]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Mention 92800 for docs availability
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main compiler.
6 //!
7 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
8 //! Then add code to emit the new lint in the appropriate circumstances.
9 //! You can do that in an existing `LintPass` if it makes sense, or in a
10 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
11 //! compiler. Only do the latter if the check can't be written cleanly as a
12 //! `LintPass` (also, note that such lints will need to be defined in
13 //! `rustc_session::lint::builtin`, not here).
14 //!
15 //! If you define a new `EarlyLintPass`, you will also need to add it to the
16 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
17 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
18 //! with a `pub fn new()`.
19 //!
20 //! If you define a new `LateLintPass`, you will also need to add it to the
21 //! `late_lint_methods!` invocation in `lib.rs`.
22
23 use crate::{
24     types::{transparent_newtype_field, CItemKind},
25     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
26 };
27 use rustc_ast::attr;
28 use rustc_ast::tokenstream::{TokenStream, TokenTree};
29 use rustc_ast::visit::{FnCtxt, FnKind};
30 use rustc_ast::{self as ast, *};
31 use rustc_ast_pretty::pprust::{self, expr_to_string};
32 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
33 use rustc_data_structures::stack::ensure_sufficient_stack;
34 use rustc_errors::{Applicability, Diagnostic, DiagnosticStyledString};
35 use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability};
36 use rustc_hir as hir;
37 use rustc_hir::def::{DefKind, Res};
38 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
39 use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind};
40 use rustc_hir::{HirId, Node};
41 use rustc_index::vec::Idx;
42 use rustc_middle::lint::LintDiagnosticBuilder;
43 use rustc_middle::ty::layout::{LayoutError, LayoutOf};
44 use rustc_middle::ty::print::with_no_trimmed_paths;
45 use rustc_middle::ty::subst::{GenericArgKind, Subst};
46 use rustc_middle::ty::Instance;
47 use rustc_middle::ty::{self, Ty, TyCtxt};
48 use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason};
49 use rustc_span::edition::Edition;
50 use rustc_span::source_map::Spanned;
51 use rustc_span::symbol::{kw, sym, Ident, Symbol};
52 use rustc_span::{BytePos, InnerSpan, MultiSpan, Span};
53 use rustc_target::abi::VariantIdx;
54 use rustc_trait_selection::traits::{self, misc::can_type_implement_copy};
55
56 use crate::nonstandard_style::{method_context, MethodLateContext};
57
58 use std::fmt::Write;
59 use tracing::{debug, trace};
60
61 // hardwired lints from librustc_middle
62 pub use rustc_session::lint::builtin::*;
63
64 declare_lint! {
65     /// The `while_true` lint detects `while true { }`.
66     ///
67     /// ### Example
68     ///
69     /// ```rust,no_run
70     /// while true {
71     ///
72     /// }
73     /// ```
74     ///
75     /// {{produces}}
76     ///
77     /// ### Explanation
78     ///
79     /// `while true` should be replaced with `loop`. A `loop` expression is
80     /// the preferred way to write an infinite loop because it more directly
81     /// expresses the intent of the loop.
82     WHILE_TRUE,
83     Warn,
84     "suggest using `loop { }` instead of `while true { }`"
85 }
86
87 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
88
89 /// Traverse through any amount of parenthesis and return the first non-parens expression.
90 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
91     while let ast::ExprKind::Paren(sub) = &expr.kind {
92         expr = sub;
93     }
94     expr
95 }
96
97 impl EarlyLintPass for WhileTrue {
98     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
99         if let ast::ExprKind::While(cond, _, label) = &e.kind {
100             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
101                 if let ast::LitKind::Bool(true) = lit.kind {
102                     if !lit.span.from_expansion() {
103                         let msg = "denote infinite loops with `loop { ... }`";
104                         let condition_span = e.span.with_hi(cond.span.hi());
105                         cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
106                             lint.build(msg)
107                                 .span_suggestion_short(
108                                     condition_span,
109                                     "use `loop`",
110                                     format!(
111                                         "{}loop",
112                                         label.map_or_else(String::new, |label| format!(
113                                             "{}: ",
114                                             label.ident,
115                                         ))
116                                     ),
117                                     Applicability::MachineApplicable,
118                                 )
119                                 .emit();
120                         })
121                     }
122                 }
123             }
124         }
125     }
126 }
127
128 declare_lint! {
129     /// The `box_pointers` lints use of the Box type.
130     ///
131     /// ### Example
132     ///
133     /// ```rust,compile_fail
134     /// #![deny(box_pointers)]
135     /// struct Foo {
136     ///     x: Box<isize>,
137     /// }
138     /// ```
139     ///
140     /// {{produces}}
141     ///
142     /// ### Explanation
143     ///
144     /// This lint is mostly historical, and not particularly useful. `Box<T>`
145     /// used to be built into the language, and the only way to do heap
146     /// allocation. Today's Rust can call into other allocators, etc.
147     BOX_POINTERS,
148     Allow,
149     "use of owned (Box type) heap memory"
150 }
151
152 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
153
154 impl BoxPointers {
155     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
156         for leaf in ty.walk() {
157             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
158                 if leaf_ty.is_box() {
159                     cx.struct_span_lint(BOX_POINTERS, span, |lint| {
160                         lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit();
161                     });
162                 }
163             }
164         }
165     }
166 }
167
168 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
169     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
170         match it.kind {
171             hir::ItemKind::Fn(..)
172             | hir::ItemKind::TyAlias(..)
173             | hir::ItemKind::Enum(..)
174             | hir::ItemKind::Struct(..)
175             | hir::ItemKind::Union(..) => {
176                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
177             }
178             _ => (),
179         }
180
181         // If it's a struct, we also have to check the fields' types
182         match it.kind {
183             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
184                 for struct_field in struct_def.fields() {
185                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
186                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
187                 }
188             }
189             _ => (),
190         }
191     }
192
193     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
194         let ty = cx.typeck_results().node_type(e.hir_id);
195         self.check_heap_type(cx, e.span, ty);
196     }
197 }
198
199 declare_lint! {
200     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
201     /// instead of `Struct { x }` in a pattern.
202     ///
203     /// ### Example
204     ///
205     /// ```rust
206     /// struct Point {
207     ///     x: i32,
208     ///     y: i32,
209     /// }
210     ///
211     ///
212     /// fn main() {
213     ///     let p = Point {
214     ///         x: 5,
215     ///         y: 5,
216     ///     };
217     ///
218     ///     match p {
219     ///         Point { x: x, y: y } => (),
220     ///     }
221     /// }
222     /// ```
223     ///
224     /// {{produces}}
225     ///
226     /// ### Explanation
227     ///
228     /// The preferred style is to avoid the repetition of specifying both the
229     /// field name and the binding name if both identifiers are the same.
230     NON_SHORTHAND_FIELD_PATTERNS,
231     Warn,
232     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
233 }
234
235 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
236
237 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
238     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
239         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
240             let variant = cx
241                 .typeck_results()
242                 .pat_ty(pat)
243                 .ty_adt_def()
244                 .expect("struct pattern type is not an ADT")
245                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
246             for fieldpat in field_pats {
247                 if fieldpat.is_shorthand {
248                     continue;
249                 }
250                 if fieldpat.span.from_expansion() {
251                     // Don't lint if this is a macro expansion: macro authors
252                     // shouldn't have to worry about this kind of style issue
253                     // (Issue #49588)
254                     continue;
255                 }
256                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
257                     if cx.tcx.find_field_index(ident, &variant)
258                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
259                     {
260                         cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
261                             let mut err = lint
262                                 .build(&format!("the `{}:` in this pattern is redundant", ident));
263                             let binding = match binding_annot {
264                                 hir::BindingAnnotation::Unannotated => None,
265                                 hir::BindingAnnotation::Mutable => Some("mut"),
266                                 hir::BindingAnnotation::Ref => Some("ref"),
267                                 hir::BindingAnnotation::RefMut => Some("ref mut"),
268                             };
269                             let ident = if let Some(binding) = binding {
270                                 format!("{} {}", binding, ident)
271                             } else {
272                                 ident.to_string()
273                             };
274                             err.span_suggestion(
275                                 fieldpat.span,
276                                 "use shorthand field pattern",
277                                 ident,
278                                 Applicability::MachineApplicable,
279                             );
280                             err.emit();
281                         });
282                     }
283                 }
284             }
285         }
286     }
287 }
288
289 declare_lint! {
290     /// The `unsafe_code` lint catches usage of `unsafe` code.
291     ///
292     /// ### Example
293     ///
294     /// ```rust,compile_fail
295     /// #![deny(unsafe_code)]
296     /// fn main() {
297     ///     unsafe {
298     ///
299     ///     }
300     /// }
301     /// ```
302     ///
303     /// {{produces}}
304     ///
305     /// ### Explanation
306     ///
307     /// This lint is intended to restrict the usage of `unsafe`, which can be
308     /// difficult to use correctly.
309     UNSAFE_CODE,
310     Allow,
311     "usage of `unsafe` code"
312 }
313
314 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
315
316 impl UnsafeCode {
317     fn report_unsafe(
318         &self,
319         cx: &EarlyContext<'_>,
320         span: Span,
321         decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a, ()>),
322     ) {
323         // This comes from a macro that has `#[allow_internal_unsafe]`.
324         if span.allows_unsafe() {
325             return;
326         }
327
328         cx.struct_span_lint(UNSAFE_CODE, span, decorate);
329     }
330
331     fn report_overridden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
332         self.report_unsafe(cx, span, |lint| {
333             lint.build(msg)
334                 .note(
335                     "the linker's behavior with multiple libraries exporting duplicate symbol \
336                     names is undefined and Rust cannot provide guarantees when you manually \
337                     override them",
338                 )
339                 .emit();
340         })
341     }
342 }
343
344 impl EarlyLintPass for UnsafeCode {
345     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
346         if attr.has_name(sym::allow_internal_unsafe) {
347             self.report_unsafe(cx, attr.span, |lint| {
348                 lint.build(
349                     "`allow_internal_unsafe` allows defining \
350                                                macros using unsafe without triggering \
351                                                the `unsafe_code` lint at their call site",
352                 )
353                 .emit();
354             });
355         }
356     }
357
358     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
359         if let ast::ExprKind::Block(ref blk, _) = e.kind {
360             // Don't warn about generated blocks; that'll just pollute the output.
361             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
362                 self.report_unsafe(cx, blk.span, |lint| {
363                     lint.build("usage of an `unsafe` block").emit();
364                 });
365             }
366         }
367     }
368
369     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
370         match it.kind {
371             ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => self
372                 .report_unsafe(cx, it.span, |lint| {
373                     lint.build("declaration of an `unsafe` trait").emit();
374                 }),
375
376             ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => self
377                 .report_unsafe(cx, it.span, |lint| {
378                     lint.build("implementation of an `unsafe` trait").emit();
379                 }),
380
381             ast::ItemKind::Fn(..) => {
382                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
383                     self.report_overridden_symbol_name(
384                         cx,
385                         attr.span,
386                         "declaration of a `no_mangle` function",
387                     );
388                 }
389                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
390                     self.report_overridden_symbol_name(
391                         cx,
392                         attr.span,
393                         "declaration of a function with `export_name`",
394                     );
395                 }
396             }
397
398             ast::ItemKind::Static(..) => {
399                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
400                     self.report_overridden_symbol_name(
401                         cx,
402                         attr.span,
403                         "declaration of a `no_mangle` static",
404                     );
405                 }
406                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
407                     self.report_overridden_symbol_name(
408                         cx,
409                         attr.span,
410                         "declaration of a static with `export_name`",
411                     );
412                 }
413             }
414
415             _ => {}
416         }
417     }
418
419     fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
420         if let ast::AssocItemKind::Fn(..) = it.kind {
421             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
422                 self.report_overridden_symbol_name(
423                     cx,
424                     attr.span,
425                     "declaration of a `no_mangle` method",
426                 );
427             }
428             if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
429                 self.report_overridden_symbol_name(
430                     cx,
431                     attr.span,
432                     "declaration of a method with `export_name`",
433                 );
434             }
435         }
436     }
437
438     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
439         if let FnKind::Fn(
440             ctxt,
441             _,
442             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
443             _,
444             body,
445         ) = fk
446         {
447             let msg = match ctxt {
448                 FnCtxt::Foreign => return,
449                 FnCtxt::Free => "declaration of an `unsafe` function",
450                 FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
451                 FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
452             };
453             self.report_unsafe(cx, span, |lint| {
454                 lint.build(msg).emit();
455             });
456         }
457     }
458 }
459
460 declare_lint! {
461     /// The `missing_docs` lint detects missing documentation for public items.
