                     } else if predicate_span.from_expansion() {
2181                         // Don't try to extend the span if it comes from a macro expansion.
2182                         where_lint_spans.push(predicate_span);
2183                     } else if i + 1 < num_predicates {
2184                         // If all the bounds on a predicate were inferable and there are
2185                         // further predicates, we want to eat the trailing comma.
2186                         let next_predicate_span = hir_generics.predicates[i + 1].span();
2187                         if next_predicate_span.from_expansion() {
2188                             where_lint_spans.push(predicate_span);
2189                         } else {
2190                             where_lint_spans
2191                                 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2192                         }
2193                     } else {
2194                         // Eat the optional trailing comma after the last predicate.
2195                         let where_span = hir_generics.where_clause_span;
2196                         if where_span.from_expansion() {
2197                             where_lint_spans.push(predicate_span);
2198                         } else {
2199                             where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2200                         }
2201                     }
2202                 } else {
2203                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2204                         predicate_span.shrink_to_lo(),
2205                         bounds,
2206                         bound_spans,
2207                     ));
2208                 }
2209             }
2210
2211             // If all predicates are inferable, drop the entire clause
2212             // (including the `where`)
2213             if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2214             {
2215                 let where_span = hir_generics.where_clause_span;
2216                 // Extend the where clause back to the closing `>` of the
2217                 // generics, except for tuple struct, which have the `where`
2218                 // after the fields of the struct.
2219                 let full_where_span =
2220                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2221                         where_span
2222                     } else {
2223                         hir_generics.span.shrink_to_hi().to(where_span)
2224                     };
2225
2226                 // Due to macro expansions, the `full_where_span` might not actually contain all predicates.
2227                 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2228                     lint_spans.push(full_where_span);
2229                 } else {
2230                     lint_spans.extend(where_lint_spans);
2231                 }
2232             } else {
2233                 lint_spans.extend(where_lint_spans);
2234             }
2235
2236             if !lint_spans.is_empty() {
2237                 // Do not automatically delete outlives requirements from macros.
2238                 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2239                 {
2240                     Applicability::MachineApplicable
2241                 } else {
2242                     Applicability::MaybeIncorrect
2243                 };
2244
2245                 // Due to macros, there might be several predicates with the same span
2246                 // and we only want to suggest removing them once.
2247                 lint_spans.sort_unstable();
2248                 lint_spans.dedup();
2249
2250                 cx.emit_spanned_lint(
2251                     EXPLICIT_OUTLIVES_REQUIREMENTS,
2252                     lint_spans.clone(),
2253                     BuiltinExplicitOutlives {
2254                         count: bound_count,
2255                         suggestion: BuiltinExplicitOutlivesSuggestion {
2256                             spans: lint_spans,
2257                             applicability,
2258                         },
2259                     },
2260                 );
2261             }
2262         }
2263     }
2264 }
2265
2266 declare_lint! {
2267     /// The `incomplete_features` lint detects unstable features enabled with
2268     /// the [`feature` attribute] that may function improperly in some or all
2269     /// cases.
2270     ///
2271     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2272     ///
2273     /// ### Example
2274     ///
2275     /// ```rust
2276     /// #![feature(generic_const_exprs)]
2277     /// ```
2278     ///
2279     /// {{produces}}
2280     ///
2281     /// ### Explanation
2282     ///
2283     /// Although it is encouraged for people to experiment with unstable
2284     /// features, some of them are known to be incomplete or faulty. This lint
2285     /// is a signal that the feature has not yet been finished, and you may
2286     /// experience problems with it.
2287     pub INCOMPLETE_FEATURES,
2288     Warn,
2289     "incomplete features that may function improperly in some or all cases"
2290 }
2291
2292 declare_lint_pass!(
2293     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2294     IncompleteFeatures => [INCOMPLETE_FEATURES]
2295 );
2296
2297 impl EarlyLintPass for IncompleteFeatures {
2298     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2299         let features = cx.sess().features_untracked();
2300         features
2301             .declared_lang_features
2302             .iter()
2303             .map(|(name, span, _)| (name, span))
2304             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2305             .filter(|(&name, _)| features.incomplete(name))
2306             .for_each(|(&name, &span)| {
2307                 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2308                     .map(|n| BuiltinIncompleteFeaturesNote { n });
2309                 let help = if HAS_MIN_FEATURES.contains(&name) {
2310                     Some(BuiltinIncompleteFeaturesHelp)
2311                 } else {
2312                     None
2313                 };
2314                 cx.emit_spanned_lint(
2315                     INCOMPLETE_FEATURES,
2316                     span,
2317                     BuiltinIncompleteFeatures { name, note, help },
2318                 );
2319             });
2320     }
2321 }
2322
2323 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2324
2325 declare_lint! {
2326     /// The `invalid_value` lint detects creating a value that is not valid,
2327     /// such as a null reference.
