]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Auto merge of #103392 - RalfJung:miri, r=oli-obk
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     errors::BuiltinEllpisisInclusiveRangePatterns,
25     types::{transparent_newtype_field, CItemKind},
26     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
27 };
28 use rustc_ast::attr;
29 use rustc_ast::tokenstream::{TokenStream, TokenTree};
30 use rustc_ast::visit::{FnCtxt, FnKind};
31 use rustc_ast::{self as ast, *};
32 use rustc_ast_pretty::pprust::{self, expr_to_string};
33 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
34 use rustc_data_structures::stack::ensure_sufficient_stack;
35 use rustc_errors::{
36     fluent, Applicability, DelayDm, Diagnostic, DiagnosticBuilder, DiagnosticMessage,
37     DiagnosticStyledString, MultiSpan,
38 };
39 use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
40 use rustc_hir as hir;
41 use rustc_hir::def::{DefKind, Res};
42 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
43 use rustc_hir::{ForeignItemKind, GenericParamKind, HirId, PatKind, PredicateOrigin};
44 use rustc_index::vec::Idx;
45 use rustc_middle::lint::in_external_macro;
46 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
47 use rustc_middle::ty::print::with_no_trimmed_paths;
48 use rustc_middle::ty::subst::GenericArgKind;
49 use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef};
50 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
51 use rustc_span::edition::Edition;
52 use rustc_span::source_map::Spanned;
53 use rustc_span::symbol::{kw, sym, Ident, Symbol};
54 use rustc_span::{BytePos, InnerSpan, Span};
55 use rustc_target::abi::VariantIdx;
56 use rustc_trait_selection::traits::{self, misc::can_type_implement_copy};
57
58 use crate::nonstandard_style::{method_context, MethodLateContext};
59
60 use std::fmt::Write;
61
62 // hardwired lints from librustc_middle
63 pub use rustc_session::lint::builtin::*;
64
65 declare_lint! {
66     /// The `while_true` lint detects `while true { }`.
67     ///
68     /// ### Example
69     ///
70     /// ```rust,no_run
71     /// while true {
72     ///
73     /// }
74     /// ```
75     ///
76     /// {{produces}}
77     ///
78     /// ### Explanation
79     ///
80     /// `while true` should be replaced with `loop`. A `loop` expression is
81     /// the preferred way to write an infinite loop because it more directly
82     /// expresses the intent of the loop.
83     WHILE_TRUE,
84     Warn,
85     "suggest using `loop { }` instead of `while true { }`"
86 }
87
88 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
89
90 /// Traverse through any amount of parenthesis and return the first non-parens expression.
91 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
92     while let ast::ExprKind::Paren(sub) = &expr.kind {
93         expr = sub;
94     }
95     expr
96 }
97
98 impl EarlyLintPass for WhileTrue {
99     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
100         if let ast::ExprKind::While(cond, _, label) = &e.kind
101             && let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind
102             && let ast::LitKind::Bool(true) = lit.kind
103             && !lit.span.from_expansion()
104         {
105             let condition_span = e.span.with_hi(cond.span.hi());
106             cx.struct_span_lint(
107                             WHILE_TRUE,
108                             condition_span,
109                 fluent::lint_builtin_while_true,
110                             |lint| {
111                     lint.span_suggestion_short(
112                         condition_span,
113                         fluent::suggestion,
114                         format!(
115                             "{}loop",
116                             label.map_or_else(String::new, |label| format!(
117                                 "{}: ",
118                                 label.ident,
119                             ))
120                         ),
121                         Applicability::MachineApplicable,
122                     )
123                 },
124             )
125         }
126     }
127 }
128
129 declare_lint! {
130     /// The `box_pointers` lints use of the Box type.
131     ///
132     /// ### Example
133     ///
134     /// ```rust,compile_fail
135     /// #![deny(box_pointers)]
136     /// struct Foo {
137     ///     x: Box<isize>,
138     /// }
139     /// ```
140     ///
141     /// {{produces}}
142     ///
143     /// ### Explanation
144     ///
145     /// This lint is mostly historical, and not particularly useful. `Box<T>`
146     /// used to be built into the language, and the only way to do heap
147     /// allocation. Today's Rust can call into other allocators, etc.
148     BOX_POINTERS,
149     Allow,
150     "use of owned (Box type) heap memory"
151 }
152
153 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
154
155 impl BoxPointers {
156     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
157         for leaf in ty.walk() {
158             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
159                 if leaf_ty.is_box() {
160                     cx.struct_span_lint(
161                         BOX_POINTERS,
162                         span,
163                         fluent::lint_builtin_box_pointers,
164                         |lint| lint.set_arg("ty", ty),
165                     );
166                 }
167             }
168         }
169     }
170 }
171
172 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
173     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
174         match it.kind {
175             hir::ItemKind::Fn(..)
176             | hir::ItemKind::TyAlias(..)
177             | hir::ItemKind::Enum(..)
178             | hir::ItemKind::Struct(..)
179             | hir::ItemKind::Union(..) => {
180                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
181             }
182             _ => (),
183         }
184
185         // If it's a struct, we also have to check the fields' types
186         match it.kind {
187             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
188                 for struct_field in struct_def.fields() {
189                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
190                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
191                 }
192             }
193             _ => (),
194         }
195     }
196
197     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
198         let ty = cx.typeck_results().node_type(e.hir_id);
199         self.check_heap_type(cx, e.span, ty);
200     }
201 }
202
203 declare_lint! {
204     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
205     /// instead of `Struct { x }` in a pattern.
206     ///
207     /// ### Example
208     ///
209     /// ```rust
210     /// struct Point {
211     ///     x: i32,
212     ///     y: i32,
213     /// }
214     ///
215     ///
216     /// fn main() {
217     ///     let p = Point {
218     ///         x: 5,
219     ///         y: 5,
220     ///     };
221     ///
222     ///     match p {
223     ///         Point { x: x, y: y } => (),
224     ///     }
225     /// }
226     /// ```
227     ///
228     /// {{produces}}
229     ///
230     /// ### Explanation
231     ///
232     /// The preferred style is to avoid the repetition of specifying both the
233     /// field name and the binding name if both identifiers are the same.
234     NON_SHORTHAND_FIELD_PATTERNS,
235     Warn,
236     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
237 }
238
239 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
240
241 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
242     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
243         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
244             let variant = cx
245                 .typeck_results()
246                 .pat_ty(pat)
247                 .ty_adt_def()
248                 .expect("struct pattern type is not an ADT")
249                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
250             for fieldpat in field_pats {
251                 if fieldpat.is_shorthand {
252                     continue;
253                 }
254                 if fieldpat.span.from_expansion() {
255                     // Don't lint if this is a macro expansion: macro authors
256                     // shouldn't have to worry about this kind of style issue
257                     // (Issue #49588)
258                     continue;
259                 }
260                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
261                     if cx.tcx.find_field_index(ident, &variant)
262                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
263                     {
264                         cx.struct_span_lint(
265                             NON_SHORTHAND_FIELD_PATTERNS,
266                             fieldpat.span,
267                             fluent::lint_builtin_non_shorthand_field_patterns,
268                             |lint| {
269                                 let suggested_ident =
270                                     format!("{}{}", binding_annot.prefix_str(), ident);
271                                 lint.set_arg("ident", ident.clone()).span_suggestion(
272                                     fieldpat.span,
273                                     fluent::suggestion,
274                                     suggested_ident,
275                                     Applicability::MachineApplicable,
276                                 )
277                             },
278                         );
279                     }
280                 }
281             }
282         }
283     }
284 }
285
286 declare_lint! {
287     /// The `unsafe_code` lint catches usage of `unsafe` code.
288     ///
289     /// ### Example
290     ///
291     /// ```rust,compile_fail
292     /// #![deny(unsafe_code)]
293     /// fn main() {
294     ///     unsafe {
295     ///
296     ///     }
297     /// }
298     /// ```
299     ///
300     /// {{produces}}
301     ///
302     /// ### Explanation
303     ///
304     /// This lint is intended to restrict the usage of `unsafe`, which can be
305     /// difficult to use correctly.
306     UNSAFE_CODE,
307     Allow,
308     "usage of `unsafe` code"
309 }
310
311 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
312
313 impl UnsafeCode {
314     fn report_unsafe(
315         &self,
316         cx: &EarlyContext<'_>,
317         span: Span,
318         msg: impl Into<DiagnosticMessage>,
319         decorate: impl for<'a, 'b> FnOnce(
320             &'b mut DiagnosticBuilder<'a, ()>,
321         ) -> &'b mut DiagnosticBuilder<'a, ()>,
322     ) {
323         // This comes from a macro that has `#[allow_internal_unsafe]`.
324         if span.allows_unsafe() {
325             return;
326         }
327
328         cx.struct_span_lint(UNSAFE_CODE, span, msg, decorate);
329     }
330
331     fn report_overridden_symbol_name(
332         &self,
333         cx: &EarlyContext<'_>,
334         span: Span,
335         msg: DiagnosticMessage,
336     ) {
337         self.report_unsafe(cx, span, msg, |lint| {
338             lint.note(fluent::lint_builtin_overridden_symbol_name)
339         })
340     }
341
342     fn report_overridden_symbol_section(
343         &self,
344         cx: &EarlyContext<'_>,
345         span: Span,
346         msg: DiagnosticMessage,
347     ) {
348         self.report_unsafe(cx, span, msg, |lint| {
349             lint.note(fluent::lint_builtin_overridden_symbol_section)
350         })
351     }
352 }
353
354 impl EarlyLintPass for UnsafeCode {
355     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
356         if attr.has_name(sym::allow_internal_unsafe) {
357             self.report_unsafe(cx, attr.span, fluent::lint_builtin_allow_internal_unsafe, |lint| {
358                 lint
359             });
360         }
361     }
362
363     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
364         if let ast::ExprKind::Block(ref blk, _) = e.kind {
365             // Don't warn about generated blocks; that'll just pollute the output.
366             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
367                 self.report_unsafe(cx, blk.span, fluent::lint_builtin_unsafe_block, |lint| lint);
368             }
369         }
370     }
371
372     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
373         match it.kind {
374             ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => {
375                 self.report_unsafe(cx, it.span, fluent::lint_builtin_unsafe_trait, |lint| lint)
376             }
377
378             ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => {
379                 self.report_unsafe(cx, it.span, fluent::lint_builtin_unsafe_impl, |lint| lint)
380             }
381
382             ast::ItemKind::Fn(..) => {
383                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
384                     self.report_overridden_symbol_name(
385                         cx,
386                         attr.span,
387                         fluent::lint_builtin_no_mangle_fn,
388                     );
389                 }
390
391                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
392                     self.report_overridden_symbol_name(
393                         cx,
394                         attr.span,
395                         fluent::lint_builtin_export_name_fn,
396                     );
397                 }
398
399                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
400                     self.report_overridden_symbol_section(
401                         cx,
402                         attr.span,
403                         fluent::lint_builtin_link_section_fn,
404                     );
405                 }
406             }
407
408             ast::ItemKind::Static(..) => {
409                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
410                     self.report_overridden_symbol_name(
411                         cx,
412                         attr.span,
413                         fluent::lint_builtin_no_mangle_static,
414                     );
415                 }
416
417                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
418                     self.report_overridden_symbol_name(
419                         cx,
420                         attr.span,
421                         fluent::lint_builtin_export_name_static,
422                     );
423                 }
424
425                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) {
426                     self.report_overridden_symbol_section(
427                         cx,
428                         attr.span,
429                         fluent::lint_builtin_link_section_static,
430                     );
431                 }
432             }
433
434             _ => {}
435         }
436     }
437
438     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
439         if let ast::AssocItemKind::Fn(..) = it.kind {
440             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
441                 self.report_overridden_symbol_name(
442                     cx,
443                     attr.span,
444                     fluent::lint_builtin_no_mangle_method,
445                 );
446             }
447             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
448                 self.report_overridden_symbol_name(
449                     cx,
450                     attr.span,
451                     fluent::lint_builtin_export_name_method,
452                 );
453             }
454         }
455     }
456
457     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
458         if let FnKind::Fn(
459             ctxt,
460             _,
461             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
462             _,
463             _,
464             body,
465         ) = fk
466         {
467             let msg = match ctxt {
468                 FnCtxt::Foreign => return,
469                 FnCtxt::Free => fluent::lint_builtin_decl_unsafe_fn,
470                 FnCtxt::Assoc(_) if body.is_none() => fluent::lint_builtin_decl_unsafe_method,
471                 FnCtxt::Assoc(_) => fluent::lint_builtin_impl_unsafe_method,
472             };
473             self.report_unsafe(cx, span, msg, |lint| lint);
474         }
475     }
476 }
477
478 declare_lint! {
479     /// The `missing_docs` lint detects missing documentation for public items.
