]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_lint/src/builtin.rs
Rollup merge of #84132 - Manishearth:lldb-nonstandard, r=Mark-Simulacrum
[rust.git] / compiler / rustc_lint / src / builtin.rs
1 // ignore-tidy-filelength
2
3 //! Lints in the Rust compiler.
4 //!
5 //! This contains lints which can feasibly be implemented as their own
6 //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
7 //! definitions of lints that are emitted directly inside the main compiler.
8 //!
9 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
10 //! Then add code to emit the new lint in the appropriate circumstances.
11 //! You can do that in an existing `LintPass` if it makes sense, or in a
12 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
13 //! compiler. Only do the latter if the check can't be written cleanly as a
14 //! `LintPass` (also, note that such lints will need to be defined in
15 //! `rustc_session::lint::builtin`, not here).
16 //!
17 //! If you define a new `EarlyLintPass`, you will also need to add it to the
18 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
19 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
20 //! with a `pub fn new()`.
21 //!
22 //! If you define a new `LateLintPass`, you will also need to add it to the
23 //! `late_lint_methods!` invocation in `lib.rs`.
24
25 use crate::{
26     types::{transparent_newtype_field, CItemKind},
27     EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext,
28 };
29 use rustc_ast::attr;
30 use rustc_ast::tokenstream::{TokenStream, TokenTree};
31 use rustc_ast::visit::{FnCtxt, FnKind};
32 use rustc_ast::{self as ast, *};
33 use rustc_ast_pretty::pprust::{self, expr_to_string};
34 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
35 use rustc_data_structures::stack::ensure_sufficient_stack;
36 use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
37 use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType};
38 use rustc_feature::{GateIssue, Stability};
39 use rustc_hir as hir;
40 use rustc_hir::def::{DefKind, Res};
41 use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet};
42 use rustc_hir::{ForeignItemKind, GenericParamKind, PatKind};
43 use rustc_hir::{HirId, Node};
44 use rustc_index::vec::Idx;
45 use rustc_middle::lint::LintDiagnosticBuilder;
46 use rustc_middle::ty::print::with_no_trimmed_paths;
47 use rustc_middle::ty::subst::{GenericArgKind, Subst};
48 use rustc_middle::ty::Instance;
49 use rustc_middle::ty::{self, layout::LayoutError, Ty, TyCtxt};
50 use rustc_session::Session;
51 use rustc_span::edition::Edition;
52 use rustc_span::source_map::Spanned;
53 use rustc_span::symbol::{kw, sym, Ident, Symbol};
54 use rustc_span::{BytePos, Span};
55 use rustc_target::abi::{LayoutOf, VariantIdx};
56 use rustc_trait_selection::traits::misc::can_type_implement_copy;
57
58 use crate::nonstandard_style::{method_context, MethodLateContext};
59
60 use std::fmt::Write;
61 use tracing::{debug, trace};
62
63 // hardwired lints from librustc_middle
64 pub use rustc_session::lint::builtin::*;
65
66 declare_lint! {
67     /// The `while_true` lint detects `while true { }`.
68     ///
69     /// ### Example
70     ///
71     /// ```rust,no_run
72     /// while true {
73     ///
74     /// }
75     /// ```
76     ///
77     /// {{produces}}
78     ///
79     /// ### Explanation
80     ///
81     /// `while true` should be replaced with `loop`. A `loop` expression is
82     /// the preferred way to write an infinite loop because it more directly
83     /// expresses the intent of the loop.
84     WHILE_TRUE,
85     Warn,
86     "suggest using `loop { }` instead of `while true { }`"
87 }
88
89 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
90
91 /// Traverse through any amount of parenthesis and return the first non-parens expression.
92 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
93     while let ast::ExprKind::Paren(sub) = &expr.kind {
94         expr = sub;
95     }
96     expr
97 }
98
99 impl EarlyLintPass for WhileTrue {
100     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
101         if let ast::ExprKind::While(cond, _, label) = &e.kind {
102             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
103                 if let ast::LitKind::Bool(true) = lit.kind {
104                     if !lit.span.from_expansion() {
105                         let msg = "denote infinite loops with `loop { ... }`";
106                         let condition_span = e.span.with_hi(cond.span.hi());
107                         cx.struct_span_lint(WHILE_TRUE, condition_span, |lint| {
108                             lint.build(msg)
109                                 .span_suggestion_short(
110                                     condition_span,
111                                     "use `loop`",
112                                     format!(
113                                         "{}loop",
114                                         label.map_or_else(String::new, |label| format!(
115                                             "{}: ",
116                                             label.ident,
117                                         ))
118                                     ),
119                                     Applicability::MachineApplicable,
120                                 )
121                                 .emit();
122                         })
123                     }
124                 }
125             }
126         }
127     }
128 }
129
130 declare_lint! {
131     /// The `box_pointers` lints use of the Box type.
132     ///
133     /// ### Example
134     ///
135     /// ```rust,compile_fail
136     /// #![deny(box_pointers)]
137     /// struct Foo {
138     ///     x: Box<isize>,
139     /// }
140     /// ```
141     ///
142     /// {{produces}}
143     ///
144     /// ### Explanation
145     ///
146     /// This lint is mostly historical, and not particularly useful. `Box<T>`
147     /// used to be built into the language, and the only way to do heap
148     /// allocation. Today's Rust can call into other allocators, etc.
149     BOX_POINTERS,
150     Allow,
151     "use of owned (Box type) heap memory"
152 }
153
154 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
155
156 impl BoxPointers {
157     fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
158         for leaf in ty.walk() {
159             if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
160                 if leaf_ty.is_box() {
161                     cx.struct_span_lint(BOX_POINTERS, span, |lint| {
162                         lint.build(&format!("type uses owned (Box type) pointers: {}", ty)).emit()
163                     });
164                 }
165             }
166         }
167     }
168 }
169
170 impl<'tcx> LateLintPass<'tcx> for BoxPointers {
171     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
172         match it.kind {
173             hir::ItemKind::Fn(..)
174             | hir::ItemKind::TyAlias(..)
175             | hir::ItemKind::Enum(..)
176             | hir::ItemKind::Struct(..)
177             | hir::ItemKind::Union(..) => {
178                 self.check_heap_type(cx, it.span, cx.tcx.type_of(it.def_id))
179             }
180             _ => (),
181         }
182
183         // If it's a struct, we also have to check the fields' types
184         match it.kind {
185             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
186                 for struct_field in struct_def.fields() {
187                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
188                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
189                 }
190             }
191             _ => (),
192         }
193     }
194
195     fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
196         let ty = cx.typeck_results().node_type(e.hir_id);
197         self.check_heap_type(cx, e.span, ty);
198     }
199 }
200
201 declare_lint! {
202     /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
203     /// instead of `Struct { x }` in a pattern.
204     ///
205     /// ### Example
206     ///
207     /// ```rust
208     /// struct Point {
209     ///     x: i32,
210     ///     y: i32,
211     /// }
212     ///
213     ///
214     /// fn main() {
215     ///     let p = Point {
216     ///         x: 5,
217     ///         y: 5,
218     ///     };
219     ///
220     ///     match p {
221     ///         Point { x: x, y: y } => (),
222     ///     }
223     /// }
224     /// ```
225     ///
226     /// {{produces}}
227     ///
228     /// ### Explanation
229     ///
230     /// The preferred style is to avoid the repetition of specifying both the
231     /// field name and the binding name if both identifiers are the same.
232     NON_SHORTHAND_FIELD_PATTERNS,
233     Warn,
234     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
235 }
236
237 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
238
239 impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
240     fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
241         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
242             let variant = cx
243                 .typeck_results()
244                 .pat_ty(pat)
245                 .ty_adt_def()
246                 .expect("struct pattern type is not an ADT")
247                 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
248             for fieldpat in field_pats {
249                 if fieldpat.is_shorthand {
250                     continue;
251                 }
252                 if fieldpat.span.from_expansion() {
253                     // Don't lint if this is a macro expansion: macro authors
254                     // shouldn't have to worry about this kind of style issue
255                     // (Issue #49588)
256                     continue;
257                 }
258                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
259                     if cx.tcx.find_field_index(ident, &variant)
260                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.typeck_results()))
261                     {
262                         cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, |lint| {
263                             let mut err = lint
264                                 .build(&format!("the `{}:` in this pattern is redundant", ident));
265                             let binding = match binding_annot {
266                                 hir::BindingAnnotation::Unannotated => None,
267                                 hir::BindingAnnotation::Mutable => Some("mut"),
268                                 hir::BindingAnnotation::Ref => Some("ref"),
269                                 hir::BindingAnnotation::RefMut => Some("ref mut"),
270                             };
271                             let ident = if let Some(binding) = binding {
272                                 format!("{} {}", binding, ident)
273                             } else {
274                                 ident.to_string()
275                             };
276                             err.span_suggestion(
277                                 fieldpat.span,
278                                 "use shorthand field pattern",
279                                 ident,
280                                 Applicability::MachineApplicable,
281                             );
282                             err.emit();
283                         });
284                     }
285                 }
286             }
287         }
288     }
289 }
290
291 declare_lint! {
292     /// The `unsafe_code` lint catches usage of `unsafe` code.
293     ///
294     /// ### Example
295     ///
296     /// ```rust,compile_fail
297     /// #![deny(unsafe_code)]
298     /// fn main() {
299     ///     unsafe {
300     ///
301     ///     }
302     /// }
303     /// ```
304     ///
305     /// {{produces}}
306     ///
307     /// ### Explanation
308     ///
309     /// This lint is intended to restrict the usage of `unsafe`, which can be
310     /// difficult to use correctly.
311     UNSAFE_CODE,
312     Allow,
313     "usage of `unsafe` code"
314 }
315
316 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
317
318 impl UnsafeCode {
319     fn report_unsafe(
320         &self,
321         cx: &EarlyContext<'_>,
322         span: Span,
323         decorate: impl for<'a> FnOnce(LintDiagnosticBuilder<'a>),
324     ) {
325         // This comes from a macro that has `#[allow_internal_unsafe]`.
326         if span.allows_unsafe() {
327             return;
328         }
329
330         cx.struct_span_lint(UNSAFE_CODE, span, decorate);
331     }
332
333     fn report_overriden_symbol_name(&self, cx: &EarlyContext<'_>, span: Span, msg: &str) {
334         self.report_unsafe(cx, span, |lint| {
335             lint.build(msg)
336                 .note(
337                     "the linker's behavior with multiple libraries exporting duplicate symbol \
338                     names is undefined and Rust cannot provide guarantees when you manually \
339                     override them",
340                 )
341                 .emit();
342         })
343     }
344 }
345
346 impl EarlyLintPass for UnsafeCode {
347     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
348         if cx.sess().check_name(attr, sym::allow_internal_unsafe) {
349             self.report_unsafe(cx, attr.span, |lint| {
350                 lint.build(
351                     "`allow_internal_unsafe` allows defining \
352                                                macros using unsafe without triggering \
353                                                the `unsafe_code` lint at their call site",
354                 )
355                 .emit()
356             });
357         }
358     }
359
360     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
361         if let ast::ExprKind::Block(ref blk, _) = e.kind {
362             // Don't warn about generated blocks; that'll just pollute the output.
363             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
364                 self.report_unsafe(cx, blk.span, |lint| {
365                     lint.build("usage of an `unsafe` block").emit()
366                 });
367             }
368         }
369     }
370
371     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
372         match it.kind {
373             ast::ItemKind::Trait(box ast::TraitKind(_, ast::Unsafe::Yes(_), ..)) => self
374                 .report_unsafe(cx, it.span, |lint| {
375                     lint.build("declaration of an `unsafe` trait").emit()
376                 }),
377
378             ast::ItemKind::Impl(box ast::ImplKind { unsafety: ast::Unsafe::Yes(_), .. }) => self
379                 .report_unsafe(cx, it.span, |lint| {
380                     lint.build("implementation of an `unsafe` trait").emit()
381                 }),
382
383             ast::ItemKind::Fn(..) => {
384                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
385                     self.report_overriden_symbol_name(
386                         cx,
387                         attr.span,
388                         "declaration of a `no_mangle` function",
389                     );
390                 }
391                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
392                     self.report_overriden_symbol_name(
393                         cx,
394                         attr.span,
395                         "declaration of a function with `export_name`",
396                     );
397                 }
398             }
399
400             ast::ItemKind::Static(..) => {
401                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) {
402                     self.report_overriden_symbol_name(
403                         cx,
404                         attr.span,
405                         "declaration of a `no_mangle` static",
406                     );
407                 }
408                 if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) {
409                     self.report_overriden_symbol_name(
410                         cx,
411                         attr.span,
412                         "declaration of a static with `export_name`",
413                     );
414                 }
415             }
416
417             _ => {}
418         }
419     }
420
421     fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
422         if let FnKind::Fn(
423             ctxt,
424             _,
425             ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. },
426             _,
427             body,
428         ) = fk
429         {
430             let msg = match ctxt {
431                 FnCtxt::Foreign => return,
432                 FnCtxt::Free => "declaration of an `unsafe` function",
433                 FnCtxt::Assoc(_) if body.is_none() => "declaration of an `unsafe` method",
434                 FnCtxt::Assoc(_) => "implementation of an `unsafe` method",
435             };
436             self.report_unsafe(cx, span, |lint| lint.build(msg).emit());
437         }
438     }
439 }
440
441 declare_lint! {
442     /// The `missing_docs` lint detects missing documentation for public items.