2328     ///
2329     /// ### Example
2330     ///
2331     /// ```rust,no_run
2332     /// # #![allow(unused)]
2333     /// unsafe {
2334     ///     let x: &'static i32 = std::mem::zeroed();
2335     /// }
2336     /// ```
2337     ///
2338     /// {{produces}}
2339     ///
2340     /// ### Explanation
2341     ///
2342     /// In some situations the compiler can detect that the code is creating
2343     /// an invalid value, which should be avoided.
2344     ///
2345     /// In particular, this lint will check for improper use of
2346     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2347     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2348     /// lint should provide extra information to indicate what the problem is
2349     /// and a possible solution.
2350     ///
2351     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2352     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2353     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2354     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2355     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2356     pub INVALID_VALUE,
2357     Warn,
2358     "an invalid value is being created (such as a null reference)"
2359 }
2360
2361 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2362
2363 /// Information about why a type cannot be initialized this way.
2364 pub struct InitError {
2365     pub(crate) message: String,
2366     /// Spans from struct fields and similar that can be obtained from just the type.
2367     pub(crate) span: Option<Span>,
2368     /// Used to report a trace through adts.
2369     pub(crate) nested: Option<Box<InitError>>,
2370 }
2371 impl InitError {
2372     fn spanned(self, span: Span) -> InitError {
2373         Self { span: Some(span), ..self }
2374     }
2375
2376     fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2377         assert!(self.nested.is_none());
2378         Self { nested: nested.into().map(Box::new), ..self }
2379     }
2380 }
2381
2382 impl<'a> From<&'a str> for InitError {
2383     fn from(s: &'a str) -> Self {
2384         s.to_owned().into()
2385     }
2386 }
2387 impl From<String> for InitError {
2388     fn from(message: String) -> Self {
2389         Self { message, span: None, nested: None }
2390     }
2391 }
2392
2393 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2394     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2395         #[derive(Debug, Copy, Clone, PartialEq)]
2396         enum InitKind {
2397             Zeroed,
2398             Uninit,
2399         }
2400
2401         /// Test if this constant is all-0.
2402         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2403             use hir::ExprKind::*;
2404             use rustc_ast::LitKind::*;
2405             match &expr.kind {
2406                 Lit(lit) => {
2407                     if let Int(i, _) = lit.node {
2408                         i == 0
2409                     } else {
2410                         false
2411                     }
2412                 }
2413                 Tup(tup) => tup.iter().all(is_zero),
2414                 _ => false,
2415             }
2416         }
2417
2418         /// Determine if this expression is a "dangerous initialization".
2419         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2420             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2421                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2422                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2423                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2424                     match cx.tcx.get_diagnostic_name(def_id) {
2425                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2426                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2427                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2428                         _ => {}
2429                     }
2430                 }
2431             } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2432                 // Find problematic calls to `MaybeUninit::assume_init`.
2433                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2434                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2435                     // This is a call to *some* method named `assume_init`.
2436                     // See if the `self` parameter is one of the dangerous constructors.
2437                     if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind {
2438                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2439                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2440                             match cx.tcx.get_diagnostic_name(def_id) {
2441                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2442                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2443                                 _ => {}
2444                             }
2445                         }
2446                     }
2447                 }
2448             }
2449
2450             None
2451         }
2452
2453         fn variant_find_init_error<'tcx>(
2454             cx: &LateContext<'tcx>,
2455             ty: Ty<'tcx>,
2456             variant: &VariantDef,
2457             substs: ty::SubstsRef<'tcx>,
2458             descr: &str,
2459             init: InitKind,
2460         ) -> Option<InitError> {
2461             let mut field_err = variant.fields.iter().find_map(|field| {
2462                 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|mut err| {
2463                     if !field.did.is_local() {
2464                         err
2465                     } else if err.span.is_none() {
2466                         err.span = Some(cx.tcx.def_span(field.did));
2467                         write!(&mut err.message, " (in this {descr})").unwrap();
2468                         err
2469                     } else {
2470                         InitError::from(format!("in this {descr}"))
2471                             .spanned(cx.tcx.def_span(field.did))
2472                             .nested(err)
2473                     }
2474                 })
2475             });
2476
2477             // Check if this ADT has a constrained layout (like `NonNull` and friends).