480     ///
481     /// ### Example
482     ///
483     /// ```rust,compile_fail
484     /// #![deny(missing_docs)]
485     /// pub fn foo() {}
486     /// ```
487     ///
488     /// {{produces}}
489     ///
490     /// ### Explanation
491     ///
492     /// This lint is intended to ensure that a library is well-documented.
493     /// Items without documentation can be difficult for users to understand
494     /// how to use properly.
495     ///
496     /// This lint is "allow" by default because it can be noisy, and not all
497     /// projects may want to enforce everything to be documented.
498     pub MISSING_DOCS,
499     Allow,
500     "detects missing documentation for public members",
501     report_in_external_macro
502 }
503
504 pub struct MissingDoc {
505     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
506     doc_hidden_stack: Vec<bool>,
507 }
508
509 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
510
511 fn has_doc(attr: &ast::Attribute) -> bool {
512     if attr.is_doc_comment() {
513         return true;
514     }
515
516     if !attr.has_name(sym::doc) {
517         return false;
518     }
519
520     if attr.value_str().is_some() {
521         return true;
522     }
523
524     if let Some(list) = attr.meta_item_list() {
525         for meta in list {
526             if meta.has_name(sym::hidden) {
527                 return true;
528             }
529         }
530     }
531
532     false
533 }
534
535 impl MissingDoc {
536     pub fn new() -> MissingDoc {
537         MissingDoc { doc_hidden_stack: vec![false] }
538     }
539
540     fn doc_hidden(&self) -> bool {
541         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
542     }
543
544     fn check_missing_docs_attrs(
545         &self,
546         cx: &LateContext<'_>,
547         def_id: LocalDefId,
548         article: &'static str,
549         desc: &'static str,
550     ) {
551         // If we're building a test harness, then warning about
552         // documentation is probably not really relevant right now.
553         if cx.sess().opts.test {
554             return;
555         }
556
557         // `#[doc(hidden)]` disables missing_docs check.
558         if self.doc_hidden() {
559             return;
560         }
561
562         // Only check publicly-visible items, using the result from the privacy pass.
563         // It's an option so the crate root can also use this function (it doesn't
564         // have a `NodeId`).
565         if def_id != CRATE_DEF_ID {
566             if !cx.access_levels.is_exported(def_id) {
567                 return;
568             }
569         }
570
571         let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id));
572         let has_doc = attrs.iter().any(has_doc);
573         if !has_doc {
574             cx.struct_span_lint(
575                 MISSING_DOCS,
576                 cx.tcx.def_span(def_id),
577                 fluent::lint_builtin_missing_doc,
578                 |lint| lint.set_arg("article", article).set_arg("desc", desc),
579             );
580         }
581     }
582 }
583
584 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
585     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
586         let doc_hidden = self.doc_hidden()
587             || attrs.iter().any(|attr| {
588                 attr.has_name(sym::doc)
589                     && match attr.meta_item_list() {
590                         None => false,
591                         Some(l) => attr::list_contains_name(&l, sym::hidden),
592                     }
593             });
594         self.doc_hidden_stack.push(doc_hidden);
595     }
596
597     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
598         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
599     }
600
601     fn check_crate(&mut self, cx: &LateContext<'_>) {
602         self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
603     }
604
605     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
606         match it.kind {
607             hir::ItemKind::Trait(..) => {
608                 // Issue #11592: traits are always considered exported, even when private.
609                 if cx.tcx.visibility(it.def_id)
610                     == ty::Visibility::Restricted(
611                         cx.tcx.parent_module_from_def_id(it.def_id.def_id).to_def_id(),
612                     )
613                 {
614                     return;
615                 }
616             }
617             hir::ItemKind::TyAlias(..)
618             | hir::ItemKind::Fn(..)
619             | hir::ItemKind::Macro(..)
620             | hir::ItemKind::Mod(..)
621             | hir::ItemKind::Enum(..)
622             | hir::ItemKind::Struct(..)
623             | hir::ItemKind::Union(..)
624             | hir::ItemKind::Const(..)
625             | hir::ItemKind::Static(..) => {}
626
627             _ => return,
628         };
629
630         let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
631
632         self.check_missing_docs_attrs(cx, it.def_id.def_id, article, desc);
633     }
634
635     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
636         let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
637
638         self.check_missing_docs_attrs(cx, trait_item.def_id.def_id, article, desc);
639     }
640
641     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
642         // If the method is an impl for a trait, don't doc.
643         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
644             return;
645         }
646
647         // If the method is an impl for an item with docs_hidden, don't doc.
648         if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
649             let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
650             let impl_ty = cx.tcx.type_of(parent);
651             let outerdef = match impl_ty.kind() {
652                 ty::Adt(def, _) => Some(def.did()),
653                 ty::Foreign(def_id) => Some(*def_id),
654                 _ => None,
655             };
656             let is_hidden = match outerdef {
657                 Some(id) => cx.tcx.is_doc_hidden(id),
658                 None => false,
659             };
660             if is_hidden {
661                 return;
662             }
663         }
664
665         let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
666         self.check_missing_docs_attrs(cx, impl_item.def_id.def_id, article, desc);
667     }
668
669     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
670         let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
671         self.check_missing_docs_attrs(cx, foreign_item.def_id.def_id, article, desc);
672     }
673
674     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
675         if !sf.is_positional() {
676             let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
677             self.check_missing_docs_attrs(cx, def_id, "a", "struct field")
678         }
679     }
680
681     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
682         self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), "a", "variant");
683     }
684 }
685
686 declare_lint! {
687     /// The `missing_copy_implementations` lint detects potentially-forgotten
688     /// implementations of [`Copy`].
689     ///
690     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
691     ///
692     /// ### Example
693     ///
694     /// ```rust,compile_fail
695     /// #![deny(missing_copy_implementations)]
696     /// pub struct Foo {
697     ///     pub field: i32
698     /// }
699     /// # fn main() {}
700     /// ```
701     ///
702     /// {{produces}}
703     ///
704     /// ### Explanation
705     ///
706     /// Historically (before 1.0), types were automatically marked as `Copy`
707     /// if possible. This was changed so that it required an explicit opt-in
708     /// by implementing the `Copy` trait. As part of this change, a lint was
709     /// added to alert if a copyable type was not marked `Copy`.
710     ///
711     /// This lint is "allow" by default because this code isn't bad; it is
712     /// common to write newtypes like this specifically so that a `Copy` type
713     /// is no longer `Copy`. `Copy` types can result in unintended copies of
714     /// large data which can impact performance.
715     pub MISSING_COPY_IMPLEMENTATIONS,
716     Allow,
717     "detects potentially-forgotten implementations of `Copy`"
718 }
719
720 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
721
722 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
723     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
724         if !cx.access_levels.is_reachable(item.def_id.def_id) {
725             return;
726         }
727         let (def, ty) = match item.kind {
728             hir::ItemKind::Struct(_, ref ast_generics) => {
729                 if !ast_generics.params.is_empty() {
730                     return;
731                 }
732                 let def = cx.tcx.adt_def(item.def_id);
733                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
734             }
735             hir::ItemKind::Union(_, ref ast_generics) => {
736                 if !ast_generics.params.is_empty() {
737                     return;
738                 }
739                 let def = cx.tcx.adt_def(item.def_id);
740                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
741             }
742             hir::ItemKind::Enum(_, ref ast_generics) => {
743                 if !ast_generics.params.is_empty() {
744                     return;
745                 }
746                 let def = cx.tcx.adt_def(item.def_id);
747                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
748             }
749             _ => return,
750         };
751         if def.has_dtor(cx.tcx) {
752             return;
753         }
754         let param_env = ty::ParamEnv::empty();
755         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
756             return;
757         }
758         if can_type_implement_copy(
759             cx.tcx,
760             param_env,
761             ty,
762             traits::ObligationCause::misc(item.span, item.hir_id()),
763         )
764         .is_ok()
765         {
766             cx.struct_span_lint(
767                 MISSING_COPY_IMPLEMENTATIONS,
768                 item.span,
769                 fluent::lint_builtin_missing_copy_impl,
770                 |lint| lint,
771             )
772         }
773     }
774 }
775
776 declare_lint! {
777     /// The `missing_debug_implementations` lint detects missing
778     /// implementations of [`fmt::Debug`].
779     ///
780     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
781     ///
782     /// ### Example
783     ///
784     /// ```rust,compile_fail
785     /// #![deny(missing_debug_implementations)]
786     /// pub struct Foo;
787     /// # fn main() {}
788     /// ```
789     ///
790     /// {{produces}}
791     ///
792     /// ### Explanation
793     ///
794     /// Having a `Debug` implementation on all types can assist with
795     /// debugging, as it provides a convenient way to format and display a
796     /// value. Using the `#[derive(Debug)]` attribute will automatically
797     /// generate a typical implementation, or a custom implementation can be
798     /// added by manually implementing the `Debug` trait.
799     ///
800     /// This lint is "allow" by default because adding `Debug` to all types can
801     /// have a negative impact on compile time and code size. It also requires
802     /// boilerplate to be added to every type, which can be an impediment.
803     MISSING_DEBUG_IMPLEMENTATIONS,
804     Allow,
805     "detects missing implementations of Debug"
806 }
807
808 #[derive(Default)]
809 pub struct MissingDebugImplementations {
810     impling_types: Option<LocalDefIdSet>,
811 }
812
813 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
814
815 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
816     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
817         if !cx.access_levels.is_reachable(item.def_id.def_id) {
818             return;
819         }
820
821         match item.kind {
822             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
823             _ => return,
824         }
825
826         let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
827             return
828         };
829
830         if self.impling_types.is_none() {
831             let mut impls = LocalDefIdSet::default();
832             cx.tcx.for_each_impl(debug, |d| {
833                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
834                     if let Some(def_id) = ty_def.did().as_local() {
835                         impls.insert(def_id);
836                     }
837                 }
838             });
839
840             self.impling_types = Some(impls);
841             debug!("{:?}", self.impling_types);
842         }
843
844         if !self.impling_types.as_ref().unwrap().contains(&item.def_id.def_id) {
845             cx.struct_span_lint(
846                 MISSING_DEBUG_IMPLEMENTATIONS,
847                 item.span,
848                 fluent::lint_builtin_missing_debug_impl,
849                 |lint| lint.set_arg("debug", cx.tcx.def_path_str(debug)),
850             );
851         }
852     }
853 }
854
855 declare_lint! {
856     /// The `anonymous_parameters` lint detects anonymous parameters in trait
857     /// definitions.
858     ///
859     /// ### Example
860     ///
861     /// ```rust,edition2015,compile_fail
862     /// #![deny(anonymous_parameters)]
863     /// // edition 2015
864     /// pub trait Foo {
865     ///     fn foo(usize);
866     /// }
867     /// fn main() {}
868     /// ```
869     ///
870     /// {{produces}}
871     ///
872     /// ### Explanation
873     ///
874     /// This syntax is mostly a historical accident, and can be worked around
875     /// quite easily by adding an `_` pattern or a descriptive identifier:
876     ///
877     /// ```rust
878     /// trait Foo {
879     ///     fn foo(_: usize);
880     /// }
881     /// ```
882     ///
883     /// This syntax is now a hard error in the 2018 edition. In the 2015
884     /// edition, this lint is "warn" by default. This lint
885     /// enables the [`cargo fix`] tool with the `--edition` flag to
886     /// automatically transition old code from the 2015 edition to 2018. The
887     /// tool will run this lint and automatically apply the
888     /// suggested fix from the compiler (which is to add `_` to each
889     /// parameter). This provides a completely automated way to update old
890     /// code for a new edition. See [issue #41686] for more details.
891     ///
892     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
893     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
894     pub ANONYMOUS_PARAMETERS,
895     Warn,
896     "detects anonymous parameters",
897     @future_incompatible = FutureIncompatibleInfo {
898         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
899         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
900     };
901 }
902
903 declare_lint_pass!(
904     /// Checks for use of anonymous parameters (RFC 1685).