462     ///
463     /// ### Example
464     ///
465     /// ```rust,compile_fail
466     /// #![deny(missing_docs)]
467     /// pub fn foo() {}
468     /// ```
469     ///
470     /// {{produces}}
471     ///
472     /// ### Explanation
473     ///
474     /// This lint is intended to ensure that a library is well-documented.
475     /// Items without documentation can be difficult for users to understand
476     /// how to use properly.
477     ///
478     /// This lint is "allow" by default because it can be noisy, and not all
479     /// projects may want to enforce everything to be documented.
480     pub MISSING_DOCS,
481     Allow,
482     "detects missing documentation for public members",
483     report_in_external_macro
484 }
485
486 pub struct MissingDoc {
487     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
488     doc_hidden_stack: Vec<bool>,
489
490     /// Private traits or trait items that leaked through. Don't check their methods.
491     private_traits: FxHashSet<hir::HirId>,
492 }
493
494 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
495
496 fn has_doc(attr: &ast::Attribute) -> bool {
497     if attr.is_doc_comment() {
498         return true;
499     }
500
501     if !attr.has_name(sym::doc) {
502         return false;
503     }
504
505     if attr.value_str().is_some() {
506         return true;
507     }
508
509     if let Some(list) = attr.meta_item_list() {
510         for meta in list {
511             if meta.has_name(sym::hidden) {
512                 return true;
513             }
514         }
515     }
516
517     false
518 }
519
520 impl MissingDoc {
521     pub fn new() -> MissingDoc {
522         MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
523     }
524
525     fn doc_hidden(&self) -> bool {
526         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
527     }
528
529     fn check_missing_docs_attrs(
530         &self,
531         cx: &LateContext<'_>,
532         def_id: LocalDefId,
533         sp: Span,
534         article: &'static str,
535         desc: &'static str,
536     ) {
537         // If we're building a test harness, then warning about
538         // documentation is probably not really relevant right now.
539         if cx.sess().opts.test {
540             return;
541         }
542
543         // `#[doc(hidden)]` disables missing_docs check.
544         if self.doc_hidden() {
545             return;
546         }
547
548         // Only check publicly-visible items, using the result from the privacy pass.
549         // It's an option so the crate root can also use this function (it doesn't
550         // have a `NodeId`).
551         if def_id != CRATE_DEF_ID {
552             if !cx.access_levels.is_exported(def_id) {
553                 return;
554             }
555         }
556
557         let attrs = cx.tcx.get_attrs(def_id.to_def_id());
558         let has_doc = attrs.iter().any(has_doc);
559         if !has_doc {
560             cx.struct_span_lint(
561                 MISSING_DOCS,
562                 cx.tcx.sess.source_map().guess_head_span(sp),
563                 |lint| {
564                     lint.build(&format!("missing documentation for {} {}", article, desc)).emit();
565                 },
566             );
567         }
568     }
569 }
570
571 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
572     fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
573         let doc_hidden = self.doc_hidden()
574             || attrs.iter().any(|attr| {
575                 attr.has_name(sym::doc)
576                     && match attr.meta_item_list() {
577                         None => false,
578                         Some(l) => attr::list_contains_name(&l, sym::hidden),
579                     }
580             });
581         self.doc_hidden_stack.push(doc_hidden);
582     }
583
584     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
585         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
586     }
587
588     fn check_crate(&mut self, cx: &LateContext<'_>) {
589         self.check_missing_docs_attrs(
590             cx,
591             CRATE_DEF_ID,
592             cx.tcx.def_span(CRATE_DEF_ID),
593             "the",
594             "crate",
595         );
596     }
597
598     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
599         match it.kind {
600             hir::ItemKind::Trait(.., trait_item_refs) => {
601                 // Issue #11592: traits are always considered exported, even when private.
602                 if let hir::VisibilityKind::Inherited = it.vis.node {
603                     self.private_traits.insert(it.hir_id());
604                     for trait_item_ref in trait_item_refs {
605                         self.private_traits.insert(trait_item_ref.id.hir_id());
606                     }
607                     return;
608                 }
609             }
610             hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => {
611                 // If the trait is private, add the impl items to `private_traits` so they don't get
612                 // reported for missing docs.
613                 let real_trait = trait_ref.path.res.def_id();
614                 let Some(def_id) = real_trait.as_local() else { return };
615                 let Some(Node::Item(item)) = cx.tcx.hir().find_by_def_id(def_id) else { return };
616                 if let hir::VisibilityKind::Inherited = item.vis.node {
617                     for impl_item_ref in items {
618                         self.private_traits.insert(impl_item_ref.id.hir_id());
619                     }
620                 }
621                 return;
622             }
623
624             hir::ItemKind::TyAlias(..)
625             | hir::ItemKind::Fn(..)
626             | hir::ItemKind::Macro(..)
627             | hir::ItemKind::Mod(..)
628             | hir::ItemKind::Enum(..)
629             | hir::ItemKind::Struct(..)
630             | hir::ItemKind::Union(..)
631             | hir::ItemKind::Const(..)
632             | hir::ItemKind::Static(..) => {}
633
634             _ => return,
635         };
636
637         let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
638
639         self.check_missing_docs_attrs(cx, it.def_id, it.span, article, desc);
640     }
641
642     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
643         if self.private_traits.contains(&trait_item.hir_id()) {
644             return;
645         }
646
647         let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
648
649         self.check_missing_docs_attrs(cx, trait_item.def_id, trait_item.span, article, desc);
650     }
651
652     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
653         // If the method is an impl for a trait, don't doc.
654         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
655             return;
656         }
657
658         // If the method is an impl for an item with docs_hidden, don't doc.
659         if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl {
660             let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
661             let impl_ty = cx.tcx.type_of(parent);
662             let outerdef = match impl_ty.kind() {
663                 ty::Adt(def, _) => Some(def.did()),
664                 ty::Foreign(def_id) => Some(*def_id),
665                 _ => None,
666             };
667             let is_hidden = match outerdef {
668                 Some(id) => cx.tcx.is_doc_hidden(id),
669                 None => false,
670             };
671             if is_hidden {
672                 return;
673             }
674         }
675
676         let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
677         self.check_missing_docs_attrs(cx, impl_item.def_id, impl_item.span, article, desc);
678     }
679
680     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
681         let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
682         self.check_missing_docs_attrs(cx, foreign_item.def_id, foreign_item.span, article, desc);
683     }
684
685     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
686         if !sf.is_positional() {
687             let def_id = cx.tcx.hir().local_def_id(sf.hir_id);
688             self.check_missing_docs_attrs(cx, def_id, sf.span, "a", "struct field")
689         }
690     }
691
692     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
693         self.check_missing_docs_attrs(cx, cx.tcx.hir().local_def_id(v.id), v.span, "a", "variant");
694     }
695 }
696
697 declare_lint! {
698     /// The `missing_copy_implementations` lint detects potentially-forgotten
699     /// implementations of [`Copy`].
700     ///
701     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
702     ///
703     /// ### Example
704     ///
705     /// ```rust,compile_fail
706     /// #![deny(missing_copy_implementations)]
707     /// pub struct Foo {
708     ///     pub field: i32
709     /// }
710     /// # fn main() {}
711     /// ```
712     ///
713     /// {{produces}}
714     ///
715     /// ### Explanation
716     ///
717     /// Historically (before 1.0), types were automatically marked as `Copy`
718     /// if possible. This was changed so that it required an explicit opt-in
719     /// by implementing the `Copy` trait. As part of this change, a lint was
720     /// added to alert if a copyable type was not marked `Copy`.
721     ///
722     /// This lint is "allow" by default because this code isn't bad; it is
723     /// common to write newtypes like this specifically so that a `Copy` type
724     /// is no longer `Copy`. `Copy` types can result in unintended copies of
725     /// large data which can impact performance.
726     pub MISSING_COPY_IMPLEMENTATIONS,
727     Allow,
728     "detects potentially-forgotten implementations of `Copy`"
729 }
730
731 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
732
733 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
734     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
735         if !cx.access_levels.is_reachable(item.def_id) {
736             return;
737         }
738         let (def, ty) = match item.kind {
739             hir::ItemKind::Struct(_, ref ast_generics) => {
740                 if !ast_generics.params.is_empty() {
741                     return;
742                 }
743                 let def = cx.tcx.adt_def(item.def_id);
744                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
745             }
746             hir::ItemKind::Union(_, ref ast_generics) => {
747                 if !ast_generics.params.is_empty() {
748                     return;
749                 }
750                 let def = cx.tcx.adt_def(item.def_id);
751                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
752             }
753             hir::ItemKind::Enum(_, ref ast_generics) => {
754                 if !ast_generics.params.is_empty() {
755                     return;
756                 }
757                 let def = cx.tcx.adt_def(item.def_id);
758                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
759             }
760             _ => return,
761         };
762         if def.has_dtor(cx.tcx) {
763             return;
764         }
765         let param_env = ty::ParamEnv::empty();
766         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
767             return;
768         }
769         if can_type_implement_copy(
770             cx.tcx,
771             param_env,
772             ty,
773             traits::ObligationCause::misc(item.span, item.hir_id()),
774         )
775         .is_ok()
776         {
777             cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
778                 lint.build(
779                     "type could implement `Copy`; consider adding `impl \
780                           Copy`",
781                 )
782                 .emit();
783             })
784         }
785     }
786 }
787
788 declare_lint! {
789     /// The `missing_debug_implementations` lint detects missing
790     /// implementations of [`fmt::Debug`].
791     ///
792     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
793     ///
794     /// ### Example
795     ///
796     /// ```rust,compile_fail
797     /// #![deny(missing_debug_implementations)]
798     /// pub struct Foo;
799     /// # fn main() {}
800     /// ```
801     ///
802     /// {{produces}}
803     ///
804     /// ### Explanation
805     ///
806     /// Having a `Debug` implementation on all types can assist with
807     /// debugging, as it provides a convenient way to format and display a
808     /// value. Using the `#[derive(Debug)]` attribute will automatically
809     /// generate a typical implementation, or a custom implementation can be
810     /// added by manually implementing the `Debug` trait.
811     ///
812     /// This lint is "allow" by default because adding `Debug` to all types can
813     /// have a negative impact on compile time and code size. It also requires
814     /// boilerplate to be added to every type, which can be an impediment.
815     MISSING_DEBUG_IMPLEMENTATIONS,
816     Allow,
817     "detects missing implementations of Debug"
818 }
819
820 #[derive(Default)]
821 pub struct MissingDebugImplementations {
822     impling_types: Option<LocalDefIdSet>,
823 }
824
825 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
826
827 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
828     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
829         if !cx.access_levels.is_reachable(item.def_id) {
830             return;
831         }
832
833         match item.kind {
834             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
835             _ => return,
836         }
837
838         let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else {
839             return
840         };
841
842         if self.impling_types.is_none() {
843             let mut impls = LocalDefIdSet::default();
844             cx.tcx.for_each_impl(debug, |d| {
845                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
846                     if let Some(def_id) = ty_def.did().as_local() {
847                         impls.insert(def_id);
848                     }
849                 }
850             });
851
852             self.impling_types = Some(impls);
853             debug!("{:?}", self.impling_types);
854         }
855
856         if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
857             cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
858                 lint.build(&format!(
859                     "type does not implement `{}`; consider adding `#[derive(Debug)]` \
860                      or a manual implementation",
861                     cx.tcx.def_path_str(debug)
862                 ))
863                 .emit();
864             });
865         }
866     }
867 }
868
869 declare_lint! {
870     /// The `anonymous_parameters` lint detects anonymous parameters in trait
871     /// definitions.