2478             if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)) {
2479                 if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &layout.abi {
2480                     let range = scalar.valid_range(cx);
2481                     let msg = if !range.contains(0) {
2482                         "must be non-null"
2483                     } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2484                         // Prefer reporting on the fields over the entire struct for uninit,
2485                         // as the information bubbles out and it may be unclear why the type can't
2486                         // be null from just its outside signature.
2487
2488                         "must be initialized inside its custom valid range"
2489                     } else {
2490                         return field_err;
2491                     };
2492                     if let Some(field_err) = &mut field_err {
2493                         // Most of the time, if the field error is the same as the struct error,
2494                         // the struct error only happens because of the field error.
2495                         if field_err.message.contains(msg) {
2496                             field_err.message = format!("because {}", field_err.message);
2497                         }
2498                     }
2499                     return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2500                 }
2501             }
2502             field_err
2503         }
2504
2505         /// Return `Some` only if we are sure this type does *not*
2506         /// allow zero initialization.
2507         fn ty_find_init_error<'tcx>(
2508             cx: &LateContext<'tcx>,
2509             ty: Ty<'tcx>,
2510             init: InitKind,
2511         ) -> Option<InitError> {
2512             use rustc_type_ir::sty::TyKind::*;
2513             match ty.kind() {
2514                 // Primitive types that don't like 0 as a value.
2515                 Ref(..) => Some("references must be non-null".into()),
2516                 Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2517                 FnPtr(..) => Some("function pointers must be non-null".into()),
2518                 Never => Some("the `!` type has no valid value".into()),
2519                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2520                 // raw ptr to dyn Trait
2521                 {
2522                     Some("the vtable of a wide raw pointer must be non-null".into())
2523                 }
2524                 // Primitive types with other constraints.
2525                 Bool if init == InitKind::Uninit => {
2526                     Some("booleans must be either `true` or `false`".into())
2527                 }
2528                 Char if init == InitKind::Uninit => {
2529                     Some("characters must be a valid Unicode codepoint".into())
2530                 }
2531                 Int(_) | Uint(_) if init == InitKind::Uninit => {
2532                     Some("integers must be initialized".into())
2533                 }
2534                 Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()),
2535                 RawPtr(_) if init == InitKind::Uninit => {
2536                     Some("raw pointers must be initialized".into())
2537                 }
2538                 // Recurse and checks for some compound types. (but not unions)
2539                 Adt(adt_def, substs) if !adt_def.is_union() => {
2540                     // Handle structs.
2541                     if adt_def.is_struct() {
2542                         return variant_find_init_error(
2543                             cx,
2544                             ty,
2545                             adt_def.non_enum_variant(),
2546                             substs,
2547                             "struct field",
2548                             init,
2549                         );
2550                     }
2551                     // And now, enums.
2552                     let span = cx.tcx.def_span(adt_def.did());
2553                     let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2554                         let definitely_inhabited = match variant
2555                             .inhabited_predicate(cx.tcx, *adt_def)
2556                             .subst(cx.tcx, substs)
2557                             .apply_any_module(cx.tcx, cx.param_env)
2558                         {
2559                             // Entirely skip uninhbaited variants.
2560                             Some(false) => return None,
2561                             // Forward the others, but remember which ones are definitely inhabited.
2562                             Some(true) => true,
2563                             None => false,
2564                         };
2565                         Some((variant, definitely_inhabited))
2566                     });
2567                     let Some(first_variant) = potential_variants.next() else {
2568                         return Some(InitError::from("enums with no inhabited variants have no valid value").spanned(span));
2569                     };
2570                     // So we have at least one potentially inhabited variant. Might we have two?
2571                     let Some(second_variant) = potential_variants.next() else {
2572                         // There is only one potentially inhabited variant. So we can recursively check that variant!
2573                         return variant_find_init_error(
2574                             cx,
2575                             ty,
2576                             &first_variant.0,
2577                             substs,
2578                             "field of the only potentially inhabited enum variant",
2579                             init,
2580                         );
2581                     };
2582                     // So we have at least two potentially inhabited variants.
2583                     // If we can prove that we have at least two *definitely* inhabited variants,
2584                     // then we have a tag and hence leaving this uninit is definitely disallowed.
2585                     // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.)
2586                     if init == InitKind::Uninit {
2587                         let definitely_inhabited = (first_variant.1 as usize)
2588                             + (second_variant.1 as usize)
2589                             + potential_variants
2590                                 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2591                                 .count();
2592                         if definitely_inhabited > 1 {
2593                             return Some(InitError::from(
2594                                 "enums with multiple inhabited variants have to be initialized to a variant",
2595                             ).spanned(span));
2596                         }
2597                     }
2598                     // We couldn't find anything wrong here.