905     AnonymousParameters => [ANONYMOUS_PARAMETERS]
906 );
907
908 impl EarlyLintPass for AnonymousParameters {
909     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
910         if cx.sess().edition() != Edition::Edition2015 {
911             // This is a hard error in future editions; avoid linting and erroring
912             return;
913         }
914         if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
915             for arg in sig.decl.inputs.iter() {
916                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
917                     if ident.name == kw::Empty {
918                         let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
919
920                         let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
921                             (snip.as_str(), Applicability::MachineApplicable)
922                         } else {
923                             ("<type>", Applicability::HasPlaceholders)
924                         };
925                         cx.struct_span_lint(
926                             ANONYMOUS_PARAMETERS,
927                             arg.pat.span,
928                             fluent::lint_builtin_anonymous_params,
929                             |lint| {
930                                 lint.span_suggestion(
931                                     arg.pat.span,
932                                     fluent::suggestion,
933                                     format!("_: {}", ty_snip),
934                                     appl,
935                                 )
936                             },
937                         )
938                     }
939                 }
940             }
941         }
942     }
943 }
944
945 /// Check for use of attributes which have been deprecated.
946 #[derive(Clone)]
947 pub struct DeprecatedAttr {
948     // This is not free to compute, so we want to keep it around, rather than
949     // compute it for every attribute.
950     depr_attrs: Vec<&'static BuiltinAttribute>,
951 }
952
953 impl_lint_pass!(DeprecatedAttr => []);
954
955 impl DeprecatedAttr {
956     pub fn new() -> DeprecatedAttr {
957         DeprecatedAttr { depr_attrs: deprecated_attributes() }
958     }
959 }
960
961 impl EarlyLintPass for DeprecatedAttr {
962     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
963         for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
964             if attr.ident().map(|ident| ident.name) == Some(*name) {
965                 if let &AttributeGate::Gated(
966                     Stability::Deprecated(link, suggestion),
967                     name,
968                     reason,
969                     _,
970                 ) = gate
971                 {
972                     // FIXME(davidtwco) translatable deprecated attr
973                     cx.struct_span_lint(
974                         DEPRECATED,
975                         attr.span,
976                         fluent::lint_builtin_deprecated_attr_link,
977                         |lint| {
978                             lint.set_arg("name", name)
979                                 .set_arg("reason", reason)
980                                 .set_arg("link", link)
981                                 .span_suggestion_short(
982                                     attr.span,
983                                     suggestion.map(|s| s.into()).unwrap_or(
984                                         fluent::lint_builtin_deprecated_attr_default_suggestion,
985                                     ),
986                                     "",
987                                     Applicability::MachineApplicable,
988                                 )
989                         },
990                     );
991                 }
992                 return;
993             }
994         }
995         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
996             cx.struct_span_lint(
997                 DEPRECATED,
998                 attr.span,
999                 fluent::lint_builtin_deprecated_attr_used,
1000                 |lint| {
1001                     lint.set_arg("name", pprust::path_to_string(&attr.get_normal_item().path))
1002                         .span_suggestion_short(
1003                             attr.span,
1004                             fluent::lint_builtin_deprecated_attr_default_suggestion,
1005                             "",
1006                             Applicability::MachineApplicable,
1007                         )
1008                 },
1009             );
1010         }
1011     }
1012 }
1013
1014 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
1015     use rustc_ast::token::CommentKind;
1016
1017     let mut attrs = attrs.iter().peekable();
1018
1019     // Accumulate a single span for sugared doc comments.
1020     let mut sugared_span: Option<Span> = None;
1021
1022     while let Some(attr) = attrs.next() {
1023         let is_doc_comment = attr.is_doc_comment();
1024         if is_doc_comment {
1025             sugared_span =
1026                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
1027         }
1028
1029         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
1030             continue;
1031         }
1032
1033         let span = sugared_span.take().unwrap_or(attr.span);
1034
1035         if is_doc_comment || attr.has_name(sym::doc) {
1036             cx.struct_span_lint(
1037                 UNUSED_DOC_COMMENTS,
1038                 span,
1039                 fluent::lint_builtin_unused_doc_comment,
1040                 |lint| {
1041                     lint.set_arg("kind", node_kind).span_label(node_span, fluent::label).help(
1042                         match attr.kind {
1043                             AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
1044                                 fluent::plain_help
1045                             }
1046                             AttrKind::DocComment(CommentKind::Block, _) => fluent::block_help,
1047                         },
1048                     )
1049                 },
1050             );
1051         }
1052     }
1053 }
1054
1055 impl EarlyLintPass for UnusedDocComment {
1056     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1057         let kind = match stmt.kind {
1058             ast::StmtKind::Local(..) => "statements",
1059             // Disabled pending discussion in #78306
1060             ast::StmtKind::Item(..) => return,
1061             // expressions will be reported by `check_expr`.
1062             ast::StmtKind::Empty
1063             | ast::StmtKind::Semi(_)
1064             | ast::StmtKind::Expr(_)
1065             | ast::StmtKind::MacCall(_) => return,
1066         };
1067
1068         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1069     }
1070
1071     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1072         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1073         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1074     }
1075
1076     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1077         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1078     }
1079
1080     fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1081         warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1082     }
1083
1084     fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
1085         warn_if_doc(cx, block.span, "blocks", &block.attrs());
1086     }
1087
1088     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1089         if let ast::ItemKind::ForeignMod(_) = item.kind {
1090             warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
1091         }
1092     }
1093 }
1094
1095 declare_lint! {
1096     /// The `no_mangle_const_items` lint detects any `const` items with the
1097     /// [`no_mangle` attribute].
1098     ///
1099     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1100     ///
1101     /// ### Example
1102     ///
1103     /// ```rust,compile_fail
1104     /// #[no_mangle]
1105     /// const FOO: i32 = 5;
1106     /// ```
1107     ///
1108     /// {{produces}}
1109     ///
1110     /// ### Explanation
1111     ///
1112     /// Constants do not have their symbols exported, and therefore, this
1113     /// probably means you meant to use a [`static`], not a [`const`].
1114     ///
1115     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1116     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1117     NO_MANGLE_CONST_ITEMS,
1118     Deny,
1119     "const items will not have their symbols exported"
1120 }
1121
1122 declare_lint! {
1123     /// The `no_mangle_generic_items` lint detects generic items that must be
1124     /// mangled.
1125     ///
1126     /// ### Example
1127     ///
1128     /// ```rust
1129     /// #[no_mangle]
1130     /// fn foo<T>(t: T) {
1131     ///
1132     /// }
1133     /// ```
1134     ///
1135     /// {{produces}}
1136     ///
1137     /// ### Explanation
1138     ///
1139     /// A function with generics must have its symbol mangled to accommodate
1140     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1141     /// this situation, and should be removed.
1142     ///
1143     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1144     NO_MANGLE_GENERIC_ITEMS,
1145     Warn,
1146     "generic items must be mangled"
1147 }
1148
1149 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1150
1151 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1152     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1153         let attrs = cx.tcx.hir().attrs(it.hir_id());
1154         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1155                                              impl_generics: Option<&hir::Generics<'_>>,
1156                                              generics: &hir::Generics<'_>,
1157                                              span| {
1158             for param in
1159                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1160             {
1161                 match param.kind {
1162                     GenericParamKind::Lifetime { .. } => {}
1163                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1164                         cx.struct_span_lint(
1165                             NO_MANGLE_GENERIC_ITEMS,
1166                             span,
1167                             fluent::lint_builtin_no_mangle_generic,
1168                             |lint| {
1169                                 lint.span_suggestion_short(
1170                                     no_mangle_attr.span,
1171                                     fluent::suggestion,
1172                                     "",
1173                                     // Use of `#[no_mangle]` suggests FFI intent; correct
1174                                     // fix may be to monomorphize source by hand
1175                                     Applicability::MaybeIncorrect,
1176                                 )
1177                             },
1178                         );
1179                         break;
1180                     }
1181                 }
1182             }
1183         };
1184         match it.kind {
1185             hir::ItemKind::Fn(.., ref generics, _) => {
1186                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1187                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1188                 }
1189             }
1190             hir::ItemKind::Const(..) => {
1191                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1192                     // Const items do not refer to a particular location in memory, and therefore
1193                     // don't have anything to attach a symbol to
1194                     cx.struct_span_lint(
1195                         NO_MANGLE_CONST_ITEMS,
1196                         it.span,
1197                         fluent::lint_builtin_const_no_mangle,
1198                         |lint| {
1199                             // account for "pub const" (#45562)
1200                             let start = cx
1201                                 .tcx
1202                                 .sess
1203                                 .source_map()
1204                                 .span_to_snippet(it.span)
1205                                 .map(|snippet| snippet.find("const").unwrap_or(0))
1206                                 .unwrap_or(0) as u32;
1207                             // `const` is 5 chars
1208                             let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1209                             lint.span_suggestion(
1210                                 const_span,
1211                                 fluent::suggestion,
1212                                 "pub static",
1213                                 Applicability::MachineApplicable,
1214                             )
1215                         },
1216                     );
1217                 }
1218             }
1219             hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1220                 for it in *items {
1221                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1222                         if let Some(no_mangle_attr) = cx
1223                             .sess()
1224                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1225                         {
1226                             check_no_mangle_on_generic_fn(
1227                                 no_mangle_attr,
1228                                 Some(generics),
1229                                 cx.tcx.hir().get_generics(it.id.def_id.def_id).unwrap(),
1230                                 it.span,
1231                             );
1232                         }
1233                     }
1234                 }
1235             }
1236             _ => {}
1237         }
1238     }
1239 }
1240
1241 declare_lint! {
1242     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1243     /// T` because it is [undefined behavior].
1244     ///
1245     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1246     ///
1247     /// ### Example
1248     ///
1249     /// ```rust,compile_fail
1250     /// unsafe {
1251     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1252     /// }
1253     /// ```
1254     ///
1255     /// {{produces}}
1256     ///
1257     /// ### Explanation
1258     ///
1259     /// Certain assumptions are made about aliasing of data, and this transmute
1260     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1261     ///
1262     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1263     MUTABLE_TRANSMUTES,
1264     Deny,
1265     "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1266 }
1267
1268 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1269
1270 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1271     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1272         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1273             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1274         {
1275             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1276                 cx.struct_span_lint(
1277                     MUTABLE_TRANSMUTES,
1278                     expr.span,
1279                     fluent::lint_builtin_mutable_transmutes,
1280                     |lint| lint,
1281                 );
1282             }
1283         }
1284
1285         fn get_transmute_from_to<'tcx>(
1286             cx: &LateContext<'tcx>,
1287             expr: &hir::Expr<'_>,
1288         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1289             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1290                 cx.qpath_res(qpath, expr.hir_id)
1291             } else {
1292                 return None;
1293             };
1294             if let Res::Def(DefKind::Fn, did) = def {
1295                 if !def_id_is_transmute(cx, did) {
1296                     return None;
1297                 }
1298                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1299                 let from = sig.inputs().skip_binder()[0];
1300                 let to = sig.output().skip_binder();
1301                 return Some((from, to));
1302             }
1303             None
1304         }
1305
1306         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1307             cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute
1308         }
1309     }
1310 }
1311
1312 declare_lint! {
1313     /// The `unstable_features` is deprecated and should no longer be used.
1314     UNSTABLE_FEATURES,
1315     Allow,
1316     "enabling unstable features (deprecated. do not use)"
1317 }
1318
1319 declare_lint_pass!(
1320     /// Forbids using the `#[feature(...)]` attribute
1321     UnstableFeatures => [UNSTABLE_FEATURES]
1322 );
1323
1324 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1325     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1326         if attr.has_name(sym::feature) {
1327             if let Some(items) = attr.meta_item_list() {
1328                 for item in items {
1329                     cx.struct_span_lint(
1330                         UNSTABLE_FEATURES,
1331                         item.span(),
1332                         fluent::lint_builtin_unstable_features,
1333                         |lint| lint,
1334                     );
1335                 }
1336             }
1337         }
1338     }
1339 }
1340
1341 declare_lint! {
1342     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1343     /// the crate root.
1344     ///
1345     /// ### Example
1346     ///
1347     /// ```rust,compile_fail
1348     /// #![deny(unreachable_pub)]
1349     /// mod foo {
1350     ///     pub mod bar {
1351     ///
1352     ///     }
1353     /// }
1354     /// ```
1355     ///
1356     /// {{produces}}
1357     ///
1358     /// ### Explanation
1359     ///
1360     /// A bare `pub` visibility may be misleading if the item is not actually
1361     /// publicly exported from the crate. The `pub(crate)` visibility is
1362     /// recommended to be used instead, which more clearly expresses the intent
1363     /// that the item is only visible within its own crate.
1364     ///
1365     /// This lint is "allow" by default because it will trigger for a large
1366     /// amount existing Rust code, and has some false-positives. Eventually it
1367     /// is desired for this to become warn-by-default.