872     ///
873     /// ### Example
874     ///
875     /// ```rust,edition2015,compile_fail
876     /// #![deny(anonymous_parameters)]
877     /// // edition 2015
878     /// pub trait Foo {
879     ///     fn foo(usize);
880     /// }
881     /// fn main() {}
882     /// ```
883     ///
884     /// {{produces}}
885     ///
886     /// ### Explanation
887     ///
888     /// This syntax is mostly a historical accident, and can be worked around
889     /// quite easily by adding an `_` pattern or a descriptive identifier:
890     ///
891     /// ```rust
892     /// trait Foo {
893     ///     fn foo(_: usize);
894     /// }
895     /// ```
896     ///
897     /// This syntax is now a hard error in the 2018 edition. In the 2015
898     /// edition, this lint is "warn" by default. This lint
899     /// enables the [`cargo fix`] tool with the `--edition` flag to
900     /// automatically transition old code from the 2015 edition to 2018. The
901     /// tool will run this lint and automatically apply the
902     /// suggested fix from the compiler (which is to add `_` to each
903     /// parameter). This provides a completely automated way to update old
904     /// code for a new edition. See [issue #41686] for more details.
905     ///
906     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
907     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
908     pub ANONYMOUS_PARAMETERS,
909     Warn,
910     "detects anonymous parameters",
911     @future_incompatible = FutureIncompatibleInfo {
912         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
913         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
914     };
915 }
916
917 declare_lint_pass!(
918     /// Checks for use of anonymous parameters (RFC 1685).
919     AnonymousParameters => [ANONYMOUS_PARAMETERS]
920 );
921
922 impl EarlyLintPass for AnonymousParameters {
923     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
924         if cx.sess().edition() != Edition::Edition2015 {
925             // This is a hard error in future editions; avoid linting and erroring
926             return;
927         }
928         if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
929             for arg in sig.decl.inputs.iter() {
930                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
931                     if ident.name == kw::Empty {
932                         cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
933                             let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
934
935                             let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
936                                 (snip.as_str(), Applicability::MachineApplicable)
937                             } else {
938                                 ("<type>", Applicability::HasPlaceholders)
939                             };
940
941                             lint.build(
942                                 "anonymous parameters are deprecated and will be \
943                                      removed in the next edition",
944                             )
945                             .span_suggestion(
946                                 arg.pat.span,
947                                 "try naming the parameter or explicitly \
948                                             ignoring it",
949                                 format!("_: {}", ty_snip),
950                                 appl,
951                             )
952                             .emit();
953                         })
954                     }
955                 }
956             }
957         }
958     }
959 }
960
961 /// Check for use of attributes which have been deprecated.
962 #[derive(Clone)]
963 pub struct DeprecatedAttr {
964     // This is not free to compute, so we want to keep it around, rather than
965     // compute it for every attribute.
966     depr_attrs: Vec<&'static BuiltinAttribute>,
967 }
968
969 impl_lint_pass!(DeprecatedAttr => []);
970
971 impl DeprecatedAttr {
972     pub fn new() -> DeprecatedAttr {
973         DeprecatedAttr { depr_attrs: deprecated_attributes() }
974     }
975 }
976
977 fn lint_deprecated_attr(
978     cx: &EarlyContext<'_>,
979     attr: &ast::Attribute,
980     msg: &str,
981     suggestion: Option<&str>,
982 ) {
983     cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
984         lint.build(msg)
985             .span_suggestion_short(
986                 attr.span,
987                 suggestion.unwrap_or("remove this attribute"),
988                 String::new(),
989                 Applicability::MachineApplicable,
990             )
991             .emit();
992     })
993 }
994
995 impl EarlyLintPass for DeprecatedAttr {
996     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
997         for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
998             if attr.ident().map(|ident| ident.name) == Some(*name) {
999                 if let &AttributeGate::Gated(
1000                     Stability::Deprecated(link, suggestion),
1001                     name,
1002                     reason,
1003                     _,
1004                 ) = gate
1005                 {
1006                     let msg =
1007                         format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
1008                     lint_deprecated_attr(cx, attr, &msg, suggestion);
1009                 }
1010                 return;
1011             }
1012         }
1013         if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) {
1014             let path_str = pprust::path_to_string(&attr.get_normal_item().path);
1015             let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
1016             lint_deprecated_attr(cx, attr, &msg, None);
1017         }
1018     }
1019 }
1020
1021 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
1022     use rustc_ast::token::CommentKind;
1023
1024     let mut attrs = attrs.iter().peekable();
1025
1026     // Accumulate a single span for sugared doc comments.
1027     let mut sugared_span: Option<Span> = None;
1028
1029     while let Some(attr) = attrs.next() {
1030         let is_doc_comment = attr.is_doc_comment();
1031         if is_doc_comment {
1032             sugared_span =
1033                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
1034         }
1035
1036         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
1037             continue;
1038         }
1039
1040         let span = sugared_span.take().unwrap_or(attr.span);
1041
1042         if is_doc_comment || attr.has_name(sym::doc) {
1043             cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
1044                 let mut err = lint.build("unused doc comment");
1045                 err.span_label(
1046                     node_span,
1047                     format!("rustdoc does not generate documentation for {}", node_kind),
1048                 );
1049                 match attr.kind {
1050                     AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
1051                         err.help("use `//` for a plain comment");
1052                     }
1053                     AttrKind::DocComment(CommentKind::Block, _) => {
1054                         err.help("use `/* */` for a plain comment");
1055                     }
1056                 }
1057                 err.emit();
1058             });
1059         }
1060     }
1061 }
1062
1063 impl EarlyLintPass for UnusedDocComment {
1064     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1065         let kind = match stmt.kind {
1066             ast::StmtKind::Local(..) => "statements",
1067             // Disabled pending discussion in #78306
1068             ast::StmtKind::Item(..) => return,
1069             // expressions will be reported by `check_expr`.
1070             ast::StmtKind::Empty
1071             | ast::StmtKind::Semi(_)
1072             | ast::StmtKind::Expr(_)
1073             | ast::StmtKind::MacCall(_) => return,
1074         };
1075
1076         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1077     }
1078
1079     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1080         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1081         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1082     }
1083
1084     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1085         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1086     }
1087
1088     fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
1089         warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
1090     }
1091
1092     fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
1093         warn_if_doc(cx, block.span, "block", &block.attrs());
1094     }
1095
1096     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
1097         if let ast::ItemKind::ForeignMod(_) = item.kind {
1098             warn_if_doc(cx, item.span, "extern block", &item.attrs);
1099         }
1100     }
1101 }
1102
1103 declare_lint! {
1104     /// The `no_mangle_const_items` lint detects any `const` items with the
1105     /// [`no_mangle` attribute].
1106     ///
1107     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1108     ///
1109     /// ### Example
1110     ///
1111     /// ```rust,compile_fail
1112     /// #[no_mangle]
1113     /// const FOO: i32 = 5;
1114     /// ```
1115     ///
1116     /// {{produces}}
1117     ///
1118     /// ### Explanation
1119     ///
1120     /// Constants do not have their symbols exported, and therefore, this
1121     /// probably means you meant to use a [`static`], not a [`const`].
1122     ///
1123     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1124     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1125     NO_MANGLE_CONST_ITEMS,
1126     Deny,
1127     "const items will not have their symbols exported"
1128 }
1129
1130 declare_lint! {
1131     /// The `no_mangle_generic_items` lint detects generic items that must be
1132     /// mangled.
1133     ///
1134     /// ### Example
1135     ///
1136     /// ```rust
1137     /// #[no_mangle]
1138     /// fn foo<T>(t: T) {
1139     ///
1140     /// }
1141     /// ```
1142     ///
1143     /// {{produces}}
1144     ///
1145     /// ### Explanation
1146     ///
1147     /// A function with generics must have its symbol mangled to accommodate
1148     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1149     /// this situation, and should be removed.
1150     ///
1151     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1152     NO_MANGLE_GENERIC_ITEMS,
1153     Warn,
1154     "generic items must be mangled"
1155 }
1156
1157 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1158
1159 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1160     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1161         let attrs = cx.tcx.hir().attrs(it.hir_id());
1162         let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute,
1163                                              impl_generics: Option<&hir::Generics<'_>>,
1164                                              generics: &hir::Generics<'_>,
1165                                              span| {
1166             for param in
1167                 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1168             {
1169                 match param.kind {
1170                     GenericParamKind::Lifetime { .. } => {}
1171                     GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1172                         cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, span, |lint| {
1173                             lint.build("functions generic over types or consts must be mangled")
1174                                 .span_suggestion_short(
1175                                     no_mangle_attr.span,
1176                                     "remove this attribute",
1177                                     String::new(),
1178                                     // Use of `#[no_mangle]` suggests FFI intent; correct
1179                                     // fix may be to monomorphize source by hand
1180                                     Applicability::MaybeIncorrect,
1181                                 )
1182                                 .emit();
1183                         });
1184                         break;
1185                     }
1186                 }
1187             }
1188         };
1189         match it.kind {
1190             hir::ItemKind::Fn(.., ref generics, _) => {
1191                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1192                     check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1193                 }
1194             }
1195             hir::ItemKind::Const(..) => {
1196                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1197                     // Const items do not refer to a particular location in memory, and therefore
1198                     // don't have anything to attach a symbol to
1199                     cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
1200                         let msg = "const items should never be `#[no_mangle]`";
1201                         let mut err = lint.build(msg);
1202
1203                         // account for "pub const" (#45562)
1204                         let start = cx
1205                             .tcx
1206                             .sess
1207                             .source_map()
1208                             .span_to_snippet(it.span)
1209                             .map(|snippet| snippet.find("const").unwrap_or(0))
1210                             .unwrap_or(0) as u32;
1211                         // `const` is 5 chars
1212                         let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1213                         err.span_suggestion(
1214                             const_span,
1215                             "try a static value",
1216                             "pub static".to_owned(),
1217                             Applicability::MachineApplicable,
1218                         );
1219                         err.emit();
1220                     });
1221                 }
1222             }
1223             hir::ItemKind::Impl(hir::Impl { ref generics, items, .. }) => {
1224                 for it in items {
1225                     if let hir::AssocItemKind::Fn { .. } = it.kind {
1226                         if let Some(no_mangle_attr) = cx
1227                             .sess()
1228                             .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1229                         {
1230                             check_no_mangle_on_generic_fn(
1231                                 no_mangle_attr,
1232                                 Some(generics),
1233                                 cx.tcx.hir().get_generics(it.id.def_id).unwrap(),
1234                                 it.span,
1235                             );
1236                         }
1237                     }
1238                 }
1239             }
1240             _ => {}
1241         }
1242     }
1243 }
1244
1245 declare_lint! {
1246     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1247     /// T` because it is [undefined behavior].
1248     ///
1249     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1250     ///
1251     /// ### Example
1252     ///
1253     /// ```rust,compile_fail
1254     /// unsafe {
1255     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1256     /// }
1257     /// ```
1258     ///
1259     /// {{produces}}
1260     ///
1261     /// ### Explanation
1262     ///
1263     /// Certain assumptions are made about aliasing of data, and this transmute
1264     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1265     ///
1266     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1267     MUTABLE_TRANSMUTES,
1268     Deny,
1269     "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1270 }
1271
1272 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1273
1274 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1275     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1276         use rustc_target::spec::abi::Abi::RustIntrinsic;
1277         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1278             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1279         {
1280             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1281                 let msg = "transmuting &T to &mut T is undefined behavior, \
1282                     even if the reference is unused, consider instead using an UnsafeCell";
1283                 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| {
1284                     lint.build(msg).emit();
1285                 });
1286             }
1287         }
1288
1289         fn get_transmute_from_to<'tcx>(
1290             cx: &LateContext<'tcx>,
1291             expr: &hir::Expr<'_>,
1292         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1293             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1294                 cx.qpath_res(qpath, expr.hir_id)
1295             } else {
1296                 return None;
1297             };
1298             if let Res::Def(DefKind::Fn, did) = def {
1299                 if !def_id_is_transmute(cx, did) {
1300                     return None;
1301                 }
1302                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1303                 let from = sig.inputs().skip_binder()[0];
1304                 let to = sig.output().skip_binder();
1305                 return Some((from, to));
1306             }
1307             None
1308         }
1309
1310         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1311             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
1312                 && cx.tcx.item_name(def_id) == sym::transmute
1313         }
1314     }
1315 }
1316
1317 declare_lint! {
1318     /// The `unstable_features` is deprecated and should no longer be used.