2599                     None
2600                 }
2601                 Tuple(..) => {
2602                     // Proceed recursively, check all fields.
2603                     ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2604                 }
2605                 Array(ty, len) => {
2606                     if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
2607                         // Array length known at array non-empty -- recurse.
2608                         ty_find_init_error(cx, *ty, init)
2609                     } else {
2610                         // Empty array or size unknown.
2611                         None
2612                     }
2613                 }
2614                 // Conservative fallback.
2615                 _ => None,
2616             }
2617         }
2618
2619         if let Some(init) = is_dangerous_init(cx, expr) {
2620             // This conjures an instance of a type out of nothing,
2621             // using zeroed or uninitialized memory.
2622             // We are extremely conservative with what we warn about.
2623             let conjured_ty = cx.typeck_results().expr_ty(expr);
2624             if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2625                 let msg = match init {
2626                     InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2627                     InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_unint,
2628                 };
2629                 let sub = BuiltinUnpermittedTypeInitSub { err };
2630                 cx.emit_spanned_lint(
2631                     INVALID_VALUE,
2632                     expr.span,
2633                     BuiltinUnpermittedTypeInit { msg, ty: conjured_ty, label: expr.span, sub },
2634                 );
2635             }
2636         }
2637     }
2638 }
2639
2640 declare_lint! {
2641     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2642     /// has been declared with the same name but different types.
2643     ///
2644     /// ### Example
2645     ///
2646     /// ```rust
2647     /// mod m {
2648     ///     extern "C" {
2649     ///         fn foo();
2650     ///     }
2651     /// }
2652     ///
2653     /// extern "C" {
2654     ///     fn foo(_: u32);
2655     /// }
2656     /// ```
2657     ///
2658     /// {{produces}}
2659     ///
2660     /// ### Explanation
2661     ///
2662     /// Because two symbols of the same name cannot be resolved to two
2663     /// different functions at link time, and one function cannot possibly
2664     /// have two types, a clashing extern declaration is almost certainly a
2665     /// mistake. Check to make sure that the `extern` definitions are correct
2666     /// and equivalent, and possibly consider unifying them in one location.
2667     ///
2668     /// This lint does not run between crates because a project may have
2669     /// dependencies which both rely on the same extern function, but declare
2670     /// it in a different (but valid) way. For example, they may both declare
2671     /// an opaque type for one or more of the arguments (which would end up
2672     /// distinct types), or use types that are valid conversions in the
2673     /// language the `extern fn` is defined in. In these cases, the compiler
2674     /// can't say that the clashing declaration is incorrect.
2675     pub CLASHING_EXTERN_DECLARATIONS,
2676     Warn,
2677     "detects when an extern fn has been declared with the same name but different types"
2678 }
2679
2680 pub struct ClashingExternDeclarations {
2681     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2682     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2683     /// the symbol should be reported as a clashing declaration.
2684     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2685     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2686     seen_decls: FxHashMap<Symbol, hir::OwnerId>,
2687 }
2688
2689 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2690 /// just from declaration itself. This is important because we don't want to report clashes on
2691 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2692 /// different name.
2693 enum SymbolName {
2694     /// The name of the symbol + the span of the annotation which introduced the link name.
2695     Link(Symbol, Span),
2696     /// No link name, so just the name of the symbol.
2697     Normal(Symbol),
2698 }
2699
2700 impl SymbolName {
2701     fn get_name(&self) -> Symbol {
2702         match self {
2703             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2704         }
2705     }
2706 }
2707
2708 impl ClashingExternDeclarations {
2709     pub(crate) fn new() -> Self {
2710         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2711     }
2712
2713     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2714     /// for the item, return its HirId without updating the set.
2715     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<hir::OwnerId> {
2716         let did = fi.owner_id.to_def_id();
2717         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2718         let name = Symbol::intern(tcx.symbol_name(instance).name);
2719         if let Some(&existing_id) = self.seen_decls.get(&name) {
2720             // Avoid updating the map with the new entry when we do find a collision. We want to
2721             // make sure we're always pointing to the first definition as the previous declaration.
2722             // This lets us avoid emitting "knock-on" diagnostics.
2723             Some(existing_id)
2724         } else {
2725             self.seen_decls.insert(name, fi.owner_id)
2726         }
2727     }
2728
2729     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2730     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2731     /// symbol's name.