1368     pub UNREACHABLE_PUB,
1369     Allow,
1370     "`pub` items not reachable from crate root"
1371 }
1372
1373 declare_lint_pass!(
1374     /// Lint for items marked `pub` that aren't reachable from other crates.
1375     UnreachablePub => [UNREACHABLE_PUB]
1376 );
1377
1378 impl UnreachablePub {
1379     fn perform_lint(
1380         &self,
1381         cx: &LateContext<'_>,
1382         what: &str,
1383         def_id: LocalDefId,
1384         vis_span: Span,
1385         exportable: bool,
1386     ) {
1387         let mut applicability = Applicability::MachineApplicable;
1388         if cx.tcx.visibility(def_id).is_public() && !cx.access_levels.is_reachable(def_id) {
1389             if vis_span.from_expansion() {
1390                 applicability = Applicability::MaybeIncorrect;
1391             }
1392             let def_span = cx.tcx.def_span(def_id);
1393             cx.struct_span_lint(
1394                 UNREACHABLE_PUB,
1395                 def_span,
1396                 fluent::lint_builtin_unreachable_pub,
1397                 |lint| {
1398                     lint.set_arg("what", what);
1399
1400                     lint.span_suggestion(vis_span, fluent::suggestion, "pub(crate)", applicability);
1401                     if exportable {
1402                         lint.help(fluent::help);
1403                     }
1404                     lint
1405                 },
1406             );
1407         }
1408     }
1409 }
1410
1411 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1412     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1413         // Do not warn for fake `use` statements.
1414         if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1415             return;
1416         }
1417         self.perform_lint(cx, "item", item.def_id.def_id, item.vis_span, true);
1418     }
1419
1420     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1421         self.perform_lint(cx, "item", foreign_item.def_id.def_id, foreign_item.vis_span, true);
1422     }
1423
1424     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1425         let def_id = cx.tcx.hir().local_def_id(field.hir_id);
1426         self.perform_lint(cx, "field", def_id, field.vis_span, false);
1427     }
1428
1429     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1430         // Only lint inherent impl items.
1431         if cx.tcx.associated_item(impl_item.def_id).trait_item_def_id.is_none() {
1432             self.perform_lint(cx, "item", impl_item.def_id.def_id, impl_item.vis_span, false);
1433         }
1434     }
1435 }
1436
1437 declare_lint! {
1438     /// The `type_alias_bounds` lint detects bounds in type aliases.
1439     ///
1440     /// ### Example
1441     ///
1442     /// ```rust
1443     /// type SendVec<T: Send> = Vec<T>;
1444     /// ```
1445     ///
1446     /// {{produces}}
1447     ///
1448     /// ### Explanation
1449     ///
1450     /// The trait bounds in a type alias are currently ignored, and should not
1451     /// be included to avoid confusion. This was previously allowed
1452     /// unintentionally; this may become a hard error in the future.
1453     TYPE_ALIAS_BOUNDS,
1454     Warn,
1455     "bounds in type aliases are not enforced"
1456 }
1457
1458 declare_lint_pass!(
1459     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1460     /// They are relevant when using associated types, but otherwise neither checked
1461     /// at definition site nor enforced at use site.
1462     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1463 );
1464
1465 impl TypeAliasBounds {
1466     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1467         match *qpath {
1468             hir::QPath::TypeRelative(ref ty, _) => {
1469                 // If this is a type variable, we found a `T::Assoc`.
1470                 match ty.kind {
1471                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1472                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1473                     }
1474                     _ => false,
1475                 }
1476             }
1477             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1478         }
1479     }
1480
1481     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
1482         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1483         // bound.  Let's see if this type does that.
1484
1485         // We use a HIR visitor to walk the type.
1486         use rustc_hir::intravisit::{self, Visitor};
1487         struct WalkAssocTypes<'a> {
1488             err: &'a mut Diagnostic,
1489         }
1490         impl Visitor<'_> for WalkAssocTypes<'_> {
1491             fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
1492                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1493                     self.err.span_help(span, fluent::lint_builtin_type_alias_bounds_help);
1494                 }
1495                 intravisit::walk_qpath(self, qpath, id)
1496             }
1497         }
1498
1499         // Let's go for a walk!
1500         let mut visitor = WalkAssocTypes { err };
1501         visitor.visit_ty(ty);
1502     }
1503 }
1504
1505 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1506     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1507         let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1508             return
1509         };
1510         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1511             // Bounds are respected for `type X = impl Trait`
1512             return;
1513         }
1514         // There must not be a where clause
1515         if type_alias_generics.predicates.is_empty() {
1516             return;
1517         }
1518
1519         let mut where_spans = Vec::new();
1520         let mut inline_spans = Vec::new();
1521         let mut inline_sugg = Vec::new();
1522         for p in type_alias_generics.predicates {
1523             let span = p.span();
1524             if p.in_where_clause() {
1525                 where_spans.push(span);
1526             } else {
1527                 for b in p.bounds() {
1528                     inline_spans.push(b.span());
1529                 }
1530                 inline_sugg.push((span, String::new()));
1531             }
1532         }
1533
1534         let mut suggested_changing_assoc_types = false;
1535         if !where_spans.is_empty() {
1536             cx.lint(TYPE_ALIAS_BOUNDS, fluent::lint_builtin_type_alias_where_clause, |lint| {
1537                 lint.set_span(where_spans);
1538                 lint.span_suggestion(
1539                     type_alias_generics.where_clause_span,
1540                     fluent::suggestion,
1541                     "",
1542                     Applicability::MachineApplicable,
1543                 );
1544                 if !suggested_changing_assoc_types {
1545                     TypeAliasBounds::suggest_changing_assoc_types(ty, lint);
1546                     suggested_changing_assoc_types = true;
1547                 }
1548                 lint
1549             });
1550         }
1551
1552         if !inline_spans.is_empty() {
1553             cx.lint(TYPE_ALIAS_BOUNDS, fluent::lint_builtin_type_alias_generic_bounds, |lint| {
1554                 lint.set_span(inline_spans);
1555                 lint.multipart_suggestion(
1556                     fluent::suggestion,
1557                     inline_sugg,
1558                     Applicability::MachineApplicable,
1559                 );
1560                 if !suggested_changing_assoc_types {
1561                     TypeAliasBounds::suggest_changing_assoc_types(ty, lint);
1562                 }
1563                 lint
1564             });
1565         }
1566     }
1567 }
1568
1569 declare_lint_pass!(
1570     /// Lint constants that are erroneous.
1571     /// Without this lint, we might not get any diagnostic if the constant is
1572     /// unused within this crate, even though downstream crates can't use it
1573     /// without producing an error.
1574     UnusedBrokenConst => []
1575 );
1576
1577 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1578     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1579         match it.kind {
1580             hir::ItemKind::Const(_, body_id) => {
1581                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1582                 // trigger the query once for all constants since that will already report the errors
1583                 cx.tcx.ensure().const_eval_poly(def_id);
1584             }
1585             hir::ItemKind::Static(_, _, body_id) => {
1586                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1587                 cx.tcx.ensure().eval_static_initializer(def_id);
1588             }
1589             _ => {}
1590         }
1591     }
1592 }
1593
1594 declare_lint! {
1595     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1596     /// any type parameters.
1597     ///
1598     /// ### Example
1599     ///
1600     /// ```rust
1601     /// #![feature(trivial_bounds)]
1602     /// pub struct A where i32: Copy;
1603     /// ```
1604     ///
1605     /// {{produces}}
1606     ///
1607     /// ### Explanation
1608     ///
1609     /// Usually you would not write a trait bound that you know is always
1610     /// true, or never true. However, when using macros, the macro may not
1611     /// know whether or not the constraint would hold or not at the time when
1612     /// generating the code. Currently, the compiler does not alert you if the
1613     /// constraint is always true, and generates an error if it is never true.
1614     /// The `trivial_bounds` feature changes this to be a warning in both
1615     /// cases, giving macros more freedom and flexibility to generate code,
1616     /// while still providing a signal when writing non-macro code that
1617     /// something is amiss.
1618     ///
1619     /// See [RFC 2056] for more details. This feature is currently only
1620     /// available on the nightly channel, see [tracking issue #48214].
1621     ///
1622     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1623     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1624     TRIVIAL_BOUNDS,
1625     Warn,
1626     "these bounds don't depend on an type parameters"
1627 }
1628
1629 declare_lint_pass!(
1630     /// Lint for trait and lifetime bounds that don't depend on type parameters
1631     /// which either do nothing, or stop the item from being used.
1632     TrivialConstraints => [TRIVIAL_BOUNDS]
1633 );
1634
1635 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1636     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1637         use rustc_middle::ty::visit::TypeVisitable;
1638         use rustc_middle::ty::PredicateKind::*;
1639
1640         if cx.tcx.features().trivial_bounds {
1641             let predicates = cx.tcx.predicates_of(item.def_id);
1642             for &(predicate, span) in predicates.predicates {
1643                 let predicate_kind_name = match predicate.kind().skip_binder() {
1644                     Trait(..) => "trait",
1645                     TypeOutlives(..) |
1646                     RegionOutlives(..) => "lifetime",
1647
1648                     // Ignore projections, as they can only be global
1649                     // if the trait bound is global
1650                     Projection(..) |
1651                     // Ignore bounds that a user can't type
1652                     WellFormed(..) |
1653                     ObjectSafe(..) |
1654                     ClosureKind(..) |
1655                     Subtype(..) |
1656                     Coerce(..) |
1657                     ConstEvaluatable(..) |
1658                     ConstEquate(..) |
1659                     TypeWellFormedFromEnv(..) => continue,
1660                 };
1661                 if predicate.is_global() {
1662                     cx.struct_span_lint(
1663                         TRIVIAL_BOUNDS,
1664                         span,
1665                         fluent::lint_builtin_trivial_bounds,
1666                         |lint| {
1667                             lint.set_arg("predicate_kind_name", predicate_kind_name)
1668                                 .set_arg("predicate", predicate)
1669                         },
1670                     );
1671                 }
1672             }
1673         }
1674     }
1675 }
1676
1677 declare_lint_pass!(
1678     /// Does nothing as a lint pass, but registers some `Lint`s
1679     /// which are used by other parts of the compiler.
1680     SoftLints => [
1681         WHILE_TRUE,
1682         BOX_POINTERS,
1683         NON_SHORTHAND_FIELD_PATTERNS,
1684         UNSAFE_CODE,
1685         MISSING_DOCS,
1686         MISSING_COPY_IMPLEMENTATIONS,
1687         MISSING_DEBUG_IMPLEMENTATIONS,
1688         ANONYMOUS_PARAMETERS,
1689         UNUSED_DOC_COMMENTS,
1690         NO_MANGLE_CONST_ITEMS,
1691         NO_MANGLE_GENERIC_ITEMS,
1692         MUTABLE_TRANSMUTES,
1693         UNSTABLE_FEATURES,
1694         UNREACHABLE_PUB,
1695         TYPE_ALIAS_BOUNDS,
1696         TRIVIAL_BOUNDS
1697     ]
1698 );
1699
1700 declare_lint! {
1701     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1702     /// pattern], which is deprecated.
1703     ///
1704     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1705     ///
1706     /// ### Example
1707     ///
1708     /// ```rust,edition2018
1709     /// let x = 123;
1710     /// match x {
1711     ///     0...100 => {}
1712     ///     _ => {}
1713     /// }
1714     /// ```
1715     ///
1716     /// {{produces}}
1717     ///
1718     /// ### Explanation
1719     ///
1720     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1721     /// confusion with the [`..` range expression]. Use the new form instead.
1722     ///
1723     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1724     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1725     Warn,
1726     "`...` range patterns are deprecated",
1727     @future_incompatible = FutureIncompatibleInfo {
1728         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1729         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1730     };
1731 }
1732
1733 #[derive(Default)]
1734 pub struct EllipsisInclusiveRangePatterns {
1735     /// If `Some(_)`, suppress all subsequent pattern
1736     /// warnings for better diagnostics.
1737     node_id: Option<ast::NodeId>,
1738 }
1739
1740 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1741
1742 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1743     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1744         if self.node_id.is_some() {
1745             // Don't recursively warn about patterns inside range endpoints.
1746             return;
1747         }
1748
1749         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1750
1751         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1752         /// corresponding to the ellipsis.