1319     UNSTABLE_FEATURES,
1320     Allow,
1321     "enabling unstable features (deprecated. do not use)"
1322 }
1323
1324 declare_lint_pass!(
1325     /// Forbids using the `#[feature(...)]` attribute
1326     UnstableFeatures => [UNSTABLE_FEATURES]
1327 );
1328
1329 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1330     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1331         if attr.has_name(sym::feature) {
1332             if let Some(items) = attr.meta_item_list() {
1333                 for item in items {
1334                     cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
1335                         lint.build("unstable feature").emit();
1336                     });
1337                 }
1338             }
1339         }
1340     }
1341 }
1342
1343 declare_lint! {
1344     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1345     /// the crate root.
1346     ///
1347     /// ### Example
1348     ///
1349     /// ```rust,compile_fail
1350     /// #![deny(unreachable_pub)]
1351     /// mod foo {
1352     ///     pub mod bar {
1353     ///
1354     ///     }
1355     /// }
1356     /// ```
1357     ///
1358     /// {{produces}}
1359     ///
1360     /// ### Explanation
1361     ///
1362     /// A bare `pub` visibility may be misleading if the item is not actually
1363     /// publicly exported from the crate. The `pub(crate)` visibility is
1364     /// recommended to be used instead, which more clearly expresses the intent
1365     /// that the item is only visible within its own crate.
1366     ///
1367     /// This lint is "allow" by default because it will trigger for a large
1368     /// amount existing Rust code, and has some false-positives. Eventually it
1369     /// is desired for this to become warn-by-default.
1370     pub UNREACHABLE_PUB,
1371     Allow,
1372     "`pub` items not reachable from crate root"
1373 }
1374
1375 declare_lint_pass!(
1376     /// Lint for items marked `pub` that aren't reachable from other crates.
1377     UnreachablePub => [UNREACHABLE_PUB]
1378 );
1379
1380 impl UnreachablePub {
1381     fn perform_lint(
1382         &self,
1383         cx: &LateContext<'_>,
1384         what: &str,
1385         def_id: LocalDefId,
1386         vis: &hir::Visibility<'_>,
1387         span: Span,
1388         exportable: bool,
1389     ) {
1390         let mut applicability = Applicability::MachineApplicable;
1391         match vis.node {
1392             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(def_id) => {
1393                 if span.from_expansion() {
1394                     applicability = Applicability::MaybeIncorrect;
1395                 }
1396                 let def_span = cx.tcx.sess.source_map().guess_head_span(span);
1397                 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
1398                     let mut err = lint.build(&format!("unreachable `pub` {}", what));
1399                     let replacement = if cx.tcx.features().crate_visibility_modifier {
1400                         "crate"
1401                     } else {
1402                         "pub(crate)"
1403                     }
1404                     .to_owned();
1405
1406                     err.span_suggestion(
1407                         vis.span,
1408                         "consider restricting its visibility",
1409                         replacement,
1410                         applicability,
1411                     );
1412                     if exportable {
1413                         err.help("or consider exporting it for use by other crates");
1414                     }
1415                     err.emit();
1416                 });
1417             }
1418             _ => {}
1419         }
1420     }
1421 }
1422
1423 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1424     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1425         self.perform_lint(cx, "item", item.def_id, &item.vis, item.span, true);
1426     }
1427
1428     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1429         self.perform_lint(
1430             cx,
1431             "item",
1432             foreign_item.def_id,
1433             &foreign_item.vis,
1434             foreign_item.span,
1435             true,
1436         );
1437     }
1438
1439     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1440         let def_id = cx.tcx.hir().local_def_id(field.hir_id);
1441         self.perform_lint(cx, "field", def_id, &field.vis, field.span, false);
1442     }
1443
1444     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1445         self.perform_lint(cx, "item", impl_item.def_id, &impl_item.vis, impl_item.span, false);
1446     }
1447 }
1448
1449 declare_lint! {
1450     /// The `type_alias_bounds` lint detects bounds in type aliases.
1451     ///
1452     /// ### Example
1453     ///
1454     /// ```rust
1455     /// type SendVec<T: Send> = Vec<T>;
1456     /// ```
1457     ///
1458     /// {{produces}}
1459     ///
1460     /// ### Explanation
1461     ///
1462     /// The trait bounds in a type alias are currently ignored, and should not
1463     /// be included to avoid confusion. This was previously allowed
1464     /// unintentionally; this may become a hard error in the future.
1465     TYPE_ALIAS_BOUNDS,
1466     Warn,
1467     "bounds in type aliases are not enforced"
1468 }
1469
1470 declare_lint_pass!(
1471     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1472     /// They are relevant when using associated types, but otherwise neither checked
1473     /// at definition site nor enforced at use site.
1474     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1475 );
1476
1477 impl TypeAliasBounds {
1478     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1479         match *qpath {
1480             hir::QPath::TypeRelative(ref ty, _) => {
1481                 // If this is a type variable, we found a `T::Assoc`.
1482                 match ty.kind {
1483                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1484                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1485                     }
1486                     _ => false,
1487                 }
1488             }
1489             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1490         }
1491     }
1492
1493     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut Diagnostic) {
1494         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1495         // bound.  Let's see if this type does that.
1496
1497         // We use a HIR visitor to walk the type.
1498         use rustc_hir::intravisit::{self, Visitor};
1499         struct WalkAssocTypes<'a> {
1500             err: &'a mut Diagnostic,
1501         }
1502         impl Visitor<'_> for WalkAssocTypes<'_> {
1503             fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) {
1504                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1505                     self.err.span_help(
1506                         span,
1507                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1508                          associated types in type aliases",
1509                     );
1510                 }
1511                 intravisit::walk_qpath(self, qpath, id, span)
1512             }
1513         }
1514
1515         // Let's go for a walk!
1516         let mut visitor = WalkAssocTypes { err };
1517         visitor.visit_ty(ty);
1518     }
1519 }
1520
1521 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1522     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1523         let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else {
1524             return
1525         };
1526         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1527             // Bounds are respected for `type X = impl Trait`
1528             return;
1529         }
1530         let mut suggested_changing_assoc_types = false;
1531         // There must not be a where clause
1532         if !type_alias_generics.where_clause.predicates.is_empty() {
1533             cx.lint(
1534                 TYPE_ALIAS_BOUNDS,
1535                 |lint| {
1536                     let mut err = lint.build("where clauses are not enforced in type aliases");
1537                     let spans: Vec<_> = type_alias_generics
1538                         .where_clause
1539                         .predicates
1540                         .iter()
1541                         .map(|pred| pred.span())
1542                         .collect();
1543                     err.set_span(spans);
1544                     err.span_suggestion(
1545                         type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1546                         "the clause will not be checked when the type alias is used, and should be removed",
1547                         String::new(),
1548                         Applicability::MachineApplicable,
1549                     );
1550                     if !suggested_changing_assoc_types {
1551                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1552                         suggested_changing_assoc_types = true;
1553                     }
1554                     err.emit();
1555                 },
1556             );
1557         }
1558         // The parameters must not have bounds
1559         for param in type_alias_generics.params.iter() {
1560             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1561             let suggestion = spans
1562                 .iter()
1563                 .map(|sp| {
1564                     let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1565                     (start.to(*sp), String::new())
1566                 })
1567                 .collect();
1568             if !spans.is_empty() {
1569                 cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| {
1570                     let mut err =
1571                         lint.build("bounds on generic parameters are not enforced in type aliases");
1572                     let msg = "the bound will not be checked when the type alias is used, \
1573                                    and should be removed";
1574                     err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1575                     if !suggested_changing_assoc_types {
1576                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1577                         suggested_changing_assoc_types = true;
1578                     }
1579                     err.emit();
1580                 });
1581             }
1582         }
1583     }
1584 }
1585
1586 declare_lint_pass!(
1587     /// Lint constants that are erroneous.
1588     /// Without this lint, we might not get any diagnostic if the constant is
1589     /// unused within this crate, even though downstream crates can't use it
1590     /// without producing an error.
1591     UnusedBrokenConst => []
1592 );
1593
1594 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1595     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1596         match it.kind {
1597             hir::ItemKind::Const(_, body_id) => {
1598                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1599                 // trigger the query once for all constants since that will already report the errors
1600                 // FIXME: Use ensure here
1601                 let _ = cx.tcx.const_eval_poly(def_id);
1602             }
1603             hir::ItemKind::Static(_, _, body_id) => {
1604                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1605                 // FIXME: Use ensure here
1606                 let _ = cx.tcx.eval_static_initializer(def_id);
1607             }
1608             _ => {}
1609         }
1610     }
1611 }
1612
1613 declare_lint! {
1614     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1615     /// any type parameters.
1616     ///
1617     /// ### Example
1618     ///
1619     /// ```rust
1620     /// #![feature(trivial_bounds)]
1621     /// pub struct A where i32: Copy;
1622     /// ```
1623     ///
1624     /// {{produces}}
1625     ///
1626     /// ### Explanation
1627     ///
1628     /// Usually you would not write a trait bound that you know is always
1629     /// true, or never true. However, when using macros, the macro may not
1630     /// know whether or not the constraint would hold or not at the time when
1631     /// generating the code. Currently, the compiler does not alert you if the
1632     /// constraint is always true, and generates an error if it is never true.
1633     /// The `trivial_bounds` feature changes this to be a warning in both
1634     /// cases, giving macros more freedom and flexibility to generate code,
1635     /// while still providing a signal when writing non-macro code that
1636     /// something is amiss.
1637     ///
1638     /// See [RFC 2056] for more details. This feature is currently only
1639     /// available on the nightly channel, see [tracking issue #48214].
1640     ///
1641     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1642     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1643     TRIVIAL_BOUNDS,
1644     Warn,
1645     "these bounds don't depend on an type parameters"
1646 }
1647
1648 declare_lint_pass!(
1649     /// Lint for trait and lifetime bounds that don't depend on type parameters
1650     /// which either do nothing, or stop the item from being used.
1651     TrivialConstraints => [TRIVIAL_BOUNDS]
1652 );
1653
1654 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1655     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1656         use rustc_middle::ty::fold::TypeFoldable;
1657         use rustc_middle::ty::PredicateKind::*;
1658
1659         if cx.tcx.features().trivial_bounds {
1660             let predicates = cx.tcx.predicates_of(item.def_id);
1661             for &(predicate, span) in predicates.predicates {
1662                 let predicate_kind_name = match predicate.kind().skip_binder() {
1663                     Trait(..) => "trait",
1664                     TypeOutlives(..) |
1665                     RegionOutlives(..) => "lifetime",
1666
1667                     // Ignore projections, as they can only be global
1668                     // if the trait bound is global
1669                     Projection(..) |
1670                     // Ignore bounds that a user can't type
1671                     WellFormed(..) |
1672                     ObjectSafe(..) |
1673                     ClosureKind(..) |
1674                     Subtype(..) |
1675                     Coerce(..) |
1676                     ConstEvaluatable(..) |
1677                     ConstEquate(..) |
1678                     TypeWellFormedFromEnv(..) => continue,
1679                 };
1680                 if predicate.is_global() {
1681                     cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1682                         lint.build(&format!(
1683                             "{} bound {} does not depend on any type \
1684                                 or lifetime parameters",
1685                             predicate_kind_name, predicate
1686                         ))
1687                         .emit();
1688                     });
1689                 }
1690             }
1691         }
1692     }
1693 }
1694
1695 declare_lint_pass!(
1696     /// Does nothing as a lint pass, but registers some `Lint`s
1697     /// which are used by other parts of the compiler.