2732     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2733         if let Some((overridden_link_name, overridden_link_name_span)) =
2734             tcx.codegen_fn_attrs(fi.owner_id).link_name.map(|overridden_link_name| {
2735                 // FIXME: Instead of searching through the attributes again to get span
2736                 // information, we could have codegen_fn_attrs also give span information back for
2737                 // where the attribute was defined. However, until this is found to be a
2738                 // bottleneck, this does just fine.
2739                 (
2740                     overridden_link_name,
2741                     tcx.get_attr(fi.owner_id.to_def_id(), sym::link_name).unwrap().span,
2742                 )
2743             })
2744         {
2745             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2746         } else {
2747             SymbolName::Normal(fi.ident.name)
2748         }
2749     }
2750
2751     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2752     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2753     /// with the same members (as the declarations shouldn't clash).
2754     fn structurally_same_type<'tcx>(
2755         cx: &LateContext<'tcx>,
2756         a: Ty<'tcx>,
2757         b: Ty<'tcx>,
2758         ckind: CItemKind,
2759     ) -> bool {
2760         fn structurally_same_type_impl<'tcx>(
2761             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2762             cx: &LateContext<'tcx>,
2763             a: Ty<'tcx>,
2764             b: Ty<'tcx>,
2765             ckind: CItemKind,
2766         ) -> bool {
2767             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2768             let tcx = cx.tcx;
2769
2770             // Given a transparent newtype, reach through and grab the inner
2771             // type unless the newtype makes the type non-null.
2772             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2773                 let mut ty = ty;
2774                 loop {
2775                     if let ty::Adt(def, substs) = *ty.kind() {
2776                         let is_transparent = def.repr().transparent();
2777                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
2778                         debug!(
2779                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2780                             ty, is_transparent, is_non_null
2781                         );
2782                         if is_transparent && !is_non_null {
2783                             debug_assert!(def.variants().len() == 1);
2784                             let v = &def.variant(VariantIdx::new(0));
2785                             ty = transparent_newtype_field(tcx, v)
2786                                 .expect(
2787                                     "single-variant transparent structure with zero-sized field",
2788                                 )
2789                                 .ty(tcx, substs);
2790                             continue;
2791                         }
2792                     }
2793                     debug!("non_transparent_ty -> {:?}", ty);
2794                     return ty;
2795                 }
2796             };
2797
2798             let a = non_transparent_ty(a);
2799             let b = non_transparent_ty(b);
2800
2801             if !seen_types.insert((a, b)) {
2802                 // We've encountered a cycle. There's no point going any further -- the types are
2803                 // structurally the same.
2804                 return true;
2805             }
2806             let tcx = cx.tcx;
2807             if a == b {
2808                 // All nominally-same types are structurally same, too.
2809                 true
2810             } else {
2811                 // Do a full, depth-first comparison between the two.
2812                 use rustc_type_ir::sty::TyKind::*;
2813                 let a_kind = a.kind();
2814                 let b_kind = b.kind();
2815
2816                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2817                     debug!("compare_layouts({:?}, {:?})", a, b);
2818                     let a_layout = &cx.layout_of(a)?.layout.abi();
2819                     let b_layout = &cx.layout_of(b)?.layout.abi();
2820                     debug!(
2821                         "comparing layouts: {:?} == {:?} = {}",
2822                         a_layout,
2823                         b_layout,
2824                         a_layout == b_layout
2825                     );
2826                     Ok(a_layout == b_layout)
2827                 };
2828
2829                 #[allow(rustc::usage_of_ty_tykind)]
2830                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2831                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2832                 };
2833
2834                 ensure_sufficient_stack(|| {
2835                     match (a_kind, b_kind) {
2836                         (Adt(a_def, _), Adt(b_def, _)) => {
2837                             // We can immediately rule out these types as structurally same if
2838                             // their layouts differ.
2839                             match compare_layouts(a, b) {
2840                                 Ok(false) => return false,
2841                                 _ => (), // otherwise, continue onto the full, fields comparison
2842                             }
2843
2844                             // Grab a flattened representation of all fields.
2845                             let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2846                             let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
2847
2848                             // Perform a structural comparison for each field.
2849                             a_fields.eq_by(
2850                                 b_fields,
2851                                 |&ty::FieldDef { did: a_did, .. },
2852                                  &ty::FieldDef { did: b_did, .. }| {
2853                                     structurally_same_type_impl(
2854                                         seen_types,
2855                                         cx,
2856                                         tcx.type_of(a_did),
2857                                         tcx.type_of(b_did),
2858                                         ckind,
2859                                     )
2860                                 },
2861                             )
2862                         }
2863                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2864                             // For arrays, we also check the constness of the type.