1753         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1754             match &pat.kind {
1755                 PatKind::Range(
1756                     a,
1757                     Some(b),
1758                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1759                 ) => Some((a.as_deref(), b, *span)),
1760                 _ => None,
1761             }
1762         }
1763
1764         let (parenthesise, endpoints) = match &pat.kind {
1765             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1766             _ => (false, matches_ellipsis_pat(pat)),
1767         };
1768
1769         if let Some((start, end, join)) = endpoints {
1770             let msg = fluent::lint_builtin_ellipsis_inclusive_range_patterns;
1771             let suggestion = fluent::suggestion;
1772             if parenthesise {
1773                 self.node_id = Some(pat.id);
1774                 let end = expr_to_string(&end);
1775                 let replace = match start {
1776                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1777                     None => format!("&(..={})", end),
1778                 };
1779                 if join.edition() >= Edition::Edition2021 {
1780                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1781                         span: pat.span,
1782                         suggestion: pat.span,
1783                         replace,
1784                     });
1785                 } else {
1786                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, msg, |lint| {
1787                         lint.span_suggestion(
1788                             pat.span,
1789                             suggestion,
1790                             replace,
1791                             Applicability::MachineApplicable,
1792                         )
1793                     });
1794                 }
1795             } else {
1796                 let replace = "..=";
1797                 if join.edition() >= Edition::Edition2021 {
1798                     cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns {
1799                         span: pat.span,
1800                         suggestion: join,
1801                         replace: replace.to_string(),
1802                     });
1803                 } else {
1804                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, msg, |lint| {
1805                         lint.span_suggestion_short(
1806                             join,
1807                             suggestion,
1808                             replace,
1809                             Applicability::MachineApplicable,
1810                         )
1811                     });
1812                 }
1813             };
1814         }
1815     }
1816
1817     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1818         if let Some(node_id) = self.node_id {
1819             if pat.id == node_id {
1820                 self.node_id = None
1821             }
1822         }
1823     }
1824 }
1825
1826 declare_lint! {
1827     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1828     /// that are not able to be run by the test harness because they are in a
1829     /// position where they are not nameable.
1830     ///
1831     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1832     ///
1833     /// ### Example
1834     ///
1835     /// ```rust,test
1836     /// fn main() {
1837     ///     #[test]
1838     ///     fn foo() {
1839     ///         // This test will not fail because it does not run.
1840     ///         assert_eq!(1, 2);
1841     ///     }
1842     /// }
1843     /// ```
1844     ///
1845     /// {{produces}}
1846     ///
1847     /// ### Explanation
1848     ///
1849     /// In order for the test harness to run a test, the test function must be
1850     /// located in a position where it can be accessed from the crate root.
1851     /// This generally means it must be defined in a module, and not anywhere
1852     /// else such as inside another function. The compiler previously allowed
1853     /// this without an error, so a lint was added as an alert that a test is
1854     /// not being used. Whether or not this should be allowed has not yet been
1855     /// decided, see [RFC 2471] and [issue #36629].
1856     ///
1857     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1858     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1859     UNNAMEABLE_TEST_ITEMS,
1860     Warn,
1861     "detects an item that cannot be named being marked as `#[test_case]`",
1862     report_in_external_macro
1863 }
1864
1865 pub struct UnnameableTestItems {
1866     boundary: Option<hir::OwnerId>, // Id of the item under which things are not nameable
1867     items_nameable: bool,
1868 }
1869
1870 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1871
1872 impl UnnameableTestItems {
1873     pub fn new() -> Self {
1874         Self { boundary: None, items_nameable: true }
1875     }
1876 }
1877
1878 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1879     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1880         if self.items_nameable {
1881             if let hir::ItemKind::Mod(..) = it.kind {
1882             } else {
1883                 self.items_nameable = false;
1884                 self.boundary = Some(it.def_id);
1885             }
1886             return;
1887         }
1888
1889         let attrs = cx.tcx.hir().attrs(it.hir_id());
1890         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1891             cx.struct_span_lint(
1892                 UNNAMEABLE_TEST_ITEMS,
1893                 attr.span,
1894                 fluent::lint_builtin_unnameable_test_items,
1895                 |lint| lint,
1896             );
1897         }
1898     }
1899
1900     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1901         if !self.items_nameable && self.boundary == Some(it.def_id) {
1902             self.items_nameable = true;
1903         }
1904     }
1905 }
1906
1907 declare_lint! {
1908     /// The `keyword_idents` lint detects edition keywords being used as an
1909     /// identifier.
1910     ///
1911     /// ### Example
1912     ///
1913     /// ```rust,edition2015,compile_fail
1914     /// #![deny(keyword_idents)]
1915     /// // edition 2015
1916     /// fn dyn() {}
1917     /// ```
1918     ///
1919     /// {{produces}}
1920     ///
1921     /// ### Explanation
1922     ///
1923     /// Rust [editions] allow the language to evolve without breaking
1924     /// backwards compatibility. This lint catches code that uses new keywords
1925     /// that are added to the language that are used as identifiers (such as a
1926     /// variable name, function name, etc.). If you switch the compiler to a
1927     /// new edition without updating the code, then it will fail to compile if
1928     /// you are using a new keyword as an identifier.
1929     ///
1930     /// You can manually change the identifiers to a non-keyword, or use a
1931     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1932     ///
1933     /// This lint solves the problem automatically. It is "allow" by default
1934     /// because the code is perfectly valid in older editions. The [`cargo
1935     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1936     /// and automatically apply the suggested fix from the compiler (which is
1937     /// to use a raw identifier). This provides a completely automated way to
1938     /// update old code for a new edition.
1939     ///
1940     /// [editions]: https://doc.rust-lang.org/edition-guide/
1941     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1942     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1943     pub KEYWORD_IDENTS,
1944     Allow,
1945     "detects edition keywords being used as an identifier",
1946     @future_incompatible = FutureIncompatibleInfo {
1947         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1948         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1949     };
1950 }
1951
1952 declare_lint_pass!(
1953     /// Check for uses of edition keywords used as an identifier.
1954     KeywordIdents => [KEYWORD_IDENTS]
1955 );
1956
1957 struct UnderMacro(bool);
1958
1959 impl KeywordIdents {
1960     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1961         for tt in tokens.into_trees() {
1962             match tt {
1963                 // Only report non-raw idents.
1964                 TokenTree::Token(token, _) => {
1965                     if let Some((ident, false)) = token.ident() {
1966                         self.check_ident_token(cx, UnderMacro(true), ident);
1967                     }
1968                 }
1969                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1970             }
1971         }
1972     }
1973
1974     fn check_ident_token(
1975         &mut self,
1976         cx: &EarlyContext<'_>,
1977         UnderMacro(under_macro): UnderMacro,
1978         ident: Ident,
1979     ) {
1980         let next_edition = match cx.sess().edition() {
1981             Edition::Edition2015 => {
1982                 match ident.name {
1983                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1984
1985                     // rust-lang/rust#56327: Conservatively do not
1986                     // attempt to report occurrences of `dyn` within
1987                     // macro definitions or invocations, because `dyn`
1988                     // can legitimately occur as a contextual keyword
1989                     // in 2015 code denoting its 2018 meaning, and we
1990                     // do not want rustfix to inject bugs into working
1991                     // code by rewriting such occurrences.
1992                     //
1993                     // But if we see `dyn` outside of a macro, we know
1994                     // its precise role in the parsed AST and thus are
1995                     // assured this is truly an attempt to use it as
1996                     // an identifier.
1997                     kw::Dyn if !under_macro => Edition::Edition2018,
1998
1999                     _ => return,
2000                 }
2001             }
2002
2003             // There are no new keywords yet for the 2018 edition and beyond.
2004             _ => return,
2005         };
2006
2007         // Don't lint `r#foo`.
2008         if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
2009             return;
2010         }
2011
2012         cx.struct_span_lint(
2013             KEYWORD_IDENTS,
2014             ident.span,
2015             fluent::lint_builtin_keyword_idents,
2016             |lint| {
2017                 lint.set_arg("kw", ident.clone()).set_arg("next", next_edition).span_suggestion(
2018                     ident.span,
2019                     fluent::suggestion,
2020                     format!("r#{}", ident),
2021                     Applicability::MachineApplicable,
2022                 )
2023             },
2024         );
2025     }
2026 }
2027
2028 impl EarlyLintPass for KeywordIdents {
2029     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
2030         self.check_tokens(cx, mac_def.body.inner_tokens());
2031     }
2032     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
2033         self.check_tokens(cx, mac.args.inner_tokens());
2034     }
2035     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
2036         self.check_ident_token(cx, UnderMacro(false), ident);
2037     }
2038 }
2039
2040 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2041
2042 impl ExplicitOutlivesRequirements {
2043     fn lifetimes_outliving_lifetime<'tcx>(
2044         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2045         def_id: DefId,
2046     ) -> Vec<ty::Region<'tcx>> {
2047         inferred_outlives
2048             .iter()
2049             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2050                 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
2051                     ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b),
2052                     _ => None,
2053                 },
2054                 _ => None,
2055             })
2056             .collect()
2057     }
2058
2059     fn lifetimes_outliving_type<'tcx>(
2060         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2061         index: u32,
2062     ) -> Vec<ty::Region<'tcx>> {
2063         inferred_outlives
2064             .iter()
2065             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2066                 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2067                     a.is_param(index).then_some(b)
2068                 }
2069                 _ => None,
2070             })
2071             .collect()
2072     }
2073
2074     fn collect_outlives_bound_spans<'tcx>(
2075         &self,
2076         tcx: TyCtxt<'tcx>,
2077         bounds: &hir::GenericBounds<'_>,
2078         inferred_outlives: &[ty::Region<'tcx>],
2079     ) -> Vec<(usize, Span)> {
2080         use rustc_middle::middle::resolve_lifetime::Region;
2081
2082         bounds
2083             .iter()
2084             .enumerate()
2085             .filter_map(|(i, bound)| {
2086                 if let hir::GenericBound::Outlives(lifetime) = bound {
2087                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
2088                         Some(Region::EarlyBound(def_id)) => inferred_outlives.iter().any(|r| {
2089                             if let ty::ReEarlyBound(ebr) = **r {
2090                                 ebr.def_id == def_id
2091                             } else {
2092                                 false
2093                             }
2094                         }),
2095                         _ => false,
2096                     };
2097                     is_inferred.then_some((i, bound.span()))
2098                 } else {
2099                     None
2100                 }
2101             })
2102             .filter(|(_, span)| !in_external_macro(tcx.sess, *span))
2103             .collect()
2104     }
2105
2106     fn consolidate_outlives_bound_spans(
2107         &self,
2108         lo: Span,
2109         bounds: &hir::GenericBounds<'_>,
2110         bound_spans: Vec<(usize, Span)>,
2111     ) -> Vec<Span> {
2112         if bounds.is_empty() {
2113             return Vec::new();
2114         }
2115         if bound_spans.len() == bounds.len() {
2116             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2117             // If all bounds are inferable, we want to delete the colon, so
2118             // start from just after the parameter (span passed as argument)
2119             vec![lo.to(last_bound_span)]
2120         } else {
2121             let mut merged = Vec::new();
2122             let mut last_merged_i = None;
2123
2124             let mut from_start = true;
2125             for (i, bound_span) in bound_spans {
2126                 match last_merged_i {
2127                     // If the first bound is inferable, our span should also eat the leading `+`.
2128                     None if i == 0 => {
2129                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2130                         last_merged_i = Some(0);
2131                     }
2132                     // If consecutive bounds are inferable, merge their spans
2133                     Some(h) if i == h + 1 => {
2134                         if let Some(tail) = merged.last_mut() {
2135                             // Also eat the trailing `+` if the first
2136                             // more-than-one bound is inferable
2137                             let to_span = if from_start && i < bounds.len() {
2138                                 bounds[i + 1].span().shrink_to_lo()
2139                             } else {
2140                                 bound_span
2141                             };
2142                             *tail = tail.to(to_span);
2143                             last_merged_i = Some(i);
2144                         } else {
2145                             bug!("another bound-span visited earlier");
2146                         }
2147                     }
2148                     _ => {
2149                         // When we find a non-inferable bound, subsequent inferable bounds
2150                         // won't be consecutive from the start (and we'll eat the leading
2151                         // `+` rather than the trailing one)
2152                         from_start = false;
2153                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2154                         last_merged_i = Some(i);
2155                     }
2156                 }
2157             }
2158             merged
2159         }
2160     }
2161 }
2162
2163 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2164     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2165         use rustc_middle::middle::resolve_lifetime::Region;
2166
2167         let def_id = item.def_id.def_id;
2168         if let hir::ItemKind::Struct(_, ref hir_generics)
2169         | hir::ItemKind::Enum(_, ref hir_generics)
2170         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
2171         {
2172             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2173             if inferred_outlives.is_empty() {
2174                 return;
2175             }
2176
2177             let ty_generics = cx.tcx.generics_of(def_id);
2178
2179             let mut bound_count = 0;
2180             let mut lint_spans = Vec::new();
2181             let mut where_lint_spans = Vec::new();
2182             let mut dropped_predicate_count = 0;
2183             let num_predicates = hir_generics.predicates.len();
2184             for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2185                 let (relevant_lifetimes, bounds, span, in_where_clause) = match where_predicate {
2186                     hir::WherePredicate::RegionPredicate(predicate) => {
2187                         if let Some(Region::EarlyBound(region_def_id)) =
2188                             cx.tcx.named_region(predicate.lifetime.hir_id)
2189                         {
2190                             (
2191                                 Self::lifetimes_outliving_lifetime(
2192                                     inferred_outlives,
2193                                     region_def_id,
2194                                 ),
2195                                 &predicate.bounds,
2196                                 predicate.span,
2197                                 predicate.in_where_clause,
2198                             )
2199                         } else {
2200                             continue;
2201                         }
2202                     }
2203                     hir::WherePredicate::BoundPredicate(predicate) => {
2204                         // FIXME we can also infer bounds on associated types,
2205                         // and should check for them here.
