]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_infer/src/traits/util.rs
Auto merge of #98471 - wesleywiser:update_measureme, r=Mark-Simulacrum
[rust.git] / compiler / rustc_infer / src / traits / util.rs
1 use smallvec::smallvec;
2
3 use crate::infer::outlives::components::{push_outlives_components, Component};
4 use crate::traits::{Obligation, ObligationCause, PredicateObligation};
5 use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
6 use rustc_middle::ty::{self, ToPredicate, TyCtxt};
7 use rustc_span::symbol::Ident;
8 use rustc_span::Span;
9
10 pub fn anonymize_predicate<'tcx>(
11     tcx: TyCtxt<'tcx>,
12     pred: ty::Predicate<'tcx>,
13 ) -> ty::Predicate<'tcx> {
14     let new = tcx.anonymize_late_bound_regions(pred.kind());
15     tcx.reuse_or_mk_predicate(pred, new)
16 }
17
18 pub struct PredicateSet<'tcx> {
19     tcx: TyCtxt<'tcx>,
20     set: FxHashSet<ty::Predicate<'tcx>>,
21 }
22
23 impl<'tcx> PredicateSet<'tcx> {
24     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
25         Self { tcx, set: Default::default() }
26     }
27
28     pub fn insert(&mut self, pred: ty::Predicate<'tcx>) -> bool {
29         // We have to be careful here because we want
30         //
31         //    for<'a> Foo<&'a i32>
32         //
33         // and
34         //
35         //    for<'b> Foo<&'b i32>
36         //
37         // to be considered equivalent. So normalize all late-bound
38         // regions before we throw things into the underlying set.
39         self.set.insert(anonymize_predicate(self.tcx, pred))
40     }
41 }
42
43 impl<'tcx> Extend<ty::Predicate<'tcx>> for PredicateSet<'tcx> {
44     fn extend<I: IntoIterator<Item = ty::Predicate<'tcx>>>(&mut self, iter: I) {
45         for pred in iter {
46             self.insert(pred);
47         }
48     }
49
50     fn extend_one(&mut self, pred: ty::Predicate<'tcx>) {
51         self.insert(pred);
52     }
53
54     fn extend_reserve(&mut self, additional: usize) {
55         Extend::<ty::Predicate<'tcx>>::extend_reserve(&mut self.set, additional);
56     }
57 }
58
59 ///////////////////////////////////////////////////////////////////////////
60 // `Elaboration` iterator
61 ///////////////////////////////////////////////////////////////////////////
62
63 /// "Elaboration" is the process of identifying all the predicates that
64 /// are implied by a source predicate. Currently, this basically means
65 /// walking the "supertraits" and other similar assumptions. For example,
66 /// if we know that `T: Ord`, the elaborator would deduce that `T: PartialOrd`
67 /// holds as well. Similarly, if we have `trait Foo: 'static`, and we know that
68 /// `T: Foo`, then we know that `T: 'static`.
69 pub struct Elaborator<'tcx> {
70     stack: Vec<PredicateObligation<'tcx>>,
71     visited: PredicateSet<'tcx>,
72 }
73
74 pub fn elaborate_trait_ref<'tcx>(
75     tcx: TyCtxt<'tcx>,
76     trait_ref: ty::PolyTraitRef<'tcx>,
77 ) -> Elaborator<'tcx> {
78     elaborate_predicates(tcx, std::iter::once(trait_ref.without_const().to_predicate(tcx)))
79 }
80
81 pub fn elaborate_trait_refs<'tcx>(
82     tcx: TyCtxt<'tcx>,
83     trait_refs: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
84 ) -> Elaborator<'tcx> {
85     let predicates = trait_refs.map(|trait_ref| trait_ref.without_const().to_predicate(tcx));
86     elaborate_predicates(tcx, predicates)
87 }
88
89 pub fn elaborate_predicates<'tcx>(
90     tcx: TyCtxt<'tcx>,
91     predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
92 ) -> Elaborator<'tcx> {
93     let obligations = predicates
94         .map(|predicate| {
95             predicate_obligation(predicate, ty::ParamEnv::empty(), ObligationCause::dummy())
96         })
97         .collect();
98     elaborate_obligations(tcx, obligations)
99 }
100
101 pub fn elaborate_predicates_with_span<'tcx>(
102     tcx: TyCtxt<'tcx>,
103     predicates: impl Iterator<Item = (ty::Predicate<'tcx>, Span)>,
104 ) -> Elaborator<'tcx> {
105     let obligations = predicates
106         .map(|(predicate, span)| {
107             predicate_obligation(
108                 predicate,
109                 ty::ParamEnv::empty(),
110                 ObligationCause::dummy_with_span(span),
111             )
112         })
113         .collect();
114     elaborate_obligations(tcx, obligations)
115 }
116
117 pub fn elaborate_obligations<'tcx>(
118     tcx: TyCtxt<'tcx>,
119     mut obligations: Vec<PredicateObligation<'tcx>>,
120 ) -> Elaborator<'tcx> {
121     let mut visited = PredicateSet::new(tcx);
122     obligations.retain(|obligation| visited.insert(obligation.predicate));
123     Elaborator { stack: obligations, visited }
124 }
125
126 fn predicate_obligation<'tcx>(
127     predicate: ty::Predicate<'tcx>,
128     param_env: ty::ParamEnv<'tcx>,
129     cause: ObligationCause<'tcx>,
130 ) -> PredicateObligation<'tcx> {
131     Obligation { cause, param_env, recursion_depth: 0, predicate }
132 }
133
134 impl<'tcx> Elaborator<'tcx> {
135     pub fn filter_to_traits(self) -> FilterToTraits<Self> {
136         FilterToTraits::new(self)
137     }
138
139     fn elaborate(&mut self, obligation: &PredicateObligation<'tcx>) {
140         let tcx = self.visited.tcx;
141
142         let bound_predicate = obligation.predicate.kind();
143         match bound_predicate.skip_binder() {
144             ty::PredicateKind::Trait(data) => {
145                 // Get predicates declared on the trait.