443     ///
444     /// ### Example
445     ///
446     /// ```rust,compile_fail
447     /// #![deny(missing_docs)]
448     /// pub fn foo() {}
449     /// ```
450     ///
451     /// {{produces}}
452     ///
453     /// ### Explanation
454     ///
455     /// This lint is intended to ensure that a library is well-documented.
456     /// Items without documentation can be difficult for users to understand
457     /// how to use properly.
458     ///
459     /// This lint is "allow" by default because it can be noisy, and not all
460     /// projects may want to enforce everything to be documented.
461     pub MISSING_DOCS,
462     Allow,
463     "detects missing documentation for public members",
464     report_in_external_macro
465 }
466
467 pub struct MissingDoc {
468     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
469     doc_hidden_stack: Vec<bool>,
470
471     /// Private traits or trait items that leaked through. Don't check their methods.
472     private_traits: FxHashSet<hir::HirId>,
473 }
474
475 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
476
477 fn has_doc(sess: &Session, attr: &ast::Attribute) -> bool {
478     if attr.is_doc_comment() {
479         return true;
480     }
481
482     if !sess.check_name(attr, sym::doc) {
483         return false;
484     }
485
486     if attr.value_str().is_some() {
487         return true;
488     }
489
490     if let Some(list) = attr.meta_item_list() {
491         for meta in list {
492             if meta.has_name(sym::include) || meta.has_name(sym::hidden) {
493                 return true;
494             }
495         }
496     }
497
498     false
499 }
500
501 impl MissingDoc {
502     pub fn new() -> MissingDoc {
503         MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
504     }
505
506     fn doc_hidden(&self) -> bool {
507         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
508     }
509
510     fn check_missing_docs_attrs(
511         &self,
512         cx: &LateContext<'_>,
513         id: hir::HirId,
514         sp: Span,
515         article: &'static str,
516         desc: &'static str,
517     ) {
518         // If we're building a test harness, then warning about
519         // documentation is probably not really relevant right now.
520         if cx.sess().opts.test {
521             return;
522         }
523
524         // `#[doc(hidden)]` disables missing_docs check.
525         if self.doc_hidden() {
526             return;
527         }
528
529         // Only check publicly-visible items, using the result from the privacy pass.
530         // It's an option so the crate root can also use this function (it doesn't
531         // have a `NodeId`).
532         if id != hir::CRATE_HIR_ID {
533             if !cx.access_levels.is_exported(id) {
534                 return;
535             }
536         }
537
538         let attrs = cx.tcx.hir().attrs(id);
539         let has_doc = attrs.iter().any(|a| has_doc(cx.sess(), a));
540         if !has_doc {
541             cx.struct_span_lint(
542                 MISSING_DOCS,
543                 cx.tcx.sess.source_map().guess_head_span(sp),
544                 |lint| {
545                     lint.build(&format!("missing documentation for {} {}", article, desc)).emit()
546                 },
547             );
548         }
549     }
550 }
551
552 impl<'tcx> LateLintPass<'tcx> for MissingDoc {
553     fn enter_lint_attrs(&mut self, cx: &LateContext<'_>, attrs: &[ast::Attribute]) {
554         let doc_hidden = self.doc_hidden()
555             || attrs.iter().any(|attr| {
556                 cx.sess().check_name(attr, sym::doc)
557                     && match attr.meta_item_list() {
558                         None => false,
559                         Some(l) => attr::list_contains_name(&l, sym::hidden),
560                     }
561             });
562         self.doc_hidden_stack.push(doc_hidden);
563     }
564
565     fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) {
566         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
567     }
568
569     fn check_crate(&mut self, cx: &LateContext<'_>, krate: &hir::Crate<'_>) {
570         self.check_missing_docs_attrs(cx, hir::CRATE_HIR_ID, krate.item.inner, "the", "crate");
571
572         for macro_def in krate.exported_macros {
573             let attrs = cx.tcx.hir().attrs(macro_def.hir_id());
574             let has_doc = attrs.iter().any(|a| has_doc(cx.sess(), a));
575             if !has_doc {
576                 cx.struct_span_lint(
577                     MISSING_DOCS,
578                     cx.tcx.sess.source_map().guess_head_span(macro_def.span),
579                     |lint| lint.build("missing documentation for macro").emit(),
580                 );
581             }
582         }
583     }
584
585     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
586         match it.kind {
587             hir::ItemKind::Trait(.., trait_item_refs) => {
588                 // Issue #11592: traits are always considered exported, even when private.
589                 if let hir::VisibilityKind::Inherited = it.vis.node {
590                     self.private_traits.insert(it.hir_id());
591                     for trait_item_ref in trait_item_refs {
592                         self.private_traits.insert(trait_item_ref.id.hir_id());
593                     }
594                     return;
595                 }
596             }
597             hir::ItemKind::Impl(hir::Impl { of_trait: Some(ref trait_ref), items, .. }) => {
598                 // If the trait is private, add the impl items to `private_traits` so they don't get
599                 // reported for missing docs.
600                 let real_trait = trait_ref.path.res.def_id();
601                 if let Some(def_id) = real_trait.as_local() {
602                     let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def_id);
603                     if let Some(Node::Item(item)) = cx.tcx.hir().find(hir_id) {
604                         if let hir::VisibilityKind::Inherited = item.vis.node {
605                             for impl_item_ref in items {
606                                 self.private_traits.insert(impl_item_ref.id.hir_id());
607                             }
608                         }
609                     }
610                 }
611                 return;
612             }
613
614             hir::ItemKind::TyAlias(..)
615             | hir::ItemKind::Fn(..)
616             | hir::ItemKind::Mod(..)
617             | hir::ItemKind::Enum(..)
618             | hir::ItemKind::Struct(..)
619             | hir::ItemKind::Union(..)
620             | hir::ItemKind::Const(..)
621             | hir::ItemKind::Static(..) => {}
622
623             _ => return,
624         };
625
626         let (article, desc) = cx.tcx.article_and_description(it.def_id.to_def_id());
627
628         self.check_missing_docs_attrs(cx, it.hir_id(), it.span, article, desc);
629     }
630
631     fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
632         if self.private_traits.contains(&trait_item.hir_id()) {
633             return;
634         }
635
636         let (article, desc) = cx.tcx.article_and_description(trait_item.def_id.to_def_id());
637
638         self.check_missing_docs_attrs(cx, trait_item.hir_id(), trait_item.span, article, desc);
639     }
640
641     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
642         // If the method is an impl for a trait, don't doc.
643         if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl {
644             return;
645         }
646
647         let (article, desc) = cx.tcx.article_and_description(impl_item.def_id.to_def_id());
648         self.check_missing_docs_attrs(cx, impl_item.hir_id(), impl_item.span, article, desc);
649     }
650
651     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
652         let (article, desc) = cx.tcx.article_and_description(foreign_item.def_id.to_def_id());
653         self.check_missing_docs_attrs(cx, foreign_item.hir_id(), foreign_item.span, article, desc);
654     }
655
656     fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
657         if !sf.is_positional() {
658             self.check_missing_docs_attrs(cx, sf.hir_id, sf.span, "a", "struct field")
659         }
660     }
661
662     fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
663         self.check_missing_docs_attrs(cx, v.id, v.span, "a", "variant");
664     }
665 }
666
667 declare_lint! {
668     /// The `missing_copy_implementations` lint detects potentially-forgotten
669     /// implementations of [`Copy`].
670     ///
671     /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
672     ///
673     /// ### Example
674     ///
675     /// ```rust,compile_fail
676     /// #![deny(missing_copy_implementations)]
677     /// pub struct Foo {
678     ///     pub field: i32
679     /// }
680     /// # fn main() {}
681     /// ```
682     ///
683     /// {{produces}}
684     ///
685     /// ### Explanation
686     ///
687     /// Historically (before 1.0), types were automatically marked as `Copy`
688     /// if possible. This was changed so that it required an explicit opt-in
689     /// by implementing the `Copy` trait. As part of this change, a lint was
690     /// added to alert if a copyable type was not marked `Copy`.
691     ///
692     /// This lint is "allow" by default because this code isn't bad; it is
693     /// common to write newtypes like this specifically so that a `Copy` type
694     /// is no longer `Copy`. `Copy` types can result in unintended copies of
695     /// large data which can impact performance.
696     pub MISSING_COPY_IMPLEMENTATIONS,
697     Allow,
698     "detects potentially-forgotten implementations of `Copy`"
699 }
700
701 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
702
703 impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
704     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
705         if !cx.access_levels.is_reachable(item.hir_id()) {
706             return;
707         }
708         let (def, ty) = match item.kind {
709             hir::ItemKind::Struct(_, ref ast_generics) => {
710                 if !ast_generics.params.is_empty() {
711                     return;
712                 }
713                 let def = cx.tcx.adt_def(item.def_id);
714                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
715             }
716             hir::ItemKind::Union(_, ref ast_generics) => {
717                 if !ast_generics.params.is_empty() {
718                     return;
719                 }
720                 let def = cx.tcx.adt_def(item.def_id);
721                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
722             }
723             hir::ItemKind::Enum(_, ref ast_generics) => {
724                 if !ast_generics.params.is_empty() {
725                     return;
726                 }
727                 let def = cx.tcx.adt_def(item.def_id);
728                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
729             }
730             _ => return,
731         };
732         if def.has_dtor(cx.tcx) {
733             return;
734         }
735         let param_env = ty::ParamEnv::empty();
736         if ty.is_copy_modulo_regions(cx.tcx.at(item.span), param_env) {
737             return;
738         }
739         if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() {
740             cx.struct_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, |lint| {
741                 lint.build(
742                     "type could implement `Copy`; consider adding `impl \
743                           Copy`",
744                 )
745                 .emit()
746             })
747         }
748     }
749 }
750
751 declare_lint! {
752     /// The `missing_debug_implementations` lint detects missing
753     /// implementations of [`fmt::Debug`].
754     ///
755     /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
756     ///
757     /// ### Example
758     ///
759     /// ```rust,compile_fail
760     /// #![deny(missing_debug_implementations)]
761     /// pub struct Foo;
762     /// # fn main() {}
763     /// ```
764     ///
765     /// {{produces}}
766     ///
767     /// ### Explanation
768     ///
769     /// Having a `Debug` implementation on all types can assist with
770     /// debugging, as it provides a convenient way to format and display a
771     /// value. Using the `#[derive(Debug)]` attribute will automatically
772     /// generate a typical implementation, or a custom implementation can be
773     /// added by manually implementing the `Debug` trait.
774     ///
775     /// This lint is "allow" by default because adding `Debug` to all types can
776     /// have a negative impact on compile time and code size. It also requires
777     /// boilerplate to be added to every type, which can be an impediment.