2206                         match predicate.bounded_ty.kind {
2207                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
2208                                 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2209                                     continue
2210                                 };
2211                                 let index = ty_generics.param_def_id_to_index[&def_id];
2212                                 (
2213                                     Self::lifetimes_outliving_type(inferred_outlives, index),
2214                                     &predicate.bounds,
2215                                     predicate.span,
2216                                     predicate.origin == PredicateOrigin::WhereClause,
2217                                 )
2218                             }
2219                             _ => {
2220                                 continue;
2221                             }
2222                         }
2223                     }
2224                     _ => continue,
2225                 };
2226                 if relevant_lifetimes.is_empty() {
2227                     continue;
2228                 }
2229
2230                 let bound_spans =
2231                     self.collect_outlives_bound_spans(cx.tcx, bounds, &relevant_lifetimes);
2232                 bound_count += bound_spans.len();
2233
2234                 let drop_predicate = bound_spans.len() == bounds.len();
2235                 if drop_predicate {
2236                     dropped_predicate_count += 1;
2237                 }
2238
2239                 if drop_predicate && !in_where_clause {
2240                     lint_spans.push(span);
2241                 } else if drop_predicate && i + 1 < num_predicates {
2242                     // If all the bounds on a predicate were inferable and there are
2243                     // further predicates, we want to eat the trailing comma.
2244                     let next_predicate_span = hir_generics.predicates[i + 1].span();
2245                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
2246                 } else {
2247                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2248                         span.shrink_to_lo(),
2249                         bounds,
2250                         bound_spans,
2251                     ));
2252                 }
2253             }
2254
2255             // If all predicates are inferable, drop the entire clause
2256             // (including the `where`)
2257             if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates
2258             {
2259                 let where_span = hir_generics.where_clause_span;
2260                 // Extend the where clause back to the closing `>` of the
2261                 // generics, except for tuple struct, which have the `where`
2262                 // after the fields of the struct.
2263                 let full_where_span =
2264                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2265                         where_span
2266                     } else {
2267                         hir_generics.span.shrink_to_hi().to(where_span)
2268                     };
2269                 lint_spans.push(full_where_span);
2270             } else {
2271                 lint_spans.extend(where_lint_spans);
2272             }
2273
2274             if !lint_spans.is_empty() {
2275                 cx.struct_span_lint(
2276                     EXPLICIT_OUTLIVES_REQUIREMENTS,
2277                     lint_spans.clone(),
2278                     fluent::lint_builtin_explicit_outlives,
2279                     |lint| {
2280                         lint.set_arg("count", bound_count).multipart_suggestion(
2281                             fluent::suggestion,
2282                             lint_spans
2283                                 .into_iter()
2284                                 .map(|span| (span, String::new()))
2285                                 .collect::<Vec<_>>(),
2286                             Applicability::MachineApplicable,
2287                         )
2288                     },
2289                 );
2290             }
2291         }
2292     }
2293 }
2294
2295 declare_lint! {
2296     /// The `incomplete_features` lint detects unstable features enabled with
2297     /// the [`feature` attribute] that may function improperly in some or all
2298     /// cases.
2299     ///
2300     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2301     ///
2302     /// ### Example
2303     ///
2304     /// ```rust
2305     /// #![feature(generic_const_exprs)]
2306     /// ```
2307     ///
2308     /// {{produces}}
2309     ///
2310     /// ### Explanation
2311     ///
2312     /// Although it is encouraged for people to experiment with unstable
2313     /// features, some of them are known to be incomplete or faulty. This lint
2314     /// is a signal that the feature has not yet been finished, and you may
2315     /// experience problems with it.
2316     pub INCOMPLETE_FEATURES,
2317     Warn,
2318     "incomplete features that may function improperly in some or all cases"
2319 }
2320
2321 declare_lint_pass!(
2322     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2323     IncompleteFeatures => [INCOMPLETE_FEATURES]
2324 );
2325
2326 impl EarlyLintPass for IncompleteFeatures {
2327     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2328         let features = cx.sess().features_untracked();
2329         features
2330             .declared_lang_features
2331             .iter()
2332             .map(|(name, span, _)| (name, span))
2333             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2334             .filter(|(&name, _)| features.incomplete(name))
2335             .for_each(|(&name, &span)| {
2336                 cx.struct_span_lint(
2337                     INCOMPLETE_FEATURES,
2338                     span,
2339                     fluent::lint_builtin_incomplete_features,
2340                     |lint| {
2341                         lint.set_arg("name", name);
2342                         if let Some(n) =
2343                             rustc_feature::find_feature_issue(name, GateIssue::Language)
2344                         {
2345                             lint.set_arg("n", n);
2346                             lint.note(fluent::note);
2347                         }
2348                         if HAS_MIN_FEATURES.contains(&name) {
2349                             lint.help(fluent::help);
2350                         }
2351                         lint
2352                     },
2353                 )
2354             });
2355     }
2356 }
2357
2358 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2359
2360 declare_lint! {
2361     /// The `invalid_value` lint detects creating a value that is not valid,
2362     /// such as a null reference.
2363     ///
2364     /// ### Example
2365     ///
2366     /// ```rust,no_run
2367     /// # #![allow(unused)]
2368     /// unsafe {
2369     ///     let x: &'static i32 = std::mem::zeroed();
2370     /// }
2371     /// ```
2372     ///
2373     /// {{produces}}
2374     ///
2375     /// ### Explanation
2376     ///
2377     /// In some situations the compiler can detect that the code is creating
2378     /// an invalid value, which should be avoided.
2379     ///
2380     /// In particular, this lint will check for improper use of
2381     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2382     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2383     /// lint should provide extra information to indicate what the problem is
2384     /// and a possible solution.
2385     ///
2386     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2387     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2388     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2389     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2390     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2391     pub INVALID_VALUE,
2392     Warn,
2393     "an invalid value is being created (such as a null reference)"
2394 }
2395
2396 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2397
2398 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2399     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2400         #[derive(Debug, Copy, Clone, PartialEq)]
2401         enum InitKind {
2402             Zeroed,
2403             Uninit,
2404         }
2405
2406         /// Information about why a type cannot be initialized this way.
2407         /// Contains an error message and optionally a span to point at.
2408         type InitError = (String, Option<Span>);
2409
2410         /// Test if this constant is all-0.
2411         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2412             use hir::ExprKind::*;
2413             use rustc_ast::LitKind::*;
2414             match &expr.kind {
2415                 Lit(lit) => {
2416                     if let Int(i, _) = lit.node {
2417                         i == 0
2418                     } else {
2419                         false
2420                     }
2421                 }
2422                 Tup(tup) => tup.iter().all(is_zero),
2423                 _ => false,
2424             }
2425         }
2426
2427         /// Determine if this expression is a "dangerous initialization".
2428         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2429             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2430                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2431                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2432                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2433                     match cx.tcx.get_diagnostic_name(def_id) {
2434                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2435                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2436                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2437                         _ => {}
2438                     }
2439                 }
2440             } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2441                 // Find problematic calls to `MaybeUninit::assume_init`.
2442                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2443                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2444                     // This is a call to *some* method named `assume_init`.
2445                     // See if the `self` parameter is one of the dangerous constructors.
2446                     if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind {
2447                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2448                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2449                             match cx.tcx.get_diagnostic_name(def_id) {
2450                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2451                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2452                                 _ => {}
2453                             }
2454                         }
2455                     }
2456                 }
2457             }
2458
2459             None
2460         }
2461
2462         fn variant_find_init_error<'tcx>(
2463             cx: &LateContext<'tcx>,
2464             variant: &VariantDef,
2465             substs: ty::SubstsRef<'tcx>,
2466             descr: &str,
2467             init: InitKind,
2468         ) -> Option<InitError> {
2469             variant.fields.iter().find_map(|field| {
2470                 ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|(mut msg, span)| {
2471                     if span.is_none() {
2472                         // Point to this field, should be helpful for figuring
2473                         // out where the source of the error is.
2474                         let span = cx.tcx.def_span(field.did);
2475                         write!(&mut msg, " (in this {descr})").unwrap();
2476                         (msg, Some(span))
2477                     } else {
2478                         // Just forward.
2479                         (msg, span)
2480                     }
2481                 })
2482             })
2483         }
2484
2485         /// Return `Some` only if we are sure this type does *not*
2486         /// allow zero initialization.
2487         fn ty_find_init_error<'tcx>(
2488             cx: &LateContext<'tcx>,
2489             ty: Ty<'tcx>,
2490             init: InitKind,
2491         ) -> Option<InitError> {
2492             use rustc_type_ir::sty::TyKind::*;
2493             match ty.kind() {
2494                 // Primitive types that don't like 0 as a value.
2495                 Ref(..) => Some(("references must be non-null".to_string(), None)),
2496                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2497                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2498                 Never => Some(("the `!` type has no valid value".to_string(), None)),
2499                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2500                 // raw ptr to dyn Trait
2501                 {
2502                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
2503                 }
2504                 // Primitive types with other constraints.
2505                 Bool if init == InitKind::Uninit => {
2506                     Some(("booleans must be either `true` or `false`".to_string(), None))
2507                 }
2508                 Char if init == InitKind::Uninit => {
2509                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
2510                 }
2511                 Int(_) | Uint(_) if init == InitKind::Uninit => {
2512                     Some(("integers must not be uninitialized".to_string(), None))
2513                 }
2514                 Float(_) if init == InitKind::Uninit => {
2515                     Some(("floats must not be uninitialized".to_string(), None))
2516                 }
2517                 RawPtr(_) if init == InitKind::Uninit => {
2518                     Some(("raw pointers must not be uninitialized".to_string(), None))
2519                 }
2520                 // Recurse and checks for some compound types. (but not unions)
2521                 Adt(adt_def, substs) if !adt_def.is_union() => {
2522                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
2523                     use std::ops::Bound;
2524                     match cx.tcx.layout_scalar_valid_range(adt_def.did()) {
2525                         // We exploit here that `layout_scalar_valid_range` will never
2526                         // return `Bound::Excluded`.  (And we have tests checking that we
2527                         // handle the attribute correctly.)
2528                         // We don't add a span since users cannot declare such types anyway.
2529                         (Bound::Included(lo), Bound::Included(hi)) if 0 < lo && lo < hi => {
2530                             return Some((format!("`{}` must be non-null", ty), None));
2531                         }
2532                         (Bound::Included(lo), Bound::Unbounded) if 0 < lo => {
2533                             return Some((format!("`{}` must be non-null", ty), None));
2534                         }
2535                         (Bound::Included(_), _) | (_, Bound::Included(_))
2536                             if init == InitKind::Uninit =>
2537                         {
2538                             return Some((
2539                                 format!(
2540                                     "`{}` must be initialized inside its custom valid range",
2541                                     ty,
2542                                 ),
2543                                 None,
2544                             ));
2545                         }
2546                         _ => {}
2547                     }
2548                     // Handle structs.
2549                     if adt_def.is_struct() {
2550                         return variant_find_init_error(
2551                             cx,
2552                             adt_def.non_enum_variant(),
2553                             substs,
2554                             "struct field",
2555                             init,
2556                         );
2557                     }
2558                     // And now, enums.
2559                     let span = cx.tcx.def_span(adt_def.did());
2560                     let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2561                         let definitely_inhabited = match variant
2562                             .inhabited_predicate(cx.tcx, *adt_def)
2563                             .subst(cx.tcx, substs)
2564                             .apply_any_module(cx.tcx, cx.param_env)
2565                         {
2566                             // Entirely skip uninhbaited variants.