2865                             a_const.kind() == b_const.kind()
2866                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2867                         }
2868                         (Slice(a_ty), Slice(b_ty)) => {
2869                             structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2870                         }
2871                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2872                             a_tymut.mutbl == b_tymut.mutbl
2873                                 && structurally_same_type_impl(
2874                                     seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
2875                                 )
2876                         }
2877                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2878                             // For structural sameness, we don't need the region to be same.
2879                             a_mut == b_mut
2880                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2881                         }
2882                         (FnDef(..), FnDef(..)) => {
2883                             let a_poly_sig = a.fn_sig(tcx);
2884                             let b_poly_sig = b.fn_sig(tcx);
2885
2886                             // We don't compare regions, but leaving bound regions around ICEs, so
2887                             // we erase them.
2888                             let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2889                             let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
2890
2891                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2892                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2893                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2894                                     structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
2895                                 })
2896                                 && structurally_same_type_impl(
2897                                     seen_types,
2898                                     cx,
2899                                     a_sig.output(),
2900                                     b_sig.output(),
2901                                     ckind,
2902                                 )
2903                         }
2904                         (Tuple(a_substs), Tuple(b_substs)) => {
2905                             a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
2906                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2907                             })
2908                         }
2909                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2910                         // For the purposes of this lint, take the conservative approach and mark them as
2911                         // not structurally same.
2912                         (Dynamic(..), Dynamic(..))
2913                         | (Error(..), Error(..))
2914                         | (Closure(..), Closure(..))
2915                         | (Generator(..), Generator(..))
2916                         | (GeneratorWitness(..), GeneratorWitness(..))
2917                         | (Alias(ty::Projection, ..), Alias(ty::Projection, ..))
2918                         | (Alias(ty::Opaque, ..), Alias(ty::Opaque, ..)) => false,
2919
2920                         // These definitely should have been caught above.
2921                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2922
2923                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2924                         // enum layout optimisation is being applied.
2925                         (Adt(..), other_kind) | (other_kind, Adt(..))
2926                             if is_primitive_or_pointer(other_kind) =>
2927                         {
2928                             let (primitive, adt) =
2929                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2930                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2931                                 ty == primitive
2932                             } else {
2933                                 compare_layouts(a, b).unwrap_or(false)
2934                             }
2935                         }
2936                         // Otherwise, just compare the layouts. This may fail to lint for some
2937                         // incompatible types, but at the very least, will stop reads into
2938                         // uninitialised memory.
2939                         _ => compare_layouts(a, b).unwrap_or(false),
2940                     }
2941                 })
2942             }
2943         }
2944         let mut seen_types = FxHashSet::default();
2945         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2946     }
2947 }
2948
2949 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2950
2951 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2952     #[instrument(level = "trace", skip(self, cx))]
2953     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2954         if let ForeignItemKind::Fn(..) = this_fi.kind {
2955             let tcx = cx.tcx;
2956             if let Some(existing_did) = self.insert(tcx, this_fi) {
2957                 let existing_decl_ty = tcx.type_of(existing_did);
2958                 let this_decl_ty = tcx.type_of(this_fi.owner_id);
2959                 debug!(
2960                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2961                     existing_did, existing_decl_ty, this_fi.owner_id, this_decl_ty
2962                 );
2963                 // Check that the declarations match.
2964                 if !Self::structurally_same_type(
2965                     cx,
2966                     existing_decl_ty,
2967                     this_decl_ty,
2968                     CItemKind::Declaration,
2969                 ) {
2970                     let orig_fi = tcx.hir().expect_foreign_item(existing_did);
2971                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2972
2973                     // We want to ensure that we use spans for both decls that include where the
2974                     // name was defined, whether that was from the link_name attribute or not.
2975                     let get_relevant_span =
2976                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2977                             SymbolName::Normal(_) => fi.span,
2978                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2979                         };
2980
2981                     // Finally, emit the diagnostic.
2982                     let this = this_fi.ident.name;
2983                     let orig = orig.get_name();
2984                     let previous_decl_label = get_relevant_span(orig_fi);
2985                     let mismatch_label = get_relevant_span(this_fi);
2986                     let sub = BuiltinClashingExternSub {
2987                         tcx,
2988                         expected: existing_decl_ty,
2989                         found: this_decl_ty,
2990                     };
2991                     let decorator = if orig == this {
2992                         BuiltinClashingExtern::SameName {
2993                             this,
2994                             orig,
2995                             previous_decl_label,
2996                             mismatch_label,
2997                             sub,
2998                         }
2999                     } else {
3000                         BuiltinClashingExtern::DiffName {
3001                             this,
3002                             orig,
3003                             previous_decl_label,
3004                             mismatch_label,
3005                             sub,
3006                         }
3007                     };
3008                     tcx.emit_spanned_lint(
3009                         CLASHING_EXTERN_DECLARATIONS,
3010                         this_fi.hir_id(),
3011                         get_relevant_span(this_fi),
3012                         decorator,
3013                     );
3014                 }
3015             }
3016         }
3017     }
3018 }
3019
3020 declare_lint! {
3021     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3022     /// which causes [undefined behavior].