778     MISSING_DEBUG_IMPLEMENTATIONS,
779     Allow,
780     "detects missing implementations of Debug"
781 }
782
783 #[derive(Default)]
784 pub struct MissingDebugImplementations {
785     impling_types: Option<LocalDefIdSet>,
786 }
787
788 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
789
790 impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
791     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
792         if !cx.access_levels.is_reachable(item.hir_id()) {
793             return;
794         }
795
796         match item.kind {
797             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
798             _ => return,
799         }
800
801         let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) {
802             Some(debug) => debug,
803             None => return,
804         };
805
806         if self.impling_types.is_none() {
807             let mut impls = LocalDefIdSet::default();
808             cx.tcx.for_each_impl(debug, |d| {
809                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
810                     if let Some(def_id) = ty_def.did.as_local() {
811                         impls.insert(def_id);
812                     }
813                 }
814             });
815
816             self.impling_types = Some(impls);
817             debug!("{:?}", self.impling_types);
818         }
819
820         if !self.impling_types.as_ref().unwrap().contains(&item.def_id) {
821             cx.struct_span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, |lint| {
822                 lint.build(&format!(
823                     "type does not implement `{}`; consider adding `#[derive(Debug)]` \
824                      or a manual implementation",
825                     cx.tcx.def_path_str(debug)
826                 ))
827                 .emit()
828             });
829         }
830     }
831 }
832
833 declare_lint! {
834     /// The `anonymous_parameters` lint detects anonymous parameters in trait
835     /// definitions.
836     ///
837     /// ### Example
838     ///
839     /// ```rust,edition2015,compile_fail
840     /// #![deny(anonymous_parameters)]
841     /// // edition 2015
842     /// pub trait Foo {
843     ///     fn foo(usize);
844     /// }
845     /// fn main() {}
846     /// ```
847     ///
848     /// {{produces}}
849     ///
850     /// ### Explanation
851     ///
852     /// This syntax is mostly a historical accident, and can be worked around
853     /// quite easily by adding an `_` pattern or a descriptive identifier:
854     ///
855     /// ```rust
856     /// trait Foo {
857     ///     fn foo(_: usize);
858     /// }
859     /// ```
860     ///
861     /// This syntax is now a hard error in the 2018 edition. In the 2015
862     /// edition, this lint is "warn" by default. This lint
863     /// enables the [`cargo fix`] tool with the `--edition` flag to
864     /// automatically transition old code from the 2015 edition to 2018. The
865     /// tool will run this lint and automatically apply the
866     /// suggested fix from the compiler (which is to add `_` to each
867     /// parameter). This provides a completely automated way to update old
868     /// code for a new edition. See [issue #41686] for more details.
869     ///
870     /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
871     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
872     pub ANONYMOUS_PARAMETERS,
873     Warn,
874     "detects anonymous parameters",
875     @future_incompatible = FutureIncompatibleInfo {
876         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
877         edition: Some(Edition::Edition2018),
878     };
879 }
880
881 declare_lint_pass!(
882     /// Checks for use of anonymous parameters (RFC 1685).
883     AnonymousParameters => [ANONYMOUS_PARAMETERS]
884 );
885
886 impl EarlyLintPass for AnonymousParameters {
887     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
888         if cx.sess.edition() != Edition::Edition2015 {
889             // This is a hard error in future editions; avoid linting and erroring
890             return;
891         }
892         if let ast::AssocItemKind::Fn(box FnKind(_, ref sig, _, _)) = it.kind {
893             for arg in sig.decl.inputs.iter() {
894                 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
895                     if ident.name == kw::Empty {
896                         cx.struct_span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, |lint| {
897                             let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span);
898
899                             let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
900                                 (snip.as_str(), Applicability::MachineApplicable)
901                             } else {
902                                 ("<type>", Applicability::HasPlaceholders)
903                             };
904
905                             lint.build(
906                                 "anonymous parameters are deprecated and will be \
907                                      removed in the next edition.",
908                             )
909                             .span_suggestion(
910                                 arg.pat.span,
911                                 "try naming the parameter or explicitly \
912                                             ignoring it",
913                                 format!("_: {}", ty_snip),
914                                 appl,
915                             )
916                             .emit();
917                         })
918                     }
919                 }
920             }
921         }
922     }
923 }
924
925 /// Check for use of attributes which have been deprecated.
926 #[derive(Clone)]
927 pub struct DeprecatedAttr {
928     // This is not free to compute, so we want to keep it around, rather than
929     // compute it for every attribute.
930     depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>,
931 }
932
933 impl_lint_pass!(DeprecatedAttr => []);
934
935 impl DeprecatedAttr {
936     pub fn new() -> DeprecatedAttr {
937         DeprecatedAttr { depr_attrs: deprecated_attributes() }
938     }
939 }
940
941 fn lint_deprecated_attr(
942     cx: &EarlyContext<'_>,
943     attr: &ast::Attribute,
944     msg: &str,
945     suggestion: Option<&str>,
946 ) {
947     cx.struct_span_lint(DEPRECATED, attr.span, |lint| {
948         lint.build(msg)
949             .span_suggestion_short(
950                 attr.span,
951                 suggestion.unwrap_or("remove this attribute"),
952                 String::new(),
953                 Applicability::MachineApplicable,
954             )
955             .emit();
956     })
957 }
958
959 impl EarlyLintPass for DeprecatedAttr {
960     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
961         for &&(n, _, _, ref g) in &self.depr_attrs {
962             if attr.ident().map(|ident| ident.name) == Some(n) {
963                 if let &AttributeGate::Gated(
964                     Stability::Deprecated(link, suggestion),
965                     name,
966                     reason,
967                     _,
968                 ) = g
969                 {
970                     let msg =
971                         format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
972                     lint_deprecated_attr(cx, attr, &msg, suggestion);
973                 }
974                 return;
975             }
976         }
977         if cx.sess().check_name(attr, sym::no_start) || cx.sess().check_name(attr, sym::crate_id) {
978             let path_str = pprust::path_to_string(&attr.get_normal_item().path);
979             let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
980             lint_deprecated_attr(cx, attr, &msg, None);
981         }
982     }
983 }
984
985 fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
986     let mut attrs = attrs.iter().peekable();
987
988     // Accumulate a single span for sugared doc comments.
989     let mut sugared_span: Option<Span> = None;
990
991     while let Some(attr) = attrs.next() {
992         if attr.is_doc_comment() {
993             sugared_span =
994                 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
995         }
996
997         if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) {
998             continue;
999         }
1000
1001         let span = sugared_span.take().unwrap_or(attr.span);
1002
1003         if attr.is_doc_comment() || cx.sess().check_name(attr, sym::doc) {
1004             cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, |lint| {
1005                 let mut err = lint.build("unused doc comment");
1006                 err.span_label(
1007                     node_span,
1008                     format!("rustdoc does not generate documentation for {}", node_kind),
1009                 );
1010                 err.emit();
1011             });
1012         }
1013     }
1014 }
1015
1016 impl EarlyLintPass for UnusedDocComment {
1017     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
1018         let kind = match stmt.kind {
1019             ast::StmtKind::Local(..) => "statements",
1020             // Disabled pending discussion in #78306
1021             ast::StmtKind::Item(..) => return,
1022             // expressions will be reported by `check_expr`.
1023             ast::StmtKind::Empty
1024             | ast::StmtKind::Semi(_)
1025             | ast::StmtKind::Expr(_)
1026             | ast::StmtKind::MacCall(_) => return,
1027         };
1028
1029         warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
1030     }
1031
1032     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
1033         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
1034         warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
1035     }
1036
1037     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1038         warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
1039     }
1040 }
1041
1042 declare_lint! {
1043     /// The `no_mangle_const_items` lint detects any `const` items with the
1044     /// [`no_mangle` attribute].
1045     ///
1046     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1047     ///
1048     /// ### Example
1049     ///
1050     /// ```rust,compile_fail
1051     /// #[no_mangle]
1052     /// const FOO: i32 = 5;
1053     /// ```
1054     ///
1055     /// {{produces}}
1056     ///
1057     /// ### Explanation
1058     ///
1059     /// Constants do not have their symbols exported, and therefore, this
1060     /// probably means you meant to use a [`static`], not a [`const`].
1061     ///
1062     /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
1063     /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
1064     NO_MANGLE_CONST_ITEMS,
1065     Deny,
1066     "const items will not have their symbols exported"
1067 }
1068
1069 declare_lint! {
1070     /// The `no_mangle_generic_items` lint detects generic items that must be
1071     /// mangled.
1072     ///
1073     /// ### Example
1074     ///
1075     /// ```rust
1076     /// #[no_mangle]
1077     /// fn foo<T>(t: T) {
1078     ///
1079     /// }
1080     /// ```
1081     ///
1082     /// {{produces}}
1083     ///
1084     /// ### Explanation
1085     ///
1086     /// An function with generics must have its symbol mangled to accommodate
1087     /// the generic parameter. The [`no_mangle` attribute] has no effect in
1088     /// this situation, and should be removed.
1089     ///
1090     /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
1091     NO_MANGLE_GENERIC_ITEMS,
1092     Warn,
1093     "generic items must be mangled"
1094 }
1095
1096 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
1097
1098 impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1099     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1100         let attrs = cx.tcx.hir().attrs(it.hir_id());
1101         match it.kind {
1102             hir::ItemKind::Fn(.., ref generics, _) => {
1103                 if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) {
1104                     for param in generics.params {
1105                         match param.kind {
1106                             GenericParamKind::Lifetime { .. } => {}
1107                             GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1108                                 cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS, it.span, |lint| {
1109                                     lint.build(
1110                                         "functions generic over types or consts must be mangled",
1111                                     )
1112                                     .span_suggestion_short(
1113                                         no_mangle_attr.span,
1114                                         "remove this attribute",
1115                                         String::new(),
1116                                         // Use of `#[no_mangle]` suggests FFI intent; correct
1117                                         // fix may be to monomorphize source by hand
1118                                         Applicability::MaybeIncorrect,
1119                                     )
1120                                     .emit();
1121                                 });
1122                                 break;
1123                             }
1124                         }
1125                     }
1126                 }
1127             }
1128             hir::ItemKind::Const(..) => {
1129                 if cx.sess().contains_name(attrs, sym::no_mangle) {
1130                     // Const items do not refer to a particular location in memory, and therefore
1131                     // don't have anything to attach a symbol to
1132                     cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, |lint| {
1133                         let msg = "const items should never be `#[no_mangle]`";
1134                         let mut err = lint.build(msg);
1135
1136                         // account for "pub const" (#45562)
1137                         let start = cx
1138                             .tcx
1139                             .sess
1140                             .source_map()
1141                             .span_to_snippet(it.span)
1142                             .map(|snippet| snippet.find("const").unwrap_or(0))
1143                             .unwrap_or(0) as u32;
1144                         // `const` is 5 chars
1145                         let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1146                         err.span_suggestion(
1147                             const_span,
1148                             "try a static value",
1149                             "pub static".to_owned(),
1150                             Applicability::MachineApplicable,
1151                         );
1152                         err.emit();
1153                     });
1154                 }
1155             }
1156             _ => {}
1157         }
1158     }
1159 }
1160
1161 declare_lint! {
1162     /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1163     /// T` because it is [undefined behavior].
1164     ///
1165     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1166     ///
1167     /// ### Example
1168     ///
1169     /// ```rust,compile_fail
1170     /// unsafe {
1171     ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1172     /// }
1173     /// ```
1174     ///
1175     /// {{produces}}
1176     ///
1177     /// ### Explanation
1178     ///
1179     /// Certain assumptions are made about aliasing of data, and this transmute
1180     /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1181     ///
1182     /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1183     MUTABLE_TRANSMUTES,
1184     Deny,
1185     "mutating transmuted &mut T from &T may cause undefined behavior"
1186 }
1187
1188 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1189
1190 impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1191     fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1192         use rustc_target::spec::abi::Abi::RustIntrinsic;
1193         if let Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) =
1194             get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1195         {
1196             if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
1197                 let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
1198                                consider instead using an UnsafeCell";
1199                 cx.struct_span_lint(MUTABLE_TRANSMUTES, expr.span, |lint| lint.build(msg).emit());
1200             }
1201         }
1202
1203         fn get_transmute_from_to<'tcx>(
1204             cx: &LateContext<'tcx>,
1205             expr: &hir::Expr<'_>,
1206         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1207             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1208                 cx.qpath_res(qpath, expr.hir_id)
1209             } else {
1210                 return None;
1211             };
1212             if let Res::Def(DefKind::Fn, did) = def {
1213                 if !def_id_is_transmute(cx, did) {
1214                     return None;
1215                 }
1216                 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1217                 let from = sig.inputs().skip_binder()[0];
1218                 let to = sig.output().skip_binder();
1219                 return Some((from, to));
1220             }
1221             None
1222         }
1223
1224         fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1225             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
1226                 && cx.tcx.item_name(def_id) == sym::transmute
1227         }
1228     }
1229 }
1230
1231 declare_lint! {
1232     /// The `unstable_features` is deprecated and should no longer be used.