2567                             Some(false) => return None,
2568                             // Forward the others, but remember which ones are definitely inhabited.
2569                             Some(true) => true,
2570                             None => false,
2571                         };
2572                         Some((variant, definitely_inhabited))
2573                     });
2574                     let Some(first_variant) = potential_variants.next() else {
2575                         return Some(("enums with no inhabited variants have no valid value".to_string(), Some(span)));
2576                     };
2577                     // So we have at least one potentially inhabited variant. Might we have two?
2578                     let Some(second_variant) = potential_variants.next() else {
2579                         // There is only one potentially inhabited variant. So we can recursively check that variant!
2580                         return variant_find_init_error(
2581                             cx,
2582                             &first_variant.0,
2583                             substs,
2584                             "field of the only potentially inhabited enum variant",
2585                             init,
2586                         );
2587                     };
2588                     // So we have at least two potentially inhabited variants.
2589                     // If we can prove that we have at least two *definitely* inhabited variants,
2590                     // then we have a tag and hence leaving this uninit is definitely disallowed.
2591                     // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.)
2592                     if init == InitKind::Uninit {
2593                         let definitely_inhabited = (first_variant.1 as usize)
2594                             + (second_variant.1 as usize)
2595                             + potential_variants
2596                                 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2597                                 .count();
2598                         if definitely_inhabited > 1 {
2599                             return Some((
2600                                 "enums with multiple inhabited variants have to be initialized to a variant".to_string(),
2601                                 Some(span),
2602                             ));
2603                         }
2604                     }
2605                     // We couldn't find anything wrong here.
2606                     None
2607                 }
2608                 Tuple(..) => {
2609                     // Proceed recursively, check all fields.
2610                     ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2611                 }
2612                 Array(ty, len) => {
2613                     if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) {
2614                         // Array length known at array non-empty -- recurse.
2615                         ty_find_init_error(cx, *ty, init)
2616                     } else {
2617                         // Empty array or size unknown.
2618                         None
2619                     }
2620                 }
2621                 // Conservative fallback.
2622                 _ => None,
2623             }
2624         }
2625
2626         if let Some(init) = is_dangerous_init(cx, expr) {
2627             // This conjures an instance of a type out of nothing,
2628             // using zeroed or uninitialized memory.
2629             // We are extremely conservative with what we warn about.
2630             let conjured_ty = cx.typeck_results().expr_ty(expr);
2631             if let Some((msg, span)) =
2632                 with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init))
2633             {
2634                 // FIXME(davidtwco): make translatable
2635                 cx.struct_span_lint(
2636                     INVALID_VALUE,
2637                     expr.span,
2638                     DelayDm(|| {
2639                         format!(
2640                             "the type `{}` does not permit {}",
2641                             conjured_ty,
2642                             match init {
2643                                 InitKind::Zeroed => "zero-initialization",
2644                                 InitKind::Uninit => "being left uninitialized",
2645                             },
2646                         )
2647                     }),
2648                     |lint| {
2649                         lint.span_label(
2650                             expr.span,
2651                             "this code causes undefined behavior when executed",
2652                         );
2653                         lint.span_label(
2654                             expr.span,
2655                             "help: use `MaybeUninit<T>` instead, \
2656                             and only call `assume_init` after initialization is done",
2657                         );
2658                         if let Some(span) = span {
2659                             lint.span_note(span, &msg);
2660                         } else {
2661                             lint.note(&msg);
2662                         }
2663                         lint
2664                     },
2665                 );
2666             }
2667         }
2668     }
2669 }
2670
2671 declare_lint! {
2672     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2673     /// has been declared with the same name but different types.
2674     ///
2675     /// ### Example
2676     ///
2677     /// ```rust
2678     /// mod m {
2679     ///     extern "C" {
2680     ///         fn foo();
2681     ///     }
2682     /// }
2683     ///
2684     /// extern "C" {
2685     ///     fn foo(_: u32);
2686     /// }
2687     /// ```
2688     ///
2689     /// {{produces}}
2690     ///
2691     /// ### Explanation
2692     ///
2693     /// Because two symbols of the same name cannot be resolved to two
2694     /// different functions at link time, and one function cannot possibly
2695     /// have two types, a clashing extern declaration is almost certainly a
2696     /// mistake. Check to make sure that the `extern` definitions are correct
2697     /// and equivalent, and possibly consider unifying them in one location.
2698     ///
2699     /// This lint does not run between crates because a project may have
2700     /// dependencies which both rely on the same extern function, but declare
2701     /// it in a different (but valid) way. For example, they may both declare
2702     /// an opaque type for one or more of the arguments (which would end up
2703     /// distinct types), or use types that are valid conversions in the
2704     /// language the `extern fn` is defined in. In these cases, the compiler
2705     /// can't say that the clashing declaration is incorrect.
2706     pub CLASHING_EXTERN_DECLARATIONS,
2707     Warn,
2708     "detects when an extern fn has been declared with the same name but different types"
2709 }
2710
2711 pub struct ClashingExternDeclarations {
2712     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2713     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2714     /// the symbol should be reported as a clashing declaration.
2715     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2716     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2717     seen_decls: FxHashMap<Symbol, HirId>,
2718 }
2719
2720 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2721 /// just from declaration itself. This is important because we don't want to report clashes on
2722 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2723 /// different name.
2724 enum SymbolName {
2725     /// The name of the symbol + the span of the annotation which introduced the link name.
2726     Link(Symbol, Span),
2727     /// No link name, so just the name of the symbol.
2728     Normal(Symbol),
2729 }
2730
2731 impl SymbolName {
2732     fn get_name(&self) -> Symbol {
2733         match self {
2734             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2735         }
2736     }
2737 }
2738
2739 impl ClashingExternDeclarations {
2740     pub(crate) fn new() -> Self {
2741         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2742     }
2743     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2744     /// for the item, return its HirId without updating the set.
2745     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2746         let did = fi.def_id.to_def_id();
2747         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2748         let name = Symbol::intern(tcx.symbol_name(instance).name);
2749         if let Some(&hir_id) = self.seen_decls.get(&name) {
2750             // Avoid updating the map with the new entry when we do find a collision. We want to
2751             // make sure we're always pointing to the first definition as the previous declaration.
2752             // This lets us avoid emitting "knock-on" diagnostics.
2753             Some(hir_id)
2754         } else {
2755             self.seen_decls.insert(name, fi.hir_id())
2756         }
2757     }
2758
2759     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2760     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2761     /// symbol's name.
2762     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2763         if let Some((overridden_link_name, overridden_link_name_span)) =
2764             tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
2765                 // FIXME: Instead of searching through the attributes again to get span
2766                 // information, we could have codegen_fn_attrs also give span information back for
2767                 // where the attribute was defined. However, until this is found to be a
2768                 // bottleneck, this does just fine.
2769                 (
2770                     overridden_link_name,
2771                     tcx.get_attr(fi.def_id.to_def_id(), sym::link_name).unwrap().span,
2772                 )
2773             })
2774         {
2775             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2776         } else {
2777             SymbolName::Normal(fi.ident.name)
2778         }
2779     }
2780
2781     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2782     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2783     /// with the same members (as the declarations shouldn't clash).
2784     fn structurally_same_type<'tcx>(
2785         cx: &LateContext<'tcx>,
2786         a: Ty<'tcx>,
2787         b: Ty<'tcx>,
2788         ckind: CItemKind,
2789     ) -> bool {
2790         fn structurally_same_type_impl<'tcx>(
2791             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2792             cx: &LateContext<'tcx>,
2793             a: Ty<'tcx>,
2794             b: Ty<'tcx>,
2795             ckind: CItemKind,
2796         ) -> bool {
2797             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2798             let tcx = cx.tcx;
2799
2800             // Given a transparent newtype, reach through and grab the inner
2801             // type unless the newtype makes the type non-null.
2802             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2803                 let mut ty = ty;
2804                 loop {
2805                     if let ty::Adt(def, substs) = *ty.kind() {
2806                         let is_transparent = def.repr().transparent();
2807                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
2808                         debug!(
2809                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2810                             ty, is_transparent, is_non_null
2811                         );
2812                         if is_transparent && !is_non_null {
2813                             debug_assert!(def.variants().len() == 1);
2814                             let v = &def.variant(VariantIdx::new(0));
2815                             ty = transparent_newtype_field(tcx, v)
2816                                 .expect(
2817                                     "single-variant transparent structure with zero-sized field",
2818                                 )
2819                                 .ty(tcx, substs);
2820                             continue;
2821                         }
2822                     }
2823                     debug!("non_transparent_ty -> {:?}", ty);
2824                     return ty;
2825                 }
2826             };
2827
2828             let a = non_transparent_ty(a);
2829             let b = non_transparent_ty(b);
2830
2831             if !seen_types.insert((a, b)) {
2832                 // We've encountered a cycle. There's no point going any further -- the types are
2833                 // structurally the same.
2834                 return true;
2835             }
2836             let tcx = cx.tcx;
2837             if a == b {
2838                 // All nominally-same types are structurally same, too.
2839                 true
2840             } else {
2841                 // Do a full, depth-first comparison between the two.
2842                 use rustc_type_ir::sty::TyKind::*;
2843                 let a_kind = a.kind();
2844                 let b_kind = b.kind();
2845
2846                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2847                     debug!("compare_layouts({:?}, {:?})", a, b);
2848                     let a_layout = &cx.layout_of(a)?.layout.abi();
2849                     let b_layout = &cx.layout_of(b)?.layout.abi();
2850                     debug!(
2851                         "comparing layouts: {:?} == {:?} = {}",
2852                         a_layout,
2853                         b_layout,
2854                         a_layout == b_layout
2855                     );
2856                     Ok(a_layout == b_layout)
2857                 };
2858
2859                 #[allow(rustc::usage_of_ty_tykind)]
2860                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2861                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2862                 };
2863
2864                 ensure_sufficient_stack(|| {
2865                     match (a_kind, b_kind) {
2866                         (Adt(a_def, _), Adt(b_def, _)) => {
2867                             // We can immediately rule out these types as structurally same if
2868                             // their layouts differ.
2869                             match compare_layouts(a, b) {
2870                                 Ok(false) => return false,
2871                                 _ => (), // otherwise, continue onto the full, fields comparison
2872                             }
2873
2874                             // Grab a flattened representation of all fields.
2875                             let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2876                             let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
2877
2878                             // Perform a structural comparison for each field.
2879                             a_fields.eq_by(
2880                                 b_fields,
2881                                 |&ty::FieldDef { did: a_did, .. },
2882                                  &ty::FieldDef { did: b_did, .. }| {
2883                                     structurally_same_type_impl(
2884                                         seen_types,
2885                                         cx,
2886                                         tcx.type_of(a_did),
2887                                         tcx.type_of(b_did),
2888                                         ckind,
2889                                     )
2890                                 },
2891                             )
2892                         }
2893                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2894                             // For arrays, we also check the constness of the type.
2895                             a_const.kind() == b_const.kind()
2896                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2897                         }
2898                         (Slice(a_ty), Slice(b_ty)) => {
2899                             structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2900                         }
2901                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2902                             a_tymut.mutbl == b_tymut.mutbl
2903                                 && structurally_same_type_impl(
2904                                     seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
2905                                 )
2906                         }
2907                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2908                             // For structural sameness, we don't need the region to be same.
2909                             a_mut == b_mut
2910                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2911                         }
2912                         (FnDef(..), FnDef(..)) => {
2913                             let a_poly_sig = a.fn_sig(tcx);
2914                             let b_poly_sig = b.fn_sig(tcx);
2915
2916                             // We don't compare regions, but leaving bound regions around ICEs, so
2917                             // we erase them.
2918                             let a_sig = tcx.erase_late_bound_regions(a_poly_sig);
2919                             let b_sig = tcx.erase_late_bound_regions(b_poly_sig);
2920
2921                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2922                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2923                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2924                                     structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
2925                                 })
2926                                 && structurally_same_type_impl(
2927                                     seen_types,
2928                                     cx,
2929                                     a_sig.output(),
2930                                     b_sig.output(),
2931                                     ckind,
2932                                 )
2933                         }
2934                         (Tuple(a_substs), Tuple(b_substs)) => {
2935                             a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
2936                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2937                             })
2938                         }
2939                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2940                         // For the purposes of this lint, take the conservative approach and mark them as
2941                         // not structurally same.