3023     ///
3024     /// ### Example
3025     ///
3026     /// ```rust,no_run
3027     /// # #![allow(unused)]
3028     /// use std::ptr;
3029     /// unsafe {
3030     ///     let x = &*ptr::null::<i32>();
3031     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3032     ///     let x = *(0 as *const i32);
3033     /// }
3034     /// ```
3035     ///
3036     /// {{produces}}
3037     ///
3038     /// ### Explanation
3039     ///
3040     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3041     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3042     ///
3043     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3044     pub DEREF_NULLPTR,
3045     Warn,
3046     "detects when an null pointer is dereferenced"
3047 }
3048
3049 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3050
3051 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3052     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3053         /// test if expression is a null ptr
3054         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3055             match &expr.kind {
3056                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3057                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3058                         return is_zero(expr) || is_null_ptr(cx, expr);
3059                     }
3060                 }
3061                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3062                 rustc_hir::ExprKind::Call(ref path, _) => {
3063                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3064                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3065                             return matches!(
3066                                 cx.tcx.get_diagnostic_name(def_id),
3067                                 Some(sym::ptr_null | sym::ptr_null_mut)
3068                             );
3069                         }
3070                     }
3071                 }
3072                 _ => {}
3073             }
3074             false
3075         }
3076
3077         /// test if expression is the literal `0`
3078         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3079             match &expr.kind {
3080                 rustc_hir::ExprKind::Lit(ref lit) => {
3081                     if let LitKind::Int(a, _) = lit.node {
3082                         return a == 0;
3083                     }
3084                 }
3085                 _ => {}
3086             }
3087             false
3088         }
3089
3090         if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3091             if is_null_ptr(cx, expr_deref) {
3092                 cx.emit_spanned_lint(
3093                     DEREF_NULLPTR,
3094                     expr.span,
3095                     BuiltinDerefNullptr { label: expr.span },
3096                 );
3097             }
3098         }
3099     }
3100 }
3101
3102 declare_lint! {
3103     /// The `named_asm_labels` lint detects the use of named labels in the
3104     /// inline `asm!` macro.
3105     ///
3106     /// ### Example
3107     ///
3108     /// ```rust,compile_fail
3109     /// # #![feature(asm_experimental_arch)]
3110     /// use std::arch::asm;
3111     ///
3112     /// fn main() {
3113     ///     unsafe {
3114     ///         asm!("foo: bar");
3115     ///     }
3116     /// }
3117     /// ```
3118     ///
3119     /// {{produces}}
3120     ///
3121     /// ### Explanation
3122     ///
3123     /// LLVM is allowed to duplicate inline assembly blocks for any
3124     /// reason, for example when it is in a function that gets inlined. Because
3125     /// of this, GNU assembler [local labels] *must* be used instead of labels
3126     /// with a name. Using named labels might cause assembler or linker errors.
3127     ///
3128     /// See the explanation in [Rust By Example] for more details.
3129     ///
3130     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3131     /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
3132     pub NAMED_ASM_LABELS,
3133     Deny,
3134     "named labels in inline assembly",
3135 }
3136
3137 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3138
3139 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3140     #[allow(rustc::diagnostic_outside_of_impl)]
3141     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3142         if let hir::Expr {
3143             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3144             ..
3145         } = expr
3146         {
3147             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3148                 let template_str = template_sym.as_str();
3149                 let find_label_span = |needle: &str| -> Option<Span> {
3150                     if let Some(template_snippet) = template_snippet {
3151                         let snippet = template_snippet.as_str();
3152                         if let Some(pos) = snippet.find(needle) {
3153                             let end = pos
3154                                 + snippet[pos..]