1233     UNSTABLE_FEATURES,
1234     Allow,
1235     "enabling unstable features (deprecated. do not use)"
1236 }
1237
1238 declare_lint_pass!(
1239     /// Forbids using the `#[feature(...)]` attribute
1240     UnstableFeatures => [UNSTABLE_FEATURES]
1241 );
1242
1243 impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1244     fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) {
1245         if cx.sess().check_name(attr, sym::feature) {
1246             if let Some(items) = attr.meta_item_list() {
1247                 for item in items {
1248                     cx.struct_span_lint(UNSTABLE_FEATURES, item.span(), |lint| {
1249                         lint.build("unstable feature").emit()
1250                     });
1251                 }
1252             }
1253         }
1254     }
1255 }
1256
1257 declare_lint! {
1258     /// The `unreachable_pub` lint triggers for `pub` items not reachable from
1259     /// the crate root.
1260     ///
1261     /// ### Example
1262     ///
1263     /// ```rust,compile_fail
1264     /// #![deny(unreachable_pub)]
1265     /// mod foo {
1266     ///     pub mod bar {
1267     ///
1268     ///     }
1269     /// }
1270     /// ```
1271     ///
1272     /// {{produces}}
1273     ///
1274     /// ### Explanation
1275     ///
1276     /// A bare `pub` visibility may be misleading if the item is not actually
1277     /// publicly exported from the crate. The `pub(crate)` visibility is
1278     /// recommended to be used instead, which more clearly expresses the intent
1279     /// that the item is only visible within its own crate.
1280     ///
1281     /// This lint is "allow" by default because it will trigger for a large
1282     /// amount existing Rust code, and has some false-positives. Eventually it
1283     /// is desired for this to become warn-by-default.
1284     pub UNREACHABLE_PUB,
1285     Allow,
1286     "`pub` items not reachable from crate root"
1287 }
1288
1289 declare_lint_pass!(
1290     /// Lint for items marked `pub` that aren't reachable from other crates.
1291     UnreachablePub => [UNREACHABLE_PUB]
1292 );
1293
1294 impl UnreachablePub {
1295     fn perform_lint(
1296         &self,
1297         cx: &LateContext<'_>,
1298         what: &str,
1299         id: hir::HirId,
1300         vis: &hir::Visibility<'_>,
1301         span: Span,
1302         exportable: bool,
1303     ) {
1304         let mut applicability = Applicability::MachineApplicable;
1305         match vis.node {
1306             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => {
1307                 if span.from_expansion() {
1308                     applicability = Applicability::MaybeIncorrect;
1309                 }
1310                 let def_span = cx.tcx.sess.source_map().guess_head_span(span);
1311                 cx.struct_span_lint(UNREACHABLE_PUB, def_span, |lint| {
1312                     let mut err = lint.build(&format!("unreachable `pub` {}", what));
1313                     let replacement = if cx.tcx.features().crate_visibility_modifier {
1314                         "crate"
1315                     } else {
1316                         "pub(crate)"
1317                     }
1318                     .to_owned();
1319
1320                     err.span_suggestion(
1321                         vis.span,
1322                         "consider restricting its visibility",
1323                         replacement,
1324                         applicability,
1325                     );
1326                     if exportable {
1327                         err.help("or consider exporting it for use by other crates");
1328                     }
1329                     err.emit();
1330                 });
1331             }
1332             _ => {}
1333         }
1334     }
1335 }
1336
1337 impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1338     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1339         self.perform_lint(cx, "item", item.hir_id(), &item.vis, item.span, true);
1340     }
1341
1342     fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1343         self.perform_lint(
1344             cx,
1345             "item",
1346             foreign_item.hir_id(),
1347             &foreign_item.vis,
1348             foreign_item.span,
1349             true,
1350         );
1351     }
1352
1353     fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) {
1354         self.perform_lint(cx, "field", field.hir_id, &field.vis, field.span, false);
1355     }
1356
1357     fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1358         self.perform_lint(cx, "item", impl_item.hir_id(), &impl_item.vis, impl_item.span, false);
1359     }
1360 }
1361
1362 declare_lint! {
1363     /// The `type_alias_bounds` lint detects bounds in type aliases.
1364     ///
1365     /// ### Example
1366     ///
1367     /// ```rust
1368     /// type SendVec<T: Send> = Vec<T>;
1369     /// ```
1370     ///
1371     /// {{produces}}
1372     ///
1373     /// ### Explanation
1374     ///
1375     /// The trait bounds in a type alias are currently ignored, and should not
1376     /// be included to avoid confusion. This was previously allowed
1377     /// unintentionally; this may become a hard error in the future.
1378     TYPE_ALIAS_BOUNDS,
1379     Warn,
1380     "bounds in type aliases are not enforced"
1381 }
1382
1383 declare_lint_pass!(
1384     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1385     /// They are relevant when using associated types, but otherwise neither checked
1386     /// at definition site nor enforced at use site.
1387     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1388 );
1389
1390 impl TypeAliasBounds {
1391     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1392         match *qpath {
1393             hir::QPath::TypeRelative(ref ty, _) => {
1394                 // If this is a type variable, we found a `T::Assoc`.
1395                 match ty.kind {
1396                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1397                         matches!(path.res, Res::Def(DefKind::TyParam, _))
1398                     }
1399                     _ => false,
1400                 }
1401             }
1402             hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false,
1403         }
1404     }
1405
1406     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) {
1407         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1408         // bound.  Let's see if this type does that.
1409
1410         // We use a HIR visitor to walk the type.
1411         use rustc_hir::intravisit::{self, Visitor};
1412         struct WalkAssocTypes<'a, 'db> {
1413             err: &'a mut DiagnosticBuilder<'db>,
1414         }
1415         impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
1416             type Map = intravisit::ErasedMap<'v>;
1417
1418             fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
1419                 intravisit::NestedVisitorMap::None
1420             }
1421
1422             fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) {
1423                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1424                     self.err.span_help(
1425                         span,
1426                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1427                          associated types in type aliases",
1428                     );
1429                 }
1430                 intravisit::walk_qpath(self, qpath, id, span)
1431             }
1432         }
1433
1434         // Let's go for a walk!
1435         let mut visitor = WalkAssocTypes { err };
1436         visitor.visit_ty(ty);
1437     }
1438 }
1439
1440 impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1441     fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1442         let (ty, type_alias_generics) = match item.kind {
1443             hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics),
1444             _ => return,
1445         };
1446         if let hir::TyKind::OpaqueDef(..) = ty.kind {
1447             // Bounds are respected for `type X = impl Trait`
1448             return;
1449         }
1450         let mut suggested_changing_assoc_types = false;
1451         // There must not be a where clause
1452         if !type_alias_generics.where_clause.predicates.is_empty() {
1453             cx.lint(
1454                 TYPE_ALIAS_BOUNDS,
1455                 |lint| {
1456                     let mut err = lint.build("where clauses are not enforced in type aliases");
1457                     let spans: Vec<_> = type_alias_generics
1458                         .where_clause
1459                         .predicates
1460                         .iter()
1461                         .map(|pred| pred.span())
1462                         .collect();
1463                     err.set_span(spans);
1464                     err.span_suggestion(
1465                         type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1466                         "the clause will not be checked when the type alias is used, and should be removed",
1467                         String::new(),
1468                         Applicability::MachineApplicable,
1469                     );
1470                     if !suggested_changing_assoc_types {
1471                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1472                         suggested_changing_assoc_types = true;
1473                     }
1474                     err.emit();
1475                 },
1476             );
1477         }
1478         // The parameters must not have bounds
1479         for param in type_alias_generics.params.iter() {
1480             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1481             let suggestion = spans
1482                 .iter()
1483                 .map(|sp| {
1484                     let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1485                     (start.to(*sp), String::new())
1486                 })
1487                 .collect();
1488             if !spans.is_empty() {
1489                 cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans, |lint| {
1490                     let mut err =
1491                         lint.build("bounds on generic parameters are not enforced in type aliases");
1492                     let msg = "the bound will not be checked when the type alias is used, \
1493                                    and should be removed";
1494                     err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1495                     if !suggested_changing_assoc_types {
1496                         TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1497                         suggested_changing_assoc_types = true;
1498                     }
1499                     err.emit();
1500                 });
1501             }
1502         }
1503     }
1504 }
1505
1506 declare_lint_pass!(
1507     /// Lint constants that are erroneous.
1508     /// Without this lint, we might not get any diagnostic if the constant is
1509     /// unused within this crate, even though downstream crates can't use it
1510     /// without producing an error.
1511     UnusedBrokenConst => []
1512 );
1513
1514 impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst {
1515     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1516         match it.kind {
1517             hir::ItemKind::Const(_, body_id) => {
1518                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1519                 // trigger the query once for all constants since that will already report the errors
1520                 // FIXME: Use ensure here
1521                 let _ = cx.tcx.const_eval_poly(def_id);
1522             }
1523             hir::ItemKind::Static(_, _, body_id) => {
1524                 let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id();
1525                 // FIXME: Use ensure here
1526                 let _ = cx.tcx.eval_static_initializer(def_id);
1527             }
1528             _ => {}
1529         }
1530     }
1531 }
1532
1533 declare_lint! {
1534     /// The `trivial_bounds` lint detects trait bounds that don't depend on
1535     /// any type parameters.
1536     ///
1537     /// ### Example
1538     ///
1539     /// ```rust
1540     /// #![feature(trivial_bounds)]
1541     /// pub struct A where i32: Copy;
1542     /// ```
1543     ///
1544     /// {{produces}}
1545     ///
1546     /// ### Explanation
1547     ///
1548     /// Usually you would not write a trait bound that you know is always
1549     /// true, or never true. However, when using macros, the macro may not
1550     /// know whether or not the constraint would hold or not at the time when
1551     /// generating the code. Currently, the compiler does not alert you if the
1552     /// constraint is always true, and generates an error if it is never true.
1553     /// The `trivial_bounds` feature changes this to be a warning in both
1554     /// cases, giving macros more freedom and flexibility to generate code,
1555     /// while still providing a signal when writing non-macro code that
1556     /// something is amiss.
1557     ///
1558     /// See [RFC 2056] for more details. This feature is currently only
1559     /// available on the nightly channel, see [tracking issue #48214].
1560     ///
1561     /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1562     /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1563     TRIVIAL_BOUNDS,
1564     Warn,
1565     "these bounds don't depend on an type parameters"
1566 }
1567
1568 declare_lint_pass!(
1569     /// Lint for trait and lifetime bounds that don't depend on type parameters
1570     /// which either do nothing, or stop the item from being used.
1571     TrivialConstraints => [TRIVIAL_BOUNDS]
1572 );
1573
1574 impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1575     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1576         use rustc_middle::ty::fold::TypeFoldable;
1577         use rustc_middle::ty::PredicateKind::*;
1578
1579         if cx.tcx.features().trivial_bounds {
1580             let predicates = cx.tcx.predicates_of(item.def_id);
1581             for &(predicate, span) in predicates.predicates {
1582                 let predicate_kind_name = match predicate.kind().skip_binder() {
1583                     Trait(..) => "Trait",
1584                     TypeOutlives(..) |
1585                     RegionOutlives(..) => "Lifetime",
1586
1587                     // Ignore projections, as they can only be global
1588                     // if the trait bound is global
1589                     Projection(..) |
1590                     // Ignore bounds that a user can't type
1591                     WellFormed(..) |
1592                     ObjectSafe(..) |
1593                     ClosureKind(..) |
1594                     Subtype(..) |
1595                     ConstEvaluatable(..) |
1596                     ConstEquate(..) |
1597                     TypeWellFormedFromEnv(..) => continue,
1598                 };
1599                 if predicate.is_global() {
1600                     cx.struct_span_lint(TRIVIAL_BOUNDS, span, |lint| {
1601                         lint.build(&format!(
1602                             "{} bound {} does not depend on any type \
1603                                 or lifetime parameters",
1604                             predicate_kind_name, predicate
1605                         ))
1606                         .emit()
1607                     });
1608                 }
1609             }
1610         }
1611     }
1612 }
1613
1614 declare_lint_pass!(
1615     /// Does nothing as a lint pass, but registers some `Lint`s
1616     /// which are used by other parts of the compiler.