146                 let predicates = tcx.super_predicates_of(data.def_id());
147
148                 let obligations = predicates.predicates.iter().map(|&(pred, _)| {
149                     predicate_obligation(
150                         pred.subst_supertrait(tcx, &bound_predicate.rebind(data.trait_ref)),
151                         obligation.param_env,
152                         obligation.cause.clone(),
153                     )
154                 });
155                 debug!(?data, ?obligations, "super_predicates");
156
157                 // Only keep those bounds that we haven't already seen.
158                 // This is necessary to prevent infinite recursion in some
159                 // cases. One common case is when people define
160                 // `trait Sized: Sized { }` rather than `trait Sized { }`.
161                 let visited = &mut self.visited;
162                 let obligations = obligations.filter(|o| visited.insert(o.predicate));
163
164                 self.stack.extend(obligations);
165             }
166             ty::PredicateKind::WellFormed(..) => {
167                 // Currently, we do not elaborate WF predicates,
168                 // although we easily could.
169             }
170             ty::PredicateKind::ObjectSafe(..) => {
171                 // Currently, we do not elaborate object-safe
172                 // predicates.
173             }
174             ty::PredicateKind::Subtype(..) => {
175                 // Currently, we do not "elaborate" predicates like `X <: Y`,
176                 // though conceivably we might.
177             }
178             ty::PredicateKind::Coerce(..) => {
179                 // Currently, we do not "elaborate" predicates like `X -> Y`,
180                 // though conceivably we might.
181             }
182             ty::PredicateKind::Projection(..) => {
183                 // Nothing to elaborate in a projection predicate.
184             }
185             ty::PredicateKind::ClosureKind(..) => {
186                 // Nothing to elaborate when waiting for a closure's kind to be inferred.
187             }
188             ty::PredicateKind::ConstEvaluatable(..) => {
189                 // Currently, we do not elaborate const-evaluatable
190                 // predicates.
191             }
192             ty::PredicateKind::ConstEquate(..) => {
193                 // Currently, we do not elaborate const-equate
194                 // predicates.
195             }
196             ty::PredicateKind::RegionOutlives(..) => {
197                 // Nothing to elaborate from `'a: 'b`.
198             }
199             ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_max, r_min)) => {
200                 // We know that `T: 'a` for some type `T`. We can
201                 // often elaborate this. For example, if we know that
202                 // `[U]: 'a`, that implies that `U: 'a`. Similarly, if
203                 // we know `&'a U: 'b`, then we know that `'a: 'b` and
204                 // `U: 'b`.
205                 //
206                 // We can basically ignore bound regions here. So for
207                 // example `for<'c> Foo<'a,'c>: 'b` can be elaborated to
208                 // `'a: 'b`.
209
210                 // Ignore `for<'a> T: 'a` -- we might in the future
211                 // consider this as evidence that `T: 'static`, but
212                 // I'm a bit wary of such constructions and so for now
213                 // I want to be conservative. --nmatsakis
214                 if r_min.is_late_bound() {
215                     return;
216                 }
217
218                 let visited = &mut self.visited;
219                 let mut components = smallvec![];
220                 push_outlives_components(tcx, ty_max, &mut components);
221                 self.stack.extend(
222                     components
223                         .into_iter()
224                         .filter_map(|component| match component {
225                             Component::Region(r) => {
226                                 if r.is_late_bound() {
227                                     None
228                                 } else {
229                                     Some(ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
230                                         r, r_min,
231                                     )))
232                                 }
233                             }
234
235                             Component::Param(p) => {
236                                 let ty = tcx.mk_ty_param(p.index, p.name);
237                                 Some(ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
238                                     ty, r_min,
239                                 )))
240                             }
241
242                             Component::UnresolvedInferenceVariable(_) => None,
243
244                             Component::Projection(projection) => {
245                                 // We might end up here if we have `Foo<<Bar as Baz>::Assoc>: 'a`.
246                                 // With this, we can deduce that `<Bar as Baz>::Assoc: 'a`.