3155                                     .find(|c| c == ':')
3156                                     .unwrap_or(snippet[pos..].len() - 1);
3157                             let inner = InnerSpan::new(pos, end);
3158                             return Some(template_span.from_inner(inner));
3159                         }
3160                     }
3161
3162                     None
3163                 };
3164
3165                 let mut found_labels = Vec::new();
3166
3167                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3168                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3169                 for statement in statements {
3170                     // If there's a comment, trim it from the statement
3171                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3172                     let mut start_idx = 0;
3173                     for (idx, _) in statement.match_indices(':') {
3174                         let possible_label = statement[start_idx..idx].trim();
3175                         let mut chars = possible_label.chars();
3176                         let Some(c) = chars.next() else {
3177                             // Empty string means a leading ':' in this section, which is not a label
3178                             break
3179                         };
3180                         // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3181                         if (c.is_alphabetic() || matches!(c, '.' | '_'))
3182                             && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3183                         {
3184                             found_labels.push(possible_label);
3185                         } else {
3186                             // If we encounter a non-label, there cannot be any further labels, so stop checking
3187                             break;
3188                         }
3189
3190                         start_idx = idx + 1;
3191                     }
3192                 }
3193
3194                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3195
3196                 if found_labels.len() > 0 {
3197                     let spans = found_labels
3198                         .into_iter()
3199                         .filter_map(|label| find_label_span(label))
3200                         .collect::<Vec<Span>>();
3201                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3202                     let target_spans: MultiSpan =
3203                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3204
3205                     cx.lookup_with_diagnostics(
3206                             NAMED_ASM_LABELS,
3207                             Some(target_spans),
3208                             fluent::lint_builtin_asm_labels,
3209                             |lint| lint,
3210                             BuiltinLintDiagnostics::NamedAsmLabel(
3211                                 "only local labels of the form `<number>:` should be used in inline asm"
3212                                     .to_string(),
3213                             ),
3214                         );
3215                 }
3216             }
3217         }
3218     }
3219 }
3220
3221 declare_lint! {
3222     /// The `special_module_name` lint detects module
3223     /// declarations for files that have a special meaning.
3224     ///
3225     /// ### Example
3226     ///
3227     /// ```rust,compile_fail
3228     /// mod lib;
3229     ///
3230     /// fn main() {
3231     ///     lib::run();
3232     /// }
3233     /// ```
3234     ///
3235     /// {{produces}}
3236     ///
3237     /// ### Explanation
3238     ///
3239     /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3240     /// library or binary crate, so declaring them as modules
3241     /// will lead to miscompilation of the crate unless configured
3242     /// explicitly.
3243     ///
3244     /// To access a library from a binary target within the same crate,
3245     /// use `your_crate_name::` as the path instead of `lib::`:
3246     ///
3247     /// ```rust,compile_fail
3248     /// // bar/src/lib.rs
3249     /// fn run() {
3250     ///     // ...
3251     /// }
3252     ///
3253     /// // bar/src/main.rs
3254     /// fn main() {
3255     ///     bar::run();
3256     /// }
3257     /// ```
3258     ///
3259     /// Binary targets cannot be used as libraries and so declaring
3260     /// one as a module is not allowed.
3261     pub SPECIAL_MODULE_NAME,
3262     Warn,
3263     "module declarations for files with a special meaning",
3264 }
3265
3266 declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3267
3268 impl EarlyLintPass for SpecialModuleName {
3269     fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3270         for item in &krate.items {
3271             if let ast::ItemKind::Mod(
3272                 _,
3273                 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _),
3274             ) = item.kind
3275             {
3276                 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3277                     continue;
3278                 }
3279
3280                 match item.ident.name.as_str() {
3281                     "lib" => cx.emit_spanned_lint(
3282                         SPECIAL_MODULE_NAME,
3283                         item.span,
3284                         BuiltinSpecialModuleNameUsed::Lib,
3285                     ),
3286                     "main" => cx.emit_spanned_lint(
3287                         SPECIAL_MODULE_NAME,
3288                         item.span,
3289                         BuiltinSpecialModuleNameUsed::Main,
3290                     ),
3291                     _ => continue,
3292                 }
3293             }
3294         }
3295     }
3296 }
3297
3298 pub use rustc_session::lint::builtin::UNEXPECTED_CFGS;
3299
3300 declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]);
3301
3302 impl EarlyLintPass for UnexpectedCfgs {
3303     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
3304         let cfg = &cx.sess().parse_sess.config;
3305         let check_cfg = &cx.sess().parse_sess.check_config;
3306         for &(name, value) in cfg {
3307             if let Some(names_valid) = &check_cfg.names_valid && !names_valid.contains(&name){
3308                 cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigName {
3309                     name,
3310                 });
3311             }
3312             if let Some(value) = value && let Some(values) = check_cfg.values_valid.get(&name) && !values.contains(&value) {
3313                 cx.emit_lint(
3314                     UNEXPECTED_CFGS,
3315                     BuiltinUnexpectedCliConfigValue { name, value },
3316                 );
3317             }
3318         }
3319     }
3320 }