1617     SoftLints => [
1618         WHILE_TRUE,
1619         BOX_POINTERS,
1620         NON_SHORTHAND_FIELD_PATTERNS,
1621         UNSAFE_CODE,
1622         MISSING_DOCS,
1623         MISSING_COPY_IMPLEMENTATIONS,
1624         MISSING_DEBUG_IMPLEMENTATIONS,
1625         ANONYMOUS_PARAMETERS,
1626         UNUSED_DOC_COMMENTS,
1627         NO_MANGLE_CONST_ITEMS,
1628         NO_MANGLE_GENERIC_ITEMS,
1629         MUTABLE_TRANSMUTES,
1630         UNSTABLE_FEATURES,
1631         UNREACHABLE_PUB,
1632         TYPE_ALIAS_BOUNDS,
1633         TRIVIAL_BOUNDS
1634     ]
1635 );
1636
1637 declare_lint! {
1638     /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1639     /// pattern], which is deprecated.
1640     ///
1641     /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1642     ///
1643     /// ### Example
1644     ///
1645     /// ```rust
1646     /// let x = 123;
1647     /// match x {
1648     ///     0...100 => {}
1649     ///     _ => {}
1650     /// }
1651     /// ```
1652     ///
1653     /// {{produces}}
1654     ///
1655     /// ### Explanation
1656     ///
1657     /// The `...` range pattern syntax was changed to `..=` to avoid potential
1658     /// confusion with the [`..` range expression]. Use the new form instead.
1659     ///
1660     /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1661     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1662     Warn,
1663     "`...` range patterns are deprecated"
1664 }
1665
1666 #[derive(Default)]
1667 pub struct EllipsisInclusiveRangePatterns {
1668     /// If `Some(_)`, suppress all subsequent pattern
1669     /// warnings for better diagnostics.
1670     node_id: Option<ast::NodeId>,
1671 }
1672
1673 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1674
1675 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1676     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1677         if self.node_id.is_some() {
1678             // Don't recursively warn about patterns inside range endpoints.
1679             return;
1680         }
1681
1682         use self::ast::{PatKind, RangeSyntax::DotDotDot};
1683
1684         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1685         /// corresponding to the ellipsis.
1686         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1687             match &pat.kind {
1688                 PatKind::Range(
1689                     a,
1690                     Some(b),
1691                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1692                 ) => Some((a.as_deref(), b, *span)),
1693                 _ => None,
1694             }
1695         }
1696
1697         let (parenthesise, endpoints) = match &pat.kind {
1698             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1699             _ => (false, matches_ellipsis_pat(pat)),
1700         };
1701
1702         if let Some((start, end, join)) = endpoints {
1703             let msg = "`...` range patterns are deprecated";
1704             let suggestion = "use `..=` for an inclusive range";
1705             if parenthesise {
1706                 self.node_id = Some(pat.id);
1707                 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, |lint| {
1708                     let end = expr_to_string(&end);
1709                     let replace = match start {
1710                         Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1711                         None => format!("&(..={})", end),
1712                     };
1713                     lint.build(msg)
1714                         .span_suggestion(
1715                             pat.span,
1716                             suggestion,
1717                             replace,
1718                             Applicability::MachineApplicable,
1719                         )
1720                         .emit();
1721                 });
1722             } else {
1723                 cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, |lint| {
1724                     lint.build(msg)
1725                         .span_suggestion_short(
1726                             join,
1727                             suggestion,
1728                             "..=".to_owned(),
1729                             Applicability::MachineApplicable,
1730                         )
1731                         .emit();
1732                 });
1733             };
1734         }
1735     }
1736
1737     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1738         if let Some(node_id) = self.node_id {
1739             if pat.id == node_id {
1740                 self.node_id = None
1741             }
1742         }
1743     }
1744 }
1745
1746 declare_lint! {
1747     /// The `unnameable_test_items` lint detects [`#[test]`][test] functions
1748     /// that are not able to be run by the test harness because they are in a
1749     /// position where they are not nameable.
1750     ///
1751     /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
1752     ///
1753     /// ### Example
1754     ///
1755     /// ```rust,test
1756     /// fn main() {
1757     ///     #[test]
1758     ///     fn foo() {
1759     ///         // This test will not fail because it does not run.
1760     ///         assert_eq!(1, 2);
1761     ///     }
1762     /// }
1763     /// ```
1764     ///
1765     /// {{produces}}
1766     ///
1767     /// ### Explanation
1768     ///
1769     /// In order for the test harness to run a test, the test function must be
1770     /// located in a position where it can be accessed from the crate root.
1771     /// This generally means it must be defined in a module, and not anywhere
1772     /// else such as inside another function. The compiler previously allowed
1773     /// this without an error, so a lint was added as an alert that a test is
1774     /// not being used. Whether or not this should be allowed has not yet been
1775     /// decided, see [RFC 2471] and [issue #36629].
1776     ///
1777     /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443
1778     /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629
1779     UNNAMEABLE_TEST_ITEMS,
1780     Warn,
1781     "detects an item that cannot be named being marked as `#[test_case]`",
1782     report_in_external_macro
1783 }
1784
1785 pub struct UnnameableTestItems {
1786     boundary: Option<LocalDefId>, // Id of the item under which things are not nameable
1787     items_nameable: bool,
1788 }
1789
1790 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1791
1792 impl UnnameableTestItems {
1793     pub fn new() -> Self {
1794         Self { boundary: None, items_nameable: true }
1795     }
1796 }
1797
1798 impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems {
1799     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1800         if self.items_nameable {
1801             if let hir::ItemKind::Mod(..) = it.kind {
1802             } else {
1803                 self.items_nameable = false;
1804                 self.boundary = Some(it.def_id);
1805             }
1806             return;
1807         }
1808
1809         let attrs = cx.tcx.hir().attrs(it.hir_id());
1810         if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) {
1811             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, |lint| {
1812                 lint.build("cannot test inner items").emit()
1813             });
1814         }
1815     }
1816
1817     fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) {
1818         if !self.items_nameable && self.boundary == Some(it.def_id) {
1819             self.items_nameable = true;
1820         }
1821     }
1822 }
1823
1824 declare_lint! {
1825     /// The `keyword_idents` lint detects edition keywords being used as an
1826     /// identifier.
1827     ///
1828     /// ### Example
1829     ///
1830     /// ```rust,edition2015,compile_fail
1831     /// #![deny(keyword_idents)]
1832     /// // edition 2015
1833     /// fn dyn() {}
1834     /// ```
1835     ///
1836     /// {{produces}}
1837     ///
1838     /// ### Explanation
1839     ///
1840     /// Rust [editions] allow the language to evolve without breaking
1841     /// backwards compatibility. This lint catches code that uses new keywords
1842     /// that are added to the language that are used as identifiers (such as a
1843     /// variable name, function name, etc.). If you switch the compiler to a
1844     /// new edition without updating the code, then it will fail to compile if
1845     /// you are using a new keyword as an identifier.
1846     ///
1847     /// You can manually change the identifiers to a non-keyword, or use a
1848     /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1849     ///
1850     /// This lint solves the problem automatically. It is "allow" by default
1851     /// because the code is perfectly valid in older editions. The [`cargo
1852     /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1853     /// and automatically apply the suggested fix from the compiler (which is
1854     /// to use a raw identifier). This provides a completely automated way to
1855     /// update old code for a new edition.
1856     ///
1857     /// [editions]: https://doc.rust-lang.org/edition-guide/
1858     /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1859     /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1860     pub KEYWORD_IDENTS,
1861     Allow,
1862     "detects edition keywords being used as an identifier",
1863     @future_incompatible = FutureIncompatibleInfo {
1864         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1865         edition: Some(Edition::Edition2018),
1866     };
1867 }
1868
1869 declare_lint_pass!(
1870     /// Check for uses of edition keywords used as an identifier.
1871     KeywordIdents => [KEYWORD_IDENTS]
1872 );
1873
1874 struct UnderMacro(bool);
1875
1876 impl KeywordIdents {
1877     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1878         for tt in tokens.into_trees() {
1879             match tt {
1880                 // Only report non-raw idents.
1881                 TokenTree::Token(token) => {
1882                     if let Some((ident, false)) = token.ident() {
1883                         self.check_ident_token(cx, UnderMacro(true), ident);
1884                     }
1885                 }
1886                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1887             }
1888         }
1889     }
1890
1891     fn check_ident_token(
1892         &mut self,
1893         cx: &EarlyContext<'_>,
1894         UnderMacro(under_macro): UnderMacro,
1895         ident: Ident,
1896     ) {
1897         let next_edition = match cx.sess.edition() {
1898             Edition::Edition2015 => {
1899                 match ident.name {
1900                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1901
1902                     // rust-lang/rust#56327: Conservatively do not
1903                     // attempt to report occurrences of `dyn` within
1904                     // macro definitions or invocations, because `dyn`
1905                     // can legitimately occur as a contextual keyword
1906                     // in 2015 code denoting its 2018 meaning, and we
1907                     // do not want rustfix to inject bugs into working
1908                     // code by rewriting such occurrences.
1909                     //
1910                     // But if we see `dyn` outside of a macro, we know
1911                     // its precise role in the parsed AST and thus are
1912                     // assured this is truly an attempt to use it as
1913                     // an identifier.
1914                     kw::Dyn if !under_macro => Edition::Edition2018,
1915
1916                     _ => return,
1917                 }
1918             }
1919
1920             // There are no new keywords yet for the 2018 edition and beyond.
1921             _ => return,
1922         };
1923
1924         // Don't lint `r#foo`.
1925         if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1926             return;
1927         }
1928
1929         cx.struct_span_lint(KEYWORD_IDENTS, ident.span, |lint| {
1930             lint.build(&format!("`{}` is a keyword in the {} edition", ident, next_edition))
1931                 .span_suggestion(
1932                     ident.span,
1933                     "you can use a raw identifier to stay compatible",
1934                     format!("r#{}", ident),
1935                     Applicability::MachineApplicable,
1936                 )
1937                 .emit()
1938         });
1939     }
1940 }
1941
1942 impl EarlyLintPass for KeywordIdents {
1943     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
1944         self.check_tokens(cx, mac_def.body.inner_tokens());
1945     }
1946     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1947         self.check_tokens(cx, mac.args.inner_tokens());
1948     }
1949     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) {
1950         self.check_ident_token(cx, UnderMacro(false), ident);
1951     }
1952 }
1953
1954 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1955
1956 impl ExplicitOutlivesRequirements {
1957     fn lifetimes_outliving_lifetime<'tcx>(
1958         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1959         index: u32,
1960     ) -> Vec<ty::Region<'tcx>> {
1961         inferred_outlives
1962             .iter()
1963             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
1964                 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a {
1965                     ty::ReEarlyBound(ebr) if ebr.index == index => Some(b),
1966                     _ => None,
1967                 },
1968                 _ => None,
1969             })
1970             .collect()
1971     }
1972
1973     fn lifetimes_outliving_type<'tcx>(
1974         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1975         index: u32,
1976     ) -> Vec<ty::Region<'tcx>> {
1977         inferred_outlives
1978             .iter()
1979             .filter_map(|(pred, _)| match pred.kind().skip_binder() {
1980                 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1981                     a.is_param(index).then_some(b)
1982                 }
1983                 _ => None,
1984             })
1985             .collect()
1986     }
1987
1988     fn collect_outlived_lifetimes<'tcx>(
1989         &self,
1990         param: &'tcx hir::GenericParam<'tcx>,
1991         tcx: TyCtxt<'tcx>,
1992         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1993         ty_generics: &'tcx ty::Generics,
1994     ) -> Vec<ty::Region<'tcx>> {
1995         let index =
1996             ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id).to_def_id()];
1997
1998         match param.kind {
1999             hir::GenericParamKind::Lifetime { .. } => {
2000                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
2001             }
2002             hir::GenericParamKind::Type { .. } => {
2003                 Self::lifetimes_outliving_type(inferred_outlives, index)
2004             }
2005             hir::GenericParamKind::Const { .. } => Vec::new(),
2006         }
2007     }
2008
2009     fn collect_outlives_bound_spans<'tcx>(
2010         &self,
2011         tcx: TyCtxt<'tcx>,
2012         bounds: &hir::GenericBounds<'_>,
2013         inferred_outlives: &[ty::Region<'tcx>],
2014         infer_static: bool,
2015     ) -> Vec<(usize, Span)> {
2016         use rustc_middle::middle::resolve_lifetime::Region;
2017
2018         bounds
2019             .iter()
2020             .enumerate()
2021             .filter_map(|(i, bound)| {
2022                 if let hir::GenericBound::Outlives(lifetime) = bound {
2023                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
2024                         Some(Region::Static) if infer_static => {
2025                             inferred_outlives.iter().any(|r| matches!(r, ty::ReStatic))
2026                         }
2027                         Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
2028                             if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false }
2029                         }),
2030                         _ => false,
2031                     };
2032                     is_inferred.then_some((i, bound.span()))
2033                 } else {
2034                     None
2035                 }
2036             })
2037             .collect()
2038     }
2039
2040     fn consolidate_outlives_bound_spans(
2041         &self,
2042         lo: Span,
2043         bounds: &hir::GenericBounds<'_>,
2044         bound_spans: Vec<(usize, Span)>,
2045     ) -> Vec<Span> {
2046         if bounds.is_empty() {
2047             return Vec::new();
2048         }
2049         if bound_spans.len() == bounds.len() {
2050             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2051             // If all bounds are inferable, we want to delete the colon, so
2052             // start from just after the parameter (span passed as argument)
2053             vec![lo.to(last_bound_span)]
2054         } else {
2055             let mut merged = Vec::new();
2056             let mut last_merged_i = None;
2057
2058             let mut from_start = true;
2059             for (i, bound_span) in bound_spans {
2060                 match last_merged_i {
2061                     // If the first bound is inferable, our span should also eat the leading `+`.