1698     SoftLints => [
1699         WHILE_TRUE,
1700         BOX_POINTERS,
1701         NON_SHORTHAND_FIELD_PATTERNS,
1702         UNSAFE_CODE,
1703         MISSING_DOCS,
1704         MISSING_COPY_IMPLEMENTATIONS,
1705         MISSING_DEBUG_IMPLEMENTATIONS,
1706         ANONYMOUS_PARAMETERS,
1707         UNUSED_DOC_COMMENTS,
1708         NO_MANGLE_CONST_ITEMS,
1709         NO_MANGLE_GENERIC_ITEMS,
1710         MUTABLE_TRANSMUTES,
1711         UNSTABLE_FEATURES,
1712         UNREACHABLE_PUB,
1713         TYPE_ALIAS_BOUNDS,
1714         TRIVIAL_BOUNDS
1715     ]
1716 );
1717
1718 declare_lint! {
1719     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1720     /// pattern], which is deprecated.
1721     ///
1722     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1723     ///
1724     /// ### Example
1725     ///
1726     /// ```rust,edition2018
1727     /// let x = 123;
1728     /// match x {
1729     ///     0...100 => {}
1730     ///     _ => {}
1731     /// }
1732     /// ```
1733     ///
1734     /// {{produces}}
1735     ///
1736     /// ### Explanation
1737     ///
1738     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1739     /// confusion with the [`..` range expression]. Use the new form instead.
1740     ///
1741     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1742     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1743     Warn,
1744     "`...` range patterns are deprecated",
1745     @future_incompatible = FutureIncompatibleInfo {
1746         reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1747         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1748     };
1749 }
1750
1751 #[derive(Default)]
1752 pub struct EllipsisInclusiveRangePatterns {
1753     /// If `Some(_)`, suppress all subsequent pattern
1754     /// warnings for better diagnostics.
1755     node_id: Option<ast::NodeId>,
1756 }
1757
1758 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1759
1760 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1761     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1762         if self.node_id.is_some() {
1763             // Don't recursively warn about patterns inside range endpoints.
1764             return;
1765         }
1766
1767         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1768
1769         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1770         /// corresponding to the ellipsis.
1771         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1772             match &pat.kind {
1773                 PatKind::Range(
1774                     a,
1775                     Some(b),
1776                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1777                 ) => Some((a.as_deref(), b, *span)),
1778                 _ => None,
1779             }
1780         }
1781
1782         let (parenthesise, endpoints) = match &pat.kind {
1783             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1784             _ => (false, matches_ellipsis_pat(pat)),
1785         };
1786
1787         if let Some((start, end, join)) = endpoints {
1788             let msg = "`...` range patterns are deprecated";
1789             let suggestion = "use `..=` for an inclusive range";
1790             if parenthesise {
1791                 self.node_id = Some(pat.id);
1792                 let end = expr_to_string(&end);
1793                 let replace = match start {
1794                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1795                     None => format!("&(..={})", end),
1796                 };
1797                 if join.edition() >= Edition::Edition2021 {
1798                     let mut err =
1799                         rustc_errors::struct_span_err!(cx.sess(), pat.span, E0783, "{}", msg,);
1800                     err.span_suggestion(
1801                         pat.span,
1802                         suggestion,
1803                         replace,
1804                         Applicability::MachineApplicable,
1805                     )
1806                     .emit();
1807                 } else {
1808                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1809                         lint.build(msg)
1810                             .span_suggestion(
1811                                 pat.span,
1812                                 suggestion,
1813                                 replace,
1814                                 Applicability::MachineApplicable,
1815                             )
1816                             .emit();
1817                     });
1818                 }
1819             } else {
1820                 let replace = "..=".to_owned();
1821                 if join.edition() >= Edition::Edition2021 {
1822                     let mut err =
1823                         rustc_errors::struct_span_err!(cx.sess(), pat.span, E0783, "{}", msg,);
1824                     err.span_suggestion_short(
1825                         join,
1826                         suggestion,
1827                         replace,
1828                         Applicability::MachineApplicable,
1829                     )
1830                     .emit();
1831                 } else {
1832                     cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1833                         lint.build(msg)
1834                             .span_suggestion_short(
1835                                 join,
1836                                 suggestion,
1837                                 replace,
1838                                 Applicability::MachineApplicable,
1839                             )
1840                             .emit();
1841                     });
1842                 }
1843             };
1844         }
1845     }
1846
1847     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1848         if let Some(node_id) = self.node_id {
1849             if pat.id == node_id {
1850                 self.node_id = None
1851             }
1852         }
1853     }
1854 }
1855
1856 declare_lint! {
1857     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1858     /// that are not able to be run by the test harness because they are in a
1859     /// position where they are not nameable.
1860     ///
1861     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1862     ///
1863     /// ### Example
1864     ///
1865     /// ```rust,test
1866     /// fn main() {
1867     ///     #[test]
1868     ///     fn foo() {
1869     ///         // This test will not fail because it does not run.
1870     ///         assert_eq!(1, 2);
1871     ///     }
1872     /// }
1873     /// ```
1874     ///
1875     /// {{produces}}
1876     ///
1877     /// ### Explanation
1878     ///
1879     /// In order for the test harness to run a test, the test function must be
1880     /// located in a position where it can be accessed from the crate root.
1881     /// This generally means it must be defined in a module, and not anywhere
1882     /// else such as inside another function. The compiler previously allowed
1883     /// this without an error, so a lint was added as an alert that a test is
1884     /// not being used. Whether or not this should be allowed has not yet been
1885     /// decided, see [RFC 2471] and [issue #36629].
1886     ///
1887     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1888     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1889     UNNAMEABLE_TEST_ITEMS,
1890     Warn,
1891     "detects an item that cannot be named being marked as `#[test_case]`",
1892     report_in_external_macro
1893 }
1894
1895 pub struct UnnameableTestItems {
1896     boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
1897     items_nameable: bool,
1898 }
1899
1900 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1901
1902 impl UnnameableTestItems {
1903     pub fn new() -> Self {
1904         Self { boundary: None, items_nameable: true }
1905     }
1906 }
1907
1908 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1909     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1910         if self.items_nameable {
1911             if let hir::ItemKind::Mod(..) = it.kind {
1912             } else {
1913                 self.items_nameable = false;
1914                 self.boundary = Some(it.def_id);
1915             }
1916             return;
1917         }
1918
1919         let attrs = cx.tcx.hir().attrs(it.hir_id());
1920         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1921             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1922                 lint.build("cannot test inner items").emit();
1923             });
1924         }
1925     }
1926
1927     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1928         if !self.items_nameable && self.boundary == Some(it.def_id) {
1929             self.items_nameable = true;
1930         }
1931     }
1932 }
1933
1934 declare_lint! {
1935     /// The `keyword_idents` lint detects edition keywords being used as an
1936     /// identifier.
1937     ///
1938     /// ### Example
1939     ///
1940     /// ```rust,edition2015,compile_fail
1941     /// #![deny(keyword_idents)]
1942     /// // edition 2015
1943     /// fn dyn() {}
1944     /// ```
1945     ///
1946     /// {{produces}}
1947     ///
1948     /// ### Explanation
1949     ///
1950     /// Rust [editions] allow the language to evolve without breaking
1951     /// backwards compatibility. This lint catches code that uses new keywords
1952     /// that are added to the language that are used as identifiers (such as a
1953     /// variable name, function name, etc.). If you switch the compiler to a
1954     /// new edition without updating the code, then it will fail to compile if
1955     /// you are using a new keyword as an identifier.
1956     ///
1957     /// You can manually change the identifiers to a non-keyword, or use a
1958     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1959     ///
1960     /// This lint solves the problem automatically. It is "allow" by default
1961     /// because the code is perfectly valid in older editions. The [`cargo
1962     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1963     /// and automatically apply the suggested fix from the compiler (which is
1964     /// to use a raw identifier). This provides a completely automated way to
1965     /// update old code for a new edition.
1966     ///
1967     /// [editions]: https://doc.rust-lang.org/edition-guide/
1968     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1969     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1970     pub KEYWORD_IDENTS,
1971     Allow,
1972     "detects edition keywords being used as an identifier",
1973     @future_incompatible = FutureIncompatibleInfo {
1974         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1975         reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1976     };
1977 }
1978
1979 declare_lint_pass!(
1980     /// Check for uses of edition keywords used as an identifier.
1981     KeywordIdents => [KEYWORD_IDENTS]
1982 );
1983
1984 struct UnderMacro(bool);
1985
1986 impl KeywordIdents {
1987     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1988         for tt in tokens.into_trees() {
1989             match tt {
1990                 // Only report non-raw idents.
1991                 TokenTree::Token(token) => {
1992                     if let Some((ident, false)) = token.ident() {
1993                         self.check_ident_token(cx, UnderMacro(true), ident);
1994                     }
1995                 }
1996                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1997             }
1998         }
1999     }
2000
2001     fn check_ident_token(
2002         &mut self,
2003         cx: &EarlyContext<'_>,
2004         UnderMacro(under_macro): UnderMacro,
2005         ident: Ident,
2006     ) {
2007         let next_edition = match cx.sess().edition() {
2008             Edition::Edition2015 => {
2009                 match ident.name {
2010                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
2011
2012                     // rust-lang/rust#56327: Conservatively do not
2013                     // attempt to report occurrences of `dyn` within
2014                     // macro definitions or invocations, because `dyn`
2015                     // can legitimately occur as a contextual keyword
2016                     // in 2015 code denoting its 2018 meaning, and we
2017                     // do not want rustfix to inject bugs into working
2018                     // code by rewriting such occurrences.
2019                     //
2020                     // But if we see `dyn` outside of a macro, we know
2021                     // its precise role in the parsed AST and thus are
2022                     // assured this is truly an attempt to use it as
2023                     // an identifier.
2024                     kw::Dyn if !under_macro => Edition::Edition2018,
2025
2026                     _ => return,
2027                 }
2028             }
2029
2030             // There are no new keywords yet for the 2018 edition and beyond.
2031             _ => return,
2032         };
2033
2034         // Don't lint `r#foo`.
2035         if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
2036             return;
2037         }
2038
2039         cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
2040             lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
2041                 .span_suggestion(
2042                     ident.span,
2043                     "you can use a raw identifier to stay compatible",
2044                     format!("r#{}", ident),
2045                     Applicability::MachineApplicable,
2046                 )
2047                 .emit();
2048         });
2049     }
2050 }
2051
2052 impl EarlyLintPass for KeywordIdents {
2053     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
2054         self.check_tokens(cx, mac_def.body.inner_tokens());
2055     }
2056     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
2057         self.check_tokens(cx, mac.args.inner_tokens());
2058     }
2059     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
2060         self.check_ident_token(cx, UnderMacro(false), ident);
2061     }
2062 }
2063
2064 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
2065
2066 impl ExplicitOutlivesRequirements {
2067     fn lifetimes_outliving_lifetime<'tcx>(
2068         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2069         index: u32,
2070     ) -> Vec<ty::Region<'tcx>> {
2071         inferred_outlives
2072             .iter()
2073             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2074                 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
2075                     ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
2076                     _ => None,
2077                 },
2078                 _ => None,
2079             })
2080             .collect()
2081     }
2082
2083     fn lifetimes_outliving_type<'tcx>(
2084         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2085         index: u32,
2086     ) -> Vec<ty::Region<'tcx>> {
2087         inferred_outlives
2088             .iter()
2089             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
2090                 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2091                     a.is_param(index).then_some(b)
2092                 }
2093                 _ => None,
2094             })
2095             .collect()
2096     }
2097
2098     fn collect_outlived_lifetimes<'tcx>(
2099         &self,
2100         param: &'tcx hir::GenericParam<'tcx>,
2101         tcx: TyCtxt<'tcx>,
2102         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
2103         ty_generics: &'tcx ty::Generics,
2104     ) -> Vec<ty::Region<'tcx>> {
2105         let index =
2106             ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()];
2107
2108         match param.kind {
2109             hir::GenericParamKind::Lifetime { .. } => {
2110                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
2111             }
2112             hir::GenericParamKind::Type { .. } => {
2113                 Self::lifetimes_outliving_type(inferred_outlives, index)
2114             }
2115             hir::GenericParamKind::Const { .. } => Vec::new(),
2116         }
2117     }
2118
2119     fn collect_outlives_bound_spans<'tcx>(
2120         &self,
2121         tcx: TyCtxt<'tcx>,
2122         bounds: &hir::GenericBounds<'_>,
2123         inferred_outlives: &[ty::Region<'tcx>],
2124         infer_static: bool,
2125     ) -> Vec<(usize, Span)> {
2126         use rustc_middle::middle::resolve_lifetime::Region;
2127
2128         bounds
2129             .iter()
2130             .enumerate()
2131             .filter_map(|(i, bound)| {
2132                 if let hir::GenericBound::Outlives(lifetime) = bound {
2133                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
2134                         Some(Region::Static) if infer_static => {
2135                             inferred_outlives.iter().any(|r| matches!(**r, ty::ReStatic))
2136                         }
2137                         Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
2138                             if let ty::ReEarlyBound(ebr) = **r { ebr.index == index } else { false }
2139                         }),
2140                         _ => false,
2141                     };
2142                     is_inferred.then_some((i, bound.span()))
2143                 } else {
2144                     None
2145                 }
2146             })
2147             .collect()
2148     }
2149
2150     fn consolidate_outlives_bound_spans(
2151         &self,
2152         lo: Span,
2153         bounds: &hir::GenericBounds<'_>,
2154         bound_spans: Vec<(usize, Span)>,
2155     ) -> Vec<Span> {
2156         if bounds.is_empty() {
2157             return Vec::new();
2158         }
2159         if bound_spans.len() == bounds.len() {
2160             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2161             // If all bounds are inferable, we want to delete the colon, so
2162             // start from just after the parameter (span passed as argument)
2163             vec![lo.to(last_bound_span)]
2164         } else {
2165             let mut merged = Vec::new();
2166             let mut last_merged_i = None;
2167
2168             let mut from_start = true;
2169             for (i, bound_span) in bound_spans {
2170                 match last_merged_i {
2171                     // If the first bound is inferable, our span should also eat the leading `+`.