2942                         (Dynamic(..), Dynamic(..))
2943                         | (Error(..), Error(..))
2944                         | (Closure(..), Closure(..))
2945                         | (Generator(..), Generator(..))
2946                         | (GeneratorWitness(..), GeneratorWitness(..))
2947                         | (Projection(..), Projection(..))
2948                         | (Opaque(..), Opaque(..)) => false,
2949
2950                         // These definitely should have been caught above.
2951                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2952
2953                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2954                         // enum layout optimisation is being applied.
2955                         (Adt(..), other_kind) | (other_kind, Adt(..))
2956                             if is_primitive_or_pointer(other_kind) =>
2957                         {
2958                             let (primitive, adt) =
2959                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2960                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2961                                 ty == primitive
2962                             } else {
2963                                 compare_layouts(a, b).unwrap_or(false)
2964                             }
2965                         }
2966                         // Otherwise, just compare the layouts. This may fail to lint for some
2967                         // incompatible types, but at the very least, will stop reads into
2968                         // uninitialised memory.
2969                         _ => compare_layouts(a, b).unwrap_or(false),
2970                     }
2971                 })
2972             }
2973         }
2974         let mut seen_types = FxHashSet::default();
2975         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2976     }
2977 }
2978
2979 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2980
2981 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2982     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2983         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2984         if let ForeignItemKind::Fn(..) = this_fi.kind {
2985             let tcx = cx.tcx;
2986             if let Some(existing_hid) = self.insert(tcx, this_fi) {
2987                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
2988                 let this_decl_ty = tcx.type_of(this_fi.def_id);
2989                 debug!(
2990                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2991                     existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
2992                 );
2993                 // Check that the declarations match.
2994                 if !Self::structurally_same_type(
2995                     cx,
2996                     existing_decl_ty,
2997                     this_decl_ty,
2998                     CItemKind::Declaration,
2999                 ) {
3000                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
3001                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
3002
3003                     // We want to ensure that we use spans for both decls that include where the
3004                     // name was defined, whether that was from the link_name attribute or not.
3005                     let get_relevant_span =
3006                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
3007                             SymbolName::Normal(_) => fi.span,
3008                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
3009                         };
3010                     // Finally, emit the diagnostic.
3011
3012                     let msg = if orig.get_name() == this_fi.ident.name {
3013                         fluent::lint_builtin_clashing_extern_same_name
3014                     } else {
3015                         fluent::lint_builtin_clashing_extern_diff_name
3016                     };
3017                     tcx.struct_span_lint_hir(
3018                         CLASHING_EXTERN_DECLARATIONS,
3019                         this_fi.hir_id(),
3020                         get_relevant_span(this_fi),
3021                         msg,
3022                         |lint| {
3023                             let mut expected_str = DiagnosticStyledString::new();
3024                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
3025                             let mut found_str = DiagnosticStyledString::new();
3026                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
3027
3028                             lint.set_arg("this_fi", this_fi.ident.name)
3029                                 .set_arg("orig", orig.get_name())
3030                                 .span_label(get_relevant_span(orig_fi), fluent::previous_decl_label)
3031                                 .span_label(get_relevant_span(this_fi), fluent::mismatch_label)
3032                                 // FIXME(davidtwco): translatable expected/found
3033                                 .note_expected_found(&"", expected_str, &"", found_str)
3034                         },
3035                     );
3036                 }
3037             }
3038         }
3039     }
3040 }
3041
3042 declare_lint! {
3043     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3044     /// which causes [undefined behavior].
3045     ///
3046     /// ### Example
3047     ///
3048     /// ```rust,no_run
3049     /// # #![allow(unused)]
3050     /// use std::ptr;
3051     /// unsafe {
3052     ///     let x = &*ptr::null::<i32>();
3053     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3054     ///     let x = *(0 as *const i32);
3055     /// }
3056     /// ```
3057     ///
3058     /// {{produces}}
3059     ///
3060     /// ### Explanation
3061     ///
3062     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3063     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3064     ///
3065     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3066     pub DEREF_NULLPTR,
3067     Warn,
3068     "detects when an null pointer is dereferenced"
3069 }
3070
3071 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3072
3073 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3074     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3075         /// test if expression is a null ptr
3076         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3077             match &expr.kind {
3078                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3079                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3080                         return is_zero(expr) || is_null_ptr(cx, expr);
3081                     }
3082                 }
3083                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3084                 rustc_hir::ExprKind::Call(ref path, _) => {
3085                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3086                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3087                             return matches!(
3088                                 cx.tcx.get_diagnostic_name(def_id),
3089                                 Some(sym::ptr_null | sym::ptr_null_mut)
3090                             );
3091                         }
3092                     }
3093                 }
3094                 _ => {}
3095             }
3096             false
3097         }
3098
3099         /// test if expression is the literal `0`
3100         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3101             match &expr.kind {
3102                 rustc_hir::ExprKind::Lit(ref lit) => {
3103                     if let LitKind::Int(a, _) = lit.node {
3104                         return a == 0;
3105                     }
3106                 }
3107                 _ => {}
3108             }
3109             false
3110         }
3111
3112         if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3113             if is_null_ptr(cx, expr_deref) {
3114                 cx.struct_span_lint(
3115                     DEREF_NULLPTR,
3116                     expr.span,
3117                     fluent::lint_builtin_deref_nullptr,
3118                     |lint| lint.span_label(expr.span, fluent::label),
3119                 );
3120             }
3121         }
3122     }
3123 }
3124
3125 declare_lint! {
3126     /// The `named_asm_labels` lint detects the use of named labels in the
3127     /// inline `asm!` macro.
3128     ///
3129     /// ### Example
3130     ///
3131     /// ```rust,compile_fail
3132     /// # #![feature(asm_experimental_arch)]
3133     /// use std::arch::asm;
3134     ///
3135     /// fn main() {
3136     ///     unsafe {
3137     ///         asm!("foo: bar");
3138     ///     }
3139     /// }
3140     /// ```
3141     ///
3142     /// {{produces}}
3143     ///
3144     /// ### Explanation
3145     ///
3146     /// LLVM is allowed to duplicate inline assembly blocks for any
3147     /// reason, for example when it is in a function that gets inlined. Because
3148     /// of this, GNU assembler [local labels] *must* be used instead of labels
3149     /// with a name. Using named labels might cause assembler or linker errors.
3150     ///
3151     /// See the explanation in [Rust By Example] for more details.
3152     ///
3153     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3154     /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
3155     pub NAMED_ASM_LABELS,
3156     Deny,
3157     "named labels in inline assembly",
3158 }
3159
3160 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3161
3162 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3163     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3164         if let hir::Expr {
3165             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3166             ..
3167         } = expr
3168         {
3169             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3170                 let template_str = template_sym.as_str();
3171                 let find_label_span = |needle: &str| -> Option<Span> {
3172                     if let Some(template_snippet) = template_snippet {
3173                         let snippet = template_snippet.as_str();
3174                         if let Some(pos) = snippet.find(needle) {
3175                             let end = pos
3176                                 + snippet[pos..]
3177                                     .find(|c| c == ':')
3178                                     .unwrap_or(snippet[pos..].len() - 1);
3179                             let inner = InnerSpan::new(pos, end);
3180                             return Some(template_span.from_inner(inner));
3181                         }
3182                     }
3183
3184                     None
3185                 };
3186
3187                 let mut found_labels = Vec::new();
3188
3189                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3190                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3191                 for statement in statements {
3192                     // If there's a comment, trim it from the statement
3193                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3194                     let mut start_idx = 0;
3195                     for (idx, _) in statement.match_indices(':') {
3196                         let possible_label = statement[start_idx..idx].trim();
3197                         let mut chars = possible_label.chars();
3198                         let Some(c) = chars.next() else {
3199                             // Empty string means a leading ':' in this section, which is not a label
3200                             break
3201                         };
3202                         // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3203                         if (c.is_alphabetic() || matches!(c, '.' | '_'))
3204                             && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3205                         {
3206                             found_labels.push(possible_label);
3207                         } else {
3208                             // If we encounter a non-label, there cannot be any further labels, so stop checking
3209                             break;
3210                         }
3211
3212                         start_idx = idx + 1;
3213                     }
3214                 }
3215
3216                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3217
3218                 if found_labels.len() > 0 {
3219                     let spans = found_labels
3220                         .into_iter()
3221                         .filter_map(|label| find_label_span(label))
3222                         .collect::<Vec<Span>>();
3223                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3224                     let target_spans: MultiSpan =
3225                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3226
3227                     cx.lookup_with_diagnostics(
3228                             NAMED_ASM_LABELS,
3229                             Some(target_spans),
3230                             fluent::lint_builtin_asm_labels,
3231                             |lint| lint,
3232                             BuiltinLintDiagnostics::NamedAsmLabel(
3233                                 "only local labels of the form `<number>:` should be used in inline asm"
3234                                     .to_string(),
3235                             ),
3236                         );
3237                 }
3238             }
3239         }
3240     }
3241 }
3242
3243 declare_lint! {
3244     /// The `special_module_name` lint detects module
3245     /// declarations for files that have a special meaning.
3246     ///
3247     /// ### Example
3248     ///
3249     /// ```rust,compile_fail
3250     /// mod lib;
3251     ///
3252     /// fn main() {
3253     ///     lib::run();
3254     /// }
3255     /// ```
3256     ///
3257     /// {{produces}}
3258     ///
3259     /// ### Explanation
3260     ///
3261     /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3262     /// library or binary crate, so declaring them as modules
3263     /// will lead to miscompilation of the crate unless configured
3264     /// explicitly.
3265     ///
3266     /// To access a library from a binary target within the same crate,
3267     /// use `your_crate_name::` as the path instead of `lib::`:
3268     ///
3269     /// ```rust,compile_fail
3270     /// // bar/src/lib.rs
3271     /// fn run() {
3272     ///     // ...
3273     /// }
3274     ///
3275     /// // bar/src/main.rs
3276     /// fn main() {
3277     ///     bar::run();
3278     /// }
3279     /// ```
3280     ///
3281     /// Binary targets cannot be used as libraries and so declaring
3282     /// one as a module is not allowed.
3283     pub SPECIAL_MODULE_NAME,
3284     Warn,
3285     "module declarations for files with a special meaning",
3286 }
3287
3288 declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3289
3290 impl EarlyLintPass for SpecialModuleName {
3291     fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3292         for item in &krate.items {
3293             if let ast::ItemKind::Mod(
3294                 _,
3295                 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _),
3296             ) = item.kind
3297             {
3298                 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3299                     continue;
3300                 }
3301
3302                 match item.ident.name.as_str() {
3303                     "lib" => cx.struct_span_lint(SPECIAL_MODULE_NAME, item.span, "found module declaration for lib.rs", |lint| {
3304                         lint
3305                             .note("lib.rs is the root of this crate's library target")
3306                             .help("to refer to it from other targets, use the library's name as the path")
3307                     }),
3308                     "main" => cx.struct_span_lint(SPECIAL_MODULE_NAME, item.span, "found module declaration for main.rs", |lint| {
3309                         lint
3310                             .note("a binary crate cannot be used as library")
3311                     }),
3312                     _ => continue
3313                 }
3314             }
3315         }
3316     }
3317 }
3318
3319 pub use rustc_session::lint::builtin::UNEXPECTED_CFGS;
3320
3321 declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]);
3322
3323 impl EarlyLintPass for UnexpectedCfgs {
3324     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
3325         let cfg = &cx.sess().parse_sess.config;
3326         let check_cfg = &cx.sess().parse_sess.check_config;
3327         for &(name, value) in cfg {
3328             if let Some(names_valid) = &check_cfg.names_valid {
3329                 if !names_valid.contains(&name) {
3330                     cx.lookup(
3331                         UNEXPECTED_CFGS,
3332                         None::<MultiSpan>,
3333                         fluent::lint_builtin_unexpected_cli_config_name,
3334                         |diag| diag.help(fluent::help).set_arg("name", name),
3335                     );
3336                 }
3337             }
3338             if let Some(value) = value {
3339                 if let Some(values) = &check_cfg.values_valid.get(&name) {
3340                     if !values.contains(&value) {
3341                         cx.lookup(
3342                             UNEXPECTED_CFGS,
3343                             None::<MultiSpan>,
3344                             fluent::lint_builtin_unexpected_cli_config_value,
3345                             |diag| {
3346                                 diag.help(fluent::help)
3347                                     .set_arg("name", name)
3348                                     .set_arg("value", value)
3349                             },
3350                         );
3351                     }
3352                 }
3353             }
3354         }
3355     }
3356 }