2062                     None if i == 0 => {
2063                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2064                         last_merged_i = Some(0);
2065                     }
2066                     // If consecutive bounds are inferable, merge their spans
2067                     Some(h) if i == h + 1 => {
2068                         if let Some(tail) = merged.last_mut() {
2069                             // Also eat the trailing `+` if the first
2070                             // more-than-one bound is inferable
2071                             let to_span = if from_start && i < bounds.len() {
2072                                 bounds[i + 1].span().shrink_to_lo()
2073                             } else {
2074                                 bound_span
2075                             };
2076                             *tail = tail.to(to_span);
2077                             last_merged_i = Some(i);
2078                         } else {
2079                             bug!("another bound-span visited earlier");
2080                         }
2081                     }
2082                     _ => {
2083                         // When we find a non-inferable bound, subsequent inferable bounds
2084                         // won't be consecutive from the start (and we'll eat the leading
2085                         // `+` rather than the trailing one)
2086                         from_start = false;
2087                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2088                         last_merged_i = Some(i);
2089                     }
2090                 }
2091             }
2092             merged
2093         }
2094     }
2095 }
2096
2097 impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2098     fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2099         use rustc_middle::middle::resolve_lifetime::Region;
2100
2101         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
2102         let def_id = item.def_id;
2103         if let hir::ItemKind::Struct(_, ref hir_generics)
2104         | hir::ItemKind::Enum(_, ref hir_generics)
2105         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
2106         {
2107             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2108             if inferred_outlives.is_empty() {
2109                 return;
2110             }
2111
2112             let ty_generics = cx.tcx.generics_of(def_id);
2113
2114             let mut bound_count = 0;
2115             let mut lint_spans = Vec::new();
2116
2117             for param in hir_generics.params {
2118                 let has_lifetime_bounds = param
2119                     .bounds
2120                     .iter()
2121                     .any(|bound| matches!(bound, hir::GenericBound::Outlives(_)));
2122                 if !has_lifetime_bounds {
2123                     continue;
2124                 }
2125
2126                 let relevant_lifetimes =
2127                     self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
2128                 if relevant_lifetimes.is_empty() {
2129                     continue;
2130                 }
2131
2132                 let bound_spans = self.collect_outlives_bound_spans(
2133                     cx.tcx,
2134                     &param.bounds,
2135                     &relevant_lifetimes,
2136                     infer_static,
2137                 );
2138                 bound_count += bound_spans.len();
2139                 lint_spans.extend(self.consolidate_outlives_bound_spans(
2140                     param.span.shrink_to_hi(),
2141                     &param.bounds,
2142                     bound_spans,
2143                 ));
2144             }
2145
2146             let mut where_lint_spans = Vec::new();
2147             let mut dropped_predicate_count = 0;
2148             let num_predicates = hir_generics.where_clause.predicates.len();
2149             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
2150                 let (relevant_lifetimes, bounds, span) = match where_predicate {
2151                     hir::WherePredicate::RegionPredicate(predicate) => {
2152                         if let Some(Region::EarlyBound(index, ..)) =
2153                             cx.tcx.named_region(predicate.lifetime.hir_id)
2154                         {
2155                             (
2156                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
2157                                 &predicate.bounds,
2158                                 predicate.span,
2159                             )
2160                         } else {
2161                             continue;
2162                         }
2163                     }
2164                     hir::WherePredicate::BoundPredicate(predicate) => {
2165                         // FIXME we can also infer bounds on associated types,
2166                         // and should check for them here.
2167                         match predicate.bounded_ty.kind {
2168                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
2169                                 if let Res::Def(DefKind::TyParam, def_id) = path.res {
2170                                     let index = ty_generics.param_def_id_to_index[&def_id];
2171                                     (
2172                                         Self::lifetimes_outliving_type(inferred_outlives, index),
2173                                         &predicate.bounds,
2174                                         predicate.span,
2175                                     )
2176                                 } else {
2177                                     continue;
2178                                 }
2179                             }
2180                             _ => {
2181                                 continue;
2182                             }
2183                         }
2184                     }
2185                     _ => continue,
2186                 };
2187                 if relevant_lifetimes.is_empty() {
2188                     continue;
2189                 }
2190
2191                 let bound_spans = self.collect_outlives_bound_spans(
2192                     cx.tcx,
2193                     bounds,
2194                     &relevant_lifetimes,
2195                     infer_static,
2196                 );
2197                 bound_count += bound_spans.len();
2198
2199                 let drop_predicate = bound_spans.len() == bounds.len();
2200                 if drop_predicate {
2201                     dropped_predicate_count += 1;
2202                 }
2203
2204                 // If all the bounds on a predicate were inferable and there are
2205                 // further predicates, we want to eat the trailing comma.
2206                 if drop_predicate && i + 1 < num_predicates {
2207                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
2208                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
2209                 } else {
2210                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2211                         span.shrink_to_lo(),
2212                         bounds,
2213                         bound_spans,
2214                     ));
2215                 }
2216             }
2217
2218             // If all predicates are inferable, drop the entire clause
2219             // (including the `where`)
2220             if num_predicates > 0 && dropped_predicate_count == num_predicates {
2221                 let where_span = hir_generics
2222                     .where_clause
2223                     .span()
2224                     .expect("span of (nonempty) where clause should exist");
2225                 // Extend the where clause back to the closing `>` of the
2226                 // generics, except for tuple struct, which have the `where`
2227                 // after the fields of the struct.
2228                 let full_where_span =
2229                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2230                         where_span
2231                     } else {
2232                         hir_generics.span.shrink_to_hi().to(where_span)
2233                     };
2234                 lint_spans.push(full_where_span);
2235             } else {
2236                 lint_spans.extend(where_lint_spans);
2237             }
2238
2239             if !lint_spans.is_empty() {
2240                 cx.struct_span_lint(EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), |lint| {
2241                     lint.build("outlives requirements can be inferred")
2242                         .multipart_suggestion(
2243                             if bound_count == 1 {
2244                                 "remove this bound"
2245                             } else {
2246                                 "remove these bounds"
2247                             },
2248                             lint_spans
2249                                 .into_iter()
2250                                 .map(|span| (span, "".to_owned()))
2251                                 .collect::<Vec<_>>(),
2252                             Applicability::MachineApplicable,
2253                         )
2254                         .emit();
2255                 });
2256             }
2257         }
2258     }
2259 }
2260
2261 declare_lint! {
2262     /// The `incomplete_features` lint detects unstable features enabled with
2263     /// the [`feature` attribute] that may function improperly in some or all
2264     /// cases.
2265     ///
2266     /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2267     ///
2268     /// ### Example
2269     ///
2270     /// ```rust
2271     /// #![feature(generic_associated_types)]
2272     /// ```
2273     ///
2274     /// {{produces}}
2275     ///
2276     /// ### Explanation
2277     ///
2278     /// Although it is encouraged for people to experiment with unstable
2279     /// features, some of them are known to be incomplete or faulty. This lint
2280     /// is a signal that the feature has not yet been finished, and you may
2281     /// experience problems with it.
2282     pub INCOMPLETE_FEATURES,
2283     Warn,
2284     "incomplete features that may function improperly in some or all cases"
2285 }
2286
2287 declare_lint_pass!(
2288     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`.
2289     IncompleteFeatures => [INCOMPLETE_FEATURES]
2290 );
2291
2292 impl EarlyLintPass for IncompleteFeatures {
2293     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2294         let features = cx.sess.features_untracked();
2295         features
2296             .declared_lang_features
2297             .iter()
2298             .map(|(name, span, _)| (name, span))
2299             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
2300             .filter(|(name, _)| rustc_feature::INCOMPLETE_FEATURES.iter().any(|f| name == &f))
2301             .for_each(|(&name, &span)| {
2302                 cx.struct_span_lint(INCOMPLETE_FEATURES, span, |lint| {
2303                     let mut builder = lint.build(&format!(
2304                         "the feature `{}` is incomplete and may not be safe to use \
2305                          and/or cause compiler crashes",
2306                         name,
2307                     ));
2308                     if let Some(n) = rustc_feature::find_feature_issue(name, GateIssue::Language) {
2309                         builder.note(&format!(
2310                             "see issue #{} <https://github.com/rust-lang/rust/issues/{}> \
2311                              for more information",
2312                             n, n,
2313                         ));
2314                     }
2315                     if HAS_MIN_FEATURES.contains(&name) {
2316                         builder.help(&format!(
2317                             "consider using `min_{}` instead, which is more stable and complete",
2318                             name,
2319                         ));
2320                     }
2321                     builder.emit();
2322                 })
2323             });
2324     }
2325 }
2326
2327 const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2328
2329 declare_lint! {
2330     /// The `invalid_value` lint detects creating a value that is not valid,
2331     /// such as a NULL reference.
2332     ///
2333     /// ### Example
2334     ///
2335     /// ```rust,no_run
2336     /// # #![allow(unused)]
2337     /// unsafe {
2338     ///     let x: &'static i32 = std::mem::zeroed();
2339     /// }
2340     /// ```
2341     ///
2342     /// {{produces}}
2343     ///
2344     /// ### Explanation
2345     ///
2346     /// In some situations the compiler can detect that the code is creating
2347     /// an invalid value, which should be avoided.
2348     ///
2349     /// In particular, this lint will check for improper use of
2350     /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2351     /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2352     /// lint should provide extra information to indicate what the problem is
2353     /// and a possible solution.
2354     ///
2355     /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2356     /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2357     /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2358     /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2359     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2360     pub INVALID_VALUE,
2361     Warn,
2362     "an invalid value is being created (such as a NULL reference)"
2363 }
2364
2365 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2366
2367 impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2368     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2369         #[derive(Debug, Copy, Clone, PartialEq)]
2370         enum InitKind {
2371             Zeroed,
2372             Uninit,
2373         }
2374
2375         /// Information about why a type cannot be initialized this way.
2376         /// Contains an error message and optionally a span to point at.
2377         type InitError = (String, Option<Span>);
2378
2379         /// Test if this constant is all-0.
2380         fn is_zero(expr: &hir::Expr<'_>) -> bool {
2381             use hir::ExprKind::*;
2382             use rustc_ast::LitKind::*;
2383             match &expr.kind {
2384                 Lit(lit) => {
2385                     if let Int(i, _) = lit.node {
2386                         i == 0
2387                     } else {
2388                         false
2389                     }
2390                 }
2391                 Tup(tup) => tup.iter().all(is_zero),
2392                 _ => false,
2393             }
2394         }
2395
2396         /// Determine if this expression is a "dangerous initialization".
2397         fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2398             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
2399                 // Find calls to `mem::{uninitialized,zeroed}` methods.
2400                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2401                     let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2402
2403                     if cx.tcx.is_diagnostic_item(sym::mem_zeroed, def_id) {
2404                         return Some(InitKind::Zeroed);
2405                     } else if cx.tcx.is_diagnostic_item(sym::mem_uninitialized, def_id) {
2406                         return Some(InitKind::Uninit);
2407                     } else if cx.tcx.is_diagnostic_item(sym::transmute, def_id) && is_zero(&args[0])
2408                     {
2409                         return Some(InitKind::Zeroed);
2410                     }
2411                 }
2412             } else if let hir::ExprKind::MethodCall(_, _, ref args, _) = expr.kind {
2413                 // Find problematic calls to `MaybeUninit::assume_init`.