2172                     None if i == 0 => {
2173                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2174                         last_merged_i = Some(0);
2175                     }
2176                     // If consecutive bounds are inferable, merge their spans
2177                     Some(h) if i == h + 1 => {
2178                         if let Some(tail) = merged.last_mut() {
2179                             // Also eat the trailing `+` if the first
2180                             // more-than-one bound is inferable
2181                             let to_span = if from_start && i < bounds.len() {
2182                                 bounds[i + 1].span().shrink_to_lo()
2183                             } else {
2184                                 bound_span
2185                             };
2186                             *tail = tail.to(to_span);
2187                             last_merged_i = Some(i);
2188                         } else {
2189                             bug!("another bound-span visited earlier");
2190                         }
2191                     }
2192                     _ => {
2193                         // When we find a non-inferable bound, subsequent inferable bounds
2194                         // won't be consecutive from the start (and we'll eat the leading
2195                         // `+` rather than the trailing one)
2196                         from_start = false;
2197                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2198                         last_merged_i = Some(i);
2199                     }
2200                 }
2201             }
2202             merged
2203         }
2204     }
2205 }
2206
2207 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2208     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2209         use rustc_middle::middle::resolve_lifetime::Region;
2210
2211         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
2212         let def_id = item.def_id;
2213         if let hir::ItemKind::Struct(_, ref hir_generics)
2214         | hir::ItemKind::Enum(_, ref hir_generics)
2215         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
2216         {
2217             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2218             if inferred_outlives.is_empty() {
2219                 return;
2220             }
2221
2222             let ty_generics = cx.tcx.generics_of(def_id);
2223
2224             let mut bound_count = 0;
2225             let mut lint_spans = Vec::new();
2226
2227             for param in hir_generics.params {
2228                 let has_lifetime_bounds = param
2229                     .bounds
2230                     .iter()
2231                     .any(|bound| matches!(bound, hir::GenericBound::Outlives(_)));
2232                 if !has_lifetime_bounds {
2233                     continue;
2234                 }
2235
2236                 let relevant_lifetimes =
2237                     self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
2238                 if relevant_lifetimes.is_empty() {
2239                     continue;
2240                 }
2241
2242                 let bound_spans = self.collect_outlives_bound_spans(
2243                     cx.tcx,
2244                     &param.bounds,
2245                     &relevant_lifetimes,
2246                     infer_static,
2247                 );
2248                 bound_count += bound_spans.len();
2249                 lint_spans.extend(self.consolidate_outlives_bound_spans(
2250                     param.span.shrink_to_hi(),
2251                     &param.bounds,
2252                     bound_spans,
2253                 ));
2254             }
2255
2256             let mut where_lint_spans = Vec::new();
2257             let mut dropped_predicate_count = 0;
2258             let num_predicates = hir_generics.where_clause.predicates.len();
2259             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
2260                 let (relevant_lifetimes, bounds, span) = match where_predicate {
2261                     hir::WherePredicate::RegionPredicate(predicate) => {
2262                         if let Some(Region::EarlyBound(index, ..)) =
2263                             cx.tcx.named_region(predicate.lifetime.hir_id)
2264                         {
2265                             (
2266                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
2267                                 &predicate.bounds,
2268                                 predicate.span,
2269                             )
2270                         } else {
2271                             continue;
2272                         }
2273                     }
2274                     hir::WherePredicate::BoundPredicate(predicate) => {
2275                         // FIXME we can also infer bounds on associated types,
2276                         // and should check for them here.
2277                         match predicate.bounded_ty.kind {
2278                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
2279                                 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2280                                     continue
2281                                 };
2282                                 let index = ty_generics.param_def_id_to_index[&def_id];
2283                                 (
2284                                     Self::lifetimes_outliving_type(inferred_outlives, index),
2285                                     &predicate.bounds,
2286                                     predicate.span,
2287                                 )
2288                             }
2289                             _ => {
2290                                 continue;
2291                             }
2292                         }
2293                     }
2294                     _ => continue,
2295                 };
2296                 if relevant_lifetimes.is_empty() {
2297                     continue;
2298                 }
2299
2300                 let bound_spans = self.collect_outlives_bound_spans(
2301                     cx.tcx,
2302                     bounds,
2303                     &relevant_lifetimes,
2304                     infer_static,
2305                 );
2306                 bound_count += bound_spans.len();
2307
2308                 let drop_predicate = bound_spans.len() == bounds.len();
2309                 if drop_predicate {
2310                     dropped_predicate_count += 1;
2311                 }
2312
2313                 // If all the bounds on a predicate were inferable and there are
2314                 // further predicates, we want to eat the trailing comma.
2315                 if drop_predicate && i + 1 < num_predicates {
2316                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
2317                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
2318                 } else {
2319                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2320                         span.shrink_to_lo(),
2321                         bounds,
2322                         bound_spans,
2323                     ));
2324                 }
2325             }
2326
2327             // If all predicates are inferable, drop the entire clause
2328             // (including the `where`)
2329             if num_predicates > 0 && dropped_predicate_count == num_predicates {
2330                 let where_span = hir_generics
2331                     .where_clause
2332                     .span()
2333                     .expect("span of (nonempty) where clause should exist");
2334                 // Extend the where clause back to the closing `>` of the
2335                 // generics, except for tuple struct, which have the `where`
2336                 // after the fields of the struct.
2337                 let full_where_span =
2338                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2339                         where_span
2340                     } else {
2341                         hir_generics.span.shrink_to_hi().to(where_span)
2342                     };
2343                 lint_spans.push(full_where_span);
2344             } else {
2345                 lint_spans.extend(where_lint_spans);
2346             }
2347
2348             if !lint_spans.is_empty() {
2349                 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
2350                     lint.build("outlives requirements can be inferred")
2351                         .multipart_suggestion(
2352                             if bound_count == 1 {
2353                                 "remove this bound"
2354                             } else {
2355                                 "remove these bounds"
2356                             },
2357                             lint_spans
2358                                 .into_iter()
2359                                 .map(|span| (span, "".to_owned()))
2360                                 .collect::<Vec<_>>(),
2361                             Applicability::MachineApplicable,
2362                         )
2363                         .emit();
2364                 });
2365             }
2366         }
2367     }
2368 }
2369
2370 declare_lint! {
2371     /// The `incomplete_features` lint detects unstable features enabled with
2372     /// the [`feature` attribute] that may function improperly in some or all
2373     /// cases.
2374     ///
2375     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2376     ///
2377     /// ### Example
2378     ///
2379     /// ```rust
2380     /// #![feature(generic_const_exprs)]
2381     /// ```
2382     ///
2383     /// {{produces}}
2384     ///
2385     /// ### Explanation
2386     ///
2387     /// Although it is encouraged for people to experiment with unstable
2388     /// features, some of them are known to be incomplete or faulty. This lint
2389     /// is a signal that the feature has not yet been finished, and you may
2390     /// experience problems with it.
2391     pub INCOMPLETE_FEATURES,
2392     Warn,
2393     "incomplete features that may function improperly in some or all cases"
2394 }
2395
2396 declare_lint_pass!(
2397     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2398     IncompleteFeatures => [INCOMPLETE_FEATURES]
2399 );
2400
2401 impl EarlyLintPass for IncompleteFeatures {
2402     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2403         let features = cx.sess().features_untracked();
2404         features
2405             .declared_lang_features
2406             .iter()
2407             .map(|(name, span, _)| (name, span))
2408             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2409             .filter(|(&name, _)| features.incomplete(name))
2410             .for_each(|(&name, &span)| {
2411                 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
2412                     let mut builder = lint.build(&format!(
2413                         "the feature `{}` is incomplete and may not be safe to use \
2414                          and/or cause compiler crashes",
2415                         name,
2416                     ));
2417                     if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
2418                         builder.note(&format!(
2419                             "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
2420                              for more information",
2421                             n, n,
2422                         ));
2423                     }
2424                     if HAS_MIN_FEATURES.contains(&name) {
2425                         builder.help(&format!(
2426                             "consider using `min_{}` instead, which is more stable and complete",
2427                             name,
2428                         ));
2429                     }
2430                     builder.emit();
2431                 })
2432             });
2433     }
2434 }
2435
2436 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2437
2438 declare_lint! {
2439     /// The `invalid_value` lint detects creating a value that is not valid,
2440     /// such as a null reference.
2441     ///
2442     /// ### Example
2443     ///
2444     /// ```rust,no_run
2445     /// # #![allow(unused)]
2446     /// unsafe {
2447     ///     let x: &'static i32 = std::mem::zeroed();
2448     /// }
2449     /// ```
2450     ///
2451     /// {{produces}}
2452     ///
2453     /// ### Explanation
2454     ///
2455     /// In some situations the compiler can detect that the code is creating
2456     /// an invalid value, which should be avoided.
2457     ///
2458     /// In particular, this lint will check for improper use of
2459     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2460     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2461     /// lint should provide extra information to indicate what the problem is
2462     /// and a possible solution.
2463     ///
2464     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2465     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2466     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2467     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2468     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2469     pub INVALID_VALUE,
2470     Warn,
2471     "an invalid value is being created (such as a null reference)"
2472 }
2473
2474 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2475
2476 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2477     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2478         #[derive(Debug, Copy, Clone, PartialEq)]
2479         enum InitKind {
2480             Zeroed,
2481             Uninit,
2482         }
2483
2484         /// Information about why a type cannot be initialized this way.
2485         /// Contains an error message and optionally a span to point at.
2486         type InitError = (String, Option<Span>);
2487
2488         /// Test if this constant is all-0.
2489         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2490             use hir::ExprKind::*;
2491             use rustc_ast::LitKind::*;
2492             match &expr.kind {
2493                 Lit(lit) => {
2494                     if let Int(i, _) = lit.node {
2495                         i == 0
2496                     } else {
2497                         false
2498                     }
2499                 }
2500                 Tup(tup) => tup.iter().all(is_zero),
2501                 _ => false,
2502             }
2503         }
2504
2505         /// Determine if this expression is a "dangerous initialization".
2506         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2507             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2508                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2509                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2510                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2511                     match cx.tcx.get_diagnostic_name(def_id) {
2512                         Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2513                         Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2514                         Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2515                         _ => {}
2516                     }
2517                 }
2518             } else if let hir::ExprKind::MethodCall(_, ref args, _) = expr.kind {
2519                 // Find problematic calls to `MaybeUninit::assume_init`.
2520                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2521                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2522                     // This is a call to *some* method named `assume_init`.
2523                     // See if the `self` parameter is one of the dangerous constructors.