247                                 let ty =
248                                     tcx.mk_projection(projection.item_def_id, projection.substs);
249                                 Some(ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
250                                     ty, r_min,
251                                 )))
252                             }
253
254                             Component::EscapingProjection(_) => {
255                                 // We might be able to do more here, but we don't
256                                 // want to deal with escaping vars right now.
257                                 None
258                             }
259                         })
260                         .map(ty::Binder::dummy)
261                         .map(|predicate_kind| predicate_kind.to_predicate(tcx))
262                         .filter(|&predicate| visited.insert(predicate))
263                         .map(|predicate| {
264                             predicate_obligation(
265                                 predicate,
266                                 obligation.param_env,
267                                 obligation.cause.clone(),
268                             )
269                         }),
270                 );
271             }
272             ty::PredicateKind::TypeWellFormedFromEnv(..) => {
273                 // Nothing to elaborate
274             }
275         }
276     }
277 }
278
279 impl<'tcx> Iterator for Elaborator<'tcx> {
280     type Item = PredicateObligation<'tcx>;
281
282     fn size_hint(&self) -> (usize, Option<usize>) {
283         (self.stack.len(), None)
284     }
285
286     fn next(&mut self) -> Option<Self::Item> {
287         // Extract next item from top-most stack frame, if any.
288         if let Some(obligation) = self.stack.pop() {
289             self.elaborate(&obligation);
290             Some(obligation)
291         } else {
292             None
293         }
294     }
295 }
296
297 ///////////////////////////////////////////////////////////////////////////
298 // Supertrait iterator
299 ///////////////////////////////////////////////////////////////////////////
300
301 pub type Supertraits<'tcx> = FilterToTraits<Elaborator<'tcx>>;
302
303 pub fn supertraits<'tcx>(
304     tcx: TyCtxt<'tcx>,
305     trait_ref: ty::PolyTraitRef<'tcx>,
306 ) -> Supertraits<'tcx> {
307     elaborate_trait_ref(tcx, trait_ref).filter_to_traits()
308 }
309
310 pub fn transitive_bounds<'tcx>(
311     tcx: TyCtxt<'tcx>,
312     bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
313 ) -> Supertraits<'tcx> {
314     elaborate_trait_refs(tcx, bounds).filter_to_traits()
315 }
316
317 /// A specialized variant of `elaborate_trait_refs` that only elaborates trait references that may
318 /// define the given associated type `assoc_name`. It uses the
319 /// `super_predicates_that_define_assoc_type` query to avoid enumerating super-predicates that
320 /// aren't related to `assoc_item`.  This is used when resolving types like `Self::Item` or
321 /// `T::Item` and helps to avoid cycle errors (see e.g. #35237).
322 pub fn transitive_bounds_that_define_assoc_type<'tcx>(
323     tcx: TyCtxt<'tcx>,
324     bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
325     assoc_name: Ident,
326 ) -> impl Iterator<Item = ty::PolyTraitRef<'tcx>> {
327     let mut stack: Vec<_> = bounds.collect();
328     let mut visited = FxIndexSet::default();
329
330     std::iter::from_fn(move || {
331         while let Some(trait_ref) = stack.pop() {
332             let anon_trait_ref = tcx.anonymize_late_bound_regions(trait_ref);
333             if visited.insert(anon_trait_ref) {
334                 let super_predicates = tcx.super_predicates_that_define_assoc_type((
335                     trait_ref.def_id(),
336                     Some(assoc_name),
337                 ));
338                 for (super_predicate, _) in super_predicates.predicates {
339                     let subst_predicate = super_predicate.subst_supertrait(tcx, &trait_ref);
340                     if let Some(binder) = subst_predicate.to_opt_poly_trait_pred() {
341                         stack.push(binder.map_bound(|t| t.trait_ref));
342                     }
343                 }
344
345                 return Some(trait_ref);
346             }
347         }
348
349         return None;
350     })
351 }
352
353 ///////////////////////////////////////////////////////////////////////////
354 // Other
355 ///////////////////////////////////////////////////////////////////////////
356
357 /// A filter around an iterator of predicates that makes it yield up
358 /// just trait references.
359 pub struct FilterToTraits<I> {
360     base_iterator: I,
361 }
362
363 impl<I> FilterToTraits<I> {
364     fn new(base: I) -> FilterToTraits<I> {
365         FilterToTraits { base_iterator: base }
366     }
367 }
368
369 impl<'tcx, I: Iterator<Item = PredicateObligation<'tcx>>> Iterator for FilterToTraits<I> {
370     type Item = ty::PolyTraitRef<'tcx>;
371
372     fn next(&mut self) -> Option<ty::PolyTraitRef<'tcx>> {
373         while let Some(obligation) = self.base_iterator.next() {
374             if let Some(data) = obligation.predicate.to_opt_poly_trait_pred() {
375                 return Some(data.map_bound(|t| t.trait_ref));
376             }
377         }
378         None
379     }
380
381     fn size_hint(&self) -> (usize, Option<usize>) {
382         let (_, upper) = self.base_iterator.size_hint();
383         (0, upper)
384     }
385 }