2414                 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2415                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2416                     // This is a call to *some* method named `assume_init`.
2417                     // See if the `self` parameter is one of the dangerous constructors.
2418                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
2419                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2420                             let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2421
2422                             if cx.tcx.is_diagnostic_item(sym::maybe_uninit_zeroed, def_id) {
2423                                 return Some(InitKind::Zeroed);
2424                             } else if cx.tcx.is_diagnostic_item(sym::maybe_uninit_uninit, def_id) {
2425                                 return Some(InitKind::Uninit);
2426                             }
2427                         }
2428                     }
2429                 }
2430             }
2431
2432             None
2433         }
2434
2435         /// Test if this enum has several actually "existing" variants.
2436         /// Zero-sized uninhabited variants do not always have a tag assigned and thus do not "exist".
2437         fn is_multi_variant(adt: &ty::AdtDef) -> bool {
2438             // As an approximation, we only count dataless variants. Those are definitely inhabited.
2439             let existing_variants = adt.variants.iter().filter(|v| v.fields.is_empty()).count();
2440             existing_variants > 1
2441         }
2442
2443         /// Return `Some` only if we are sure this type does *not*
2444         /// allow zero initialization.
2445         fn ty_find_init_error<'tcx>(
2446             tcx: TyCtxt<'tcx>,
2447             ty: Ty<'tcx>,
2448             init: InitKind,
2449         ) -> Option<InitError> {
2450             use rustc_middle::ty::TyKind::*;
2451             match ty.kind() {
2452                 // Primitive types that don't like 0 as a value.
2453                 Ref(..) => Some(("references must be non-null".to_string(), None)),
2454                 Adt(..) if ty.is_box() => Some(("`Box` must be non-null".to_string(), None)),
2455                 FnPtr(..) => Some(("function pointers must be non-null".to_string(), None)),
2456                 Never => Some(("the `!` type has no valid value".to_string(), None)),
2457                 RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) =>
2458                 // raw ptr to dyn Trait
2459                 {
2460                     Some(("the vtable of a wide raw pointer must be non-null".to_string(), None))
2461                 }
2462                 // Primitive types with other constraints.
2463                 Bool if init == InitKind::Uninit => {
2464                     Some(("booleans must be either `true` or `false`".to_string(), None))
2465                 }
2466                 Char if init == InitKind::Uninit => {
2467                     Some(("characters must be a valid Unicode codepoint".to_string(), None))
2468                 }
2469                 // Recurse and checks for some compound types.
2470                 Adt(adt_def, substs) if !adt_def.is_union() => {
2471                     // First check if this ADT has a layout attribute (like `NonNull` and friends).
2472                     use std::ops::Bound;
2473                     match tcx.layout_scalar_valid_range(adt_def.did) {
2474                         // We exploit here that `layout_scalar_valid_range` will never
2475                         // return `Bound::Excluded`.  (And we have tests checking that we
2476                         // handle the attribute correctly.)
2477                         (Bound::Included(lo), _) if lo > 0 => {
2478                             return Some((format!("`{}` must be non-null", ty), None));
2479                         }
2480                         (Bound::Included(_), _) | (_, Bound::Included(_))
2481                             if init == InitKind::Uninit =>
2482                         {
2483                             return Some((
2484                                 format!(
2485                                     "`{}` must be initialized inside its custom valid range",
2486                                     ty,
2487                                 ),
2488                                 None,
2489                             ));
2490                         }
2491                         _ => {}
2492                     }
2493                     // Now, recurse.
2494                     match adt_def.variants.len() {
2495                         0 => Some(("enums with no variants have no valid value".to_string(), None)),
2496                         1 => {
2497                             // Struct, or enum with exactly one variant.
2498                             // Proceed recursively, check all fields.
2499                             let variant = &adt_def.variants[VariantIdx::from_u32(0)];
2500                             variant.fields.iter().find_map(|field| {
2501                                 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
2502                                     |(mut msg, span)| {
2503                                         if span.is_none() {
2504                                             // Point to this field, should be helpful for figuring
2505                                             // out where the source of the error is.
2506                                             let span = tcx.def_span(field.did);
2507                                             write!(
2508                                                 &mut msg,
2509                                                 " (in this {} field)",
2510                                                 adt_def.descr()
2511                                             )
2512                                             .unwrap();
2513                                             (msg, Some(span))
2514                                         } else {
2515                                             // Just forward.
2516                                             (msg, span)
2517                                         }
2518                                     },
2519                                 )
2520                             })
2521                         }
2522                         // Multi-variant enum.
2523                         _ => {
2524                             if init == InitKind::Uninit && is_multi_variant(adt_def) {
2525                                 let span = tcx.def_span(adt_def.did);
2526                                 Some((
2527                                     "enums have to be initialized to a variant".to_string(),
2528                                     Some(span),
2529                                 ))
2530                             } else {
2531                                 // In principle, for zero-initialization we could figure out which variant corresponds
2532                                 // to tag 0, and check that... but for now we just accept all zero-initializations.
2533                                 None
2534                             }
2535                         }
2536                     }
2537                 }
2538                 Tuple(..) => {
2539                     // Proceed recursively, check all fields.
2540                     ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
2541                 }
2542                 // Conservative fallback.
2543                 _ => None,
2544             }
2545         }
2546
2547         if let Some(init) = is_dangerous_init(cx, expr) {
2548             // This conjures an instance of a type out of nothing,
2549             // using zeroed or uninitialized memory.
2550             // We are extremely conservative with what we warn about.
2551             let conjured_ty = cx.typeck_results().expr_ty(expr);
2552             if let Some((msg, span)) =
2553                 with_no_trimmed_paths(|| ty_find_init_error(cx.tcx, conjured_ty, init))
2554             {
2555                 cx.struct_span_lint(INVALID_VALUE, expr.span, |lint| {
2556                     let mut err = lint.build(&format!(
2557                         "the type `{}` does not permit {}",
2558                         conjured_ty,
2559                         match init {
2560                             InitKind::Zeroed => "zero-initialization",
2561                             InitKind::Uninit => "being left uninitialized",
2562                         },
2563                     ));
2564                     err.span_label(expr.span, "this code causes undefined behavior when executed");
2565                     err.span_label(
2566                         expr.span,
2567                         "help: use `MaybeUninit<T>` instead, \
2568                             and only call `assume_init` after initialization is done",
2569                     );
2570                     if let Some(span) = span {
2571                         err.span_note(span, &msg);
2572                     } else {
2573                         err.note(&msg);
2574                     }
2575                     err.emit();
2576                 });
2577             }
2578         }
2579     }
2580 }
2581
2582 declare_lint! {
2583     /// The `clashing_extern_declarations` lint detects when an `extern fn`
2584     /// has been declared with the same name but different types.
2585     ///
2586     /// ### Example
2587     ///
2588     /// ```rust
2589     /// mod m {
2590     ///     extern "C" {
2591     ///         fn foo();
2592     ///     }
2593     /// }
2594     ///
2595     /// extern "C" {
2596     ///     fn foo(_: u32);
2597     /// }
2598     /// ```
2599     ///
2600     /// {{produces}}
2601     ///
2602     /// ### Explanation
2603     ///
2604     /// Because two symbols of the same name cannot be resolved to two
2605     /// different functions at link time, and one function cannot possibly
2606     /// have two types, a clashing extern declaration is almost certainly a
2607     /// mistake. Check to make sure that the `extern` definitions are correct
2608     /// and equivalent, and possibly consider unifying them in one location.
2609     ///
2610     /// This lint does not run between crates because a project may have
2611     /// dependencies which both rely on the same extern function, but declare
2612     /// it in a different (but valid) way. For example, they may both declare
2613     /// an opaque type for one or more of the arguments (which would end up
2614     /// distinct types), or use types that are valid conversions in the
2615     /// language the `extern fn` is defined in. In these cases, the compiler
2616     /// can't say that the clashing declaration is incorrect.
2617     pub CLASHING_EXTERN_DECLARATIONS,
2618     Warn,
2619     "detects when an extern fn has been declared with the same name but different types"
2620 }
2621
2622 pub struct ClashingExternDeclarations {
2623     /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls
2624     /// contains an entry for key K, it means a symbol with name K has been seen by this lint and
2625     /// the symbol should be reported as a clashing declaration.
2626     // FIXME: Technically, we could just store a &'tcx str here without issue; however, the
2627     // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime.
2628     seen_decls: FxHashMap<Symbol, HirId>,
2629 }
2630
2631 /// Differentiate between whether the name for an extern decl came from the link_name attribute or
2632 /// just from declaration itself. This is important because we don't want to report clashes on
2633 /// symbol name if they don't actually clash because one or the other links against a symbol with a
2634 /// different name.
2635 enum SymbolName {
2636     /// The name of the symbol + the span of the annotation which introduced the link name.
2637     Link(Symbol, Span),
2638     /// No link name, so just the name of the symbol.
2639     Normal(Symbol),
2640 }
2641
2642 impl SymbolName {
2643     fn get_name(&self) -> Symbol {
2644         match self {
2645             SymbolName::Link(s, _) | SymbolName::Normal(s) => *s,
2646         }
2647     }
2648 }
2649
2650 impl ClashingExternDeclarations {
2651     crate fn new() -> Self {
2652         ClashingExternDeclarations { seen_decls: FxHashMap::default() }
2653     }
2654     /// Insert a new foreign item into the seen set. If a symbol with the same name already exists
2655     /// for the item, return its HirId without updating the set.
2656     fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option<HirId> {
2657         let did = fi.def_id.to_def_id();
2658         let instance = Instance::new(did, ty::List::identity_for_item(tcx, did));
2659         let name = Symbol::intern(tcx.symbol_name(instance).name);
2660         if let Some(&hir_id) = self.seen_decls.get(&name) {
2661             // Avoid updating the map with the new entry when we do find a collision. We want to
2662             // make sure we're always pointing to the first definition as the previous declaration.
2663             // This lets us avoid emitting "knock-on" diagnostics.
2664             Some(hir_id)
2665         } else {
2666             self.seen_decls.insert(name, fi.hir_id())
2667         }
2668     }
2669
2670     /// Get the name of the symbol that's linked against for a given extern declaration. That is,
2671     /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the
2672     /// symbol's name.
2673     fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName {
2674         if let Some((overridden_link_name, overridden_link_name_span)) =
2675             tcx.codegen_fn_attrs(fi.def_id).link_name.map(|overridden_link_name| {
2676                 // FIXME: Instead of searching through the attributes again to get span
2677                 // information, we could have codegen_fn_attrs also give span information back for
2678                 // where the attribute was defined. However, until this is found to be a
2679                 // bottleneck, this does just fine.
2680                 (
2681                     overridden_link_name,
2682                     tcx.get_attrs(fi.def_id.to_def_id())
2683                         .iter()
2684                         .find(|at| tcx.sess.check_name(at, sym::link_name))
2685                         .unwrap()
2686                         .span,
2687                 )
2688             })
2689         {
2690             SymbolName::Link(overridden_link_name, overridden_link_name_span)
2691         } else {
2692             SymbolName::Normal(fi.ident.name)
2693         }
2694     }
2695
2696     /// Checks whether two types are structurally the same enough that the declarations shouldn't
2697     /// clash. We need this so we don't emit a lint when two modules both declare an extern struct,
2698     /// with the same members (as the declarations shouldn't clash).
2699     fn structurally_same_type<'tcx>(
2700         cx: &LateContext<'tcx>,
2701         a: Ty<'tcx>,
2702         b: Ty<'tcx>,
2703         ckind: CItemKind,
2704     ) -> bool {
2705         fn structurally_same_type_impl<'tcx>(
2706             seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>,
2707             cx: &LateContext<'tcx>,
2708             a: Ty<'tcx>,
2709             b: Ty<'tcx>,
2710             ckind: CItemKind,
2711         ) -> bool {
2712             debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b);
2713             let tcx = cx.tcx;
2714
2715             // Given a transparent newtype, reach through and grab the inner
2716             // type unless the newtype makes the type non-null.