2524                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2525                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2526                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2527                             match cx.tcx.get_diagnostic_name(def_id) {
2528                                 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2529                                 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2530                                 _ => {}
2531                             }
2532                         }
2533                     }
2534                 }
2535             }
2536
2537             None
2538         }
2539
2540         /// Test if this enum has several actually "existing" variants.
2541         /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
2542         fn is_multi_variant<'tcx>(adt: ty::AdtDef<'tcx>) -> bool {
2543             // As an approximation, we only count dataless variants. Those are definitely inhabited.
2544             let existing_variants = adt.variants().iter().filter(|v| v.fields.is_empty()).count();
2545             existing_variants > 1
2546         }
2547
2548         /// Return `Some` only if we are sure this type does *not*
2549         /// allow zero initialization.
2550         fn ty_find_init_error<'tcx>(
2551             tcx: TyCtxt<'tcx>,
2552             ty: Ty<'tcx>,
2553             init: InitKind,
2554         ) -> Option<InitError> {
2555             use rustc_middle::ty::TyKind::*;
2556             match ty.kind() {
2557                 // Primitive types that don't like 0 as a value.
2558                 Ref(..) => Some(("references must be non-null".to_string(), None)),
2559                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2560                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2561                 Never => Some(("the `!` type has no valid value".to_string(), None)),
2562                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2563                 // raw ptr to dyn Trait
2564                 {
2565                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
2566                 }
2567                 // Primitive types with other constraints.
2568                 Bool if init == InitKind::Uninit => {
2569                     Some(("booleans must be either `true` or `false`".to_string(), None))
2570                 }
2571                 Char if init == InitKind::Uninit => {
2572                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
2573                 }
2574                 // Recurse and checks for some compound types.
2575                 Adt(adt_def, substs) if !adt_def.is_union() => {
2576                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
2577                     use std::ops::Bound;
2578                     match tcx.layout_scalar_valid_range(adt_def.did()) {
2579                         // We exploit here that `layout_scalar_valid_range` will never
2580                         // return `Bound::Excluded`.  (And we have tests checking that we
2581                         // handle the attribute correctly.)
2582                         (Bound::Included(lo), _) if lo > 0 => {
2583                             return Some((format!("`{}` must be non-null", ty), None));
2584                         }
2585                         (Bound::Included(_), _) | (_, Bound::Included(_))
2586                             if init == InitKind::Uninit =>
2587                         {
2588                             return Some((
2589                                 format!(
2590                                     "`{}` must be initialized inside its custom valid range",
2591                                     ty,
2592                                 ),
2593                                 None,
2594                             ));
2595                         }
2596                         _ => {}
2597                     }
2598                     // Now, recurse.
2599                     match adt_def.variants().len() {
2600                         0 => Some(("enums with no variants have no valid value".to_string(), None)),
2601                         1 => {
2602                             // Struct, or enum with exactly one variant.
2603                             // Proceed recursively, check all fields.
2604                             let variant = &adt_def.variant(VariantIdx::from_u32(0));
2605                             variant.fields.iter().find_map(|field| {
2606                                 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
2607                                     |(mut msg, span)| {
2608                                         if span.is_none() {
2609                                             // Point to this field, should be helpful for figuring
2610                                             // out where the source of the error is.
2611                                             let span = tcx.def_span(field.did);
2612                                             write!(
2613                                                 &mut msg,
2614                                                 " (in this {} field)",
2615                                                 adt_def.descr()
2616                                             )
2617                                             .unwrap();
2618                                             (msg, Some(span))
2619                                         } else {
2620                                             // Just forward.
2621                                             (msg, span)
2622                                         }
2623                                     },
2624                                 )
2625                             })
2626                         }
2627                         // Multi-variant enum.
2628                         _ => {
2629                             if init == InitKind::Uninit && is_multi_variant(*adt_def) {
2630                                 let span = tcx.def_span(adt_def.did());
2631                                 Some((
2632                                     "enums have to be initialized to a variant".to_string(),
2633                                     Some(span),
2634                                 ))
2635                             } else {
2636                                 // In principle, for zero-initialization we could figure out which variant corresponds
2637                                 // to tag 0, and check that... but for now we just accept all zero-initializations.
2638                                 None
2639                             }
2640                         }
2641                     }
2642                 }
2643                 Tuple(..) => {
2644                     // Proceed recursively, check all fields.
2645                     ty.tuple_fields().iter().find_map(|field| ty_find_init_error(tcx, field, init))
2646                 }
2647                 // Conservative fallback.
2648                 _ => None,
2649             }
2650         }
2651
2652         if let Some(init) = is_dangerous_init(cx, expr) {
2653             // This conjures an instance of a type out of nothing,
2654             // using zeroed or uninitialized memory.
2655             // We are extremely conservative with what we warn about.
2656             let conjured_ty = cx.typeck_results().expr_ty(expr);
2657             if let Some((msg, span)) =
2658                 with_no_trimmed_paths!(ty_find_init_error(cx.tcx, conjured_ty, init))
2659             {
2660                 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2661                     let mut err = lint.build(&format!(
2662                         "the type `{}` does not permit {}",
2663                         conjured_ty,
2664                         match init {
2665                             InitKind::Zeroed => "zero-initialization",
2666                             InitKind::Uninit => "being left uninitialized",
2667                         },
2668                     ));
2669                     err.span_label(expr.span, "this code causes undefined behavior when executed");
2670                     err.span_label(
2671                         expr.span,
2672                         "help: use `MaybeUninit<T>` instead, \
2673                             and only call `assume_init` after initialization is done",
2674                     );
2675                     if let Some(span) = span {
2676                         err.span_note(span, &msg);
2677                     } else {
2678                         err.note(&msg);
2679                     }
2680                     err.emit();
2681                 });
2682             }
2683         }
2684     }
2685 }
2686
2687 declare_lint! {
2688     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2689     /// has been declared with the same name but different types.
2690     ///
2691     /// ### Example
2692     ///
2693     /// ```rust
2694     /// mod m {
2695     ///     extern "C" {
2696     ///         fn foo();
2697     ///     }
2698     /// }
2699     ///
2700     /// extern "C" {
2701     ///     fn foo(_: u32);
2702     /// }
2703     /// ```
2704     ///
2705     /// {{produces}}
2706     ///
2707     /// ### Explanation
2708     ///
2709     /// Because two symbols of the same name cannot be resolved to two
2710     /// different functions at link time, and one function cannot possibly
2711     /// have two types, a clashing extern declaration is almost certainly a
2712     /// mistake. Check to make sure that the `extern` definitions are correct
2713     /// and equivalent, and possibly consider unifying them in one location.
2714     ///
2715     /// This lint does not run between crates because a project may have
2716     /// dependencies which both rely on the same extern function, but declare
2717     /// it in a different (but valid) way. For example, they may both declare
2718     /// an opaque type for one or more of the arguments (which would end up
2719     /// distinct types), or use types that are valid conversions in the
2720     /// language the `extern fn` is defined in. In these cases, the compiler
2721     /// can't say that the clashing declaration is incorrect.
2722     pub CLASHING_EXTERN_DECLARATIONS,
2723     Warn,
2724     "detects when an extern fn has been declared with the same name but different types"
2725 }
2726
2727 pub struct ClashingExternDeclarations {
2728     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2729     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2730     /// the symbol should be reported as a clashing declaration.
2731     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2732     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2733     seen_decls: FxHashMap<Symbol, HirId>,
2734 }
2735
2736 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2737 /// just from declaration itself. This is important because we don't want to report clashes on
2738 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2739 /// different name.
2740 enum SymbolName {
2741     /// The name of the symbol + the span of the annotation which introduced the link name.
2742     Link(Symbol, Span),
2743     /// No link name, so just the name of the symbol.
2744     Normal(Symbol),
2745 }
2746
2747 impl SymbolName {
2748     fn get_name(&self) -> Symbol {
2749         match self {
2750             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2751         }
2752     }
2753 }
2754
2755 impl ClashingExternDeclarations {
2756     crate fn new() -> Self {
2757         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2758     }
2759     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2760     /// for the item, return its HirId without updating the set.
2761     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2762         let did = fi.def_id.to_def_id();
2763         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2764         let name = Symbol::intern(tcx.symbol_name(instance).name);
2765         if let Some(&hir_id) = self.seen_decls.get(&name) {
2766             // Avoid updating the map with the new entry when we do find a collision. We want to
2767             // make sure we're always pointing to the first definition as the previous declaration.
2768             // This lets us avoid emitting "knock-on" diagnostics.
2769             Some(hir_id)
2770         } else {
2771             self.seen_decls.insert(name, fi.hir_id())
2772         }
2773     }
2774
2775     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2776     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2777     /// symbol's name.
2778     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2779         if let Some((overridden_link_name, overridden_link_name_span)) =
2780             tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
2781                 // FIXME: Instead of searching through the attributes again to get span
2782                 // information, we could have codegen_fn_attrs also give span information back for
2783                 // where the attribute was defined. However, until this is found to be a
2784                 // bottleneck, this does just fine.
2785                 (
2786                     overridden_link_name,
2787                     tcx.get_attrs(fi.def_id.to_def_id())
2788                         .iter()
2789                         .find(|at| at.has_name(sym::link_name))
2790                         .unwrap()
2791                         .span,
2792                 )
2793             })
2794         {
2795             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2796         } else {
2797             SymbolName::Normal(fi.ident.name)
2798         }
2799     }
2800
2801     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2802     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2803     /// with the same members (as the declarations shouldn't clash).
2804     fn structurally_same_type<'tcx>(
2805         cx: &LateContext<'tcx>,
2806         a: Ty<'tcx>,
2807         b: Ty<'tcx>,
2808         ckind: CItemKind,
2809     ) -> bool {
2810         fn structurally_same_type_impl<'tcx>(
2811             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2812             cx: &LateContext<'tcx>,
2813             a: Ty<'tcx>,
2814             b: Ty<'tcx>,
2815             ckind: CItemKind,
2816         ) -> bool {
2817             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2818             let tcx = cx.tcx;
2819
2820             // Given a transparent newtype, reach through and grab the inner
2821             // type unless the newtype makes the type non-null.
2822             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2823                 let mut ty = ty;
2824                 loop {
2825                     if let ty::Adt(def, substs) = *ty.kind() {
2826                         let is_transparent = def.subst(tcx, substs).repr().transparent();
2827                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def);
2828                         debug!(
2829                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2830                             ty, is_transparent, is_non_null
2831                         );
2832                         if is_transparent && !is_non_null {
2833                             debug_assert!(def.variants().len() == 1);
2834                             let v = &def.variant(VariantIdx::new(0));
2835                             ty = transparent_newtype_field(tcx, v)
2836                                 .expect(
2837                                     "single-variant transparent structure with zero-sized field",
2838                                 )
2839                                 .ty(tcx, substs);
2840                             continue;
2841                         }
2842                     }
2843                     debug!("non_transparent_ty -> {:?}", ty);
2844                     return ty;
2845                 }
2846             };
2847
2848             let a = non_transparent_ty(a);
2849             let b = non_transparent_ty(b);
2850
2851             if !seen_types.insert((a, b)) {
2852                 // We've encountered a cycle. There's no point going any further -- the types are
2853                 // structurally the same.
2854                 return true;
2855             }
2856             let tcx = cx.tcx;
2857             if a == b {
2858                 // All nominally-same types are structurally same, too.
2859                 true
2860             } else {
2861                 // Do a full, depth-first comparison between the two.
2862                 use rustc_middle::ty::TyKind::*;
2863                 let a_kind = a.kind();
2864                 let b_kind = b.kind();
2865
2866                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2867                     debug!("compare_layouts({:?}, {:?})", a, b);
2868                     let a_layout = &cx.layout_of(a)?.layout.abi();
2869                     let b_layout = &cx.layout_of(b)?.layout.abi();
2870                     debug!(
2871                         "comparing layouts: {:?} == {:?} = {}",
2872                         a_layout,
2873                         b_layout,
2874                         a_layout == b_layout
2875                     );
2876                     Ok(a_layout == b_layout)
2877                 };
2878
2879                 #[allow(rustc::usage_of_ty_tykind)]
2880                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2881                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2882                 };
2883
2884                 ensure_sufficient_stack(|| {
2885                     match (a_kind, b_kind) {
2886                         (Adt(a_def, a_substs), Adt(b_def, b_substs)) => {
2887                             let a = a.subst(cx.tcx, a_substs);
2888                             let b = b.subst(cx.tcx, b_substs);
2889                             debug!("Comparing {:?} and {:?}", a, b);
2890
2891                             // We can immediately rule out these types as structurally same if
2892                             // their layouts differ.
2893                             match compare_layouts(a, b) {
2894                                 Ok(false) => return false,
2895                                 _ => (), // otherwise, continue onto the full, fields comparison
2896                             }
2897
2898                             // Grab a flattened representation of all fields.
2899                             let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter());
2900                             let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter());
2901
2902                             // Perform a structural comparison for each field.
2903                             a_fields.eq_by(
2904                                 b_fields,
2905                                 |&ty::FieldDef { did: a_did, .. },
2906                                  &ty::FieldDef { did: b_did, .. }| {
2907                                     structurally_same_type_impl(
2908                                         seen_types,
2909                                         cx,
2910                                         tcx.type_of(a_did),
2911                                         tcx.type_of(b_did),
2912                                         ckind,
2913                                     )
2914                                 },
2915                             )
2916                         }
2917                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2918                             // For arrays, we also check the constness of the type.
2919                             a_const.val() == b_const.val()
2920                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2921                         }
2922                         (Slice(a_ty), Slice(b_ty)) => {
2923                             structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2924                         }
2925                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2926                             a_tymut.mutbl == b_tymut.mutbl
2927                                 && structurally_same_type_impl(
2928                                     seen_types, cx, a_tymut.ty, b_tymut.ty, ckind,
2929                                 )
2930                         }
2931                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2932                             // For structural sameness, we don't need the region to be same.
2933                             a_mut == b_mut
2934                                 && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind)
2935                         }
2936                         (FnDef(..), FnDef(..)) => {
2937                             let a_poly_sig = a.fn_sig(tcx);
2938                             let b_poly_sig = b.fn_sig(tcx);
2939
2940                             // As we don't compare regions, skip_binder is fine.
2941                             let a_sig = a_poly_sig.skip_binder();
2942                             let b_sig = b_poly_sig.skip_binder();
2943
2944                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2945                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2946                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2947                                     structurally_same_type_impl(seen_types, cx, *a, *b, ckind)
2948                                 })
2949                                 && structurally_same_type_impl(
2950                                     seen_types,
2951                                     cx,
2952                                     a_sig.output(),
2953                                     b_sig.output(),
2954                                     ckind,
2955                                 )
2956                         }
2957                         (Tuple(a_substs), Tuple(b_substs)) => {
2958                             a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| {
2959                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2960                             })
2961                         }
2962                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2963                         // For the purposes of this lint, take the conservative approach and mark them as
2964                         // not structurally same.
2965                         (Dynamic(..), Dynamic(..))
2966                         | (Error(..), Error(..))
2967                         | (Closure(..), Closure(..))
2968                         | (Generator(..), Generator(..))
2969                         | (GeneratorWitness(..), GeneratorWitness(..))
2970                         | (Projection(..), Projection(..))
2971                         | (Opaque(..), Opaque(..)) => false,
2972
2973                         // These definitely should have been caught above.
2974                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2975
2976                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2977                         // enum layout optimisation is being applied.
2978                         (Adt(..), other_kind) | (other_kind, Adt(..))
2979                             if is_primitive_or_pointer(other_kind) =>
2980                         {
2981                             let (primitive, adt) =
2982                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2983                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2984                                 ty == primitive
2985                             } else {
2986                                 compare_layouts(a, b).unwrap_or(false)
2987                             }
2988                         }
2989                         // Otherwise, just compare the layouts. This may fail to lint for some
2990                         // incompatible types, but at the very least, will stop reads into
2991                         // uninitialised memory.
2992                         _ => compare_layouts(a, b).unwrap_or(false),
2993                     }
2994                 })
2995             }
2996         }
2997         let mut seen_types = FxHashSet::default();
2998         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2999     }
3000 }
3001
3002 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
3003
3004 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
3005     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
3006         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
3007         if let ForeignItemKind::Fn(..) = this_fi.kind {
3008             let tcx = cx.tcx;
3009             if let Some(existing_hid) = self.insert(tcx, this_fi) {
3010                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
3011                 let this_decl_ty = tcx.type_of(this_fi.def_id);
3012                 debug!(
3013                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
3014                     existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
3015                 );
3016                 // Check that the declarations match.
3017                 if !Self::structurally_same_type(
3018                     cx,
3019                     existing_decl_ty,
3020                     this_decl_ty,
3021                     CItemKind::Declaration,
3022                 ) {
3023                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner());
3024                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
3025
3026                     // We want to ensure that we use spans for both decls that include where the
3027                     // name was defined, whether that was from the link_name attribute or not.
3028                     let get_relevant_span =
3029                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
3030                             SymbolName::Normal(_) => fi.span,
3031                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
3032                         };
3033                     // Finally, emit the diagnostic.
3034                     tcx.struct_span_lint_hir(
3035                         CLASHING_EXTERN_DECLARATIONS,
3036                         this_fi.hir_id(),
3037                         get_relevant_span(this_fi),
3038                         |lint| {
3039                             let mut expected_str = DiagnosticStyledString::new();
3040                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
3041                             let mut found_str = DiagnosticStyledString::new();
3042                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
3043
3044                             lint.build(&format!(
3045                                 "`{}` redeclare{} with a different signature",
3046                                 this_fi.ident.name,
3047                                 if orig.get_name() == this_fi.ident.name {
3048                                     "d".to_string()
3049                                 } else {
3050                                     format!("s `{}`", orig.get_name())
3051                                 }
3052                             ))
3053                             .span_label(
3054                                 get_relevant_span(orig_fi),
3055                                 &format!("`{}` previously declared here", orig.get_name()),
3056                             )
3057                             .span_label(
3058                                 get_relevant_span(this_fi),
3059                                 "this signature doesn't match the previous declaration",
3060                             )
3061                             .note_expected_found(&"", expected_str, &"", found_str)
3062                             .emit();
3063                         },
3064                     );
3065                 }
3066             }
3067         }
3068     }
3069 }
3070
3071 declare_lint! {
3072     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
3073     /// which causes [undefined behavior].
3074     ///
3075     /// ### Example
3076     ///
3077     /// ```rust,no_run
3078     /// # #![allow(unused)]
3079     /// use std::ptr;
3080     /// unsafe {
3081     ///     let x = &*ptr::null::<i32>();
3082     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
3083     ///     let x = *(0 as *const i32);
3084     /// }
3085     /// ```
3086     ///
3087     /// {{produces}}
3088     ///
3089     /// ### Explanation
3090     ///
3091     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
3092     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
3093     ///
3094     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
3095     pub DEREF_NULLPTR,
3096     Warn,
3097     "detects when an null pointer is dereferenced"
3098 }
3099
3100 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3101
3102 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3103     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3104         /// test if expression is a null ptr
3105         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3106             match &expr.kind {
3107                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3108                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3109                         return is_zero(expr) || is_null_ptr(cx, expr);
3110                     }
3111                 }
3112                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3113                 rustc_hir::ExprKind::Call(ref path, _) => {
3114                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3115                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3116                             return matches!(
3117                                 cx.tcx.get_diagnostic_name(def_id),
3118                                 Some(sym::ptr_null | sym::ptr_null_mut)
3119                             );
3120                         }
3121                     }
3122                 }
3123                 _ => {}
3124             }
3125             false
3126         }
3127
3128         /// test if expression is the literal `0`
3129         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3130             match &expr.kind {
3131                 rustc_hir::ExprKind::Lit(ref lit) => {
3132                     if let LitKind::Int(a, _) = lit.node {
3133                         return a == 0;
3134                     }
3135                 }
3136                 _ => {}
3137             }
3138             false
3139         }
3140
3141         if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind {
3142             if is_null_ptr(cx, expr_deref) {
3143                 cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
3144                     let mut err = lint.build("dereferencing a null pointer");
3145                     err.span_label(expr.span, "this code causes undefined behavior when executed");
3146                     err.emit();
3147                 });
3148             }
3149         }
3150     }
3151 }
3152
3153 declare_lint! {
3154     /// The `named_asm_labels` lint detects the use of named labels in the
3155     /// inline `asm!` macro.
3156     ///
3157     /// ### Example
3158     ///
3159     /// ```rust,compile_fail
3160     /// use std::arch::asm;
3161     ///
3162     /// fn main() {
3163     ///     unsafe {
3164     ///         asm!("foo: bar");
3165     ///     }
3166     /// }
3167     /// ```
3168     ///
3169     /// {{produces}}
3170     ///
3171     /// ### Explanation
3172     ///
3173     /// LLVM is allowed to duplicate inline assembly blocks for any
3174     /// reason, for example when it is in a function that gets inlined. Because
3175     /// of this, GNU assembler [local labels] *must* be used instead of labels
3176     /// with a name. Using named labels might cause assembler or linker errors.
3177     ///
3178     /// See the explanation in [Rust By Example] for more details.
3179     ///
3180     /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
3181     /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
3182     pub NAMED_ASM_LABELS,
3183     Deny,
3184     "named labels in inline assembly",
3185 }
3186
3187 declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]);
3188
3189 impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels {
3190     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
3191         if let hir::Expr {
3192             kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }),
3193             ..
3194         } = expr
3195         {
3196             for (template_sym, template_snippet, template_span) in template_strs.iter() {
3197                 let template_str = template_sym.as_str();
3198                 let find_label_span = |needle: &str| -> Option<Span> {
3199                     if let Some(template_snippet) = template_snippet {
3200                         let snippet = template_snippet.as_str();
3201                         if let Some(pos) = snippet.find(needle) {
3202                             let end = pos
3203                                 + snippet[pos..]
3204                                     .find(|c| c == ':')
3205                                     .unwrap_or(snippet[pos..].len() - 1);
3206                             let inner = InnerSpan::new(pos, end);
3207                             return Some(template_span.from_inner(inner));
3208                         }
3209                     }
3210
3211                     None
3212                 };
3213
3214                 let mut found_labels = Vec::new();
3215
3216                 // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always
3217                 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3218                 for statement in statements {
3219                     // If there's a comment, trim it from the statement
3220                     let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3221                     let mut start_idx = 0;
3222                     for (idx, _) in statement.match_indices(':') {
3223                         let possible_label = statement[start_idx..idx].trim();
3224                         let mut chars = possible_label.chars();
3225                         let Some(c) = chars.next() else {
3226                             // Empty string means a leading ':' in this section, which is not a label
3227                             break
3228                         };
3229                         // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $
3230                         if (c.is_alphabetic() || matches!(c, '.' | '_'))
3231                             && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$'))
3232                         {
3233                             found_labels.push(possible_label);
3234                         } else {
3235                             // If we encounter a non-label, there cannot be any further labels, so stop checking
3236                             break;
3237                         }
3238
3239                         start_idx = idx + 1;
3240                     }
3241                 }
3242
3243                 debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels);
3244
3245                 if found_labels.len() > 0 {
3246                     let spans = found_labels
3247                         .into_iter()
3248                         .filter_map(|label| find_label_span(label))
3249                         .collect::<Vec<Span>>();
3250                     // If there were labels but we couldn't find a span, combine the warnings and use the template span
3251                     let target_spans: MultiSpan =
3252                         if spans.len() > 0 { spans.into() } else { (*template_span).into() };
3253
3254                     cx.lookup_with_diagnostics(
3255                             NAMED_ASM_LABELS,
3256                             Some(target_spans),
3257                             |diag| {
3258                                 let mut err =
3259                                     diag.build("avoid using named labels in inline assembly");
3260                                 err.emit();
3261                             },
3262                             BuiltinLintDiagnostics::NamedAsmLabel(
3263                                 "only local labels of the form `<number>:` should be used in inline asm"
3264                                     .to_string(),
3265                             ),
3266                         );
3267                 }
3268             }
3269         }
3270     }
3271 }