2717             let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> {
2718                 let mut ty = ty;
2719                 loop {
2720                     if let ty::Adt(def, substs) = *ty.kind() {
2721                         let is_transparent = def.subst(tcx, substs).repr.transparent();
2722                         let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, &def);
2723                         debug!(
2724                             "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}",
2725                             ty, is_transparent, is_non_null
2726                         );
2727                         if is_transparent && !is_non_null {
2728                             debug_assert!(def.variants.len() == 1);
2729                             let v = &def.variants[VariantIdx::new(0)];
2730                             ty = transparent_newtype_field(tcx, v)
2731                                 .expect(
2732                                     "single-variant transparent structure with zero-sized field",
2733                                 )
2734                                 .ty(tcx, substs);
2735                             continue;
2736                         }
2737                     }
2738                     debug!("non_transparent_ty -> {:?}", ty);
2739                     return ty;
2740                 }
2741             };
2742
2743             let a = non_transparent_ty(a);
2744             let b = non_transparent_ty(b);
2745
2746             if !seen_types.insert((a, b)) {
2747                 // We've encountered a cycle. There's no point going any further -- the types are
2748                 // structurally the same.
2749                 return true;
2750             }
2751             let tcx = cx.tcx;
2752             if a == b || rustc_middle::ty::TyS::same_type(a, b) {
2753                 // All nominally-same types are structurally same, too.
2754                 true
2755             } else {
2756                 // Do a full, depth-first comparison between the two.
2757                 use rustc_middle::ty::TyKind::*;
2758                 let a_kind = a.kind();
2759                 let b_kind = b.kind();
2760
2761                 let compare_layouts = |a, b| -> Result<bool, LayoutError<'tcx>> {
2762                     debug!("compare_layouts({:?}, {:?})", a, b);
2763                     let a_layout = &cx.layout_of(a)?.layout.abi;
2764                     let b_layout = &cx.layout_of(b)?.layout.abi;
2765                     debug!(
2766                         "comparing layouts: {:?} == {:?} = {}",
2767                         a_layout,
2768                         b_layout,
2769                         a_layout == b_layout
2770                     );
2771                     Ok(a_layout == b_layout)
2772                 };
2773
2774                 #[allow(rustc::usage_of_ty_tykind)]
2775                 let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| {
2776                     kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..))
2777                 };
2778
2779                 ensure_sufficient_stack(|| {
2780                     match (a_kind, b_kind) {
2781                         (Adt(a_def, a_substs), Adt(b_def, b_substs)) => {
2782                             let a = a.subst(cx.tcx, a_substs);
2783                             let b = b.subst(cx.tcx, b_substs);
2784                             debug!("Comparing {:?} and {:?}", a, b);
2785
2786                             // We can immediately rule out these types as structurally same if
2787                             // their layouts differ.
2788                             match compare_layouts(a, b) {
2789                                 Ok(false) => return false,
2790                                 _ => (), // otherwise, continue onto the full, fields comparison
2791                             }
2792
2793                             // Grab a flattened representation of all fields.
2794                             let a_fields = a_def.variants.iter().flat_map(|v| v.fields.iter());
2795                             let b_fields = b_def.variants.iter().flat_map(|v| v.fields.iter());
2796
2797                             // Perform a structural comparison for each field.
2798                             a_fields.eq_by(
2799                                 b_fields,
2800                                 |&ty::FieldDef { did: a_did, .. },
2801                                  &ty::FieldDef { did: b_did, .. }| {
2802                                     structurally_same_type_impl(
2803                                         seen_types,
2804                                         cx,
2805                                         tcx.type_of(a_did),
2806                                         tcx.type_of(b_did),
2807                                         ckind,
2808                                     )
2809                                 },
2810                             )
2811                         }
2812                         (Array(a_ty, a_const), Array(b_ty, b_const)) => {
2813                             // For arrays, we also check the constness of the type.
2814                             a_const.val == b_const.val
2815                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2816                         }
2817                         (Slice(a_ty), Slice(b_ty)) => {
2818                             structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2819                         }
2820                         (RawPtr(a_tymut), RawPtr(b_tymut)) => {
2821                             a_tymut.mutbl == b_tymut.mutbl
2822                                 && structurally_same_type_impl(
2823                                     seen_types,
2824                                     cx,
2825                                     &a_tymut.ty,
2826                                     &b_tymut.ty,
2827                                     ckind,
2828                                 )
2829                         }
2830                         (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => {
2831                             // For structural sameness, we don't need the region to be same.
2832                             a_mut == b_mut
2833                                 && structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2834                         }
2835                         (FnDef(..), FnDef(..)) => {
2836                             let a_poly_sig = a.fn_sig(tcx);
2837                             let b_poly_sig = b.fn_sig(tcx);
2838
2839                             // As we don't compare regions, skip_binder is fine.
2840                             let a_sig = a_poly_sig.skip_binder();
2841                             let b_sig = b_poly_sig.skip_binder();
2842
2843                             (a_sig.abi, a_sig.unsafety, a_sig.c_variadic)
2844                                 == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic)
2845                                 && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| {
2846                                     structurally_same_type_impl(seen_types, cx, a, b, ckind)
2847                                 })
2848                                 && structurally_same_type_impl(
2849                                     seen_types,
2850                                     cx,
2851                                     a_sig.output(),
2852                                     b_sig.output(),
2853                                     ckind,
2854                                 )
2855                         }
2856                         (Tuple(a_substs), Tuple(b_substs)) => {
2857                             a_substs.types().eq_by(b_substs.types(), |a_ty, b_ty| {
2858                                 structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind)
2859                             })
2860                         }
2861                         // For these, it's not quite as easy to define structural-sameness quite so easily.
2862                         // For the purposes of this lint, take the conservative approach and mark them as
2863                         // not structurally same.
2864                         (Dynamic(..), Dynamic(..))
2865                         | (Error(..), Error(..))
2866                         | (Closure(..), Closure(..))
2867                         | (Generator(..), Generator(..))
2868                         | (GeneratorWitness(..), GeneratorWitness(..))
2869                         | (Projection(..), Projection(..))
2870                         | (Opaque(..), Opaque(..)) => false,
2871
2872                         // These definitely should have been caught above.
2873                         (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(),
2874
2875                         // An Adt and a primitive or pointer type. This can be FFI-safe if non-null
2876                         // enum layout optimisation is being applied.
2877                         (Adt(..), other_kind) | (other_kind, Adt(..))
2878                             if is_primitive_or_pointer(other_kind) =>
2879                         {
2880                             let (primitive, adt) =
2881                                 if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) };
2882                             if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) {
2883                                 ty == primitive
2884                             } else {
2885                                 compare_layouts(a, b).unwrap_or(false)
2886                             }
2887                         }
2888                         // Otherwise, just compare the layouts. This may fail to lint for some
2889                         // incompatible types, but at the very least, will stop reads into
2890                         // uninitialised memory.
2891                         _ => compare_layouts(a, b).unwrap_or(false),
2892                     }
2893                 })
2894             }
2895         }
2896         let mut seen_types = FxHashSet::default();
2897         structurally_same_type_impl(&mut seen_types, cx, a, b, ckind)
2898     }
2899 }
2900
2901 impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]);
2902
2903 impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations {
2904     fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) {
2905         trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi);
2906         if let ForeignItemKind::Fn(..) = this_fi.kind {
2907             let tcx = cx.tcx;
2908             if let Some(existing_hid) = self.insert(tcx, this_fi) {
2909                 let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid));
2910                 let this_decl_ty = tcx.type_of(this_fi.def_id);
2911                 debug!(
2912                     "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}",
2913                     existing_hid, existing_decl_ty, this_fi.def_id, this_decl_ty
2914                 );
2915                 // Check that the declarations match.
2916                 if !Self::structurally_same_type(
2917                     cx,
2918                     existing_decl_ty,
2919                     this_decl_ty,
2920                     CItemKind::Declaration,
2921                 ) {
2922                     let orig_fi = tcx.hir().expect_foreign_item(existing_hid);
2923                     let orig = Self::name_of_extern_decl(tcx, orig_fi);
2924
2925                     // We want to ensure that we use spans for both decls that include where the
2926                     // name was defined, whether that was from the link_name attribute or not.
2927                     let get_relevant_span =
2928                         |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) {
2929                             SymbolName::Normal(_) => fi.span,
2930                             SymbolName::Link(_, annot_span) => fi.span.to(annot_span),
2931                         };
2932                     // Finally, emit the diagnostic.
2933                     tcx.struct_span_lint_hir(
2934                         CLASHING_EXTERN_DECLARATIONS,
2935                         this_fi.hir_id(),
2936                         get_relevant_span(this_fi),
2937                         |lint| {
2938                             let mut expected_str = DiagnosticStyledString::new();
2939                             expected_str.push(existing_decl_ty.fn_sig(tcx).to_string(), false);
2940                             let mut found_str = DiagnosticStyledString::new();
2941                             found_str.push(this_decl_ty.fn_sig(tcx).to_string(), true);
2942
2943                             lint.build(&format!(
2944                                 "`{}` redeclare{} with a different signature",
2945                                 this_fi.ident.name,
2946                                 if orig.get_name() == this_fi.ident.name {
2947                                     "d".to_string()
2948                                 } else {
2949                                     format!("s `{}`", orig.get_name())
2950                                 }
2951                             ))
2952                             .span_label(
2953                                 get_relevant_span(orig_fi),
2954                                 &format!("`{}` previously declared here", orig.get_name()),
2955                             )
2956                             .span_label(
2957                                 get_relevant_span(this_fi),
2958                                 "this signature doesn't match the previous declaration",
2959                             )
2960                             .note_expected_found(&"", expected_str, &"", found_str)
2961                             .emit()
2962                         },
2963                     );
2964                 }
2965             }
2966         }
2967     }
2968 }
2969
2970 declare_lint! {
2971     /// The `deref_nullptr` lint detects when an null pointer is dereferenced,
2972     /// which causes [undefined behavior].
2973     ///
2974     /// ### Example
2975     ///
2976     /// ```rust,no_run
2977     /// # #![allow(unused)]
2978     /// use std::ptr;
2979     /// unsafe {
2980     ///     let x = &*ptr::null::<i32>();
2981     ///     let x = ptr::addr_of!(*ptr::null::<i32>());
2982     ///     let x = *(0 as *const i32);
2983     /// }
2984     /// ```
2985     ///
2986     /// {{produces}}
2987     ///
2988     /// ### Explanation
2989     ///
2990     /// Dereferencing a null pointer causes [undefined behavior] even as a place expression,
2991     /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`.
2992     ///
2993     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2994     pub DEREF_NULLPTR,
2995     Warn,
2996     "detects when an null pointer is dereferenced"
2997 }
2998
2999 declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
3000
3001 impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
3002     fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
3003         /// test if expression is a null ptr
3004         fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
3005             match &expr.kind {
3006                 rustc_hir::ExprKind::Cast(ref expr, ref ty) => {
3007                     if let rustc_hir::TyKind::Ptr(_) = ty.kind {
3008                         return is_zero(expr) || is_null_ptr(cx, expr);
3009                     }
3010                 }
3011                 // check for call to `core::ptr::null` or `core::ptr::null_mut`
3012                 rustc_hir::ExprKind::Call(ref path, _) => {
3013                     if let rustc_hir::ExprKind::Path(ref qpath) = path.kind {
3014                         if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
3015                             return cx.tcx.is_diagnostic_item(sym::ptr_null, def_id)
3016                                 || cx.tcx.is_diagnostic_item(sym::ptr_null_mut, def_id);
3017                         }
3018                     }
3019                 }
3020                 _ => {}
3021             }
3022             false
3023         }
3024
3025         /// test if expression is the literal `0`
3026         fn is_zero(expr: &hir::Expr<'_>) -> bool {
3027             match &expr.kind {
3028                 rustc_hir::ExprKind::Lit(ref lit) => {
3029                     if let LitKind::Int(a, _) = lit.node {
3030                         return a == 0;
3031                     }
3032                 }
3033                 _ => {}
3034             }
3035             false
3036         }
3037
3038         if let rustc_hir::ExprKind::Unary(ref un_op, ref expr_deref) = expr.kind {
3039             if let rustc_hir::UnOp::Deref = un_op {
3040                 if is_null_ptr(cx, expr_deref) {
3041                     cx.struct_span_lint(DEREF_NULLPTR, expr.span, |lint| {
3042                         let mut err = lint.build("dereferencing a null pointer");
3043                         err.span_label(
3044                             expr.span,
3045                             "this code causes undefined behavior when executed",
3046                         );
3047                         err.emit();
3048                     });
3049                 }
3050             }
3051         }
3052     }
3053 }